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Abstract: In this paper, the establishment of a systematic multi-barycenter mechanics is based
on the multi-particle mechanics. The new theory perfects the basic theoretical system of clas-
sical mechanics, which discovers the law of mutual interaction between particle groups, reveals
the limitations of Newton’s third law, finds the principle of the internal relationship between
gravity and tidal force, reasonably explains the origin and change laws for the rotation angular
momentum of galaxies and stars and so on. By applying new theory, the N -body problem can
be transformed into a special two-body problem and for which a simulation solution method is
proposed, the motion law of each particle can be roughly obtained.
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Introduction

In the basic theory of mechanics, there are some branches, such as the particle mechanics,
the multi-particle mechanics, mechanics of rigid bodies and so on. It seems that there are no
basic principles and laws that need to be supplemented. But in fact, classical mechanics has
serious theoretical flaws, because the mutual interaction between real objects is the interaction
between groups of particles. This interaction has not been systematically studied, which is
only roughly described by Newton’s third law that was from old experiences. The description
is clearly not rigorous. Therefore, classical mechanics is often full of vagueness, unilaterality
and contradiction in the analysis of the interaction between particle groups, which restricts the
development of astrophysics, solar physics, geophysics and so on. For example, the origin of
the angular momentum of galactic rotation is considered to be caused by the tidal force of the
galaxies and surrounding celestial bodies [1, 2], while the origin of the angular momentum of the
rotation of the stars in the solar system is a sensitive problem that has been evaded by various
related professional books and literature [3-7], because the tidal force is considered to be the
cause of slowing the earth’s rotation [8-10]. The mutual interaction between the celestial bodies
is gravitational and obeys Newton’s third law. Gravitation is always considered to be through
the barycenter of an object. So how can the force passing through the barycenter of an object
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cause its rotation to change? The tidal force is only the component of gravity. Is it completes
that using tidal force analysis mutual interactions between celestial bodies? These important
issues cannot be well solved within the framework of existing classical mechanics.

In order to satisfactorily solve all the problems presented above, this paper will study the
mechanics laws for n particle groups in a system deeply (2 ≤ n <∞), that is to establish a new
branch system: multi-barycenter mechanics.

In this paper, if there is no special explanation, all mechanics systems we studied are in an
inertial frame.

1. Multi-barycenter Mechanics (1)

Before studying the multi-barycenter mechanics, we need to first research the translation
principle for a vector system.

If position vectors of vectors P and Q about a fixed point O are rP and rQ respectively,
and

rPQ =
−−→
PQ = rQ − rP = −

−−→
QP = −rQP ,

then the vector moments of P and Q about O are rP×P and rQ×Q severally. If P and Q are
equal in magnitude and opposite in direction, then they are a vector moment of couple rQP×P
which has nothing to do with the reference point.

Vector is a quantity that has magnitude and direction. According to its definition, a vector
does not change its size and direction when it is arbitrarily translated in a coordinate system,
that is, the vector does not change. Due to the existence of the vector moment, the translational
displacements of the vector will make a change to its vector moment about a reference point.
Therefore, in general, a vector cannot be arbitrarily translated in a coordinate system. While
a vector moment of couple has nothing to do with a reference point, so it can be arbitrarily
translated in a coordinate system.

Figure 1

In the study of mechanics, we sometimes need to move vectors parallelly. Such as in Figure
1, at a certain moment, we shift P from the point B to the point A parallelly, relative to a fixed
point O, rB = rA + rAB, so

rB×P = rA ×P +rAB×P (1)

The meaning of Eq. (1) is that at any moment, the vector P at the point B is translated to the
point A parallelly, its vector moment about O is changed from rB×P to rA×P , that is to say,
a vector moment of couple rAB×P no relation with O is reduced. In order not to change the
translation effect of P , it is needed to add rAB×P .
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Some vectors are related to the movement of a reference point, such as the linear momentum;
if a vector P has nothing to do with the reference point movement, the point O can be selected
arbitrarily.

If at any time vectors P 1,P 2, · · ·P n at points B1, B2, · · ·Bn were translated parallelly to
points A1, A2, · · ·An respectively, in order not to change the translation effect, according to Eq.
(1), the vector moment of P 1,P 2, · · ·P n about any fixed point O needs to be added a vector

moment of couple
n∑

i=1
rABi×P i. Since we often shift a vector system parallelly to a point such

as the center of mass, then further propose Theorem 1:

Theorem 1. If vectors P 1,P 2, · · ·P n at points B1, B2, · · ·Bn are translated parallelly to a
point A at any time, in order not to change the translation effect, the total vector moment of

P 1,P 2, · · ·P n relative to any fixed point O needs to add a vector moment of couple
n∑

i=1
rABi×P i.

Similar to the previous analysis, the proof of Theorem 1 is not difficult, readers can try it
on their own.

Theorem 1 is universally applicable to any vector, for example, both a force and a linear
momentum are vectors, and their translational principles can be obtained directly.

Translation principle for a force system. If forces F 1,F 2, · · ·F n at points B1, B2, · · ·Bn

are translated parallelly to a point A at any time, in order not to change the mechanical effect,
the total force moment of F 1,F 2, · · ·F n about any fixed point O needs to add a force moment

of couple M ′ =
n∑

i=1
rABi × F i.

Translation principle for a linear momentum system. If linear momentums P 1,P 2, · · ·P n

at points B1, B2, · · ·Bn are translated parallelly to a point A at any time, in order not to change
the mechanical effect, the total angular momentum of P 1,P 2, · · ·P n about any fixed point O

needs to add a momentum moment of couple J ′ =
n∑

i=1
rABi × P i.

Translation principle for a force system can be implemented to the multi-particle mechanics.
If there is a system of particles P1, P2, · · ·Pn with masses m1,m2, · · ·mn, linear momentums
are P 1(t),P 2(t), · · ·P n(t), position vectors are r1(t), r2(t), · · · rn(t) about a fixed point O and
rC1(t), rC2(t), · · · rCn(t) about the center of mass severally. The position vector of the barycenter
C about O is rC(t), so ri = rC + rCi , (i = 1, 2, · · ·n). Set the resultant external force acting
on the i-th particle is F i, at some moment F i are translated parallelly to the center of mass C,
according to the translation principle for a force system the total torque of F i about O need to

increase a moment of couple M ′ =
n∑

i=1
rCi ×F i. Let the resultant force of F i translated to the

center of mass is FC , so the motion equation of the barycenter is:

mr̈C =
n∑

i=1

F i = FC (2)

where m = m1 +m2 + · · ·+mn.
The reason why we put forward the translation principle for a linear momentum system is

that the movement law of a barycenter is the variation law of the barycenter’s linear momentum,
which is each particle linear momentum translated parallelly to the center of mass. The angular

momentum of the system in the zero momentum frame is J ′ =
n∑

i=1
rCi × P i, relative to any

fixed point O in an inertial frame, it is J ′ plus the angular momentum of the barycenter about O.
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If there are nS interacting particles in a mechanics system, it can be studied as a particle
group which has a center of mass or n particle groups which have n barycenters, so the multi-
barycenter mechanics and the multi-particle mechanics are not only independent but internal
unity. Set numbers of particles in each particle group are n1, n2, · · ·nn respectively, namely:

nS = n1 + n2 + . . .+ nn (3)

Let the total mass of the i-th particle group is mi, (i = 1, 2, · · ·n), the j-th particle in the i-th
particle group has mass mij , its position vector about a fixed point O is rij , then the position
vector rCi of the barycenter Ci of the i-th particle group satisfy

rCi =

∑ni
j=1mijrij∑ni
j=1mij

=

∑ni
j=1mijrij

mi

Namely

mirCi =

ni∑
j=1

mijrij (4)

Because there are n barycenters in the system, we call such a mechanics system a barycenter
group. The total mass of nS particles in the mechanical system is m, the position vector of the
total barycenter C about O is rC , then

rC =

∑n
i=1

∑ni
j=1mijrij∑n

i=1

∑ni
j=1mij

=

∑n
i=1mirCi

m

So

mrC =
n∑

i=1

mirCi =
n∑

i=1

ni∑
j=1

mijrij (5)

First, we study the simplest barycenter group, in which there are only two particle groups,
and a particle group consisting of only one particle. The mutual interactions between the par-
ticles satisfy Newton’s third law and Theorem 2 is presented as follows.

Theorem 2. There are n particles in a barycenter group (n ≥ 2). The interaction rule for
an arbitrary particle A with the particle group B consisting of the rest particles is: the resultant
forces of the mutual interaction between A and the centre of mass of B are equal in magnitude,
opposite in direction and effecting a force moment of couple MZ . MZ and MBA, which A acts
upon B about its barycenter CB, are equal in magnitude and opposite in direction.

Proof. The mutual interactions between particles of B are the internal forces of B, the mutual
interactions between A and any particle of B are the external forces of B. Set the force that the
i-th particle of B acts upon A is fAi, the force that A acts upon the i-th particle of B is f iA.
fAi and f iA are equal in magnitude, opposite in direction and along the straight line joining
the two particles, (i = 1, 2, · · ·n− 1), namely

fAi = −f iA (6)

So the resultant external force which particle group B acts upon A and the resultant external
force which A acts upon the particle group B satisfy

n−1∑
i=1

fAi = −
n−1∑
i=1

f iA (7)
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As A is a mass point, so the resultant external force FA which B acts upon it is

FA =

n−1∑
i=1

fAi

According to the translation principle for a force system, translating f iA parallelly to the
barycenter CB of B, the translation effect not only produces a resultant force FB, and pro-
duces a moment of couple MBA:

MBA =

n∑
i=1

rCBi × f iA, (8)

where rCBi is the position vector of the i-th particle about CB, distinctly MBA is equal to the
torque which A acts upon B about CB, and

FA =

n−1∑
i=1

fAi = −
n−1∑
i=1

f iA = −FB

So
FA = −FB (9)

Namely FA and FB are equal in magnitude and opposite in direction. Usually FA and FB

are not in the same straight line and produce a moment of couple MZ = rACB
× FB, so the

total torque acting upon the system is MZ + MBA. The barycenter group composed of A and
B can be regard as a particle group D consisting of n particles, since the mutual interactions
between n particles belong to the internal forces of D, so about any fixed point O, the total
torque generated by internal forces is zero, then regardless of whether the system is isolated, we
have

MZ + MBA ≡ 0 (10)

So Theorem 2 is proved. MZ and MBA are generally changing over time, but Eq. (10) hold
eternally. �

According to Theorem 2, in general, a mass point has a force and torque effect on a mass
point group. To describe the mechanical effect more clearly and succinctly, it can be reduced
to a force acting on the center of mass and a force moment of couple acting on the mass point
group. The force will change the motion state of the center of mass and the force moment of
couple will change the rotation state of the mass point group.

Figure 2
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Here is a typical case to illustrate Theorem 2, in Figure 2 the mass of three particles P , Q
and S are all m, the mutual interaction is their gravitation. Set P and Q form a particle group

B, G is the gravitational constant, the resultant force F S = 2Gm2

5
√
5
ex +Gm2

(
1 + 1

5
√
5

)
ey acting

upon S is not along the straight line joining S and the centre of mass of B obviously, namely
MZ 6= 0, we get MBS 6= 0 by Eq. (10). So the interaction which S exerts on B are force and
torque at the same time.

Below we further analyze MBA, set

f
′
iA = mi ( aiA − aCB

) = f iA −mir̈CB

where aCB
is the accelerated speed of CB, aiA is the accelerated speed of the i-th particle in B

which subjected to f iA, so
f iA = f

′
iA +mir̈CB

(11)

For
n∑

i=1
mirCBi = 0, according to Eq. (8)

MBA =
n∑

i=1

rCBi × f iA =

n∑
i=1

rCBi × f
′
iA − r̈CB

×
n∑

i=1

mirCBi

We get

MBA =
n∑

i=1

rCBi × f iA =
n∑

i=1

rCBi × f
′
iA (12)

If the mutual interaction between the particles is gravitation, f ′iA is the tidal force which A acts
upon the i-th particle in the particle group B, Eq. (12) explains the force moment of couple
which A acts upon B is equal to the total torque which A acts upon each particle in B about
the center of mass CB and equals the total torque of tidal force which A acts upon each particle
in B about CB.

According to Theorem 2, we can propose Theorem 3:

Theorem 3. There are n particle groups in a barycenter group, the interaction rule between
any two particle groups A and B is: the resultant forces FA and FB of the mutual interac-
tion between their barycenters are equal in magnitude, opposite in direction, and resulting in a
force moment of couple MZ ; the force moment of couple MAB which B acts upon A about the
barycenter CA and the force moment of couple MBA which A acts upon B about the barycenter
CB satisfy MZ + MAB + MBA ≡ 0.

Proof. Assuming n particle groups in a barycenter group which has nS particles, the mu-
tual interactions between any two particle groups A and B belong to each other’s external

forces, set A has nA particles and B has nB particles, the force f
(A)
ij is the j-th particle in B

acting upon the i-th particle in A, the force f
(B)
ji is the i-th particle in A acting upon the j-th

particle in B, f
(A)
ij and f

(B)
ji are equal in magnitude, opposite in direction and along the straight

line joining the two particles, namely

f
(A)
ij = −f (B)

ji (13)

According to the translation principle for a force system, the resultant external forces FA which
the particles of B acting upon the barycenter of A and the resultant external forces FB which
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the particles of A acting upon the barycenter of B satisfy

FA =

nA∑
i=1

nB∑
j=1

f
(A)
ij =

nA∑
i=1

F iA = −
nB∑
j=1

nA∑
i=1

f
(B)
ji = −

nB∑
j=1

F jB = −FB, (14)

where the force F iA is all the particles in B acting upon the i-th particle in A and the force
F jB is all the particles in A acting upon the j-th particle in B. According to Eq. (14), FA and
FB are equal in magnitude and opposite in direction, set their moment of couple is MZ . By
the translation principle for a force system, the external forces F iA which B acts upon A are
translated parallelly to the barycenter CA of A will produce a moment of couple MAB

MAB =

nA∑
i=1

rCAi × F iA, (15)

where rCAi is the position vector of the i-th particle about CA, MAB is equal to the torque
which B acts upon A about CA. The external forces F jB which A acts upon B are translated
parallelly to the barycenter CB of B will produce a moment of couple MBA

MBA =

nB∑
j=1

rCBj × F jB, (16)

where rCBj is the position vector of the j-th particle about CB, MBA is equal to the torque
which A acts upon B about CB. A and B can be as a system D, the total torque acting upon D
is MZ + MAB + MBA, D is essentially a particle group too, the mutual interactions between
particles within it belong to the internal forces of D, the total torque about any fixed reference
point generated by internal forces is zero, so regardless of whether the system is isolated,

MZ + MAB + MBA ≡ 0 (17)

Theorem 3 then proved. �

According to Theorem 3, in general, the mutual interaction between any two particle groups
A and B can be reduced to the forces between their barycenters and the force moment of couple
between them, and the interaction resultant forces are not on the same straight line. Eqs. (15,
16) show that MAB and MBA are usually not equal in magnitude and opposite in direction.
Since any object in reality is a group of particles, therefore, Newton’s third law is sometimes
established strictly, and sometimes it is approximately established.
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Figure 3

Let’s take a typical case to explain Theorem 3. In Figure 3, the mass of four particles P , Q, R
and S are all m, the interaction is their mutual gravitation, set P , Q form a particle group B, and

R, S form another particle group A, the resultant force FA = 2Gm2

5
√
5
ex+Gm2

(
1 + 1

5
√
5

+ 1√
2

)
ey

acting upon A is not along the straight line joining barycenters of A and B obviously, namely
MZ 6= 0, we can obtain MAB + MBA 6= 0 by Eq. (17). Then the mutual interactions between
A and B are force and moment of couple at the same time.

Now we, set
F
′
iA = mi ( aiA − aCA

) = F iA −mir̈CA
,

where aCA
is the accelerated speed of CA, aiA is the accelerated speed of the i-th particle in A

which subjected to F iA, so
F iA = F

′
iA +mir̈CA

(18)

For
nA∑
i=1

mirCAi = 0, according to Eq. (15)

MAB =

nA∑
i=1

rCAi × F iA =

nA∑
i=1

rCAi × F
′
iA − r̈CA

×
nA∑
i=1

mirCAi

We get

MAB =

nA∑
i=1

rCAi × F iA =

nA∑
i=1

rCAi × F
′
iA (19)

Set
F
′
jB = mj ( ajB − aCB

) = F jB −mj r̈CB
=⇒ F jB = F

′
jB +mj r̈CB

, (20)

where aCB
is the accelerated speed of CB, ajB is the accelerated speed of the j-th particle in B

which subjected to F jB, similarly can be obtained

MBA =

nB∑
j=1

rCBj × F jB =

nB∑
j=1

rCBj × F
′
jB (21)

If the mutual interaction between the particles is gravitation, F ′iA is the tidal force which B acts
upon the i-th particle in the particle group A. Eq. (19) explains the force moment of couple
which B acts upon A is equal to the total torque which B acts upon each particle in A about
the center of mass CA and equals the total torque of tidal force which B acts upon each particle
in A about CA.

If A is a particle, B is a spherical symmetry rigid body, it is not difficult to prove MZ =
MBA ≡ 0; if A is a particle group, B is a spherical symmetry rigid body, it is not difficult to
prove MBA = MZ + MAB ≡ 0; if A and B are both spherical symmetry rigid bodies, it is not
difficult to prove MZ = MBA = MAB ≡ 0. Readers can try to prove the three laws themselves.

If there are n particle groups in a barycenter group, we analyze the law of energy change
caused by the interaction forces between any two particle groups A and B. For the sake of
simplicity, we assume that all the work done by the interaction forces between them translates
into the kinetic energy of each other. Set dTAB is the differential of the kinetic energy of the
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particle group A caused by the particle group B and dTBA is the differential of the kinetic energy
of B caused by A. So

dTAB =

nA∑
i=1

F iA · driA, dTBA =

nB∑
j=1

F jB · drjB (22)

Set dT ′AB be the differential of the kinetic energy of A in the zero momentum frame with the
origin CA, which caused by B, namely

dT
′
AB =

nA∑
i=1

F iA · drCAi (23)

According to Eq. (18)

dT
′
AB =

nA∑
i=1

F iA · drCAi =

nA∑
i=1

F
′
iA · drCAi + r̈CA

· d

(
nA∑
i=1

mirCAi

)

Then

dT
′
AB =

nA∑
i=1

F iA · drCAi =

nA∑
i=1

F
′
iA · drCAi (24)

Similarly can be obtained

dT
′
BA =

nB∑
j=1

F jB · drCBj =

nB∑
j=1

F
′
jB · drCBj (25)

In general, it is obviously dTAB 6= dTBA, dT
′
AB 6= dT

′
BA. If the mutual interaction between the

particles is gravitation, F ′iA is the tidal force which B acts upon the i-th particle in A. Eq.
(24) explains that the differential of the kinetic energy of A in the zero momentum frame with
the origin CA, which caused by B, is equal to the sum of the elementary work which the total
external forces of B acting upon each particle in A about the center-of-mass frame of A do, and
equals the sum of the elementary work which the tidal forces of B acting upon each particle in
A about the center-of-mass frame of A do.

Because a star is non-rigid body, some of the kinetic energy caused by the work, which the
forces of other stars acting upon it about its center-of-mass frame do, is converted into the star’s
heat energy due to friction and collision. Therefore, Eqs. (24, 25) reveal an important source of
the thermal energy inside a star.

According to Eqs. (19, 24), we can propose Theorem 4:

Theorem 4. There are n particle groups in a barycenter group, A and B are arbitrary two
particle groups in the system. If the mutual interaction between particles is gravitation, then:
The force moment of couple which B acts upon A is equal to the total torque which B acts upon
each particle in A about the center of mass CA and equals the total torque of tidal force which
B acts upon each particle in A about CA.
The differential of the kinetic energy of A in the zero momentum frame with the origin CA,
which caused by B, is equal to the sum of the elementary work which the total external forces
of B acting upon each particle in A about the center-of-mass frame of A do, and equals the
sum of the elementary work which the tidal forces of B acting upon each particle in A about the
center-of-mass frame of A do.
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2. The Origin and Variation Laws for the Rotation Angular Momentum of Galaxies
and Stars

In order to reveal the origin and variation laws for the rotation angular momentum of galax-
ies and stars, we first propose the variation principle for a vector.

Theorem 5. If two vectors A and B satisfy

dA

dt
= B (26)

Then the direction of A will change towards B with time.

Proof. According to Eq. (26) we can get

dA = Bdt =⇒ A (t+ dt)−A (t) = Bdt

The directions of Bdt and B are same, if the directions of A(t) and B are same or opposite,
according to the superposition principle for vectors we can get A(t+dt) will both change towards
B.

Figure 4 Figure 5

Set the angle between A(t) and B is ϕ, (0 < ϕ < π), the angle between A(t + dt) and B
is ψ, and the angle between A(t) and A(t + dt) is θ. Obviously, θ is quite small but greater
than zero. The relations between vectors A(t), A(t + dt) and Bdt are shown in Figure 4. We
translate Bdt parallelly to the intersection point of A(t) and A(t+ dt), could find ϕ−ψ = θ as
shown in Figure 5, namely the direction of A constantly approaching B with time. So Theorem
5 proved. �

From the above analysis, it is not difficult to further conclude: If the angle ϕ between A(t)
and B is less than π/2, then |A (t)| will become larger with time; if ϕ = π/2, |A (t)| will not
change; if ϕ > π/2, |A (t)| will be smaller over time.

When we study the motion state of any particle group A, we can use all other substances
in the entire universe as the second particle group B. According to Theorem 3, under normal
circumstances, A is subject to the force FA upon its barycenter and the moment of couple MAB

from B. If A is in equilibrium, FA = 0, MAB = 0, that is, linear momentum and angular mo-
mentum of A are conserved. FA is the only reason for the movement change of the barycenter of
A, MAB is the only reason for the change of A′s angular momentum, combined with Theorem
5, we can analyze the origin and variation of the angular momentum of galaxies and stars.

It exists that various types of galaxies rotate about their center of mass. Galactic rotation
curves measured the earliest were normal spiral galaxies [11-15]. Later, the rotation curves of
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other types galaxies were also measured and discussed successively, such as SB galaxy [16, 17],
E galaxies, S0 galaxy, Irr galaxy, etc [18-21].

It is generally believed that the angular momentum of galactic rotation is obtained through
the mutual interaction of the tides of the surrounding celestial bodies [1, 2]. This is a qualitative
analysis with hypothetical components, which does not explain why the tidal force can generate
torque, what the relationship between the torque generated by gravity and the torque generated
by tidal force is, what the relationship that the torque of the mutual interaction between galaxies
and surrounding celestial bodies satisfy is and so on.

According to multi-barycenter mechanics, the entire universe can be considered as a barycen-
ter group and each galaxy a particle group. On the basis of Theorem 3 and 4, the mutual
interaction between particle groups generally produces a force moment of couple, which explains
why universally galaxies rotate around their barycenter. The force moment of couple is not only
equal to the total torque of the external force acting upon each particle in the galaxy about
its barycenter, but also equal to the total torque of the tidal force acting upon each particle in
the galaxy about its barycenter. The direction of the total moment of couple M acting upon
a galaxy is always uniquely determined. According to Theorem 5, the direction of the angular
momentum J of the galaxy will constantly change towards the direction of M over time. Al-
though the magnitude and orientation of M vary with time, it always makes star’s motion orbit
in the galaxy constantly converge to a same plane, and the revolution directions of every star’s
motion orbit tend to be consistent. So, after a long enough time, under the action of the total
moment of couple M , galaxies are generally flat and the revolution directions of the internal
stars are generally the same.

As for the irregular shape of some galaxies, the reasons may be: 1, for some reasons the total
moment of couple acting upon a galaxy is too small, for example, it is very far away from other
galaxies. 2, two galaxies are colliding with each other, or the time after the collision between
two galaxies is not long enough. 3, galaxies are newly formed.

Until 1939, the nonuniform rotation of the Earth was finally confirmed [8]. In almost all
geophysics books and related literatures [3, 4, 22, 23], the origin of the angular momentum of
the Earth’s rotation is avoided. When analyzing the influence of the tidal force on rotation, it
is generally believed that the tidal force will always slow the angular speed of the earth rotation
[8-10]. In the literatures about rotation of the Sun and the solar system’s planets and satellites,
there is almost no mention about the origin of the angular momentum of their rotation [5, 6,
24, 25]. Let’s analyze the problem below.

We can also think of the entire universe as a barycenter group and treat each star as a
particle group. According to Theorem 2 and 3, the force moment of couple produced by the
mutual interaction between the particle groups reveals the reason for the star rotation around
its barycenter. There is no doubt that the collisions with other stars are also the cause. If
there is a large amount of liquid water on the surface of the planet, tidal-induced changes in the
distribution of matter at the same time have an important negative effect on the angular velocity
of rotation. Due to the universal existence of the force moment of couple, a star is not a rigid
body and the continuous change of its material distribution will cause the successive variation
of moment of inertia, the principal axis of inertia and the interaction with other planets. So,
the changes in the rotation of a star are generally more complicated.

The observation of changes in the rotation of the Earth and the Sun is an important con-
tent of geophysics and solar physics and has important practical significance. For example, the
earthquake is related to changes in the angular velocity of the Earth’s rotation [26]. Many ob-
servations have proved the complexity of the changes in the state of rotation of the Earth and
the Sun [24, 27]. According to the previous analysis, it can be concluded that within classical
mechanics, the angular momentum of a star’s rotation has two origins: 1, it is affected by the
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force moment of couple of other stars and matter in the universe. 2, it collides with other stars
or objects. There are three reasons for the change of the star’s rotation state: 1, the effect of
the force moment of couple of other stars and matter in the universe. 2, changes in the material
distribution of the star. 3, the collision with other stars or objects.

3. Simulation Solution for N -body Problem

Multi-body problem has always been the focus of mechanical research [28, 29], numerical
simulation is a major research method because of the inability to obtain exact solutions in general
[30, 31]. Suppose an isolated system with mass m, it has n interacting particles. If a particle
A has mass mA, velocity vA and position vector rA about a fixed point O; the rest of the
particles P1, P2, · · ·Pn−1 with masses m1,m2, · · ·mn−1, velocities v1,v2, · · ·vn−1 and position
vectors r1, r2, · · · rn−1 about O respectively. Set P1, P2, · · ·Pn−1 form a particle group B with
the center of mass CB, mass mB and mB = m−mA. The speed vB of CB satisfy

vB =
m1v1 +m2v2 + . . .+mn−1vn−1

mB

According to Theorem 2, the interaction forces of A and CB are equal in magnitude , opposite
in direction, and generally not in a same straight line, namely

FA =

n−1∑
i=1

FAi =

n−1∑
i=1

G
mAmPi

r2APi

rAPi

rAPi

= −FCB
, (27)

where FAi is the force which Pi acts upon A, FA is the resultant force which the particle group
B acts upon A, FCB

is the force which A acts upon the barycenter CB, so the N -body problem
is transformed into a special two-body problem of A and CB. If the laws of motion of A and CB

can be solved, we can use the similar method to solve the movement laws of all other particles
in the system.

The approximate simulation is calculated as follows:
On the line of FA, we suppose there is a virtual D with mass of mD and initial velocity vD0,

set

vD0 = vB0,mD = mB =
n−1∑
i=1

mi (28)

Set the interaction force between A and D to meet the inverse-square law, namely

FA =
n−1∑
i=1

G
mAmPi

r2APi

rAPi

rAPi

=
kA
r2AD

rAD

rAD
= −FD = −FCB

(29)

The numerical value of kA could be chosen appropriately by experimental datum, according to
Eq. (29) we have

rAD =

√√√√√ kA∣∣∣∣∑n−1
i=1 G

mAmPi

r2APi

rAPi
rAPi

∣∣∣∣
rAD

rAD
(30)

Using Eq. (30) we can solve the initial position vector rD0 of D. As FA and FD in the same
straight line, the centre of mass of A and D is in the active line of FA distinctly, and its mass is
m, its initial position vector can be solved by rA0 and rD0, we call the barycenter of A and D

the corresponding barycenter for A, written as CA, set
−−→
CAA = r1,

−−−→
CAD = r2, so the kinetic

equation of A about CA is:

mAr̈1 =
kA

(r1 + r2)
2

r1
r1

(31)
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In the zero momentum frame with the origin CA

mAr1 +mDr2 = 0 =⇒ mAr1 = mDr2 =⇒ r1 + r2 =
mA +mD

mD
r1 =

mA +mD

mA
r2

Then

mAr̈1 =
kAm

2
D

(mA +mD)2r21

r1
r1

(32)

Similarly the kinetic equation of D about CA could be get

mDr̈2 =
kAm

2
A

(mA +mD)2r22

r2
r2

(33)

Eqs. (32, 33) are two typical central force problems, according to Binet equation, A and D
around CA for conic curve movement, their orbits are determined by kA and the initial value.

Since the initial states of n particles in the isolated system are known, and A is a randomly
selected particle, the law of motion of other particles can be obtained similarly.

Based on the above analysis, we can conclude the following laws:

1. An isolated system composed of n particles with the gravitational interaction, an arbitrary
particle A is approximately around its corresponding barycenter CA for conic curve movement.
2. For the system composed of 3 or more particles, the barycenter C of the system and the corre-
sponding barycenter Ci of each particle have the same mass, but generally different the position
vectors.

The above rules are obtained under the premise of rough simulation and need to be further
amended according to experiments. Since gravitational forces between an object and another
object are generally not on a same straight line, the solution for the two-body problem is actually
an approximation too.

4. Discussions and Conclusions

Mutual interactions between any actual objects are the interactions between particle groups.
Thus, it is necessary to study the mechanics laws for the system composed of multiple particle
groups.

This paper presents five new theorems. Theorem 1 reveals the translation principles for a
vector system. Using Theorem 2, the conventional multi-body problem can be transformed into
a special two-body problem, by the method of simulation calculation, the motion law of each
particle can be roughly obtained. According to Theorem 3, in general, the mutual interactions
between any two particle groups are force and moment of couple at the same time, and the
interaction resultant forces are not on a same straight line. Therefore, Newton’s third law
is sometimes established strictly, and sometimes it is approximately established. Theorem 4
finds the principle of the internal relationship between gravity and tidal force. Combined with
Theorem 5 about the variation principle for a vector, the origin and change laws for the rotation
angular momentum of galaxies and stars are clear.

On the basis of multi-particle mechanics, a more complete multi-barycenter mechanics can
be established. In the appendix we will propose the motion principle, the linear momentum
principle, conservation principle of linear momentum etc. for a barycenter group.

Appendix: Multi-barycenter Mechanics (2)
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In addition to the above-mentioned unique laws, multi-barycenter mechanics has some similar
laws to multi-particle mechanics yet.

If there are n particle groups in a mechanics system, numbers of particles in each particle
group are n1, n2, · · ·nn respectively, (nS = n1 + n2 + . . . + nn). Set the total mass of the i-th
particle group is mi, (i = 1, 2, · · ·n), the position vector of the barycenter Ci about a fixed point
O is rCi . The j-th particle in the i-th particle group has mass mij , its position vector is rij .
The total mass of nS particles is m, the position vector of the total barycenter C about O is
rC , and

mrC =

n∑
i=1

mirCi =

n∑
i=1

ni∑
j=1

mijrij (5)

Differentiating Eq. (5) with respect to t, we get

mṙC = pC =

n∑
i=1

miṙCi =

n∑
i=1

pCi
=

n∑
i=1

ni∑
j=1

mij ṙij =

n∑
i=1

ni∑
j=1

pij

Then

pC =
n∑

i=1

pCi
=

n∑
i=1

ni∑
j=1

pij (34)

Eq. (34) explains that the linear momentum pC of the total center of mass of the barycenter
group is equal to the sum of the barycenters linear momentum of each particle group, and equal
to the sum of each particle linear momentum in the system. Differentiating Eq. (5) twice with
respect to t, we have

mr̈C =

n∑
i=1

mir̈Ci =

n∑
i=1

ni∑
j=1

mij r̈ij (35)

For the barycenter group, the mutual interactions between each particle group are the internal
forces of the system, but for every particle group, the interaction forces with other particle
groups are the external forces. Set the resultant external force acting upon the total barycenter
C of the system is FC , the resultant external force acting upon the barycenter Ci of the i-th
particle group is FCi , and the resultant external force acting upon the j-th particle in the i-th

particle group is F
(e)
ij

, according to motion equations of a particle and a particle group, we can
obtain

mr̈C = FC ,mir̈Ci = FCi ,mij r̈ij = F
(e)
ij

(36)

Combining Eq. (35) we have

FC =

n∑
i=1

FCi =

n∑
i=1

ni∑
j=1

F
(e)
ij

(37)

Namely the resultant external force acting upon C is equal to the sum of external forces acting
upon Ci, and is equal to the total external force acting upon each particle.

Using Eqs. (35, 37), we can get the motion principle for a barycenter group:

Motion principle for a barycenter group: There are n particle groups in a mechanical

system, if the total external force which they are subject to is
n∑

i=1

ni∑
j=1

F
(e)
ij

= FC ,then

n∑
i=1

mi
d2rCi

dt2
= m

d2rC
dt2

=
n∑

i=1

ni∑
j=1

mij

d2rij
dt2

= FC (38)
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Proof. The mechanical system can be regarded as a particle group, according to the translation
principle for a force system and Eq. (2), we get:

m
d2rC
dt2

=
n∑

i=1

ni∑
j=1

F
(e)
ij

= FC (39)

According to Eq. (5), we have:

m
d2rC
dt2

= m
d2
(∑n

i=1 mirCi
m

)
dt2

=
n∑

i=1

mi
d2rCi

dt2
= m

d2

(∑n
i=1

∑ni
j=1 mij

rij

m

)
dt2

=
n∑

i=1

ni∑
j=1

mij

d2rij
dt2

So the principle proved. �

According to the motion principle for a barycenter group, we can get the linear momentum
principle for a barycenter group and the conservation law of the linear momentum for a barycen-
ter group:

Linear momentum principle for a barycenter group: In any motion of a barycenter
group, the rate of increase of the total linear momentum of all barycenters is equal to the total
external forces acting upon each particle, namely

d
∑n

i=1 pCi

dt
= FC (40)

Proof. According to the motion principle for a barycenter group:

n∑
i=1

mi
d2rCi

dt2
= FC =

d

dt

(
n∑

i=1

mi
drCi

dt

)
=

d

dt

(
n∑

i=1

mivCi

)
=

d
∑n

i=1 pCi

dt
,

where pCi
is the linear momentum of the barycenter of the i-th barycenter group, so the prin-

ciple proved. �

Conservation principle of linear momentum for a barycenter group: In any motion of
an isolated barycenter group, the total linear momentum of all barycenters is conserved, that is

n∑
i=1

pCi
= K (41)

Proof. According to the linear momentum principle for a barycenter group, when FC = 0,

d
∑n

i=1 pCi

dt
= 0 =⇒

n∑
i=1

pCi
= K

where K is a constant quantity. So the principle proved. �

Let us analyze the total kinetic energy formula for a barycenter group. Set the position vec-
tor of the barycenter Ci of the i-th particle group about a fixed point O is rCi ; the j-th particle
in the i-th particle group has mass mij , its position vector about O is rij and about Ci is r′ij , the

kinetic energy of the particle is 1
2mij ṙ

2
ij = 1

2mij

(
ṙCi + ṙ

′
ij

)2
, and

ni∑
j=1

mijr
′
ij

=
ni∑
j=1

mij ṙ
′
ij = 0,
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then

T =
n∑

i=1

ni∑
j=1

1

2
mij ṙ

2
ij =

1

2

n∑
i=1

ni∑
j=1

mij

(
ṙCi + ṙ

′
ij

)2
=

1

2

n∑
i=1

ni∑
j=1

mij

(
ṙ2Ci

+ (ṙ
′
ij )

2 + 2ṙCi ṙ
′
ij

)

=

1

2
m1ṙ

2
C1

+
1

2

n1∑
j=1

m1j (ṙ
′
1j )

2 + ṙC1

n1∑
j=1

m1j ṙ
′
1j

+

1

2
m2ṙ

2
C2

+
1

2

n2∑
j=1

m2j (ṙ
′
2j )

2 + ṙC2

n2∑
j=1

m2j ṙ
′
2j


+ . . .+

1

2
mnṙ

2
Cn

+
1

2

nn∑
j=1

mnj (ṙ
′
nj

)2 + ṙCn

nn∑
j=1

mnj ṙ
′
nj


=

1

2
m1ṙ

2
C1

+
1

2

n1∑
j=1

m1j (ṙ
′
1j )

2

+

1

2
m2ṙ

2
C2

+
1

2

n2∑
j=1

m2j (ṙ
′
2j )

2

+ . . .

+

1

2
mnṙ

2
Cn

+
1

2

nn∑
j=1

mnj (ṙ
′
nj

)2


So

T =

n∑
i=1

1

2
miṙ

2
Ci

+

n∑
i=1

ni∑
j=1

1

2
mij (ṙ

′
ij )

2 (42)

That is, the total kinetic energy of a barycenter group is equal to the sum of kinetic energy of
each barycenter and the kinetic energy of each particle group about its barycenter.

Since a barycenter group can be regarded as a particle group, the forms of their kinetic
energy principle are the same. The kinetic energy principle of the i-th particle group relative to
its barycenter can also be obtained in a similar way as follows

d

ni∑
j=1

(
1

2
mij

(
ṙ
′
ij

)2)
=

ni∑
j=1

F
(e)
ij
· dr′ij +

ni∑
j=1

F
(i)
ij
· dr′ij (43)

where the total external and internal forces acting upon the j-th particle in the i-th particle

group are F
(e)
ij

and F
(i)
ij

respectively, by Eq. (43), we obtain

d

n∑
i=1

ni∑
j=1

(
1

2
mij

(
ṙ
′
ij

)2)
=

n∑
i=1

ni∑
j=1

F
(e)
ij
· dr′ij +

n∑
i=1

ni∑
j=1

F
(i)
ij
· dr′ij (44)

For
rij = rCi + r

′
ij , ṙij = ṙCi + ṙ

′
ij , r̈ij = r̈Ci + r̈

′
ij (45)

The angular momentum J of a barycenter group about a fixed point O is

J =

n∑
i=1

ni∑
j=1

rij ×mij ṙij =

n∑
i=1

ni∑
j=1

rCi × P ij +

n∑
i=1

ni∑
j=1

r
′
ij ×mij

(
ṙCi + ṙ

′
ij

)
=

n∑
i=1

rCi × PCi −
n∑

i=1

ṙCi ×
ni∑
j=1

mijr
′
ij +

n∑
i=1

ni∑
j=1

r
′
ij × P

′
ij

=

n∑
i=1

rCi × PCi +
n∑

i=1

ni∑
j=1

r
′
ij × P

′
ij =

n∑
i=1

(
JCi + J

′
i

)
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So

J =
n∑

i=1

(
JCi + J

′
i

)
,JCi = rCi × PCi ,J

′
i =

ni∑
j=1

r
′
ij × P

′
ij (46)

where JCi is the angular momentum of Ci about O, P ′ij is the linear momentum of the j-th

particle about Ci in the i-th particle group, J ′i is the total angular momentum of the i-th particle
group about Ci. Eq. (46) reveals the total angular momentum of a barycenter group about any
fixed point O is equal to that the total angular momentum of each barycenter Ci about O plus
the total angular momentum of each particle group about its barycenter.

The total torque M acting upon the barycenter group is

M =

n∑
i=1

ni∑
j=1

rij × F ij =

n∑
i=1

ni∑
j=1

rCi × F ij +

n∑
i=1

ni∑
j=1

r
′
ij × F ij

=

n∑
i=1

rCi × FCi +

n∑
i=1

M
′
i =

n∑
i=1

(
MCi + M

′
i

)
So

M =

n∑
i=1

(
MCi + M

′
i

)
,MCi = rCi × FCi ,M

′
i =

ni∑
j=1

r
′
ij × F ij (47)

The physical meaning of Eq. (47) is a barycenter group is subjected to external forces F ij , the
total torque of F ij about any fixed point O is equal to that the total torque of external forces
FCi acting upon n barycenters about O plus the total torque of F ij about the barycenter Ci.

A barycenter group can be regarded as a particle group, so dJ
dt = M established, combining

with Eq. (47), we have

dJ

dt
= M =

n∑
i=1

MCi +
n∑

i=1

M
′
i (48)

Since

dJCi

dt
=

d
(
rCi ×mi

drCi
dt

)
dt

=
drCi

dt
×mi

drCi

dt
+ rCi ×m

d2rCi

dt2
= rCi × FCi = MCi

Then
dJCi

dt
= MCi (49)

That is, about O the rate of increase of the angular momentum of the i-th barycenter is equal
to the torque of the total external force acting upon Ci.
According to Eq. (45), we can get

dJ
′
i

dt
=

d
(∑ni

j=1 r
′
ij
× P

′
ij

)
dt

=

d

(∑ni
j=1 r

′
ij
×mij

dr
′
ij

dt

)
dt

=

ni∑
j=1

dr
′
ij

dt
×mij

dr
′
ij

dt
+

ni∑
j=1

r
′
ij ×mij

d2r
′
ij

dt2

=

ni∑
j=1

r
′
ij ×mij

(
r̈ij − r̈Ci

)
=

ni∑
j=1

r
′
ij × F ij + r̈Ci ×

ni∑
j=1

mijr
′
ij

=

ni∑
j=1

r
′
ij × F ij = M

′
i
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Namely
dJ
′
i

dt
= M

′
i (50)

That is, the rate of increase of the total angular momentum of the i-th particle group about
its barycenter Ci is equal to the total torque about Ci of the external forces acting upon each
particle.

According to the above rules, angular momentum laws for a barycenter group can be sum-
marized as follows:

1. About any fixed point O in an inertial frame, the rate of increase of the angular momen-
tum J of a barycenter group is equal to the torque M of the total external force acting upon
each particle; the rate of increase of the angular momentum JCi of the i-th barycenter is equal
to the torque MCi of the total external force acting upon Ci.

2. The rate of increase of the total angular momentum J ′i of the i-th particle group about
its barycenter Ci is equal to the total torque M ′

i about Ci of the external forces F ij acting upon
each particle.

3. About any fixed point O in an inertial frame, the total angular momentum of a barycen-
ter group is equal to that the total angular momentum of each barycenter Ci about O plus the
total angular momentum of each particle group about its barycenter.

4. A barycenter group is subjected to external forces F ij , the total torque of F ij about any
fixed point O is equal to that the total torque of external forces FCi acting upon n barycenters
about O plus the total torque of F ij about barycenter Ci.
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