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Abstract

A fundamental conservation and symmetry is proposed, as a unification between General Relativity (GR) and
Quantum Theory (QT). Unification is then demonstrated across multiple applications. First, as applied to cosmo-
logical redshift z and energy density ρ. Then, a local system galaxy rotational curve is examined. Next, as applied
to Quantum Mechanics’ ”time problem”: Absolute and relative notions of time are shown to be reconcilable, as well
as renormalization values between scales. Finally, as applied to the Cosmological Constant: The discrepancy that
exists between the vacuum energy density in GR at critical density: ρcr = 3H2/8πG = 1.88(H2)x10−29g/cm3 [1],
and the much greater zero-point energy delta value as calculated in quantum field theory (QFT) with a Planck scale
ultraviolet cutoff: ρhep = M4c3/h3 = 2.44x1091g/cm3 [2] is resolved to null orders of magnitude.

1. INTRODUCTION

Special relativity (SR) eloquently conforms to Mv2

2 (to-
tal kinetic energy) in Noether’s theorem as, [3]

Ek =
Mc2√

1−v2
c2

,

and energy is thus conserved (time-transitionally in-
variant). However in GR, energy evolves as spacetime
changes. Einstein has shown us that when the space
through which particles move is dynamic, the total en-
ergy of those particles is not conserved. Moreover, the
energy stored in the cosmological constant must expand
at a rate of k3, in proportion to the volume of expand-
ing space. An additional challenge to vacuum energy
is the unstable nature of uneven distribution of matter
throughout the universe. The pervading justification for
red shift photon energy loss is the lack of an associated
symmetry.
Conservation laws conventionally define invariance with
respect to time. For example, the Euler-Lagrange equa-
tions (in general coordinates), [4]

d

dt

(
∂L

∂q̇

)
=
∂L

∂q

Then conservation is shown by the first order derivative
of some quantity, with respect to time, being equal to
zero,

d

dt

(
∂L

∂q̇k

)
=
dpk
dt

= 0

However, this article proposes a fundamental
conservation of total Hamiltonian energy within
the entire scope of cosmology.

2. THE SUPERNOVA COSMOLOGY PROJECT
WITH EINSTEIN-DE SITTER MODEL

The 1998 supernova data [5] have concluded that ob-
served magnitude of nearby and distant type LA su-
pernovae, as compared with cosmological predictions of
models with zero vacuum energy and mass densities
(ranging from the critical density ρc down to zero), has
formally ruled out the Einstein-de Sitter model of closed
ordinary matter (i.e. ΩM = 1) at the 7σ to 8σ confi-
dence level for two different fitting methods. Moreover,
the best fit to this divergence implies that, in the present
epoch, the vacuum energy density ρΛ is larger than the
energy density attributable to mass (ρmC

2). Therefore,
the cosmic expansion is now accelerating. However, an
alternate interpretation of this data is presented,
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in defiance of a requirement for any dark compo-
nent of energy density:

Theorem 2.1 Time interval ∆t contracts (decreases)
inversely proportional to the metric expansion of space
ar, independent of relative motion (Note that this is dis-
tinct from γ time dilation).

∆tn
∆t

=
∆ar0

∆arn
=

∆D0

∆Dn

Normalizing ∆tn from D,

∆tn =
1

1 +DK

Where ∆tn is an interval of time at distance Dn, and
K is an undetermined minute constant (≈ 4.000E − 24)
that becomes significant in a matter dominated universe.

Thus, accelerating expansion is alternatively explained as
being generally constant, such that ä = 0 (excluding local
variation) with a decrease in time interval ∆tn, which has
an equivalent effect as an increase in velocity v. Thus,

Corollary 2.1.1 Universal expansion, with decreasing
time intervals, appears as accelerated expansion.

Note that this offers an alternative to dark components,
as functions with decreasing time intervals are equivalent
to functions with an anti-derivative. See figure 1

Figure 1: Velocity ȧ(t) with decreasing time intervals appears
as acceleration ä(t)

Table I lists eleven hypothetical sla points as predicted in
the Einstein-de Slitter model with uniform time intervals,
compared with contracted time intervals (∆tn, per theo-
rem 2.1). The scatter plot in figure 2 (with logarithmic
horizontal axis) shows three trend-lines with correspond-
ing values of K ≈ (ΩM ,ΩΛ) = (0, 1), (0.5, 0.5), (1, 0).
Note: ä(t) = 0.

Table I: Predicted Einstein-de Slitter model with uniform
time intervals, compared with contracted time intervals. In
successive columns: [mb] (magnitude brightness), z (Red-
shift), ∆tn [Ka = 0], ∆tn [Kb=2.000 x 10−24], ∆tn [Kc=4.000
x 10−24]

mb z ∆tn [Ka] ∆tn [Kb] ∆tn [Kc]
14 0.010 1.000 0.998 0.997
15 0.016 1.000 0.996 0.995
16 0.025 1.000 0.994 0.993
17 0.040 1.000 0.990 0.988
18 0.063 1.000 0.985 0.982
19 0.100 1.000 0.976 0.971
20 0.158 1.000 0.963 0.955
21 0.250 1.000 0.942 0.931
22 0.396 1.000 0.911 0.895
23 0.628 1.000 0.866 0.843
24 0.996 1.000 0.803 0.772

Figure 2: Hypothetical sla points as predicted in the Einstein-
de Slitter model with uniform time intervals, compared with
contracted time intervals

3. ENERGY DENSITY INCREASES WITH ∆tn

Corollary 3.0.1 Per theorem 2.1, velocity ∆d
∆tn

increases
with distance ar. With this proportionate increase in ve-
locity, energy density ρ proportionally increases, due to
increased velocities in particle kinetic and internal ener-
gies (compression, energy of nuclear binding, etc.). To
the observer at ar0, energy at arn [mpc] density measures
ρn with greater energy per unit of time.

∆ρn
∆ρ

=
∆tn
∆t

Conservation of Energy Density Over Flat Space

Einstein had contemplated that his original static
model of GR was unstable, and might require the cosmo-
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logical constant to offset gravity from collapsing. How-
ever, this alternate model is inherently more stable:

Corollary 3.0.2 For galactic scales, at distance arn, the
average force of energy density ρ, approaching from below
arn, is counterbalanced by the average force of increasing
energy density ρn approaching from above arn,

lim
r→−rn

∂ρ

∂(ar)
= lim
r→+rn

∂ρn
∂(ar)

Thus, a fundamental conservation and coordinate sym-
metry of energy density, with respect to spacetime, is
established. See figure 3,

Figure 3: Fundamental conservation and coordinate symme-
try of energy density, with respect to spacetime

Galaxy Rotation Curve with Increased Density

The discrepancies between theoretical and observed
galaxy rotation curves involve both density and veloc-
ity. Conventionally, the dependence of circular velocity
Vcirc on radial distance R assumes M , m and velocity to
be fixed over large scales in Kepler’s law, [6]

T 2 =
4π2r3

GM
⇒ T 2 ∝ r3

Moreover, gravitational lensing demonstrates the exis-
tence of a much greater Mass (density) than the sum of
the stars within the galaxy. However, this alternate
model specifically addresses these two issues and
provides an explanation,

Corollary 3.0.3 Per theorem 2.1 and corollary 3.0.1,
velocity ∆d

∆tn
and density ρn are measured with increased

magnitude per distance arn. This directly extends to en-
ergy density within galaxies and the effects on rotational

velocity, such that: As R increases, centripetal force is
perfectly balanced by increases in v ( ∆d

∆tn
) and, subse-

quently, ρn,

v2

r
=
G

r2
M =

G

r2

∫
ρndt

Note: total mass M inside the circle of the radius r can
be obtained by doing integration of mass density in a
volume. M =

∫
ρndt Note:

Figure 4: Flat galaxy rotation curve explained with funda-
mental conservation

• ρ = ρR and ρM (Dark components are excluded
from this model, with the intent of presenting an
alternative).

• Along with time dilation γ, time contraction ∆tn
is a distinct and necessary factor in deriving proper
time

• Ω = 1 (flat space)

• The expanding universe is homogeneous, isotropic
and asymptotically flat.

4. QUANTUM MECHANICS TIME PROBLEM

Theorem 2.1 of time contracting inversely with space
expansion can be restated in reverse:

Theorem 4.1 As scales approach Planck length, time
intervals dilate (independent of their relative motion in
SR) to a range, represented as an integral from −tnpast
to +tn future. As well corresponding values of position,
energy, density and charge become superimposed within
this range.

More concisely, this is presented as a unifying explana-
tion of superposition. Figure 5 shows how both GR and
QM are unified by this single basic premise. Viewed from
classic scale (with projectile), the time intervals of orbits
vary, as opposed to being fixed. The result is the inte-
gration of position, energy, density and charge.
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Figure 5: Gr and QM are unified

This assertion also challenges the use of mass in De-
Broglie’s λ by substituting a unit of length (scale), such
as re (electron radius) or r0 (atomic radius), instead of
mass:

Hydrogen atom wave function (for plane wave): [7]

Ψ~k(~r) = ei
~k·~r (1)

Using p = ~k for momentum, the dominate wave function
Psi ~k0 includes wave vector ~k0 :

k0 =
2π

λ0
=⇒ λ ∝ −d (2)

thus,

Corollary 4.1.1 wave length is inversely proportional to
distance,

λ ∝ −d

Extending this relationship to superposition,

Corollary 4.1.2 From classic space, the observer no-
tices an expanded range (superposition) of time, position,
momentum and energy { t, x, p, e }. Essentially, observ-
ing an integral of past, present and future in a single in-
stant, (conceptually, like a time-lapse image), appearing
as a semi dense solid.

So a particular orbit might appear as a torus. If the
”range” is subatomic (< the orbit diameter) a projectile
might appear as a partial torus. See figure 6

Figure 6: Orbitals with gaps

Probability Density and complex functions

Modeling superposition, in the time dependent wave-
function, as expanded time (with corresponding posi-
tions) sheds some light on the role of complex numbers
in the wavefunction probability distribution, [8]

P
(
x1 ≤ x ≤ x2

)
=

∫ x2

x1

|Ψ|2dx
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If we may represent Ψ as a function of position
xrange with an orthogonal of ∆trange (−n past to
n future), then this suggests a requirement of 2D
planar values in complex numbers See figure 7.

Figure 7: Real and imaginary numbers represent ∆trange time
and position xrange

Note: In this model, probability density (as captured
by Ψ(x)Ψ ∗ (x) complex conjugate) represents a density
range of both time and corresponding position. With
this understanding and reference to the Bohr model, a
higher probability density is expected toward the center,
where orbiting paths are more frequent. Also note that
this model easily explains orbital gaps as electron orbits
outside of this range. See figure 8.

Figure 8: Gaps and density explained

5. COSMOLOGICAL CONSTANT Λ (ρcos) IN GR

Per theorem 2.1, accelerating expansion is shown to
be an illusion (ä = 0). See figure 1. The rate of conver-
gence corresponds to ∆tn. Thus cancelling the need for
adding Λ to Einstein’s field equations. We are left with
the original form of: [9]

Rµν −
1

2
Rguν =

8× πG
c4

Tµν (3)

6. VACUUM ENERGY DENSITY (ρhep) IN QM

Theorem 4.1 (”As scales approach Planck length, time
intervals dilate to a range, represented as an integral from
-tn past to +tn future. As well corresponding values
of position, energy, density and charge become super-
imposed within this range”.), and corollary 4.1.1 (”wave
length is inversely proportional to distance”) provides a
reasonable alternative to the unreasonable sum of vac-
uum energy (even within a restricted cutoff of photon
energy being equal to Planck energy):

Corollary 6.0.1 As measured from classic scale, the
Casimir force (U) between plates a distance x microm-
eters apart represents a much greater range (n) of ex-
panded time interval, along with associated values of po-
sition, energy, momentum and charge. This range (n)
increases as x decreases.

Urange =

∫ tn

−tn

∫ qn

−qn

U

λ
dt

Where (q) is general positional coordinates. Thus, the
assumed force measured in a unit of volume is instead
a much greater integral over, both time (-tn past to +tn
future) and position (-qn to qn). Note that as λ decreases
U increases (See figure 9,

Figure 9: Casimir force energy U represents an integral
(range) of both time and position
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7. SUPPORTIVE EVIDENCE

Apparent Deviation From Kepler’s Orbital Laws

Theorem 2.1, is supported by the following correla-
tion study: ”On Possible Systematic Redshifts Across
the Disks of Galaxies” [10]. This study shows a devia-
tion from Kepler’s orbital laws, specifically on the subject
of increased velocity on the far sides of multiple galaxies.
Although not conclusive, it does justify consideration to
this article.

Note that multiple galaxy surveys with increased ve-
locities across their minor axis. Thus, velocity within
the same body appears to increase per distance.
”Velocity observations in 25 galaxies have been examined
for possible systematic redshifts across their disks: a pos-
sible origin for the redshifts could be the radiation fields.
Velocities increase towards the far sides in most cases.

This is so for the ionized gas, for neutral hydrogen, and
in some cases for the stars. The effect is seen as veloc-
ity gradients along the minor axes, as well as in velocity
fields of neutral hydrogen in other parts of the galaxies.
Deviation of the kinematic major axis from the optical
axis is found for 10 galaxies and in 9 of these the largest
velocities occur in the far side. In the central regions
of four galaxies are found large velocity gradients in the
same direction. While expanding motions provide an ex-
planation for some of these features, it remains difficult
to thereby explain all the peculiarities found. Faintness
of the data available in this preliminary study should
be noticed. Observations specially programmed for this
subject would be necessary.”

Figure 10 shows ’table 1’, on page 258 which lists
25 galaxies, correlation coefficients and relevant columns
(including sources of data):

Figure 10: two vectors, observed at d = 1mpc, with different radial velocities

Prediction as Supportive Evidence

One prediction of decreasing time intervals would be:
Galaxies with a negative z value (approaching instead of
receding, in our local group) would also correlate with
distance, such that the furthest galaxies would appear to
approach with the fastest velocity.

8. CONCLUSIONS

In order to define the fundamental conservation and
symmetry of spacetime, within the broad scope of cos-
mology, it is necessary to consider some independent pa-
rameter representing constant energy. Once this conser-
vation is established, simple and parsimonious resolution
to applications in General Relativity, Quantum Mechan-
ics and the Cosmological constant become both plausible
and reasonable.
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