Fermat's theorem. The number D=Aⁿ+Bⁿ-Cⁿ < 0

In Memory of my MOTHER

The notations in base U=A+B-C [an option: in base U-1]:

A' – the last digit of the number A; A " – the number A without the last digit, the « head » of the number.

So, let's assume that for natural numbers A, B, C and n>2 there is equality: 1°) Aⁿ+Bⁿ-Cⁿ=0, where, as it is known, 1a°) A+B>C>A>B>U=A+B-C>0, A=A'+A", B=B'+B", C=C'+C", 1b°) A"+B"-C"=0.

Proof of the FLT

Let's assume that C'=0 and B'=A'=U/2. Then min B"=1, min A"=1, C=1+1=2, and now 2°) A=10*1¹/₂, B=10*1¹/₂, C=10*2 and therefore, D=Aⁿ+Bⁿ-Cⁿ < 0 (even if n=3). 3°) And now, with any increase of the numbers A and C by d, the number D will only decrease and with any decrease of the numbers B' and C' by e the number D can not become positive!

It remains to show that by increasing the numbers A and C by d and by reducing the numbers B' and C' by e we can get any one of the solutions A, B, C in a hypothetical Fermat's equality – for example, for the base U=10, starting with the solution A'=5, B'=5, C'=0, to arrive to A'=7, B'=4, C'=1. The answer: d=2 and e=3 will lead to A'=5+2, B'=5-1, C'=0+2-1, with the final result: $D=A^n+B^n-C^n < 0$,

which confirms the truth of FLT.

Mezos. June 25, 2018