Identities for second order recurrence sequences*

Kunle Adegoke †

Department of Physics and Engineering Physics, Obafemi Awolowo University, 220005 Ile-Ife, Nigeria

Abstract

We derive several identities for arbitrary homogeneous second order recurrence sequences with constant coefficients. The results are then applied to present a harmonized study of six well known integer sequences, namely the Fibonacci sequence, the sequence of Lucas numbers, the Jacobsthal sequence, the Jacobsthal-Lucas sequence, the Pell sequence and the Pell-Lucas sequence.

Contents

1	Introduction	1
	Main results	3
	2.1 Identities	3
	2.2 Summation identities	5
	2.3 Binomial summation identities	6
3	Applications and examples	6
	3.1 Identities	7
	3.2 Weighted sums	11
	3.3 Weighted binomial sums	16

1 Introduction

Our aim in writing this paper is to derive several identities for arbitrary second order recurrence sequences with constant coefficients. As a concrete illustration of how our results may be put to use, we will derive identities for the integer sequences mentioned in the abstract and defined below.

The Fibonacci numbers, F_n , and the Lucas numbers, L_n , are defined, for $n \in \mathbb{Z}$, as usual, through the recurrence relations $F_n = F_{n-1} + F_{n-2}$ $(n \ge 2)$, $F_0 = 0$, $F_1 = 1$ and $L_n = L_{n-1} + L_{n-2}$

^{*}AMS Classification: 11B37, 11B39, 65B10

[†]adegoke00@gmail.com

 $(n \ge 2)$, $L_0 = 2$, $L_1 = 1$, with $F_{-n} = (-1)^{n-1}F_n$ and $L_{-n} = (-1)^nL_n$. Exhaustive discussion of the properties of Fibonacci and Lucas numbers can be found in Vajda [8] and in Koshy [5].

The Jacobsthal numbers, J_n , and the Jacobsthal-Lucas numbers, j_n , are defined, for $n \in \mathbb{Z}$, through the recurrence relations $J_n = J_{n-1} + 2J_{n-2}$ $(n \ge 2)$, $J_0 = 0$, $J_1 = 1$ and $j_n = j_{n-1} + 2j_{n-2}$ $(n \ge 2)$, $j_0 = 2$, $j_1 = 1$, with $J_{-n} = (-1)^{n-1}2^{-n}J_n$ and $j_{-n} = (-1)^n2^{-n}j_n$. Horadam [4] and Aydin [2] are good reference materials on the Jacobsthal and associated sequences.

The Pell numbers, P_n , and Pell-Lucas numbers, Q_n , are defined, for $n \in \mathbb{Z}$, through the recurrence relations $P_n = 2P_{n-1} + P_{n-2}$ $(n \ge 2)$, $P_0 = 0$, $P_1 = 1$ and $Q_n = 2Q_{n-1} + Q_{n-2}$ $(n \ge 2)$, $Q_0 = 2$, $Q_1 = 1$, with $P_{-n} = (-1)^{n-1}P_n$ and $Q_{-n} = (-1)^nQ_n$. Koshy [6], Horadam [3] and Patel and Shrivastava [7] are useful source materials on Pell and Pell-Lucas numbers.

Note that, in this paper, apart from in the binomial summation identities where the upper limit must be non-negative, the upper limit in the summation identities is allowed to take on negative values once we adopt the summation convention that, if k < 0 then

$$\sum_{r=0}^{k} f_r \equiv -\sum_{r=k+1}^{-1} f_r \,,$$

as long as f_r is not singular in the summation interval.

Here is a couple of results to whet the reader's appetite for reading on:

From Corollary 2:

$$F_{n+h}L_{n+k} - F_nL_{n+h+k} = (-1)^n F_h L_k ,$$

$$J_{n+h}j_{n+k} - J_n j_{n+h+k} = (-1)^n 2^n J_h j_k ,$$

$$P_{n+h}Q_{n+k} - P_n Q_{n+h+k} = (-1)^n P_h Q_k .$$

From Theorem 5:

$$(-1)^{u}L_{u}^{2} + (-1)^{v}L_{v}^{2} + (-1)^{w}L_{w}^{2} = (-1)^{w}L_{u}L_{v}L_{w} + 4,$$

$$(-1)^{u}2^{v}j_{u}^{2} + (-1)^{v}2^{u}j_{v}^{2} + (-1)^{w}j_{w}^{2} = (-1)^{w}j_{u}j_{v}j_{w} + 2^{w+2}$$

and

$$(-1)^u Q_u^2 + (-1)^v Q_v^2 + (-1)^w Q_w^2 = (-1)^w Q_u Q_v Q_w + 4,$$

for integers u, v, w such that u + v = w.

From Theorem 8, for nonnegative integer k and arbitrary integers a, b, c, d, e, m for which the denominator does not vanish:

$$\sum_{r=0}^{k} {k \choose r} \left(\frac{F_{d-c}F_{e-b} - F_{e-c}F_{d-b}}{F_{d-a}F_{e-c} - F_{e-a}F_{d-c}} \right)^{r} F_{m-(b-c)k+(b-a)r}$$

$$= \left(\frac{F_{d-a}F_{e-b} - F_{e-a}F_{d-b}}{F_{d-a}F_{e-c} - F_{e-a}F_{d-c}} \right)^{k} F_{m},$$

$$\sum_{r=0}^{k} {k \choose r} \left(\frac{J_{d-c}J_{e-b} - J_{e-c}J_{d-b}}{J_{d-a}J_{e-c} - J_{e-a}J_{d-c}} \right)^{r} J_{m-(b-c)k+(b-a)r}$$

$$= \left(\frac{J_{d-a}J_{e-b} - J_{e-a}J_{d-b}}{J_{d-a}J_{e-c} - J_{e-a}J_{d-c}} \right)^{k} J_{m} ,$$

$$\sum_{r=0}^{k} {k \choose r} \left(\frac{P_{d-c}P_{e-b} - P_{e-c}P_{d-b}}{P_{d-a}P_{e-c} - P_{e-a}P_{d-c}} \right)^{r} P_{m-(b-c)k+(b-a)r}$$

$$= \left(\frac{P_{d-a}P_{e-b} - P_{e-a}P_{d-b}}{P_{d-a}P_{e-c} - P_{e-a}P_{d-c}} \right)^{k} P_{m} .$$

2 Main results

2.1 Identities

Lemma 1. Let $\{X_m\}$ and $\{Y_m\}$, $m \in \mathbb{Z}$, be homogeneous second order recurrence sequences with constant coefficients. Let $\{X_m\}$ and $\{Y_m\}$ possess the same recurrence relation. Let $\Delta_{xy} = X_{d-a}Y_{e-b} - X_{e-a}Y_{d-b}$. Then, the identity:

$$(X_{d-a}Y_{e-b} - X_{e-a}Y_{d-b})X_{m-c}$$

$$= (X_{d-c}Y_{e-b} - X_{e-c}Y_{d-b})X_{m-a}$$

$$+ (X_{d-a}X_{e-c} - X_{e-a}X_{d-c})Y_{m-b},$$

holds for arbitrary integers a, b, c, d, e and m for which $\Delta_{xy} \neq 0$.

Proof. By hypothesis, $\{X_m\}$ and $\{Y_m\}$ have the same recurrence relations, therefore we seek a relation of the following type:

$$X_{m-c} = \lambda_1 X_{m-a} + \lambda_2 Y_{m-b}, \qquad (2.1)$$

between any three numbers X_{m-c} , X_{m-a} and Y_{m-b} , where a, b and c are fixed integers and λ_1 and λ_2 are suitable constants. Evaluating (2.1) at m=d and at m=e produces two equations:

$$X_{d-c} = \lambda_1 X_{d-a} + \lambda_2 Y_{d-b} \tag{2.2}$$

and

$$X_{e-c} = \lambda_1 X_{e-a} + \lambda_2 Y_{e-b} \,, \tag{2.3}$$

to be solved simultaneously for the constants λ_1 and λ_2 . Solutions exist if

$$\Delta_{xy} = \left| \begin{array}{cc} X_{d-a} & Y_{d-b} \\ X_{e-a} & Y_{e-b} \end{array} \right| = X_{d-a} Y_{e-b} - X_{e-a} Y_{d-b} \neq 0.$$

The result follows from substituting into (2.1) the λ_1 and λ_2 found from solving (2.2) and (2.3).

Lemma 2. Let $\{X_m\}$, $m \in \mathbb{Z}$, be a homogeneous second order recurrence sequence with constant coefficients. Then, the following identity holds for arbitrary integers a, b, c, d, e and m:

$$(X_{d-a}X_{e-b} - X_{e-a}X_{d-b})X_{m-c}$$

$$= (X_{d-c}X_{e-b} - X_{e-c}X_{d-b})X_{m-a}$$

$$+ (X_{d-a}X_{e-c} - X_{e-a}X_{d-c})X_{m-b}.$$

Proof. Let $\Delta_{xx} = X_{d-a}X_{e-b} - X_{e-a}X_{d-b} \neq 0$ and proceed as in the proof of Lemma 1. We have

$$(X_{d-a}X_{e-b} - X_{e-a}X_{d-b})X_{m-c}$$

$$= (X_{d-c}X_{e-b} - X_{e-c}X_{d-b})X_{m-a}$$

$$+ (X_{d-a}X_{e-c} - X_{e-a}X_{d-c})X_{m-b}.$$
(2.4)

But we will now prove that the identity (2.4) continues to hold even if $\Delta_{xx} = 0$. Let

$$\Delta_1 = X_{d-c}X_{e-b} - X_{e-c}X_{d-b}, \quad \Delta_2 = X_{d-a}X_{e-c} - X_{e-a}X_{d-c}.$$

There are six possible situations in which Δ_{xx} can vanish. We consider them in turn.

- 1. $X_{d-a} = 0 = X_{e-a}$, in which case $d = e \Rightarrow \Delta_1 = \Delta_2 = 0$ and hence identity (2.4) remains valid.
- 2. $X_{e-b} = 0 = X_{d-b}$, in which case, again, $d = e \Rightarrow \Delta_1 = \Delta_2 = 0$ and hence identity (2.4) remains valid
- 3. $X_{d-a} = 0 = X_{d-b}$, in which case b = a and the right side of identity (2.4) reads

$$(X_{d-c}X_{e-a} - X_{e-c}X_{d-a})X_{m-a} + (X_{d-a}X_{e-c} - X_{e-a}X_{d-c})X_{m-a}$$

which evaluates to zero, so that identity (2.4) remains valid.

4. $X_{e-b} = 0 = X_{d-b}$, in which case e = d and the right side of identity (2.4) reads

$$(X_{d-c}X_{d-b}-X_{d-c}X_{d-b})X_{m-a}+(X_{d-a}X_{d-c}-X_{d-a}X_{d-c})X_{m-b}$$

which evaluates to zero, so that identity (2.4) remains valid.

- 5. $X_{d-a} = X_{e-a}$ and $X_{e-b} = X_{d-b}$, in which case, again, $d = e \Rightarrow \Delta_1 = \Delta_2 = 0$ and hence identity (2.4) remains valid.
- 6. $X_{d-a} = X_{d-b}$ and $X_{e-b} = X_{e-a}$, in which case, as in case 3, b = a and hence identity (2.4) remains valid.

Thus we see that identity (2.4) is valid regardless of the nature of Δ_{xx} , so that the identity holds for all integers.

Lemma 3. Let $\{X_m\}$, $m \in \mathbb{Z}$, be a homogeneous second order recurrence sequence with constant coefficients. Then, the following identity holds for arbitrary integers a, b, c and m:

$$(X_0^2 - X_{b-a}X_{a-b})X_{m-c}$$

$$= (X_{a-c}X_0 - X_{b-c}X_{a-b})X_{m-a}$$

$$+ (X_0X_{b-c} - X_{b-a}X_{a-c})X_{m-b}.$$

2.2 Summation identities

The following identities are obtained by making appropriate substitutions from Lemmata 1 and 2 into Lemmata 1 and 2 of [1].

Lemma 4. Let $\{X_m\}$ and $\{Y_m\}$, $m \in \mathbb{Z}$, be homogeneous second order recurrence sequences with constant coefficients. Let $\{X_m\}$ and $\{Y_m\}$ possess the same recurrence relation. Let $\Delta_{xy} = X_{d-a}Y_{e-b} - X_{e-a}Y_{d-b}$, $\Delta_1 = X_{d-c}Y_{e-b} - X_{e-c}Y_{d-b}$ and $\Delta_2 = X_{d-a}X_{e-c} - X_{e-a}X_{d-c}$. Then, the following identity holds for arbitrary integers a, b, c, d, e, m and k for which $\Delta_{xy} \neq 0$, $\Delta_1 \neq 0$, $\Delta_2 \neq 0$:

$$\sum_{r=0}^{k} \left(\frac{X_{d-a}Y_{e-b} - X_{e-a}Y_{d-b}}{X_{d-c}Y_{e-b} - X_{e-c}Y_{d-b}} \right)^{r} Y_{m-k(a-c)-b+c+(a-c)r}
= \left(\frac{X_{d-a}Y_{e-b} - X_{e-a}Y_{d-b}}{X_{d-a}X_{e-c} - X_{e-a}X_{d-c}} \right) \left(\frac{X_{d-a}Y_{e-b} - X_{e-a}Y_{d-b}}{X_{d-c}Y_{e-b} - X_{e-c}Y_{d-b}} \right)^{k} X_{m}
- \left(\frac{X_{d-c}Y_{e-b} - X_{e-c}Y_{d-b}}{X_{d-a}X_{e-c} - X_{e-a}X_{d-c}} \right) X_{m-(k+1)(a-c)} .$$
(2.5)

Lemma 5. Let $\{X_m\}$, $m \in \mathbb{Z}$, be a homogeneous second order recurrence sequence with constant coefficients. Let $\Delta_1 = X_{d-c}X_{e-b} - X_{e-c}X_{d-b}$ and $\Delta_2 = X_{d-a}X_{e-c} - X_{e-a}X_{d-c}$. Then, the following identities hold for integer k and arbitrary integers a, b, c, d, e and m for which $\Delta_1 \neq 0$ and $\Delta_2 \neq 0$:

$$\sum_{r=0}^{k} \left(\frac{X_{d-a}X_{e-b} - X_{e-a}X_{d-b}}{X_{d-c}X_{e-b} - X_{e-c}X_{d-b}} \right)^{r} X_{m-k(a-c)-b+c+(a-c)r}
= \left(\frac{X_{d-a}X_{e-b} - X_{e-a}X_{d-b}}{X_{d-a}X_{e-c} - X_{e-a}X_{d-c}} \right) \left(\frac{X_{d-a}X_{e-b} - X_{e-a}X_{d-b}}{X_{d-c}X_{e-b} - X_{e-c}X_{d-b}} \right)^{k} X_{m}
- \left(\frac{X_{d-c}X_{e-b} - X_{e-c}X_{d-b}}{X_{d-a}X_{e-c} - X_{e-a}X_{d-c}} \right) X_{m-(k+1)(a-c)},$$
(2.6)

$$\sum_{r=0}^{k} \left(\frac{X_{d-a} X_{e-b} - X_{e-a} X_{d-b}}{X_{d-a} X_{e-c} - X_{e-a} X_{d-c}} \right)^{r} X_{m-k(b-c)-a+c+(b-c)r}
= \left(\frac{X_{d-a} X_{e-b} - X_{e-a} X_{d-b}}{X_{d-c} X_{e-b} - X_{e-c} X_{d-b}} \right) \left(\frac{X_{d-a} X_{e-b} - X_{e-a} X_{d-b}}{X_{d-a} X_{e-c} - X_{e-a} X_{d-c}} \right)^{k} X_{m}
- \left(\frac{X_{d-a} X_{e-c} - X_{e-a} X_{d-c}}{X_{d-c} X_{e-b} - X_{e-c} X_{d-b}} \right) X_{m-(k+1)(b-c)}$$
(2.7)

and

$$\sum_{r=0}^{k} \left(\frac{X_{e-a} X_{d-c} - X_{d-a} X_{e-c}}{X_{d-c} X_{e-b} - X_{e-c} X_{d-b}} \right)^{r} X_{m-k(a-b)+b-c+(a-b)r}
= \left(\frac{X_{d-a} X_{e-c} - X_{e-a} X_{d-c}}{X_{d-a} X_{e-b} - X_{e-a} X_{d-b}} \right) \left(\frac{X_{e-a} X_{d-c} - X_{d-a} X_{e-c}}{X_{d-c} X_{e-b} - X_{e-c} X_{d-b}} \right)^{k} X_{m}
+ \left(\frac{X_{d-c} X_{e-b} - X_{e-c} X_{d-b}}{X_{d-a} X_{e-b} - X_{e-a} X_{d-b}} \right) X_{m-(k+1)(a-b)} .$$
(2.8)

2.3 Binomial summation identities

The following identities are obtained by making appropriate substitutions from the identity of Lemma 2 into the identities of Lemma 3 of [1].

Lemma 6. Let $\{X_m\}$, $m \in \mathbb{Z}$, be a homogeneous second order recurrence sequence with constant coefficients. Let $\Delta_1 = X_{d-c}X_{e-b} - X_{e-c}X_{d-b}$ and $\Delta_2 = X_{d-a}X_{e-c} - X_{e-a}X_{d-c}$. Then, the following identity holds for positive integer k and arbitrary integers a, b, c, d, e and m for which $\Delta_1 \neq 0$ and $\Delta_2 \neq 0$:

$$\sum_{r=0}^{k} {k \choose r} \left(\frac{X_{d-c} X_{e-b} - X_{e-c} X_{d-b}}{X_{d-a} X_{e-c} - X_{e-a} X_{d-c}} \right)^{r} X_{m-(b-c)k+(b-a)r}
= \left(\frac{X_{d-a} X_{e-b} - X_{e-a} X_{d-b}}{X_{d-a} X_{e-c} - X_{e-a} X_{d-c}} \right)^{k} X_{m},$$
(2.9)

$$\sum_{r=0}^{k} {k \choose r} \left(\frac{X_{e-a} X_{d-b} - X_{d-a} X_{e-b}}{X_{d-a} X_{e-c} - X_{e-a} X_{d-c}} \right)^{r} X_{m+(a-b)k+(b-c)r} \\
= \left(\frac{X_{d-c} X_{e-b} - X_{e-c} X_{d-b}}{X_{e-a} X_{d-c} - X_{d-a} X_{e-c}} \right)^{k} X_{m}$$
(2.10)

and

$$\sum_{r=0}^{k} {k \choose r} \left(\frac{X_{e-a}X_{d-b} - X_{d-a}X_{e-b}}{X_{d-c}X_{e-b} - X_{e-c}X_{d-b}} \right)^{r} X_{m+(b-a)k+(a-c)r} \\
= \left(\frac{X_{d-a}X_{e-c} - X_{e-a}X_{d-c}}{X_{e-c}X_{d-b} - X_{d-c}X_{e-b}} \right)^{k} X_{m} .$$
(2.11)

3 Applications and examples

We now employ the results of the previous section to give a combined study of six well known integer sequences. First we give a modified version of Lemma 1 that allows the removal of the Δ_{xy} condition.

Lemma 7. Let $\{X_m\}$ and $\{Y_m\}$, $m \in \mathbb{Z}$, be homogeneous second order recurrence sequences with constant coefficients. Let $\{X_m\}$ and $\{Y_m\}$ possess the same recurrence relation. Let $Y_m \neq 0$ for all integers m. Finally, let $\{X_m\}$ and $\{Y_m\}$ have at most three members in common. Then, the identity:

$$(X_{d-a}Y_{e-b} - X_{e-a}Y_{d-b})X_{m-c}$$

$$= (X_{d-c}Y_{e-b} - X_{e-c}Y_{d-b})X_{m-a}$$

$$+ (X_{d-a}X_{e-c} - X_{e-a}X_{d-c})Y_{m-b},$$

holds for arbitrary integers a, b, c, d, e and m.

Proof. Let $\Delta_{xy} = X_{d-a}Y_{e-b} - X_{e-a}Y_{d-b}$. According to Lemma 1 we have

$$(X_{d-a}Y_{e-b} - X_{e-a}Y_{d-b})X_{m-c}$$

$$= (X_{d-c}Y_{e-b} - X_{e-c}Y_{d-b})X_{m-a}$$

$$+ (X_{d-a}X_{e-c} - X_{e-a}X_{d-c})Y_{m-b},$$
(3.1)

provided that $\Delta_{xy} \neq 0$. But we will now prove that the identity (3.1) continues to hold even if $\Delta_{xy} = 0$. Let

$$\Delta_1 = X_{d-c}Y_{e-b} - X_{e-c}Y_{d-b}, \quad \Delta_2 = X_{d-a}X_{e-c} - X_{e-a}X_{d-c}.$$

 Δ_{xy} vanishes under the following conditions:

- 1. $X_{d-a} = 0 = X_{e-a}$, in which case $d = e \Rightarrow \Delta_1 = \Delta_2 = 0$ and hence identity (3.1) remains valid.
- 2. $X_{d-a} = X_{e-a}$ and $Y_{e-b} = Y_{d-b}$, in which case, again, $d = e \Rightarrow \Delta_1 = \Delta_2 = 0$ and hence identity (3.1) remains valid.

Thus we see that identity (3.1) is valid regardless of the nature of Δ_{xy} , so that the identity holds for all integers.

3.1 Identities

Our first set of results comes from choosing an appropriate (X, Y) pair, in each case, from the set $\{F, L, J, j, P, Q\}$ and using it in Lemma 7.

Theorem 1. The following identities hold for arbitrary integers a, b, c, d, e and m:

$$(F_{d-a}L_{e-b} - F_{e-a}L_{d-b})F_{m-c}$$

$$= (F_{d-c}L_{e-b} - F_{e-c}L_{d-b})F_{m-a}$$

$$+ (F_{d-a}F_{e-c} - F_{e-a}F_{d-c})L_{m-b},$$
(3.2)

$$(L_{d-a}F_{e-b} - L_{e-a}F_{d-b})L_{m-c}$$

$$= (L_{d-c}F_{e-b} - L_{e-c}F_{d-b})L_{m-a}$$

$$+ (L_{d-a}L_{e-c} - L_{e-a}L_{d-c})F_{m-b},$$
(3.3)

$$(J_{d-a}j_{e-b} - J_{e-a}j_{d-b})J_{m-c}$$

$$= (J_{d-c}j_{e-b} - J_{e-c}j_{d-b})J_{m-a}$$

$$+ (J_{d-a}J_{e-c} - J_{e-a}J_{d-c})j_{m-b},$$
(3.4)

$$(j_{d-a}J_{e-b} - j_{e-a}J_{d-b})j_{m-c}$$

$$= (j_{d-c}J_{e-b} - j_{e-c}J_{d-b})j_{m-a}$$

$$+ (j_{d-a}j_{e-c} - j_{e-a}j_{d-c})J_{m-b},$$
(3.5)

$$(P_{d-a}Q_{e-b} - P_{e-a}Q_{d-b})P_{m-c}$$

$$= (P_{d-c}Q_{e-b} - P_{e-c}Q_{d-b})P_{m-a}$$

$$+ (P_{d-a}P_{e-c} - P_{e-a}P_{d-c})Q_{m-b}$$
(3.6)

and

$$(Q_{d-a}P_{e-b} - Q_{e-a}P_{d-b})Q_{m-c}$$

$$= (Q_{d-c}P_{e-b} - Q_{e-c}P_{d-b})Q_{m-a}$$

$$+ (Q_{d-a}Q_{e-c} - Q_{e-a}Q_{d-c})P_{m-b}.$$
(3.7)

To demonstrate how known identities may be recovered (and further new ones discovered), set m = c in identities (3.2), (3.4) and (3.6) of Theorem 1 to obtain the following result.

Corollary 2. The following identities hold for integers a, b, c, d and e:

$$(F_{d-c}L_{e-b} - F_{e-c}L_{d-b})F_{c-a} = (F_{e-a}F_{d-c} - F_{d-a}F_{e-c})L_{c-b},$$
(3.8)

$$(J_{d-c}j_{e-b} - J_{e-c}j_{d-b})J_{c-a} = (J_{e-a}J_{d-c} - J_{d-a}J_{e-c})j_{c-b}$$
(3.9)

and

$$(P_{d-c}Q_{e-b} - P_{e-c}Q_{d-b})P_{c-a} = (P_{e-a}P_{d-c} - P_{d-a}P_{e-c})Q_{c-b}.$$
(3.10)

Upon setting e=a in the identities of Corollary 2 and using $F_{a-c}=(-1)^{a-c-1}F_{c-a}$, $J_{a-c}=(-1)^{a-c-1}2^{a-c}J_{c-a}$ and $P_{a-c}=(-1)^{a-c-1}P_{c-a}$ we obtain

$$F_{d-c}L_{a-b} - F_{a-c}L_{d-b} = (-1)^{a-c}F_{d-a}L_{c-b}, (3.11)$$

$$J_{d-c}j_{a-b} - J_{a-c}j_{d-b} = (-1)^{a-c}2^{a-c}J_{d-a}j_{c-b}$$
(3.12)

and

$$P_{d-c}Q_{a-b} - P_{a-c}Q_{d-b} = (-1)^{a-c}P_{d-a}Q_{c-b}. (3.13)$$

In order to write the above identities using three parameters, we set a = d - h, b = d - n - h - k and c = d - n - h, obtaining

$$F_{n+h}L_{n+k} - F_nL_{n+h+k} = (-1)^n F_h L_k, (3.14)$$

$$J_{n+h}j_{n+k} - J_nj_{n+h+k} = (-1)^n 2^n J_h j_k$$
(3.15)

and

$$P_{n+h}Q_{n+k} - P_nQ_{n+h+k} = (-1)^n P_h Q_k. (3.16)$$

Setting c = b in the identities (3.11), (3.12) and (3.13), we have

$$F_{d-b}L_{a-b} - F_{a-b}L_{d-b} = (-1)^{a-b}2F_{d-a}, (3.17)$$

$$J_{d-b}j_{a-b} - J_{a-b}j_{d-b} = (-1)^{a-b}2^{a-b+1}J_{d-a}$$
(3.18)

and

$$P_{d-b}Q_{a-b} - P_{a-b}Q_{d-b} = (-1)^{a-b}2P_{d-a}.$$
(3.19)

Two parameter forms are obtained by setting d - b = u and a - b = v, giving

$$F_u L_v - F_v L_u = (-1)^v 2F_{u-v}, (3.20)$$

$$J_u j_v - J_v j_u = (-1)^v 2^{v+1} J_{u-v}$$
(3.21)

and

$$P_u Q_v - P_v Q_u = (-1)^v 2P_{u-v}. (3.22)$$

Setting b = 0, c = -a in identities (3.11), (3.12) and (3.13) gives

$$F_{d+a} - (-1)^a F_{d-a} = F_a L_d, (3.23)$$

$$J_{d+a} - (-1)^a 2^a J_{d-a} = J_a j_d (3.24)$$

$$P_{d+a} - (-1)^a P_{d-a} = P_a Q_d. (3.25)$$

Choosing b = c = 0, e = a + d in the identities in Corollary 2 and making use of the identities (3.17), (3.18) and (3.19), we obtain Catalan's identities:

$$F_d^2 - F_{d-a}F_{d+a} = (-1)^{d-a}F_a^2, (3.26)$$

$$J_d^2 - J_{d-a}J_{d+a} = (-1)^{d-a}2^{d-a}J_a^2$$
(3.27)

and

$$P_d^2 - P_{d-a}P_{d+a} = (-1)^{d-a}P_a^2. (3.28)$$

Note that identity (2.23) of Horadam [4] is a special case of identity (3.27) while identity (30) of [3] is a special case of (3.28).

Upon setting d = 0, c = -a in Corollary 2 and making use of identities (3.53), (3.54) and (3.53), we obtain:

$$F_e L_{a+b} + (-1)^b F_a L_{e-b} = F_{e+a} L_b, (3.29)$$

$$J_e j_{a+b} + (-1)^b 2^b J_a j_{e-b} = J_{e+a} j_b$$
(3.30)

and

$$P_e Q_{a+b} + (-1)^b P_a Q_{e-b} = P_{e+a} Q_b. (3.31)$$

Puttig e = a in (3.29) — (3.31) produces

$$L_{a+b} + (-1)^b L_{a-b} = L_a L_b (3.32)$$

$$j_{a+b} + (-1)^b 2^b j_{a-b} = j_a j_b (3.33)$$

$$Q_{a+b} + (-1)^b Q_{a-b} = Q_a L_b , (3.34)$$

while using b = 0 in the identities gives

$$F_e L_a + F_a L_e = 2F_{e+a} \,, \tag{3.35}$$

$$J_e j_a + J_a j_e = 2J_{e+a} (3.36)$$

and

$$P_e Q_a + P_a Q_e = 2P_{e+a} \,. (3.37)$$

Finally, setting e = b in the same identities (3.29) — (3.31) gives

$$F_{a+b}L_b - F_bL_{a+b} = (-1)^b 2F_a, (3.38)$$

$$J_{a+b}j_b - J_bj_{a+b} = (-1)^b 2^{b+1} J_a (3.39)$$

and

$$P_{a+b}Q_b - P_bQ_{a+b} = (-1)^b 2P_a. (3.40)$$

The choice e = 2u + b, a = b, d = b and c = b + u in Corollary 2 yields the identities:

$$L_{2u} + (-1)^u 2 = L_u^2, (3.41)$$

$$j_{2u} + (-1)^u 2^{u+1} = j_u^2 (3.42)$$

and

$$Q_{2u} + (-1)^u 2 = Q_u^2. (3.43)$$

Note that identities (3.41), (3.42) and (3.43) can also be obtained directly from identities (3.11), (3.12) and (3.13) by setting b = a, c = a + u and d = a + 2u.

Lemma 2 invites the following results.

Theorem 3. The following identities hold for integers a, b, c, d, e and m:

$$(F_{d-a}F_{e-b} - F_{e-a}F_{d-b})F_{m-c}$$

$$= (F_{d-c}F_{e-b} - F_{e-c}F_{d-b})F_{m-a}$$

$$+ (F_{d-a}F_{e-c} - F_{e-a}F_{d-c})F_{m-b},$$
(3.44)

$$(L_{d-a}L_{e-b} - L_{e-a}L_{d-b})L_{m-c}$$

$$= (L_{d-c}L_{e-b} - L_{e-c}L_{d-b})L_{m-a}$$

$$+ (L_{d-a}L_{e-c} - L_{e-a}L_{d-c})L_{m-b},$$
(3.45)

$$(J_{d-a}J_{e-b} - J_{e-a}J_{d-b})J_{m-c}$$

$$= (J_{d-c}J_{e-b} - J_{e-c}J_{d-b})J_{m-a}$$

$$+ (J_{d-a}J_{e-c} - J_{e-a}J_{d-c})J_{m-b},$$
(3.46)

$$(j_{d-a}j_{e-b} - j_{e-a}j_{d-b})j_{m-c}$$

$$= (j_{d-c}j_{e-b} - j_{e-c}j_{d-b})j_{m-a}$$

$$+ (j_{d-a}j_{e-c} - j_{e-a}j_{d-c})j_{m-b},$$
(3.47)

$$(P_{d-a}P_{e-b} - P_{e-a}P_{d-b})P_{m-c}$$

$$= (P_{d-c}P_{e-b} - P_{e-c}P_{d-b})P_{m-a}$$

$$+ (P_{d-a}P_{e-c} - P_{e-a}P_{d-c})P_{m-b}$$
(3.48)

and

$$(Q_{d-a}Q_{e-b} - Q_{e-a}Q_{d-b})Q_{m-c}$$

$$= (Q_{d-c}Q_{e-b} - Q_{e-c}Q_{d-b})Q_{m-a}$$

$$+ (Q_{d-a}Q_{e-c} - Q_{e-a}Q_{d-c})Q_{m-b}.$$
(3.49)

Setting m = b in identities (3.44), (3.46) and (3.48) gives the next set of results.

Corollary 4. The following identities hold for integers a, b, c, d and e:

$$(F_{d-a}F_{e-b} - F_{e-a}F_{d-b})F_{b-c} = (F_{d-c}F_{e-b} - F_{e-c}F_{d-b})F_{b-a},$$
(3.50)

$$(J_{d-a}J_{e-b} - J_{e-a}J_{d-b})J_{b-c} = (J_{d-c}J_{e-b} - J_{e-c}J_{d-b})J_{b-a}$$
(3.51)

and

$$(P_{d-a}P_{e-b} - P_{e-a}P_{d-b})P_{b-c} = (P_{d-c}P_{e-b} - P_{e-c}P_{d-b})P_{b-a}. (3.52)$$

Using b = 0, c = -a and e = a in the identities in Corollary 4, we obtain:

$$F_{d+a} + (-1)^a F_{d-a} = F_d L_a , (3.53)$$

$$J_{d+a} + (-1)^a 2^a J_{d-a} = J_d j_a (3.54)$$

and

$$P_{d+a} + (-1)^a P_{d-a} = P_d Q_a. (3.55)$$

Putting d = a in each case, the identities in Corollary 4 reduce to

$$F_{a-c}F_{e-b} - F_{e-c}F_{a-b} = (-1)^{a-b}F_{e-a}F_{b-c}, (3.56)$$

$$J_{a-c}J_{e-b} - J_{e-c}J_{a-b} = (-1)^{a-b}2^{a-b}J_{e-a}J_{b-c}$$
(3.57)

$$P_{a-c}P_{e-b} - P_{e-c}P_{a-b} = (-1)^{a-b}P_{e-a}P_{b-c}.$$
(3.58)

Using a = e + h, b = e - n - k, c = e - n, identities (3.56) — (3.58) can also be written

$$F_{n+h}F_{n+k} - F_nF_{n+h+k} = (-1)^n F_h F_k, (3.59)$$

$$J_{n+h}J_{n+k} - J_nJ_{n+h+k} = (-1)^n 2^n J_h J_k$$
(3.60)

and

$$P_{n+h}P_{n+k} - P_nP_{n+h+k} = (-1)^n P_h P_k. (3.61)$$

Theorem 5. The following identities hold for all integers a, b and c:

$$(-1)^{a-b}L_{a-b}^{2} + (-1)^{b-c}L_{b-c}^{2} + (-1)^{a-c}L_{a-c}^{2}$$

$$= (-1)^{a-c}L_{a-b}L_{b-c}L_{a-c} + 4,$$
(3.62)

$$(-1)^{a-b}2^{b-a}j_{a-b}^{2} + (-1)^{b-c}2^{c-b}j_{b-c}^{2} + (-1)^{a-c}2^{c-a}j_{a-c}^{2}$$

$$= (-1)^{a-c}2^{c-a}j_{a-b}j_{b-c}j_{a-c} + 4$$
(3.63)

and

$$(-1)^{a-b}Q_{a-b}^2 + (-1)^{b-c}Q_{b-c}^2 + (-1)^{a-c}Q_{a-c}^2$$

$$= (-1)^{a-c}Q_{a-b}Q_{b-c}Q_{a-c} + 4.$$
(3.64)

Proof. Set m=c in Lemma 3 and use X=L, X=j and X=Q, in turn.

Note that, for integers u, v, w such that u + v = w, the identities in Theorem 5 can also be written

$$(-1)^{u}L_{u}^{2} + (-1)^{v}L_{v}^{2} + (-1)^{w}L_{w}^{2} = (-1)^{w}L_{u}L_{v}L_{w} + 4,$$
(3.65)

$$(-1)^{u}2^{v}j_{u}^{2} + (-1)^{v}2^{u}j_{v}^{2} + (-1)^{w}j_{w}^{2} = (-1)^{w}j_{u}j_{v}j_{w} + 2^{w+2}$$

$$(3.66)$$

and

$$(-1)^{u}Q_{u}^{2} + (-1)^{v}Q_{v}^{2} + (-1)^{w}Q_{w}^{2} = (-1)^{w}Q_{u}Q_{v}Q_{w} + 4.$$
(3.67)

3.2 Weighted sums

Choosing an appropriate (X, Y) pair, in each case, from the set $\{F, L, J, j, P, Q\}$ and using it in Lemma 4 we have the next set of results.

Theorem 6. The following identities hold for any integer k and arbitrary integers a, b, c, d, e, m for which the denominator does not vanish:

$$\sum_{r=0}^{k} \left(\frac{F_{d-a}L_{e-b} - F_{e-a}L_{d-b}}{F_{d-c}L_{e-b} - F_{e-c}L_{d-b}} \right)^{r} L_{m-k(a-c)-b+c+(a-c)r}
= \left(\frac{F_{d-a}L_{e-b} - F_{e-a}L_{d-b}}{F_{d-a}F_{e-c} - F_{e-a}F_{d-c}} \right) \left(\frac{F_{d-a}L_{e-b} - F_{e-a}L_{d-b}}{F_{d-c}L_{e-b} - F_{e-c}L_{d-b}} \right)^{k} F_{m}
- \left(\frac{F_{d-c}L_{e-b} - F_{e-c}L_{d-b}}{F_{d-a}F_{e-c} - F_{e-a}F_{d-c}} \right) F_{m-(k+1)(a-c)},$$
(3.68)

$$\sum_{r=0}^{k} \left(\frac{L_{d-a}F_{e-b} - L_{e-a}F_{d-b}}{L_{d-c}F_{e-b} - L_{e-c}F_{d-b}} \right)^{r} F_{m-k(a-c)-b+c+(a-c)r}
= \left(\frac{L_{d-a}F_{e-b} - L_{e-a}F_{d-b}}{L_{d-a}L_{e-c} - L_{e-a}L_{d-c}} \right) \left(\frac{L_{d-a}F_{e-b} - L_{e-a}F_{d-b}}{L_{d-c}F_{e-b} - L_{e-c}F_{d-b}} \right)^{k} L_{m}
- \left(\frac{L_{d-c}F_{e-b} - L_{e-c}F_{d-b}}{L_{d-a}L_{e-c} - L_{e-a}L_{d-c}} \right) L_{m-(k+1)(a-c)},$$
(3.69)

$$\sum_{r=0}^{k} \left(\frac{J_{d-a}j_{e-b} - J_{e-a}j_{d-b}}{J_{d-c}j_{e-b} - J_{e-c}j_{d-b}} \right)^{r} j_{m-k(a-c)-b+c+(a-c)r}
= \left(\frac{J_{d-a}j_{e-b} - J_{e-a}j_{d-b}}{J_{d-a}J_{e-c} - J_{e-a}J_{d-c}} \right) \left(\frac{J_{d-a}j_{e-b} - J_{e-a}j_{d-b}}{J_{d-c}j_{e-b} - J_{e-c}j_{d-b}} \right)^{k} J_{m}
- \left(\frac{J_{d-c}j_{e-b} - J_{e-c}j_{d-b}}{J_{d-a}J_{e-c} - J_{e-a}J_{d-c}} \right) J_{m-(k+1)(a-c)},$$
(3.70)

$$\sum_{r=0}^{k} \left(\frac{j_{d-a}J_{e-b} - j_{e-a}J_{d-b}}{j_{d-c}J_{e-b} - j_{e-c}J_{d-b}} \right)^{r} J_{m-k(a-c)-b+c+(a-c)r}
= \left(\frac{j_{d-a}J_{e-b} - j_{e-a}J_{d-b}}{j_{d-a}j_{e-c} - j_{e-a}j_{d-c}} \right) \left(\frac{j_{d-a}J_{e-b} - j_{e-a}J_{d-b}}{j_{d-c}J_{e-b} - j_{e-c}J_{d-b}} \right)^{k} j_{m}
- \left(\frac{j_{d-c}J_{e-b} - j_{e-c}J_{d-b}}{j_{d-a}j_{e-c} - j_{e-a}j_{d-c}} \right) j_{m-(k+1)(a-c)},$$
(3.71)

$$\sum_{r=0}^{k} \left(\frac{P_{d-a}Q_{e-b} - P_{e-a}Q_{d-b}}{P_{d-c}Q_{e-b} - P_{e-c}Q_{d-b}} \right)^{r} Q_{m-k(a-c)-b+c+(a-c)r}
= \left(\frac{P_{d-a}Q_{e-b} - P_{e-a}Q_{d-b}}{P_{d-a}P_{e-c} - P_{e-a}P_{d-c}} \right) \left(\frac{P_{d-a}Q_{e-b} - P_{e-a}Q_{d-b}}{P_{d-c}Q_{e-b} - P_{e-c}Q_{d-b}} \right)^{k} P_{m}
- \left(\frac{P_{d-c}Q_{e-b} - P_{e-c}Q_{d-b}}{P_{d-a}P_{e-c} - P_{e-a}P_{d-c}} \right) P_{m-(k+1)(a-c)}$$
(3.72)

$$\sum_{r=0}^{k} \left(\frac{Q_{d-a} P_{e-b} - Q_{e-a} P_{d-b}}{Q_{d-c} P_{e-b} - Q_{e-c} P_{d-b}} \right)^{r} P_{m-k(a-c)-b+c+(a-c)r}
= \left(\frac{Q_{d-a} P_{e-b} - Q_{e-a} P_{d-b}}{Q_{d-a} Q_{e-c} - Q_{e-a} Q_{d-c}} \right) \left(\frac{Q_{d-a} P_{e-b} - Q_{e-a} P_{d-b}}{Q_{d-c} P_{e-b} - Q_{e-c} P_{d-b}} \right)^{k} Q_{m}
- \left(\frac{Q_{d-c} P_{e-b} - Q_{e-c} P_{d-b}}{Q_{d-a} Q_{e-c} - Q_{e-a} Q_{d-c}} \right) Q_{m-(k+1)(a-c)} .$$
(3.73)

Using X = F, X = L, X = J, X = j, X = P, X = Q, in turn, in Lemma 5 gives the next results.

Theorem 7. The following identities hold for any integer k and arbitrary integers a, b, c,

d, e, m for which the denominator does not vanish:

$$\sum_{r=0}^{k} \left(\frac{F_{d-a}F_{e-b} - F_{e-a}F_{d-b}}{F_{d-c}F_{e-b} - F_{e-c}F_{d-b}} \right)^{r} F_{m-k(a-c)-b+c+(a-c)r}
= \left(\frac{F_{d-a}F_{e-b} - F_{e-a}F_{d-b}}{F_{d-a}F_{e-c} - F_{e-a}F_{d-c}} \right) \left(\frac{F_{d-a}F_{e-b} - F_{e-a}F_{d-b}}{F_{d-c}F_{e-b} - F_{e-c}F_{d-b}} \right)^{k} F_{m}
- \left(\frac{F_{d-c}F_{e-b} - F_{e-c}F_{d-b}}{F_{d-a}F_{e-c} - F_{e-a}F_{d-c}} \right) F_{m-(k+1)(a-c)},$$
(3.74)

$$\sum_{r=0}^{k} \left(\frac{F_{d-a}F_{e-b} - F_{e-a}F_{d-b}}{F_{d-a}F_{e-c} - F_{e-a}F_{d-c}} \right)^{r} F_{m-k(b-c)-a+c+(b-c)r}
= \left(\frac{F_{d-a}F_{e-b} - F_{e-a}F_{d-b}}{F_{d-c}F_{e-b} - F_{e-c}F_{d-b}} \right) \left(\frac{F_{d-a}F_{e-b} - F_{e-a}F_{d-b}}{F_{d-a}F_{e-c} - F_{e-a}F_{d-c}} \right)^{k} F_{m}
- \left(\frac{F_{d-a}F_{e-c} - F_{e-a}F_{d-c}}{F_{d-c}F_{e-b} - F_{e-c}F_{d-b}} \right) F_{m-(k+1)(b-c)},$$
(3.75)

$$\sum_{r=0}^{k} \left(\frac{F_{e-a}F_{d-c} - F_{d-a}F_{e-c}}{F_{d-c}F_{e-b} - F_{e-c}F_{d-b}} \right)^{r} F_{m-k(a-b)+b-c+(a-b)r}
= \left(\frac{F_{d-a}F_{e-c} - F_{e-a}F_{d-c}}{F_{d-a}F_{e-b} - F_{e-a}F_{d-b}} \right) \left(\frac{F_{e-a}F_{d-c} - F_{d-a}F_{e-c}}{F_{d-c}F_{e-b} - F_{e-c}F_{d-b}} \right)^{k} F_{m}
+ \left(\frac{F_{d-c}F_{e-b} - F_{e-c}F_{d-b}}{F_{d-a}F_{e-b} - F_{e-a}F_{d-b}} \right) F_{m-(k+1)(a-b)},$$
(3.76)

$$\sum_{r=0}^{k} \left(\frac{L_{d-a}L_{e-b} - L_{e-a}L_{d-b}}{L_{d-c}L_{e-b} - L_{e-c}L_{d-b}} \right)^{r} L_{m-k(a-c)-b+c+(a-c)r}
= \left(\frac{L_{d-a}L_{e-b} - L_{e-a}L_{d-b}}{L_{d-a}L_{e-c} - L_{e-a}L_{d-c}} \right) \left(\frac{L_{d-a}L_{e-b} - L_{e-a}L_{d-b}}{L_{d-c}L_{e-b} - L_{e-c}L_{d-b}} \right)^{k} L_{m}
- \left(\frac{L_{d-c}L_{e-b} - L_{e-c}L_{d-b}}{L_{d-a}L_{e-c} - L_{e-a}L_{d-c}} \right) L_{m-(k+1)(a-c)},$$
(3.77)

$$\sum_{r=0}^{k} \left(\frac{L_{d-a}L_{e-b} - L_{e-a}L_{d-b}}{L_{d-a}L_{e-c} - L_{e-a}L_{d-c}} \right)^{r} L_{m-k(b-c)-a+c+(b-c)r}
= \left(\frac{L_{d-a}L_{e-b} - L_{e-a}L_{d-b}}{L_{d-c}L_{e-b} - L_{e-c}L_{d-b}} \right) \left(\frac{L_{d-a}L_{e-b} - L_{e-a}L_{d-b}}{L_{d-a}L_{e-c} - L_{e-a}L_{d-c}} \right)^{k} L_{m}
- \left(\frac{L_{d-a}L_{e-c} - L_{e-a}L_{d-c}}{L_{d-c}L_{e-b} - L_{e-c}L_{d-b}} \right) L_{m-(k+1)(b-c)},$$
(3.78)

$$\sum_{r=0}^{k} \left(\frac{L_{e-a}L_{d-c} - L_{d-a}L_{e-c}}{L_{d-c}L_{e-b} - L_{e-c}L_{d-b}} \right)^{r} L_{m-k(a-b)+b-c+(a-b)r}
= \left(\frac{L_{d-a}L_{e-c} - L_{e-a}L_{d-c}}{L_{d-a}L_{e-b} - L_{e-a}L_{d-b}} \right) \left(\frac{L_{e-a}L_{d-c} - L_{d-a}L_{e-c}}{L_{d-c}L_{e-b} - L_{e-c}L_{d-b}} \right)^{k} L_{m}
+ \left(\frac{L_{d-c}L_{e-b} - L_{e-c}L_{d-b}}{L_{d-a}L_{e-b} - L_{e-a}L_{d-b}} \right) L_{m-(k+1)(a-b)},$$
(3.79)

$$\sum_{r=0}^{k} \left(\frac{J_{d-a}J_{e-b} - J_{e-a}J_{d-b}}{J_{d-c}J_{e-b} - J_{e-c}J_{d-b}} \right)^{r} J_{m-k(a-c)-b+c+(a-c)r}
= \left(\frac{J_{d-a}J_{e-b} - J_{e-a}J_{d-b}}{J_{d-a}J_{e-c} - J_{e-a}J_{d-c}} \right) \left(\frac{J_{d-a}J_{e-b} - J_{e-a}J_{d-b}}{J_{d-c}J_{e-b} - J_{e-c}J_{d-b}} \right)^{k} J_{m}
- \left(\frac{J_{d-c}J_{e-b} - J_{e-c}J_{d-b}}{J_{d-a}J_{e-c} - J_{e-a}J_{d-c}} \right) J_{m-(k+1)(a-c)},$$
(3.80)

$$\sum_{r=0}^{k} \left(\frac{J_{d-a}J_{e-b} - J_{e-a}J_{d-b}}{J_{d-a}J_{e-c} - J_{e-a}J_{d-c}} \right)^{r} J_{m-k(b-c)-a+c+(b-c)r}
= \left(\frac{J_{d-a}J_{e-b} - J_{e-a}J_{d-b}}{J_{d-c}J_{e-b} - J_{e-c}J_{d-b}} \right) \left(\frac{J_{d-a}J_{e-b} - J_{e-a}J_{d-b}}{J_{d-a}J_{e-c} - J_{e-a}J_{d-c}} \right)^{k} J_{m}
- \left(\frac{J_{d-a}J_{e-c} - J_{e-a}J_{d-c}}{J_{d-c}J_{e-b} - J_{e-c}J_{d-b}} \right) J_{m-(k+1)(b-c)},$$
(3.81)

$$\sum_{r=0}^{k} \left(\frac{J_{e-a}J_{d-c} - J_{d-a}J_{e-c}}{J_{d-c}J_{e-b} - J_{e-c}J_{d-b}} \right)^{r} J_{m-k(a-b)+b-c+(a-b)r}
= \left(\frac{J_{d-a}J_{e-c} - J_{e-a}J_{d-c}}{J_{d-a}J_{e-b} - J_{e-a}J_{d-b}} \right) \left(\frac{J_{e-a}J_{d-c} - J_{d-a}J_{e-c}}{J_{d-c}J_{e-b} - J_{e-c}J_{d-b}} \right)^{k} J_{m}
+ \left(\frac{J_{d-c}J_{e-b} - J_{e-c}J_{d-b}}{J_{d-a}J_{e-b} - J_{e-a}J_{d-b}} \right) J_{m-(k+1)(a-b)},$$
(3.82)

$$\sum_{r=0}^{k} \left(\frac{j_{d-a}j_{e-b} - j_{e-a}j_{d-b}}{j_{d-c}j_{e-b} - j_{e-c}j_{d-b}} \right)^{r} j_{m-k(a-c)-b+c+(a-c)r}
= \left(\frac{j_{d-a}j_{e-b} - j_{e-a}j_{d-b}}{j_{d-a}j_{e-c} - j_{e-a}j_{d-c}} \right) \left(\frac{j_{d-a}j_{e-b} - j_{e-a}j_{d-b}}{j_{d-c}j_{e-b} - j_{e-c}j_{d-b}} \right)^{k} j_{m}
- \left(\frac{j_{d-c}j_{e-b} - j_{e-c}j_{d-b}}{j_{d-a}j_{e-c} - j_{e-a}j_{d-c}} \right) j_{m-(k+1)(a-c)},$$
(3.83)

$$\sum_{r=0}^{k} \left(\frac{j_{d-a}j_{e-b} - j_{e-a}j_{d-b}}{j_{d-a}j_{e-c} - j_{e-a}j_{d-c}} \right)^{r} j_{m-k(b-c)-a+c+(b-c)r}
= \left(\frac{j_{d-a}j_{e-b} - j_{e-a}j_{d-b}}{j_{d-c}j_{e-b} - j_{e-c}j_{d-b}} \right) \left(\frac{j_{d-a}j_{e-b} - j_{e-a}j_{d-b}}{j_{d-a}j_{e-c} - j_{e-a}j_{d-c}} \right)^{k} j_{m}
- \left(\frac{j_{d-a}j_{e-c} - j_{e-a}j_{d-c}}{j_{d-c}j_{e-b} - j_{e-c}j_{d-b}} \right) j_{m-(k+1)(b-c)},$$
(3.84)

$$\sum_{r=0}^{k} \left(\frac{j_{e-a}j_{d-c} - j_{d-a}j_{e-c}}{j_{d-c}j_{e-b} - j_{e-c}j_{d-b}} \right)^{r} j_{m-k(a-b)+b-c+(a-b)r}
= \left(\frac{j_{d-a}j_{e-c} - j_{e-a}j_{d-c}}{j_{d-a}j_{e-b} - j_{e-a}j_{d-b}} \right) \left(\frac{j_{e-a}j_{d-c} - j_{d-a}j_{e-c}}{j_{d-c}j_{e-b} - j_{e-c}j_{d-b}} \right)^{k} j_{m}
+ \left(\frac{j_{d-c}j_{e-b} - j_{e-c}j_{d-b}}{j_{d-a}j_{e-b} - j_{e-a}j_{d-b}} \right) j_{m-(k+1)(a-b)},$$
(3.85)

$$\sum_{r=0}^{k} \left(\frac{P_{d-a}P_{e-b} - P_{e-a}P_{d-b}}{P_{d-c}P_{e-b} - P_{e-c}P_{d-b}} \right)^{r} P_{m-k(a-c)-b+c+(a-c)r}
= \left(\frac{P_{d-a}P_{e-b} - P_{e-a}P_{d-b}}{P_{d-a}P_{e-c} - P_{e-a}P_{d-c}} \right) \left(\frac{P_{d-a}P_{e-b} - P_{e-a}P_{d-b}}{P_{d-c}P_{e-b} - P_{e-c}P_{d-b}} \right)^{k} P_{m}
- \left(\frac{P_{d-c}P_{e-b} - P_{e-c}P_{d-b}}{P_{d-a}P_{e-c} - P_{e-a}P_{d-c}} \right) P_{m-(k+1)(a-c)},$$
(3.86)

$$\sum_{r=0}^{k} \left(\frac{P_{d-a}P_{e-b} - P_{e-a}P_{d-b}}{P_{d-a}P_{e-c} - P_{e-a}P_{d-c}} \right)^{r} P_{m-k(b-c)-a+c+(b-c)r}
= \left(\frac{P_{d-a}P_{e-b} - P_{e-a}P_{d-b}}{P_{d-c}P_{e-b} - P_{e-c}P_{d-b}} \right) \left(\frac{P_{d-a}P_{e-b} - P_{e-a}P_{d-b}}{P_{d-a}P_{e-c} - P_{e-a}P_{d-c}} \right)^{k} P_{m}
- \left(\frac{P_{d-a}P_{e-c} - P_{e-a}P_{d-c}}{P_{d-c}P_{e-b} - P_{e-c}P_{d-b}} \right) P_{m-(k+1)(b-c)},$$
(3.87)

$$\sum_{r=0}^{k} \left(\frac{P_{e-a}P_{d-c} - P_{d-a}P_{e-c}}{P_{d-c}P_{e-b} - P_{e-c}P_{d-b}} \right)^{r} P_{m-k(a-b)+b-c+(a-b)r}
= \left(\frac{P_{d-a}P_{e-c} - P_{e-a}P_{d-c}}{P_{d-a}P_{e-b} - P_{e-a}P_{d-b}} \right) \left(\frac{P_{e-a}P_{d-c} - P_{d-a}P_{e-c}}{P_{d-c}P_{e-b} - P_{e-c}P_{d-b}} \right)^{k} P_{m}
+ \left(\frac{P_{d-c}P_{e-b} - P_{e-c}P_{d-b}}{P_{d-a}P_{e-b} - P_{e-a}P_{d-b}} \right) P_{m-(k+1)(a-b)},$$
(3.88)

$$\sum_{r=0}^{k} \left(\frac{Q_{d-a}Q_{e-b} - Q_{e-a}Q_{d-b}}{Q_{d-c}Q_{e-b} - Q_{e-c}Q_{d-b}} \right)^{r} Q_{m-k(a-c)-b+c+(a-c)r}
= \left(\frac{Q_{d-a}Q_{e-b} - Q_{e-a}Q_{d-b}}{Q_{d-a}Q_{e-c} - Q_{e-a}Q_{d-c}} \right) \left(\frac{Q_{d-a}Q_{e-b} - Q_{e-a}Q_{d-b}}{Q_{d-c}Q_{e-b} - Q_{e-c}Q_{d-b}} \right)^{k} Q_{m}
- \left(\frac{Q_{d-c}Q_{e-b} - Q_{e-c}Q_{d-b}}{Q_{d-a}Q_{e-c} - Q_{e-a}Q_{d-c}} \right) Q_{m-(k+1)(a-c)},$$
(3.89)

$$\sum_{r=0}^{k} \left(\frac{Q_{d-a}Q_{e-b} - Q_{e-a}Q_{d-b}}{Q_{d-a}Q_{e-c} - Q_{e-a}Q_{d-c}} \right)^{r} Q_{m-k(b-c)-a+c+(b-c)r}
= \left(\frac{Q_{d-a}Q_{e-b} - Q_{e-a}Q_{d-b}}{Q_{d-c}Q_{e-b} - Q_{e-c}Q_{d-b}} \right) \left(\frac{Q_{d-a}Q_{e-b} - Q_{e-a}Q_{d-b}}{Q_{d-a}Q_{e-c} - Q_{e-a}Q_{d-c}} \right)^{k} Q_{m}
- \left(\frac{Q_{d-a}Q_{e-c} - Q_{e-a}Q_{d-c}}{Q_{d-c}Q_{e-b} - Q_{e-c}Q_{d-b}} \right) Q_{m-(k+1)(b-c)}$$
(3.90)

$$\sum_{r=0}^{k} \left(\frac{Q_{e-a}Q_{d-c} - Q_{d-a}Q_{e-c}}{Q_{d-c}Q_{e-b} - Q_{e-c}Q_{d-b}} \right)^{r} Q_{m-k(a-b)+b-c+(a-b)r}
= \left(\frac{Q_{d-a}Q_{e-c} - Q_{e-a}Q_{d-c}}{Q_{d-a}Q_{e-b} - Q_{e-a}Q_{d-b}} \right) \left(\frac{Q_{e-a}Q_{d-c} - Q_{d-a}Q_{e-c}}{Q_{d-c}Q_{e-b} - Q_{e-c}Q_{d-b}} \right)^{k} Q_{m}
+ \left(\frac{Q_{d-c}Q_{e-b} - Q_{e-c}Q_{d-b}}{Q_{d-a}Q_{e-b} - Q_{e-a}Q_{d-b}} \right) Q_{m-(k+1)(a-b)} .$$
(3.91)

3.3 Weighted binomial sums

Using X = F, X = L, X = J, X = j, X = P, X = Q, in turn, in Lemma 6 gives the next results.

Theorem 8. The following identities hold for nonnegative integer k and arbitrary integers a, b, c, d, e, m for which the denominator does not vanish:

$$\sum_{r=0}^{k} {k \choose r} \left(\frac{F_{d-c}F_{e-b} - F_{e-c}F_{d-b}}{F_{d-a}F_{e-c} - F_{e-a}F_{d-c}} \right)^{r} F_{m-(b-c)k+(b-a)r}
= \left(\frac{F_{d-a}F_{e-b} - F_{e-a}F_{d-b}}{F_{d-a}F_{e-c} - F_{e-a}F_{d-c}} \right)^{k} F_{m},$$
(3.92)

$$\sum_{r=0}^{k} {k \choose r} \left(\frac{F_{e-a}F_{d-b} - F_{d-a}F_{e-b}}{F_{d-a}F_{e-c} - F_{e-a}F_{d-c}} \right)^{r} F_{m+(a-b)k+(b-c)r}
= \left(\frac{F_{d-c}F_{e-b} - F_{e-c}F_{d-b}}{F_{e-a}F_{d-c} - F_{d-a}F_{e-c}} \right)^{k} F_{m},$$
(3.93)

$$\sum_{r=0}^{k} {k \choose r} \left(\frac{F_{e-a}F_{d-b} - F_{d-a}F_{e-b}}{F_{d-c}F_{e-b} - F_{e-c}F_{d-b}} \right)^{r} F_{m+(b-a)k+(a-c)r}
= \left(\frac{F_{d-a}F_{e-c} - F_{e-a}F_{d-c}}{F_{e-c}F_{d-b} - F_{d-c}F_{e-b}} \right)^{k} F_{m},$$
(3.94)

$$\sum_{r=0}^{k} {k \choose r} \left(\frac{L_{d-c}L_{e-b} - L_{e-c}L_{d-b}}{L_{d-a}L_{e-c} - L_{e-a}L_{d-c}} \right)^{r} L_{m-(b-c)k+(b-a)r}
= \left(\frac{L_{d-a}L_{e-b} - L_{e-a}L_{d-b}}{L_{d-a}L_{e-c} - L_{e-a}L_{d-c}} \right)^{k} L_{m},$$
(3.95)

$$\sum_{r=0}^{k} {k \choose r} \left(\frac{L_{e-a}L_{d-b} - L_{d-a}L_{e-b}}{L_{d-a}L_{e-c} - L_{e-a}L_{d-c}} \right)^{r} L_{m+(a-b)k+(b-c)r}
= \left(\frac{L_{d-c}L_{e-b} - L_{e-c}L_{d-b}}{L_{e-a}L_{d-c} - L_{d-a}L_{e-c}} \right)^{k} L_{m},$$
(3.96)

$$\sum_{r=0}^{k} {k \choose r} \left(\frac{L_{e-a}L_{d-b} - L_{d-a}L_{e-b}}{L_{d-c}L_{e-b} - L_{e-c}L_{d-b}} \right)^{r} L_{m+(b-a)k+(a-c)r}
= \left(\frac{L_{d-a}L_{e-c} - L_{e-a}L_{d-c}}{L_{e-c}L_{d-b} - L_{d-c}L_{e-b}} \right)^{k} L_{m},$$
(3.97)

$$\sum_{r=0}^{k} {k \choose r} \left(\frac{J_{d-c}J_{e-b} - J_{e-c}J_{d-b}}{J_{d-a}J_{e-c} - J_{e-a}J_{d-c}} \right)^{r} J_{m-(b-c)k+(b-a)r}
= \left(\frac{J_{d-a}J_{e-b} - J_{e-a}J_{d-b}}{J_{d-a}J_{e-c} - J_{e-a}J_{d-c}} \right)^{k} J_{m},$$
(3.98)

$$\sum_{r=0}^{k} {k \choose r} \left(\frac{J_{e-a}J_{d-b} - J_{d-a}J_{e-b}}{J_{d-a}J_{e-c} - J_{e-a}J_{d-c}} \right)^{r} J_{m+(a-b)k+(b-c)r}
= \left(\frac{J_{d-c}J_{e-b} - J_{e-c}J_{d-b}}{J_{e-a}J_{d-c} - J_{d-a}J_{e-c}} \right)^{k} J_{m},$$
(3.99)

$$\sum_{r=0}^{k} {k \choose r} \left(\frac{J_{e-a}J_{d-b} - J_{d-a}J_{e-b}}{J_{d-c}J_{e-b} - J_{e-c}J_{d-b}} \right)^{r} J_{m+(b-a)k+(a-c)r}
= \left(\frac{J_{d-a}J_{e-c} - J_{e-a}J_{d-c}}{J_{e-c}J_{d-b} - J_{d-c}J_{e-b}} \right)^{k} J_{m},$$
(3.100)

$$\sum_{r=0}^{k} {k \choose r} \left(\frac{j_{d-c}j_{e-b} - j_{e-c}j_{d-b}}{j_{d-a}j_{e-c} - j_{e-a}j_{d-c}} \right)^{r} j_{m-(b-c)k+(b-a)r}
= \left(\frac{j_{d-a}j_{e-b} - j_{e-a}j_{d-b}}{j_{d-a}j_{e-c} - j_{e-a}j_{d-c}} \right)^{k} j_{m},$$
(3.101)

$$\sum_{r=0}^{k} {k \choose r} \left(\frac{j_{e-a}j_{d-b} - j_{d-a}j_{e-b}}{j_{d-a}j_{e-c} - j_{e-a}j_{d-c}} \right)^{r} j_{m+(a-b)k+(b-c)r}
= \left(\frac{j_{d-c}j_{e-b} - j_{e-c}j_{d-b}}{j_{e-a}j_{d-c} - j_{d-a}j_{e-c}} \right)^{k} j_{m},$$
(3.102)

$$\sum_{r=0}^{k} {k \choose r} \left(\frac{j_{e-a}j_{d-b} - j_{d-a}j_{e-b}}{j_{d-c}j_{e-b} - j_{e-c}j_{d-b}} \right)^{r} j_{m+(b-a)k+(a-c)r}
= \left(\frac{j_{d-a}j_{e-c} - j_{e-a}j_{d-c}}{j_{e-c}j_{d-b} - j_{d-c}j_{e-b}} \right)^{k} j_{m},$$
(3.103)

$$\sum_{r=0}^{k} {k \choose r} \left(\frac{P_{d-c}P_{e-b} - P_{e-c}P_{d-b}}{P_{d-a}P_{e-c} - P_{e-a}P_{d-c}} \right)^{r} P_{m-(b-c)k+(b-a)r}
= \left(\frac{P_{d-a}P_{e-b} - P_{e-a}P_{d-b}}{P_{d-a}P_{e-c} - P_{e-a}P_{d-c}} \right)^{k} P_{m},$$
(3.104)

$$\sum_{r=0}^{k} {k \choose r} \left(\frac{P_{e-a}P_{d-b} - P_{d-a}P_{e-b}}{P_{d-a}P_{e-c} - P_{e-a}P_{d-c}} \right)^{r} P_{m+(a-b)k+(b-c)r}
= \left(\frac{P_{d-c}P_{e-b} - P_{e-c}P_{d-b}}{P_{e-a}P_{d-c} - P_{d-a}P_{e-c}} \right)^{k} P_{m},$$
(3.105)

$$\sum_{r=0}^{k} {k \choose r} \left(\frac{P_{e-a}P_{d-b} - P_{d-a}P_{e-b}}{P_{d-c}P_{e-b} - P_{e-c}P_{d-b}} \right)^{r} P_{m+(b-a)k+(a-c)r}
= \left(\frac{P_{d-a}P_{e-c} - P_{e-a}P_{d-c}}{P_{e-c}P_{d-b} - P_{d-c}P_{e-b}} \right)^{k} P_{m},$$
(3.106)

$$\sum_{r=0}^{k} {k \choose r} \left(\frac{Q_{d-c}Q_{e-b} - Q_{e-c}Q_{d-b}}{Q_{d-a}Q_{e-c} - Q_{e-a}Q_{d-c}} \right)^{r} Q_{m-(b-c)k+(b-a)r}
= \left(\frac{Q_{d-a}Q_{e-b} - Q_{e-a}Q_{d-b}}{Q_{d-a}Q_{e-c} - Q_{e-a}Q_{d-c}} \right)^{k} Q_{m},$$
(3.107)

$$\sum_{r=0}^{k} {k \choose r} \left(\frac{Q_{e-a}Q_{d-b} - Q_{d-a}Q_{e-b}}{Q_{d-a}Q_{e-c} - Q_{e-a}Q_{d-c}} \right)^{r} Q_{m+(a-b)k+(b-c)r}
= \left(\frac{Q_{d-c}Q_{e-b} - Q_{e-c}Q_{d-b}}{Q_{e-a}Q_{d-c} - Q_{d-a}Q_{e-c}} \right)^{k} Q_{m}$$
(3.108)

$$\sum_{r=0}^{k} {k \choose r} \left(\frac{Q_{e-a}Q_{d-b} - Q_{d-a}Q_{e-b}}{Q_{d-c}Q_{e-b} - Q_{e-c}Q_{d-b}} \right)^{r} Q_{m+(b-a)k+(a-c)r} \\
= \left(\frac{Q_{d-a}Q_{e-c} - Q_{e-a}Q_{d-c}}{Q_{e-c}Q_{d-b} - Q_{d-c}Q_{e-b}} \right)^{k} Q_{m} .$$
(3.109)

References

- [1] K. Adegoke, Weighted sums of some second-order sequences, arXiv:1803.09054/math.NT/ (2018).
- [2] F. T. Aydin, On generalizations of the jacobsthal sequence, Manuscript, to appear in Notes on number theory and discrete mathematics.
- [3] A. F. Horadam, Pell identities, The Fibonacci Quarterly 9:2 (1971), 245–252.
- [4] A. F. Horadam, Jacobsthal representation numbers, *The Fibonacci Quarterly* **34**:1 (1996), 40–54.
- [5] T. Koshy, Fibonacci and Lucas numbers with applications, Wiley-Interscience, (2001).
- [6] T. Koshy, Pell and Pell-Lucas numbers with applications, Springer Berlin, (2014).
- [7] N. Patel and P. Shrivastava, Pell and Pell-Lucas identities, Global journal of mathematical sciences: theory and practical 5:4 (2013), 229–236.
- [8] S. Vajda, Fibonacci and Lucas numbers, and the golden section: theory and applications, Dover Press, (2008).