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NP-COMPLETE PROBLEMS    
Polynomial   
“Computers and Intractability: A Guide to the Theory of NP-Completeness,” Michael R. Garey 

and David S. Jonson, W.H. Freeman and Company, New York, 1979, ISBN: 0-7167-1045-5.  

  

Before we start: be reminded of our model of computation: all basic 

operations take unit time, we have infinite memory at the register level, and 

every step is deterministic as described in the algorithm.  

  

A polynomial algorithm is “faster” than an exponential algorithm. As n 

grows an (exponential) always grows faster than nk (polynomial),   

i.e. for any values of a and k, after n> certain integer n0, it is true that an > nk.   

Even 2n grows faster than n1000 at some large value of n. The former 

functions are exponential and the later functions are polynomial.  

  

It seems that for some problems we just may not have any polynomial 

algorithm at all (as in the information theoretic bound)! The theory of 

NPcompleteness is about this issue, and in general the computational 

complexity theory addresses it.  

  

Solvable Problems  

  

Some problems are even unsolvable/ undecidable algorithmically, so you 

cannot write a computer program for them.   

  

Example. Halting problem: Given an algorithm as input, determine if it has 

an infinite loop.  

  

There does not exist any general-purpose algorithm for this problem.  

Suppose (contradiction) there is an algorithm H that can tell if any algorithm 

X halts or not, i.e., H(X) scans X and returns True iff X does halt.   

Then, write  

P(X):      // X is any “input algorithm” to P  while (H(X)) 

{ };     // condition is true only when X terminates  

return;      // P terminates   

End.   

  



 

Then, provide P itself as the input X to the algorithm [i.e., P(P) ]:  what 

happens?!   

H cannot return T/F for input P, there cannot exist such H.  

It is equivalent to the truth value of the sentence “This sentence is a lie.”  

  

Note (1), we are considering Problems (i.e., for all instances of the problem) 

as opposed to some instances of the problem. For some sub-cases you may 

be able to solve the halting problem, but you cannot have an algorithm, 

which would solve the halting problem for ALL input.  

  

Different types of problems:  decision problems, optimization problems, … 

Decision problems: Output is True/False.  

  

Decision Problem <-> corresponding optimization problem.   

Example of 0-1 Knapsack Decision (KSD) problem:   

Input: KS problem + a profit value p   

Output: Answer the question "does there exist a knapsack with profit  p?"  

  

Algorithms are also inter-operable between a problem and its corresponding 

decision problem.  

  

Solve a KSD problem K, using an optimizing algorithm:   

Algorithm-Optimization-KS (first part of K without given profit p)  return 

optimal profit o if p o then return TRUE  else return FALSE.  

  

Solve a KS problem N, using a decision algorithm:  

For (o = Sum-of-all-objects-profit;   o>0;   o = o - delta)  do  // do a linear 

search, for a small delta  

  If (Algorithm-Decision-KS (N, o) ) then continue  

   Else return  (the last value of o, before failure, in the above step);    Endfor.   

// a binary search would be faster!!  

  

Note (2), The complexity theory is developed over Decision problems, but 

valid for other problems as well. We will often use other types of problems 

as examples.  

  

  



 

NP-class of solvable problems  

  

Deterministic algorithms are where no step is random.   

  

If the program/algorithm chooses a step non-deterministically (by some 

extraneous influence to the algorithm!) such that it is always the right 

choice,  then such an algorithm is called non-deterministic algorithm.  

Example, suppose a 0-1 KS backtrack-algorithm always knows which object 

to pick up next in order to find an optimal profit-making knapsack!   

  

If one has a polynomial deterministic algorithm for a problem (e.g., the 

sorting problem), then the problem is called a P-class problem.  And, 

the set of all such problems constitute the P-class.  

  

If one has a polynomial non-deterministic algorithm for a problem, then the 

problem is called a NP-class problem.   

And, the set of all such problems constitute the NP-class.  

  

It is impossible to check for a problem's being in NP-class this way, because 

non-deterministic algorithms are impossible to develop, as defined above.  

So, how can one check for polynomial complexity of such non-existent 

algorithms?  

  

However, an equivalent way of developing non-deterministic polynomial 

algorithm is:   

when a solution to the problem is provided (as if someone knows what the 

solution could be!),  then that proposed solution is checked by that 

algorithm in polynomial time.  Such a proposed solution is called a 

certificate to the input probleminstance.   

  

For example: in a KSD problem, given a certificate knapsack content check 

if the total profit is  p or not.   

Complexity: calculation of total profit of the given knapsack content is worst 

case O(n), for n objects.   

  

For example: for a Hamiltonian circuit problem instance (find a cycle in a 

graph over all nodes but without any node being repeated in the cycle),  a 

path is given as a certificate.   



 

An algorithm would go over the certificate path and check if the first and the 

last nodes are same,  

and the rest of the path is simple (no node is covered twice),  then it will 

check if all nodes in the graph are covered in the path,  and then, check if all 

the arcs in the path do actually from the input graph.  This takes polynomial 

time with respect to N and E. Hence HC is a NP-class problem.  

  

Two important points to note:  

(1) NP-class problems are sub-set of the Solvable problems,  

(2) P-class problems are sub-set of NP-class problems (because if you have a 

deterministic algorithm to solve any problem instance,  then that 

algorithm can be used to check any certificate in polynomial time also).  

[DRAW SETS]  

  

Problems belonging to the NP-class have at least exponential algorithms.  

  

A related question is: does there exist any solvable problem that is not NP?  

Answer: yes.   

Example: non-HC problem (is there no HC in a given input graph) does not 

have any polynomial non-deterministic algorithm.  

  

If a problem is in NP-class its complement (negative problem as the non-HC 

problem is) is in Co-NP.   

All Co-NP problems constitute the Co-NP class of problems.  P-class 

is a subset of the intersection of NP and Co-NP sets.  

  

An IMPORTANT question is: can we write a polynomial algorithm for 

every NP-class problem?  The answer is: we do not know.   

  

From a reverse point of view, we would like to find an example problem that 

is in the NP-class and whose information-theoretic lower bound is 

exponential.   

Then, we would at least know that P is a proper subset of NP. We do not yet 

have any such example either.   

  

All we know now is that P  NP.   

  



 

Question remains: (1) P  NP? or, P  NP?  [One should find 

counterexample(s)]   

  Or, (2) NP  P, so that P = NP? [One should prove the 

theorem]  

  

  

NP-completeness  

  

Summary: Apparently some NP problems are “harder” in a relative sense 

than the other problems. If you can write polynomial algorithm for any one 

problem in this ‘hard’ group, then it can be shown that every NP-class 

problem will have a polynomial algorithm. This group of problems is called 

NP-complete problems.  

  

The secret lies in the fact that they are all “related” to all NP-class problems 

(!!!) by directed chains of polynomial transformations (explained below).  

  

We will explain polynomial transformations first and then come back to the 

issue of NP-completeness.  

  

  

Polynomial Transformation  

  

Problem Transformation: some algorithms which take a decision problem 

X (or rather ANY instance of the problem of type X), and output a 

corresponding instance of the decision problem of type Y, in such a way that 

if the input has answer True, then the output (of type Y) is also True and vice 

versa.  [REMINDER: Problem ≡ Input;   &  Solution ≡ Algorithm that takes 

any input and produces correct output.]  

  

For example, you can write a problem transformation algorithm from 3-SAT 

problem to 3D-Matching problem (will see later).  

  

Note that the problem transformations are directed.  

  

When a problem transformation algorithm is polynomial-time we call it a 

polynomial transformation.  

  



 

Existence of a polynomial transformation algorithm has a great significance 

for the complexity issues.  

  

Suppose you have (1) a poly-transformation Axy exists from a (source) 

problem X to another (target) problem Y,  and (2) Y has a poly 

algorithm Py , then you can solve any instance of the source problem X 

polynomially, by the following method.  

Just transform any instance of X into another instance of Y first using Axy, 

and then use Y’s poly-algorithm Py. Both of these steps are polynomial, and 

the output (T/F) from Y’s algorithm is valid for the source instance (of X) as 

well. Hence, the True/False answer for the original instance of Py (Axy (X)) 

will be obtained in poly-time. This constitutes an indirect poly-algorithm for 

X, thus making X also belonging to the P-class.  

Note, |Axy(X)| is polynomial with respect to |X|.  Why?  

  

Once again, note the direction.   

(You will be amazed with how many practicing computer scientists get 

confused with this direction!)  

  

  

Cook’s theorem.   

  

Cook modeled all NP-problems (an infinite set) to an abstract Turing 

machine. Then he developed a poly-transformation from this machine (i.e., 

all NP-class problems) to a particular decision problem, namely, the Boolean 

Satisfiability (SAT) problem.  

  

Significance of Cook’s theorem: if one can find a poly-algorithm for SAT, 

then by using Cook’s poly-transformation one can solve all NP-class 

problems in poly-time (consequently, P-class = NP-class would be proved).  

  

SAT is the historically first identified NP-hard problem!  

  

Further significance of Cook’s theorem: if you find a poly-transformation 

from SAT to another problem Z, then Z becomes another NP-hard problem. 

That is, if anyone finds a poly algorithm for Z, then by using your 

polytransformation from SAT-to-Z, anyone will be able to solve any SAT 



 

problem-instance in poly-time, and hence would be able to solve all NPclass 

problems in poly-time (by Cook’s theorem).  

  

These problems, which have a chain of poly-transformation from SAT, are 

called NP-hard problems.  

  

If an NP-hard problem also belongs to the NP-class it is called an 

NPcomplete problem, and  the group of such problems are called NP-

complete problems.  

[DRAW SETS]  

  

   



 

Significance of NP-hard problems  

  

As stated before, if one finds any poly-algorithm for any NP-hard problem, 

then   

We would be able to write polynomial algorithm for each of NP-class 

problems, or  

NP-class = P-class will be proved (in other words, poly-algorithms would be 

found for all NP-class problems).  

  

Unfortunately, neither anyone could find any poly algorithm for any NPhard 

problem (which would signify that P-class = NP-class);  nor anyone could 

prove an exponential information-theoretic bound for any NP-complete 

problem, say problem L (which would signify that L is in NP but not in P, or 

in other words that would prove that P-class  NP-class). The NP-hard 

problems are the best candidate for finding such counterexamples. [There is 

a claim in Summer 2010 of a lower bound-proof of some  

NP-hard problem, from IBM research!]  

  

As a result, when we say a problem X (say, the KSD problem) is 

NPcomplete, all we mean is that   

IF one finds a poly-alg for X, THEN all the NP-class problems would have 

poly algorithm.   

We also mean, that it is UNLIKELY that there would be any poly-algorithm 

found for X.  

  

P  NP is a mathematical conjecture currently (YET to be proved as a 

theorem, see above though).   

Based on this conjecture many new results about the complexity-structure of 

computational problems have been obtained.  

Note this very carefully: NP (as yet in history) does NOT stand for 

“nonpolynomial.”   

  

[Also, note that NP-complete problems do have solutions, but they are all 

exponential algorithms, so far! A common student-mistake is to confuse 

NPcomplete problems with unsolvable problems.]  

  

There exist other hierarchies. For example, all problems, which need 

polynomial memory-space (rather than time) form PSPACE problems. 



 

Polytime algorithm will not need more than poly-space, but the reverse may 

not be necessarily true. Answer to this question is not known. There exists a 

chain of poly-transformations from all PSPACE problems to the elements of 

a subset of it. That subset is called PSPACE-complete. PSPACE-complete 

problems may lie outside NP-class, and may be harder than the NP-complete 

problems. Example: Quantified Boolean Formula (first-order logic) is 

PSPACE-complete.  

  

  

NP-completeness: FAQ  

(following FAQ may repeat information from above)  

  

Why prove a problem to be NP-hard?  

So that, (a) one does not have to spend resources on finding out a polynomial 

algorithm for the problem, and (b) other problems could be proved to be NP-

hard by using this problem.   

When to attempt such a proof?  

When polynomial algorithms are not found after putting reasonable amount 

of efforts, or based on other intuitions it appears that the problem in question 

may be NP-hard.   

  

What are the steps in proving a problem to be NP-complete?  

  

First, try to prove it to be NP-hard, by (1) finding a related problem which is 

already found to be NP-hard (choosing such a suitable "source" problem 

close to your "target" problem, for the purpose of developing poly-trans, is 

the most difficult step), and then (2) developing a truth-preserving 

polynomial problem-transformation from that source problem to your target 

problem (you will have to show the transformation-algorithm’s (1) 

correctness and (2) poly-time complexity).   

Significance: if anyone finds poly algorithm for your “target” problem, then 

by using your poly-trans algorithm one would be able to solve that “source” 

NP-hard problem in poly-time, or in other words P would be = NP. [Note, 

truth-preservation in poly-transformation works only for decision problems, 

for other type of problems you may have to first develop a corresponding 



 

decision problem, whose algorithm could be used for solving the original 

non-decision problem (e.g., Knapsack has corresponding  

Knapsack-decision problem).]  

  

Second, try to prove that the given problem is in NP-class: by developing a 

polynomial algorithm for checking any "certificate" of any probleminstance.  

  

Does there exist any short-cut for proving NP-hardness?  

  

Yes. Actually, many.  

Example: take a simpler (restricted) version of your problem and prove it to 

be NP-hard, then the harder original problem is automatically proved to be 

NP-hard (again, note the direction carefully).  

Say, prove 3-SAT problem to be NP-hard, then the generalized SAT 

problem would be automatically NP-hard.  

  

What is the significance of a poly-transformation from a problem X 

(where only exponential algorithm is available currently) to a P-class 

problem Y (polynomial algorithm is available) This introduces a new 

indirect polynomial algorithm for X.  

    



 

How to react if someone claims to have a polynomial algorithm for an 

NPhard problem?   

You could go through a checklist as follows:   

(a) First check the correctness of the algorithm for any problem instance, 

it may be actually making some assumption for the input, thus restricting 

input types – in other words, it is an approximate algorithm (If the algorithm 

is correct, then)  

(b) check if its asymptotic complexity is really polynomial or not, (if 

polynomial and not even pseudo-polynomial, then)  

(c) check the NP-hardness proof of the problem, by verifying the problem 

transformation’s correctness, that has been used in such a proof,  (d) check if 

the above transformation is really polynomial in complexity or not, (if 

correct, then)  

(e) check if the source problem that was originally chosen for the above 

proof is really an NP-hard problem or not, <<and its back-chain of 

polytransformations to the SAT problem>>   

(f) if all the above checks succeed, then accept that P=NP has been 

proved and recommend the claimant for the Turing award!!!   

How to deal with a problem once it is proved to be NP-hard?   

It is unlikely that there would be any polynomial algorithm for solving the 

problem in question. So, you could take one of the following approaches 

(TAPE):   

(T) Find if there exists a "tractable" sub-problem, which is realistic enough 

for your application, and for which one can develop a polynomial algorithm. 

[Example: The minimum-tardy task-scheduling problem with each 

taskduration assumed to be one unit of time, and the greedy polynomial 

algorithm for it. Another example:  2-SAT]   

(A) See if an approximate solution to the problem is good enough for the 

application, when such an approximate answer could be found out with a 

polynomial algorithm. [Example: The multi-processor scheduling problem's 

greedy polynomial algorithm with a bounded sub-optimal solution.]  (P) See 

if a pseudo-polynomial algorithm would work (e.g., 0-1 Knapsack 

problem's dynamic programming algorithm), or see if one could improve 

upon an exponential-algorithm through some pruning or other heuristics 

such that the algorithm works fast enough for practical input (as in the use of 

bounding functions in the backtracking algorithms, or the use of branch and 

bound techniques there).   



 

(E) If you have developed an exponential algorithm, possibly with pruning, 

and you think that it works quite efficiently on "most" of the input instances 

of your domain, then you may like to justify your claim by doing some 

experiments with your algorithm. Some randomized algorithms fall into this 

category of approach.  

  

  

EXAMPLE OF A POLYNOMIAL TRANSFORMATION  

(SAT to 3-SAT)  

  

SAT Problem, or Boolean Satisfiability problem  

  

Example,   

(1) A set of Boolean variables, U = {a, b, c}.  (2) A (conjunctive) set of 

clauses each consisting of a (disjunctive) set of literals (a variable or its 

negation), C = {{a, b}, {~a, ~b}, {a, c}, {~a, ~c}}. (3) Question: does there 

exist any set of assignments for the variables such that the clause is True. A 

clause is True if the assignment makes at least one literal true in the clause.  

Output: An answer: yes/no (decision problem).  

Answer to the above problem instance: Yes (for a=T, b=F, and c=F).  

  

A backtracking algorithm for solving SAT is easy to devise. [DRAW A 

BACKTRACK TREE]:   

Worst-case complexity?  

  

SAT is in NP-class: given a certificate truth assignment you can trivially 

check if it leads to the “Yes” answer or not, and you can do that in linear 

time O(n, m), for n number of variables, m number of clauses.  

  

SAT is NP-hard: Cook’s theorem.  

  

k-SAT problem: Number of literals in each clause in the SAT problem is 

limited to k, where k is obviously an integer.  

  

It is not unreasonable to expect that k-SAT, for a constant integer k, to be 

possibly a P-class problem!  K-SAT is restricted version of SAT.  

  



 

2-SAT problem is indeed P-class: Davis-Putnam algorithm can find an 

assignment of variables in polynomial time, always (for all problem 

instances), when k<=2.  

  

BUT,  

  

3-SAT is NP-hard  

  

The chosen source problem, which is already proved to be NP-hard, is the  

SAT problem itself. [Note, 3-SAT is an “easier” restricted version of the  

SAT problem.]  

  

Transformation from ANY instance of SAT to a derived instance of 3-SAT 

is given below.  

  

Classify SAT clauses into 4 groups: 1-clauses, 2-clauses, 3-clauses, and 

pclauses with p>3 literals in these clauses.   

We will (1) show transformations (to the corresponding 3-clauses) for each 

of these 4 types of clauses;   

(2) prove that the transformations are correct, i.e., truth preserving; and then 

(3) we will discuss the polynomial nature of the aggregate-transformation at 

the end.  

  

1-clauses:   

  

Say, {u}, where u is a literal (not just a variable,   but a variable or its 

negation).   

The corresponding 3-clauses (for the target 3-SAT problem) will need two 

additional variables, say, z1, z2.   

The derived 3-clauses are: {u, z1, z2}, {u, ~z1, z2}, {u, z1, ~z2}, {u, ~z1, 

~z2}.   

All these 3-clauses can be True only if u is True, and vice versa (hence this 

is a correct transformation).  

  

2-caluses:  

  

Say, {u1, u2}.   



 

The corresponding 3-clauses (for the target 3-SAT problem) will need one 

additional variable, say, z.   

The derived 3-clauses are: {u1, u2, z}, {u1, u2, ~z}.   

Both the 3-clauses can be True only if either of u1 or u2 is T (i.e., the source 

clause in the source SAT problem instance), and vice versa. Hence this is a 

correct transformation.  

  

3-caluses:  

  

Say, {u1, u2, u3}.  

Just copy them to the target problem instance, they are already 3-clauses.  

  

p-caluses:  

  

Say, {u1, u2, …, uk-1, uk, uk+1, …, up}, where 1 k p.  

Create the following 3-clauses (for the target 3-SAT problem):  

{u1, u2, z1}, {~ z1, u3, z2}, {~ z2, u4, z3}, …,   {~zk-3, uk-1, zk-2}, {~ zk-2, uk, zk- 

1}, {~zk-1, uk+1, zk},  …, {~zp-3, up-1, up}.  

This needs creation of additional (p-3) variables: z1, z2, …, zp-3.  

  

In order for the source (SAT) p-clause to be True, at least one of the literals 

u1, …, up has to be true. Without any loss of generality assume that the True 

literal to be uk. We do not care if more literals are True, assume all the rest to 

be False.   

Then the following assignment of new variables (z’s) (along with uk=T) will 

make all the derived 3-clauses True: z1=T, z2=T, …., zk-3=T, zk-2=T,  zk-1=F, 

…, zp-3=F. [CHECK IT] Hence, if the source p-clause has a True 

assignment, so do all the derived corresponding 3-clauses.  

Note that the construction algorithm does not care about which literal is 

really True.  

  

Assume the source p-clause to be False, i.e., none of the literals u1, …, up is 

True. Try any set of assignments for the new variables (z’s), at least one 

clause will always remain False, you cannot make all of them True just by 

assigning the new variables.   

Try one such assignment: Suppose, z1=T (in order to make the first derived  

3-clause True),   



 

then z2 should be = T, and then z3=T, …., zp-3=T (in order to make the 

lastbut-one derived 3-clause True),  but that makes the LAST derived 3-

clause is False.   

Try any other combination of assignments, you will always run into the same 

problem – at least one derived clause will become false, because that is how 

the derived 3-clauses are constructed!  

  

Hence, the transformation-scheme for the p-clauses is truth-preserving, or 

the algorithm is correct.  

  

Complexity of the transformation algorithm:   

  

Say, the number of source (SAT) 1-clauses is k1, 2-clauses is k2, 3-clauses is 

k3, and p-clauses are kp (depending on the values of p).  

  

Then, the number of variables created in the target 3-SAT problem instance 

would be = n + 2k1 + k2 + p [(p-3)kp].  

  

The number of derived 3-clauses would be = 4k1 + 2k2 + k3 + p [(p-2)kp].  

  

The total number of steps in creating the new variables and the new 3clauses 

are the sum of these two polynomials, hence a polynomial with respect to the 

input problem size (#variables and #clauses in the source SAT problem 

instance).  

  

Thus, we have a correct (truth preserving) & polynomial problem 

transformation algorithm from any SAT problem instance to a corresponding 

3-SAT problem instance => 3-SAT is NP-hard (given the fact that SAT is 

NP-hard).  

  

Since we have shown before that SAT is in NP-class, 3-SAT is obviously in 

NP-class. This concludes the proof that 3-SAT is NP-complete.  

  

  

Interval Temporal Reasoning Problem is NP-hard  

  

  
Basic Relations between Pairs of Intervals (B):  



 

Binary 

operator  
Relation type  Example  Representation  

b  before  A(p)B   
  A  B  

 

~b  before inverse  A(~p)B   
  B  A  

 

o  overlap   A(o)B  

  

 

~o  overlap 

inverse  
A(~o)B  

  

 

d  during  A(d)B    

 B  

  

~d  during inverse  A(~d)B  

   

  
Binary 

operator  
Relation 

type  
Example  Representation    

m  meet  A(m)B  

 
 

B  

~m  meet 

inverse  
A(~m)B  

 
 

 
A  

  A   B   

  B   A   

A   

B   

A     

B   
  

  A   



 

s  start  A(s)B  

 

B  

 

  

~s  start 

inverse   
A(~s)B  

 

A  

 

  

f  finish  A(f)B  B  

  

  

~f  finish 

inverse  
A(~f)B  A  

  

  

  
Binary 

operator  
Relation type  Example  Representation  

eq  equal  B(eq)A  

  

  

  
QTCN: A qualitative temporal-constraint network (QTCN) is a graph G=(V, E), where each node is an 

interval, and each directed labeled edge (v1 (R) v2,) E represents disjunctive constraint R from v1 to v2  V, 

where R  2B.  

  
ITR Problem: Given a QTCN does there exist an assignment for each node on the time-line such that all the 

constraints are satisfied.  
  
Example: QTCN[V = {i1, i2, i3}, E = {(i1 (p|o) i2), (i1 (m) i3), (i2 (o|a) i3)}]. Answer to ITR: Yes. Draw 

i1, i2 and i3 on timeline in such a way that i1 overlaps i2 and meets i3, while i2 overlaps i3. ITR is NP-

hard: transform arbitrary 3-SAT problem to the corresponding ITR problem.  
  
Let, the input 3-SAT problem is C = {(li1, li2, li3) | i = 1, …, m}, i indicates the clause, lik indicates k-th 

literal in the i-th clause.  
  

  A   

  B   

A   

B   

B   

A   



 

Create an interval called spl. Create an interval Iij for each literal lij. Imagine left of spl will have the True 

literals (when the 3-SAT is assigned) and right of spl  will contain the False literals. All three literals of a 

clause can be on the left of spl but not more than two can be on the right, when the input clause is satisfied 

by the assignment. This is the trick in creating interval relations.  
  
First, fix the intervals so that they can be on either side of spl but not on both the side, with a constrained 

end point:  
For all i=1,..,m and j=1, 2, 3 Iij 

(m|~m) spl.  
  
Then the other constraint, for each clause i = 1..m,   
Ii1 (f | ~f | s | p | ~p) Ii2  
Ii2 (f | ~f | s | p | ~p) Ii3  
Ii3 (f | ~f | s | p | ~p) Ii1  
  
Finally, we want to make sure that when two literals appear with opposite sign in different clauses, their 

corresponding intervals go on different sides of the interval spl.  
For each lij = ~lgh, a constraint  
Iij (p | ~p) Igh  
  
This construction ensures that if the source 3-SAT is satisfiable one can easily satisfy the generated ITR. 

However, if the source 3-SAT is unsatisfiable (at least on clause, say, Ck is unsatisfiable by any given 

assignment), then the corresponding intervals in the ITR cannot be assigned as all the three intervals for 

that clause will try to be on the False side, which is impossible as per the construction (‘s’ relation’s inverse 

is absent thus, creating a cycle over the intervals Ik1, Ik2, and Ik3).  

  

  

3D Matching is NP-complete  

  

2DM Problem: Two finite sets of individuals of equal cardinality: M = {m1, 

m2, … mk}, F = {f1, f2, …, fk}. A set of acceptable pairs of individuals 

from the two groups: A = {(fi, mj), 1  i,j  k} = {(f3, m1), (f5, m1), (f3, 

m2), (f9, m2), …}.   

Question: Does there exist a matching set of tuples A’ within A (subset of  

A) such that every individual is in a tuple in A’ once and only once. The 

cardinality of A’ will be k, if it does exist.  

  

3DM Problem: 3 sets (or "types") of individuals, X, Y, W, with same 

cardinality. Each element in A is a 3-tuple, A = ((xi, yj, wl),  1   i, j, l   k} 

from those three sets.  Question: similar as above (does there exist a 

matching subset A’ within A).  

  



 

3DM is NP-class: Given a matching set A’ one has to check: (1) Every 

individual is covered or not; (2) Any individual is covered twice or not. It 

can be done in polynomial time :: check in a 3D coordinate system.  

  

  

3DM is NP-hard:  Polynomial transformation from 3-SAT to 3DM  

  

Source 3-SAT Problem: Variables U={u1, u2, …, un}, 3-Clauses C={c1, c2,  

…, cm}.  

  

We have to construct 3 sets of individuals X, Y, and W; and a set of triplets 

A from them. Truthfulness property needs to be preserved. Transformation 

algorithm must be polynomial with respect to number of variables and 

clauses in the input 3-SAT problem.  

  

3 types of triplets in A: "truth-setting and fan-out," "satisfaction testing" (of 

source 3-SAT), and "garbage collection" (to make sure everybody is covered 

in the target 3DM instance).  

  

Truth-setting + Fan-out components of A:   

In each clause each variable may appear only once (as Positive or as  

Negative)  

For each variable ui  (1   i   n) and each clause cj (1   j   m):  two sets of 

triplets in A:  

  

Tpos_i = { (ui[j], ai[j], bi[j]) : 1   j   m}  

Tneg_i = { (ui[j], ai[j+1], bi[j]) : 1   j < m} + { (ui[m], ai[1], bi[m])}  

  

a's are in X (m), and b's are in Y (m), u's and u’s are in W (2m).  

  

For every variable ui, the matching will have to pick up exactly  m  triplets 

from A (out of 2m), for A’, depending on whether ui is assigned True (Tpos_i) 

or False (Tneg_i).  [FIGURE below from Garey and Johnson’s book]  

  

Total number of triplets = 2mn  

  



 

  

  
  

One such chain for each variable.  

  

Satisfaction-testing components of  A:  

A triplet for each literal in each clause (3m in number), this is where we 

need 3-SAT (or a k-SAT, for a fixed integer k, as a source problem, as 

opposed to the general SAT problem - in the later case this number may not 

remain polynomial).  

  

For each clause cj three triplets (corresponding to three literals in it):  

Cj = { either (ui[j], sa[j], sb[j]) if ~ui is in cj,   or (ui[j], sa[j], sb[j]) if  ui is in 

cj}.  

Cj’s are components within A.  

  



 

When the input/source 3-SAT has a satisfying assignment, the variable u (or 

u) corresponding to the True literals will not have match as per previous 

construction (with a’s and b’s), and hence this construction Cj will get them 

matched with corresponding s[]’s. On the other hand if a clause has all its 

literals False, every u (or u) in the corresponding Cj is matched already in the 

previous construction, but if you do not pick up from Cj, then the 

corresponding s’s remain unmatched.   

  

  

Garbage collecting components of A:  

To get those individuals who are still not matched in A: not all variables 

occur in every clause, but the corresponding u’s are created anyway  

  

Two sets of triplets in A for each variable ui and each clause cj:  

G = {(ui[j], ga[k], gb[k]), (ui[j], ga[k], gb[k]) : 1 <= k <= m(n-1), 1 <= i <= n, 

1 <= j <= m}.   

One set per k, k runs up to m(n-1). Total triplets (2mn).m(n-1). For 

the u’s (or u’s) that are not in A’ (or, not in A???).  

  

Sets of individuals:  

  

W = {ui[j], ui[j] : 1 i n, 1 j m},     2mn in number  

X = Aa + S1 + G1  

  Aa = {ai[j] : 1 i n, 1 j m},      mn  

  Sa = {sa[j] : 1 j m},      m  

  Ga = {ga[k] : 1 k m(n-1)},    m(n-1)  

            Total=2mn  

Y = Bb + S2 + G2   

  Bb = {bi[j] : 1 i n, 1 j m},      mn  

  Sb = {sb[j] : 1 j m},      m  

  Gb = {gb[k] : 1 k m(n-1)},    m(n-1)  

            Total=2mn  

  

Polynomial construction:   

#individuals + #triplets = 6mn + (2mn + 3m + 2(m2)n(n-1))  

  



 

Correctness:  

If C is not satisfiable A’ cannot be constructed. If A’ is constructed, then the 

triplets in A’ corresponding to the s1’s and s2’s are the truth-setting 

components, make the corresponding literals u or u’s from those triplets 

True, there is no way the same variable will get multiple conflicting 

assignments by this.   

  

If C is satisfiable:   

Say, there exists an assignment for each  ui (True, or False) which makes C 

True.  

For constructing A’:  

Choose a literal from each clause that is True (one must exist), and find 

corresponding triplet from the Satisfaction-testing components, for marrying 

each corresponding s1 and s2.  

Depending on if  ui  is True or False choose the set Tpos_i or Tneg_i, to marry 

off  a's  and  b's.   

Pick up appropriate triplets from G to take care of ga's and gb's, for those u1's 

and u2's who are still unmarried.  

Thus, A’ can be constructed, from the source 3-SAT's variable assignments.  

  

An Example with SAT->3DM trans:  

  

3-SAT: var: (u1, u2, u3), clause: {(u1, ~u2, u3)}  

  

3DM:   

  

Truth setting construction:  

A triplets:                  Unmatched 

individuals:  

Tpos1=(~u11, a11, b11)  u11, 

~u21, u21, ~u31, u31}  

Tneg1=(u11, a11, b11)    W={~u11,  

Tpos2=(~u21, a21, b21)  a21, 

a31}  

Tneg2=(u21, a21, b21)    X={a11,  

Tpos3=(~u31, a31, b31)   Tneg3=(u31, a31, b31)    Y={b11,  

b21, b31}  

  A’ match set for sat assignment (say, for u1=T, u2=T and u3=F) in 

source-3SAT problem:  



 

    {(~u11, a11, b11), (~u21, a21, b21), (u31, a31, b31)}  

 Unmatched individuals left after this:  

    W={u11, u21, ~u31}, X={none}, Y={none}  

  

Satisfaction testing construction:  

A triplets:                  Unmatched 

individuals:  

C1={(u11, sa1, sb1), (~u21, sa1, sb1), (u31, sa1, sb1)}    W={u11, 

u21, ~u31}  

                    X={sa1, 

sa2},  Y={sb1, sb2}  

  A’ match set for truth setting of the clause, say, by u1=T:  

    {(u11, sa1, sb1)}  

  Unmatched individuals left after this:  

    W={u21, ~u31}, X={none}, Y={none}  

  

Garbage collection/ create new individuals to match all:   

A triplets:           

individuals:  

      Unmatched  

G={ (~u11, ga1, gb1), (u11, ga1, gb1), 

~u31}  

      W={u21,  

 (~u21, ga1, gb1), (u21, ga1, gb1), ga2}        X={ga1,  

 (~u31, ga1, gb1), (u31, ga1, gb1), gb2}  

  (~u11, ga2, gb2), (u11, ga2, gb2),  

  (~u21, ga2, gb2), (u21, ga2, gb2),  

  (~u31, ga2, gb2), (u31, ga2, gb2)}  

1<=k<=1(3-1), 1<=i<=3, 1<=j<=1;  

      Y={gb1,  

  

A’ match set for truth setting of the clause, say, by u1=T:  

    {(u21, ga1, gb1), (~u31, ga2, gb2)}  

  Unmatched individuals left after this:  

    W={None}, X={none}, Y={none}  

End example.  

  



 

You may like to try with a unsatisfiable source 3-SAT:  

{u, v, w}, {u, v, ~w},{u, ~v, w},{u, ~v, ~w}, {~u, v, 

w}, {~u, v, ~w},{~u, ~v, w},{~u, ~v, ~w}.  

Take u=v=w=T that makes the last clause False. Try to create triplets in A 

for that clause and see why you cannot create match for corresponding sa’s 

and sb’s created in the Truth-setting component of the construction.  

  

  

Reasoning with Cardinal-directions algebra  

  

Problem definition:  Input: A set of points V, and  a set E of binary relations 

between some pairs of points in V, vi Rij vj where  

Rij is a disjunctive subset of the set of nine basic relations {Eq, East, …} in 

Cardinal directions-calculus (Figure below).  

Question: Can the points in V be located in a real space of two-dimensions.  

  

Example input (1): V={v1, v2, v3, v4}, and E = {(v2 (Northeast, North) v1), 

(v3 (Northeast) v2), (v3 (West, Southwest, South) v1), (v4 (North) v3)}. 

Answer: No satisfying placement of v1, v2, v3 and v4 exists following these 

constraints.  

Example input (2): V={v1, v2, v3, v4}, and E = {(v2 (Northeast, North) v1), 

(v3 (Northeast) v2), (v3 (Northeast) v1), (v4 (North) v3)}.  Answer: Yes. v1 

= (0,0), v2=(1,1),  v3=(3,3), and v4=(3,4) is such a satisfying assignment.  

  

  

  

  
  

Figure 1: 2D-Cardinal directions calculus        
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Theorem: reasoning with 2D-Cardinal directions algebra is NP-hard.   

  

Proof (Ligozat, Jnl. of Visual Languages and Constraints, Vol 9, 1998):  

   

Proof by constructing a Cardinal-directions algebra problem instance from an 

arbitrary 3-SAT problem instance with a set of clauses like Ci = { li,1 | li,2 | li,3 

}.    

(1) For every literal lij create two points Pij and Rij such that Pij {nw, n, ne, e, 

se} Rij, and (2) for every clause Ci we have Pi1 {sw, w, nw} Ri2 and Pi2 {sw, 

w, nw} Ri3 and Pi3 {sw, w, nw} Ri1. Also, (3) for every literal lij that has a 

complementary literal lgh we have two relations between their corresponding 

points: Pij {sw, s, se} Rgh and Pgh {sw, s, se} Rij.   

  

Writing P as (p, q) and R as (r, s) we get three relations on x-axis and y-axis,   

(1) (pij > rij)  |   (qij > sij),  

(2) (pi1 < ri3)  & (pi2 < ri1)  & (pi3 < ri2),  

(3) If  lij and lgh are complementary literals, (qgh < sij)  & (qij < sgh)    

  

We express (pij > rij) as false whenever (if and only if) any literal lij is true in 

clause Ci.  

So, for the six points corresponding to any unsatisfiable clause where all 

literals are false, generates three relations for their x-coordinates,  (pi1 > ri1)  & 

(pi2 > ri2)  & (pi3 > ri3) by construction (1). In addition by construction (2) we 

get three more relations (pi1 < ri3)  & (pi2 < ri1)  & (pi3 < ri2). You cannot assign 

these six points on the x-axis satisfying all these six relations. Hence, if any 

clause is false (by any truth assignment of literals), then the corresponding 

Cardinal-directions algebra problem does not have a solution (because these 

six points cannot be assigned in space).   

  

On the other hand suppose there exists a truth assignment that satisfies all 

clauses. So for every clause Ci there is at least one literal lij true, or (pij > rij) is 

false, or (qij > sij) is true (by construction (1)). Then, a complementary literal 

lgh in clause Cg will create the following relations:   (qgh < sij)  & (qij < sgh). 

The three relations are not consistent with (qgh > sgh) that should be true if and 

only if lgh is also true. Hence, lij and lgh cannot be true at the same time, thus, 

prohibiting any inconsistency for the truth assignment of literals across the 

clauses. In other words, the cross-linking of the points across the 

corresponding literals will not prohibit from their being put in the space. Note 

that as soon as a literal is true in a clause the corresponding six points can be 



 

assigned as per constructions 1 and 2, only construction 3 might have created 

problem via the complementary literals.   

  

Above argument proves the correctness of the constructions.   

  

The number of steps in the construction algorithm involves: constructing 6 

points per clause, 6 relations per clause from construction (1), 3 relations per 

clause from (2), and at the most 3 relations per pair of clauses. Total number 

is polynomial with respect to the numbers of variables and clauses. Hence, the 

above construction is a polynomial transformation from 3-SAT problem to the 

2D-Cardinal algebra problem.   

QED.      

  

  

  

OTHER MODELS OF COMPUTATION  

  

NP-hardness came as a big shock to the progress of computing. Many of the 

important and interesting problems turn out to be NP-hard!   

  

Areas where problems are not NP-hard see success in the market place, e.g., 

most problems in data-management or linear programming. Other areas 

where problems are NP-hard either bypass (see discussion above on how to 

tackle NP-hard problems) or simply continue to exist as a research topic for 

a long time (e.g., artificial intelligence, or software engineering).  

  

Note that the model of computation in which some problems are NP-hard is 

the Turing/Church (TM) model of computation.  

  

The first hope was raised with parallel computing. Alas, that turned out to 

be not more powerful than the present model! Significance: even if infinite 

number of CPU’s are provided and communication time is 0 between them, 

the NP-hard problems may not still have any distributed poly-algorithms.  

  

Artificial Neural Network provides a different model of computation. It 

has the same power as the Turing Machine, but it solves some pattern 

recognition problems very fast.   

  



 

An esoteric approach is the DNA computing. They solve some 

graphtheoretic problems [e.g. TSP] in a very small number of steps (but with 

a huge time per step with the current bio-technology). But DNA computing 

is proved to be as powerful as Turing Machine (i.e., NP-h remains NP-h 

even with DNA computing). Researchers are trying to develop computers 

out of DNA’s.  

  

Another limitation to the conventional computing is surfacing from the 

hardware: circuit densities on chips are becoming too large: avoiding 

crossfeeds between circuit-elements will become impossible soon, because 

of the   

“quantum-tunneling” effects.   

  

A new technology shaping up on the horizon is in the form of Quantum 

computing. Multiple data (and instructions) can be “superimposed” in the 

same quantum-register. When needed, a quantum operator will “extract” the 

required output. An algorithm becomes a Quantum operator in this 

paradigm.  

  

Physical technological hurdles are being overcome gradually. It seems we 

have been doing quantum computing unknowingly for the last few decades 

in the form of NMR (nuclear magnetic resonance, as in MRI in medicine), 

where atomic nuclei provide the Quantum bits (Q-bits).  

  

Quantum computing (QC) is a different model than TM, has in-built 

nondeterminism. But, apparently NP-hardness remain NP-hard their too 

(find out a relevant paper for a free lunch from me)! However, 

speed, space complexity, and power consumption of QC may be much 

lower than those of the electronic computers.  

  

Algorithms for QC are quite different than those for conventional computers 

(based on Turing machine). QC may also provide a better model for security, 

which attracts cryptographers and the communications industry.  

QC has also generated topic called Spintronics where electrons’ spin is used 

instead of charge for building digital circuitry (see IBM research).  

  


