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Abstract :  
Benefitting from valuable feedback, this article corrects some defects in the physical interpretation of 
the wavefunction that I had offered – and elaborated upon – in two previous pre-publication papers 
(see: http://vixra.org/abs/1709.0390 and http://vixra.org/abs/1712.0201). Most importantly, this paper 
incorporates relativistically correct formulas for the proposed interpretation of the energy of an electron 
as a two-dimensional oscillation of a pointlike charge in space. 

The relativistic correction does not change any of the conclusions. For example, the interpretation of the 
wavefunction as an energy diffusion equation still holds. However, this paper defines the weaknesses in 
the approach (read: the agenda for my personal future research) much better. I have benefited a lot 
from comments on the previous papers and, therefore, I hope I will get the same enthusiastic reaction 
to this one. 
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I. Energy as a two-dimensional oscillation 
The mathematical structure of (1) Einstein’s E = mc2 postulate and the energy formulas for (2) a 
harmonic oscillator and (3) the kinetic energy of a moving body, are remarkably similar: 

1. E = mc2 
2. E = (½)ma2ω2 = (½)mvt

2   
3. E = (½)mv2  

The c, vt and v are all velocities. There is the ½ factor, of course, and only the E = mc2 is relativistically 
correct – but I will provide the relativistically correct modifications soon. Let us first see where we get 
with a classical analysis for an oscillator. Can we, somehow, combine two oscillators to get rid of the ½ 
factor? To focus the mind, we may think of a perpetuum mobile like the one below: an engine with the 
pistons at a 90-degree angle.  

Figure 1: Oscillations in two dimensions 

 
The assumption is that the equilibrium point for each piston is at the center of the cylinder: at that 
point, the pressure of the air inside of the piston will equal the pressure outside. We can ensure this 
equality, when we set up the machine, by opening the valves at that point. We then permanently close 
the valves. Hence, the air pressure in the cylinder will be higher than the pressure outside if the piston 
moves above the center of its motion, and the overpressure will, therefore, provide a restoring force. 
Conversely, if the piston moves below the center, then the pressure outside will be higher than the 
pressure inside, and will, therefore, provide a restoring force in the opposite direction. Combining two 
cylinders in a 90° angle (and assuming no friction, of course) should give us a perpetuum mobile.  

The idea is inspired by the efficiency of a two-cylinder V-twin engine: the 90° angle makes it possible to 
perfectly balance the counterweight and the pistons, thereby ensuring smooth travel at all times. We 
might also think of connecting springs with the crankshaft. In fact, we should switch to a spring-based 
perpetuum mobile because it is easier to describe (but, therefore, it is also even more boring). In any 
case, the mechanical implementation is, obviously, irrelevant. The crux of the argument relies in (1) the 
assumption of a linear restoring force: F = kx and (2) the 90° angle between the two oscillators. 

We have a great metaphor here. Somehow, in this beautiful interplay between linear and circular 
motion, energy is borrowed and returned from one place, cycle after cycle, and the system – as a whole 
– stores some net energy. Let us quickly review the math. If the magnitude of the oscillation is equal to 
a, then the motion of the piston (or the mass on a spring) will be described by x = a·cos(ω·t + Δ).1 
Needless to say, Δ is just a phase factor which defines our t = 0 point, and ω is the natural (angular) 
frequency of our oscillator. Because of the 90° angle between the two cylinders, Δ will be 0 for one 
oscillator, and –π/2 for the other. Hence, the motion of one piston is given by x = a·cos(ω·t), while the 
motion of the other is given by x = a·cos(ω·t–π/2) = a·sin(ω·t). The kinetic and potential energy of one 
oscillator (think of one piston or one spring only) can then be calculated as: 

                                                           
1 Because of the sideways motion of the connecting rods, the sinusoidal function will describe the linear motion 
only approximately, but one can easily imagine the idealized limit situation. 
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1. K.E. = T = (½)·m·v2 = (½)·m·ω2·a2·sin2(ω·t + Δ) 
2. P.E. = U = (½)·k·x2 = (½)·k·a2·cos2(ω·t + Δ)   

The coefficient k in the potential energy formula characterizes the restoring force: F = −k·x. For a spring, 
k will be the stiffness of the spring, and we can write it as k = m·ω2. The model with springs is easier 
because we would have to invoke the ideal gas law (PV = NkT) to prove the linearity of the restoring 
force for our V-twin engine, and the equivalent of the stiffness coefficient would be somewhat harder to 
describe. Adding these two, we find that the  total energy of one oscillator is equal to: 

E = T + U = (½)·m·ω2·a2·[sin2(ω·t + Δ) + cos2(ω·t + Δ)] = (½)·m·a2·ω2/2 

To facilitate the calculations, we will briefly assume k = m·ω2 and a are equal to 1.2 The motion of our 
first oscillator then simplifies to cos(ω·t) = cosθ, and its kinetic energy will be equal to (½)·sin2θ. Hence, 
the (instantaneous) change in kinetic energy at any point in time will be equal to: 

d[(½)·sin2θ]/dθ = (½)·2·sinθ·d(sinθ)/dθ = sinθ·cosθ 

The motion of the second second oscillator is given by the cos(θ−π /2) = sin(ω·t) = sinθ function, and its 
kinetic energy is equal to (½)·sin2(θ−π /2) = (½)·cos2θ. Its time rate of change is, therefore, equal to: 

d[(½)·cos2θ]/dθ = (½)·2·cosθ·d(sinθ)/dθ = −sinθ·cosθ 

We have our perpetuum mobile! The kinetic energy that is absorbed by one piston always neatly 
matches the kinetic energy that is being delivered by the other. Hence, the crankshaft will rotate with a 
constant angular velocity: linear motion becomes circular motion, and vice versa. 

What is the total energy that is being stored in the system? The answer to this question is less obvious 
than it may seem, because the potential energy in the oscillators changes all the time. Let us, therefore, 
calculate averages. The average of the sin2θ and cos2θ functions is ½. Hence, the average potential 
energy the two oscillators is equal to 2·(½)·k·a2·(½) = (½)·k·a2 = (½)·m·ω2·a2. The sum of the (average) 
kinetic energies is, likewise, equal to 2·(½)·m·ω2·a2·(½) = (½)·m·ω2·a2. Hence, the total energy in the 
system would be equal to what we had secretly hoped it would be: 

E = ma2ω2 = k·a2  

We got rid of the ½ factor! But perhaps we should not take averages. Rather than adding averages, let 
us just add the potential and kinetic energy of both oscillators at any point in time: 

1. For the kinetic energies, we get: (½)·m·ω2·a2·sin2(ω·t) + (½)·m·ω2·a2·cos2(ω·t) = 
(½)·m·ω2·a2·[sin2(ω·t) + cos2(ω·t)] = (½)·m·ω2·a2 = (½)·k·a2. 

2. For the potential energies, we get the same: (½)·k·a2·cos2(ω·t) + (½)·k·a2·sin2(ω·t) = 
(½)·k·a2·[cos2(ω·t) + sin2(ω·t)] = (½)·k·a2. 

Adding both yields the same result: E = ma2ω2 = k·a2.  

What about the energy of the flywheel? Should we add it?  

That is a great question. In real life, we should, obviously, add it, because the flywheel will have some 
mass of its own. To be precise, the kinetic energy of the flywheel would be equal to K.E. = (½)·I·ω2. I is 
the angular mass of the flywheel in this formula. The angular mass depends on the distribution of the 
mass of the flywheel. For example, if we imagine it to be a flat disc, then I = m·r2. If it’s a hoop or a point 
mass at distance r (as measured from the axis of rotation), then it’s equal to I = (½)·m·r2. 

                                                           
2 The various factors are the same for both oscillators and, hence, the simplification does not make any difference 
in terms of the analysis. We just didn’t want to have any unnecessary clutter.  
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However, we are not imagining some actual mass going around here. We are thinking about the fabric 
of space, and how it could possibly sustain a two-dimensional oscillation of a pointlike charge which is – 
in the model that we are presenting here – might be represented by the elementary wavefunction3: 

ψ(θ) = a·e−i·θ = a·e−i·E·t/ħ = a·cos[(E/ħ)·t] − i·a·sin[(E/ħ)·t] 

The goal is actually more ambitious: if an electromagnetic wave is a propagation mechanism for energy, 
can we interpret the wavefunction in a similar way? To assuage the first immediate fears of the 
reviewers, I should add two obvious remarks here: 

1.  An actual particle is always localized in space and can, therefore, not be represented by the 
elementary wavefunction. We must build a wave packet for that: a sum of wavefunctions, each with its 
own amplitude ak and its own argument θk = (Ek·t  pk·x)/ħ. However, this is a paper about first 
principles only. 

2. The elementary wavefunction above is the ψ = a·e−i[E·t − p·x]/ħ = a·cos(p·x/ħ  E·t/ħ) + i·a·sin(p·x/ħ  E·t/ħ) 
function for p = 0, or for an electron at rest – whatever that may be. Hence, the t in the argument is the 
proper time, which we should probably denote by t’. Indeed, the E and p in the argument of the 
wavefunction θ = ω·t – k·x = (E/ħ)·t – (p/ħ)·x = (E·t – p·x)/ħ are, of course, the energy and momentum as 
measured in our frame of reference. Hence, we will want to write these quantities as E = Ev and p = pv = 
pv·v. If we then use natural units (hence, the numerical value of c and ħ is equal to 1), we can relate the 
energy and momentum of a moving object to its energy and momentum when at rest using the 
following relativistic formulas: 

Ev = E0/√(1−v2) = m0/√(1−v2) and pv = mv·v = m0·v/√(1−v2) = E0·v/√(1−v2)  

Needless to say, v is the (relative) velocity here and, therefore, has a value between 0 and 1. The 
argument of the wavefunction can then be re-written as:   

θ = [E0/√(1−v2)]·t – [E0·v/√(1−v2)]·x = E0·(t − v·x)/√(1−v2) 

⇔ θ = E0·t’ with t’ = (t − v·x)/√(1−v2) 

3. We know we should not mix relativistic and non-relativistic equations. Hence, let us quickly look at 
that. The relativistally correct force equation for one oscillator is: 

F = dp/dt = F = –kx with p = mvv = γm0v 

Multiplying both sides with v = dx/dt yields the following energy conservation expression: 

𝑣
𝑑(m଴𝑣)

𝑑𝑡
= −𝑘𝑥𝑣 ⟺

𝑑(m௩𝑐ଶ)

𝑑𝑡
= −

𝑑

𝑑𝑡
൤
1

2
𝑘𝑥ଶ൨ ⇔

𝑑𝐸

𝑑𝑡
=

𝑑

𝑑𝑡
൤
1

2
𝑘𝑥ଶ + m𝑐ଶ൨ = 0 

We recognize the potential energy (it is the same (½)·k·x2 formula). However, the (½)·m0·v2 term that we 
would get when using the non-relativistic formulation of Newton’s Law is now replaced by the m·c2 = 
m0·γ·c2 term.  

Hence, we must be doing something right here. What is that we are thinking of? 

                                                           
3 This is the ψ = a·e−i[E·t − p·x]/ħ = a·cos(p·x/ħ  E·t/ħ) + i·a·sin(p·x/ħ  E·t/ħ) function for an electron at rest (p = 0), 
whatever that may be. We know that an actual particle is localized in space and can, therefore, not be represented 
by the elementary wavefunction. We must build a wave packet for that: a sum of wavefunctions, each with its own 
amplitude ak and its own argument θk = (Ek·t  pk·x)/ħ. However, this is a paper about first principles only.  
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II. The wavefunction as a two-dimensional oscillation 
The argument of the wavefunction rotates clockwise with time, while the mathematical convention for 
measuring the phase angle (ϕ) is counter-clockwise. The convention doesn’t matter. From the Stern-
Gerlach experiment, we know that the angular momentum of an electron is equal to ± ħ/2, and our 
model should accommodate both values. The illustration below imagines a pointlike charge (the green 
dot) to spin around some center in either of the two possible directions. The cosine keeps track of the 
oscillation in one dimension, while the sine (plus or minus) keeps track of the oscillation in a direction 
that is perpendicular to the first one. We will say more about the possible directions in the next section. 

Figure 2: A pointlike charge in orbit    

 
At this point, we would like to share the original calculations which got us thinking. If the mathematical 
similarity between the the E = m·a2·ω2 and E = m·c2 formulas would represent something real, then we 
need to give some meaning to the c = a·ω. Now, if we assume, just for fun, that E and m are the energy 
and mass of an electron, then the de Broglie relations suggest we should equate ω to E/ħ. As for a, the 
Compton scattering radius of the electron (ħ/(m·c) would be a more likely candidate than, say, the Bohr 
radius, or the Lorentz radius. Why? Because we’re not looking at an electron in orbit around a nucleus 
(Bohr radius), and we’re also not looking at the size of the charge itself (classical electron radius). Let’s 
see what we get: 

a·ω = [ħ/(m·c)]·[E/ħ] = E/(m·c) = m·c2/(m·c) = c 

Wow! Did we just prove something? No. We don’t prove anything in this article. We only showed that 
our E = m·a2·ω2 = m·c2 equation might (note the emphasis: might) make sense. 

Let me show you something else. If this flywheel model of an electron makes sense, then we can, 
obviously, also calculate a tangential velocity for our charge. The tangential velocity is the product of 
the radius and the angular velocity: v = r·ω = a·ω = c.  

Wow! Did we just prove something? Is an electron nothing but a point charge that is spinning around 
some center at… Well… The speed of light? 

Maybe. But probably not. We need to explain the mass of our electron here, and that’s not so easy 
because we say it is basically a possibly massless point charge going up and down, and back and forth. 
So we need to calculate the equivalent mass of the energy of that oscillation. We are, of course, talking 
about the electromagnetic mass of a charge, but I am not aware of any model that does that what we 
want to there, and that is to calculate the electromagnetic mass of a charge that is simply moving up 
and down in a harmonic oscillation. There is also the added complication that an oscillating charge 
should radiate its energy away, so we would need an explanation of why that is not happening.  
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Hence, the situation is very complicated. We need a formula for the electromagnetic mass of a zero 
mass charge oscillating along one axis – let’s denote that by melec – and that mass would be the effective 
mass for an oscillation that is perpendicular to the first one. Fortunately, the two motions are, 
effectively, independent (because of the 90° angle between them). Having said that, it is easy to see that 
the final calculation might be quite complicated. 

Having said that, we believe the basic ideas might be valid: 

1. A charge with zero rest mass will acquire some electromagnetic mass when linearly oscillating. 

2. This electromagnetic mass provides an anchor for a linear oscillation in a direction that is 
perpendicular to the original one. 

3. Maxwell’s propagation mechanism for an electromagnetic wave may ensure such two-
dimensional oscillation is sustainable and propagates itself, so to speak. 

Let us further explore the similarities – and differences – between Maxwell’s equations and 
Schrödinger’s equation. 

III. The wavefunction as a propagation mechanism 
The wavefunction is usually represented as shown below: the real and imaginary component are shown 
as being perpendicular to the direction of propagation of the wavefunction. Note how the phase 
difference between the cosine and the sine  – the real and imaginary part of our wavefunction – appears 
to give some spin to the whole.   

Figure 3: Customary geometric representation of the wavefunction 

 
The basic intuition here might be correct: the real and imaginary component of the wavefunction may 
each carry half of the total energy of the particle, and the interplay between the real and the imaginary 
part of the wavefunction may describe how energy propagates through space over time. If so, we can 
build up a wave packet that might represent an actual particle (i.e. a particle that is localized in space): a 
sum of wavefunctions, each with their own amplitude ak, and their own ωi = Ei/ħ. Each of these 
wavefunctions will contribute some energy to the total energy of the wave packet. To calculate the 
contribution of each wave to the total, both ai as well as Ei will matter.  

What is Ei? Ei varies around some average E, which we can associate with some average mass m: m = 
E/c2. The Uncertainty Principle kicks in here. The analysis becomes more complicated, but a formula 
such as the one below might make sense:  

E =  ෍ m௜ ∙ 𝑎௜
ଶ · ω௜

ଶ = ෍
E௜

𝑐ଶ
∙ 𝑎௜

ଶ ·
E௜

ଶ

ħଶ
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We can re-write this as:  

𝑐ଶħଶ =
∑ 𝑎௜

ଶ ∙ E௜
ଷ

E
⟺ 𝑐ଶħଶE = ෍ 𝑎௜

ଶ ∙ E௜
ଷ 

What is the meaning of this equation? We may look at it as some sort of physical normalization 
condition when building up the Fourier sum. This can then easily be related to the mathematical 
normalization condition for the wavefunction. 

But we first need to agree on the basics. In light of the Stern-Gerlach experiment (and the orientation of 
the magnetic moment it implies), we should not exclude an alternative model of propagation, such as 
the one suggested below. 😊  

Figure 4: Alternative model of propagation 

 

IV. Schrödinger’s equation as an energy diffusion equation 
The interpretation of Schrödinger’s equation as a diffusion equation is straightforward. Feynman 
(Lectures, III-16-1) briefly summarizes it as follows:  

“We can think of Schrödinger’s equation as describing the diffusion of the probability amplitude 
from one point to the next. […] But the imaginary coefficient in front of the derivative makes the 
behavior completely different from the ordinary diffusion such as you would have for a gas 
spreading out along a thin tube. Ordinary diffusion gives rise to real exponential solutions, 
whereas the solutions of Schrödinger’s equation are complex waves.”4   

Let us review the basic math. For a particle moving in free space – with no external force fields acting on 
it – there is no potential (U = 0) and, therefore, the Uψ term disappears. Therefore, Schrödinger’s 
equation reduces to: 

                                                           
4 Feynman further formalizes this in his Lecture on Superconductivity (Feynman, III-21-2), in which he refers to 
Schrödinger’s equation as the “equation for continuity of probabilities”. The analysis is centered on the local 
conservation of energy, which confirms the interpretation of Schrödinger’s equation as an energy diffusion 
equation. 
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∂ψ(x, t)/∂t = i·(1/2)·(ħ/meff)·∇2ψ(x, t) 

The ubiquitous diffusion equation in physics is: 

∂φ(x, t)/∂t = D·∇2φ(x, t) 

The structural similarity is obvious. The key difference between both equations is that the wave 
equation gives us two equations for the price of one. Indeed, because ψ is a complex-valued function, 
with a real and an imaginary part, we get the following equations5:  

1. Re(∂ψ/∂t) = −(1/2)·(ħ/meff)·Im(∇2ψ) 

2. Im(∂ψ/∂t) = (1/2)·(ħ/meff)·Re(∇2ψ) 

These equations make us think of the equations for an electromagnetic wave in free space (no 
stationary charges or currents): 

1. ∂B/∂t = –∇×E 

2. ∂E/∂t = c2∇×B 

The above equations effectively describe a propagation mechanism in spacetime, as illustrated below.  

Figure 5: Propagation mechanisms 

 
The Laplacian operator (∇2), when operating on a scalar quantity, gives us a flux density, i.e. something 
expressed per square meter (1/m2). In this case, it is operating on ψ(x, t), so what is the dimension of 
our wavefunction ψ(x, t)? To answer that question, we should analyze the diffusion constant in 
Schrödinger’s equation, i.e. the (1/2)·(ħ/meff) factor: 

1. As a mathematical constant of proportionality, it will quantify the relationship between both 
derivatives (i.e. the time derivative and the Laplacian); 

2. As a physical constant, it will ensure the physical dimensions on both sides of the equation are 
compatible. 

Now, the ħ/meff factor is expressed in (N·m·s)/(N· s2/m) = m2/s. Hence, it does ensure the dimensions on 
both sides of the equation are, effectively, the same: ∂ψ/∂t is a time derivative and, therefore, its 

                                                           
5 The meff is the effective mass of the particle, which depends on the medium. For example, an electron traveling in 
a solid (a transistor, for example) will have a different effective mass than in an atom. In free space, we can drop 
the subscript and just write meff = m. As for the equations, they are easily derived from noting that two complex 
numbers a + i·b and c + i·d are equal if, and only if, their real and imaginary parts are the same. Now, the ∂ψ/∂t 
= i·(ħ/meff)·∇2ψ equation amounts to writing something like this: a + i·b = i·(c + i·d). Now, remembering that i2 = −1, 
you can easily figure out that i·(c + i·d) = i·c + i2·d = − d + i·c. 
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dimension is s1 while, as mentioned above, the dimension of ∇2ψ is m2. However, this does not solve 
our basic question: what is the dimension of the real and imaginary part of our wavefunction? 

At this point, mainstream physicists will say: it does not have a physical dimension, and there is no 
geometric interpretation of Schrödinger’s equation. One may argue, effectively, that its argument, (p·x  
E·t)/ħ, is just a number and, therefore, that the real and imaginary part of ψ is also just some number. 

To this, we may object that ħ may be looked as a mathematical scaling constant only. If we do that, the 
argument of ψ will, effectively, be expressed in action units, i.e. in N·m·s. It then does make sense to 
also associate a physical dimension with the real and imaginary part of ψ. What could it be? 

We would like to think it is just the same as E and B because, when everything is said and done, the 
force needs something to grab on, and because our charge has no (rest) mass, the charge is the only 
thing the force can grab onto.  

V. Energy densities and energy flows 
Pursuing the geometric equivalence between the equations for an electromagnetic wave and 
Schrödinger’s equation, we can now, perhaps, see if there is an equivalent for the energy density. For an 
electromagnetic wave, we know that the energy density is given by the following formula: 

𝑢 =
𝜖଴

2
𝐄 ∙ 𝐄 +

𝜖଴ ∙ 𝑐ଶ

2
𝐁 ∙ 𝐁 

E and B are the electric and magnetic field vector respectively. The Poynting vector will give us the 
directional energy flux, i.e. the energy flow per unit area per unit time. We write: 

𝜕𝑢

𝜕𝑡
= −∇ ∙ 𝑺 

Needless to say, the ∇· operator is the divergence and, therefore, gives us the magnitude of a (vector) 
field’s source or sink at a given point. To be precise, the divergence gives us the volume density of the 
outward flux of a vector field from an infinitesimal volume around a given point. In this case, it gives us 
the volume density of the flux of S.  

We can analyze the dimensions of the equation for the energy density as follows: 

1. E is measured in newton per coulomb, so [E·E] = [E2] = N2/C2. 

2. B is measured in (N/C)/(m/s), so we get [B·B] = [B2] = (N2/C2)·(s2/m2). However, the dimension of 
our c2 factor is (m2/s2) and so we are also left with N2/C2. 

3. The ϵ0 is the electric constant, aka as the vacuum permittivity. As a physical constant, it should 
ensure the dimensions on both sides of the equation work out, and they do: [ε0] = C2/(N·m2) 
and, therefore, if we multiply that with N2/C2, we find that u is expressed in J/m3.6 

Let us see what we get for a photon, assuming the electromagnetic wave represents its wavefunction. 
Substituting B for (1/c)·i·E or for −(1/c)·i·E gives us the following result: 

𝑢 =
𝜖଴

2
𝐄 ∙ 𝐄 +

𝜖଴ ∙ 𝑐ଶ

2
𝐁 ∙ 𝐁 =

𝜖଴

2
𝐄 ∙ 𝐄 +

𝜖଴ ∙ 𝑐ଶ

2

𝑖 ∙ 𝐄

𝑐

𝑖 ∙ 𝐄

𝑐
=

𝜖଴

2
𝐄 ∙ 𝐄 −

𝜖଴

2
𝐄 ∙ 𝐄 = 0 

                                                           
6 In fact, when multiplying C2/(N·m2) with N2/C2, we get N/m2, but we can multiply this with 1 = m/m to get the 
desired result. It is significant that an energy density (joule per unit volume) can also be measured in newton (force 
per unit area.  
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Zero. An unexpected result? Perhaps not. We have no stationary charges and no currents: only an 
electromagnetic wave in free space. Hence, the local energy conservation principle needs to be 
respected at all points in space and in time. The geometry makes sense of the result: for an 
electromagnetic wave, the magnitudes of E and B reach their maximum, minimum and zero point 
simultaneously, as shown below.7 This is because their phase is the same. 

Figure 6: Electromagnetic wave: E and B 

 
Should we expect a similar result for the energy densities that we would associate with the real and 
imaginary part of the matter-wave? For the matter-wave, we have a phase difference between a·cosθ 
and a·sinθ, which gives a different picture of the propagation of the wave (see Figure 3).8 In fact, the 
geometry of the suggestion suggests some inherent spin, which is interesting. I will come back to this. 
Let us first guess those densities. Making abstraction of any scaling constants, we may write: 

𝑢 = 𝑎ଶ(𝑐𝑜𝑠θ)ଶ + 𝑎ଶ(−𝑖 ∙ 𝑠𝑖𝑛θ)ଶ = 𝑎ଶ (𝑐𝑜𝑠ଶθ + 𝑠𝑖𝑛ଶθ) = 𝑎ଶ 

We get what we hoped to get: the absolute square of our amplitude is, effectively, an energy density !  

|ψ|2  = |a·e−i·E·t/ħ|2 = a2 = u 

This is very deep. A photon has no rest mass, so it borrows and returns energy from empty space as it 
travels through it. In contrast, a matter-wave carries energy and, therefore, has some (rest) mass. It is 
therefore associated with an energy density, and this energy density gives us the probabilities. Of 
course, we need to fine-tune the analysis to account for the fact that we have a wave packet rather than 
a single wave, but that should be feasible. 

As mentioned, the phase difference between the real and imaginary part of our wavefunction (a cosine 
and a sine function) appears to give some spin to our particle. We do not have this particularity for a 
photon. Of course, photons are bosons, i.e. spin-zero particles, while elementary matter-particles are 
fermions with spin-1/2. Hence, our geometric interpretation of the wavefunction suggests that, after all, 
there may be some more intuitive explanation of the fundamental dichotomy between bosons and 
fermions, which puzzled even Feynman:  

“Why is it that particles with half-integral spin are Fermi particles, whereas particles with 
integral spin are Bose particles? We apologize for the fact that we cannot give you an 
elementary explanation. An explanation has been worked out by Pauli from complicated 
arguments of quantum field theory and relativity. He has shown that the two must necessarily 
go together, but we have not been able to find a way of reproducing his arguments on an 
elementary level. It appears to be one of the few places in physics where there is a rule which 
can be stated very simply, but for which no one has found a simple and easy explanation. The 
explanation is deep down in relativistic quantum mechanics. This probably means that we do 

                                                           
7 The illustration shows a linearly polarized wave, but the obtained result is general. 
8 The sine and cosine are essentially the same functions, except for the difference in the phase: sinθ = cos(θ−π /2). 
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not have a complete understanding of the fundamental principle involved.” (Feynman, Lectures, 
III-4-1) 

 

VI. Additional considerations 
We talked about these in the two other pre-publication papers.9 We will re-hash these over the coming 
months. The key area for research over the coming weeks is the concept of the electromagnetic mass: 
we will need to verify the relation – if any – between (1) the electromagnetic mass of a charge, moving 
up and down along a distance that is equal to the Compton radius of an electron and (2) the total rest 
mass of an electron. If there is no relation whatsoever, the hypotheses that have been offered in this 
paper will be irrelevant. 
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