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Abstract

We derive various weighted summation identities, including binomial and double bi-
nomial identities, for Tribonacci numbers. Our results contain some previously known
results as special cases.

1 Introduction
For m ≥ 3, the Tribonacci numbers are defined by

Tm = Tm−1 + Tm−2 + Tm−3 , T0 = 0, T1 = T2 = 1 . (1.1)

By writing Tm−1 = Tm−2 + Tm−3 + Tm−4 and eliminating Tm−2 and Tm−3 between this
recurrence relation and the recurrence relation (1.1), a useful alternative recurrence relation
is obtained for m ≥ 4:

Tm = 2Tm−1 − Tm−4 , T0 = 0 , T1 = T2 = 1 , T3 = 2 . (1.2)

Extension of the definition of Tm to negative subscripts is provided by writing the recurrence
relation (1.2) as

T−m = 2T−m+3 − T−m+4 . (1.3)

Anantakitpaisal and Kuhapatanakul [2] proved that

T−m = Tm−1
2 − Tm−2Tm. (1.4)

The following identity (Feng [3], equation (3.3); Shah [7], (ii)) is readily established by the
principle of mathematical induction:

Tm+r = TrTm−2 + (Tr−1 + Tr)Tm−1 + Tr+1Tm . (1.5)

Irmak and Alp [5] derived the following identity for Tribonacci numbers with indices in
arithmetic progression:

Ttm+r = λ1(t)Tt(m−1)+r + λ2(t)Tt(m−2)+r + λ3(t)Tt(m−3)+r , (1.6)
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where,

λ1(t) = αt + βt + γt, λ2(t) = −(αβ)t − (αγ)t − (βγ)t, λ3(t) = (αβγ)t ,

where α, β and γ are the roots of the characteristic polynomial of the Tribonacci sequence
x3 − x2 − x− 1. Thus,

α =
1

3

(
1 +

3

√
19 + 3

√
33 +

3

√
19− 3

√
33

)
,

β =
1

3

(
1 + ω

3

√
19 + 3

√
33 + ω2 3

√
19− 3

√
33

)
and

γ =
1

3

(
1 + ω2 3

√
19 + 3

√
33 + ω

3

√
19− 3

√
33

)
,

where ω = exp (2iπ/3) is a primitive cube root of unity. Note that λ1(t), λ2(t) and λ3(t)
are integers for any positive integer t [5]; in particular, λ1(1) = 1 = λ2(1) = λ3(1).

2 Weighted sums
Lemma 1 ([1], Lemma 2). Let {Xm} be any arbitrary sequence, where Xm, m ∈ Z, satisfies
a second order recurrence relation Xm = f1Xm−a + f2Xm−b, where f1 and f2 are arbitrary
non-vanishing complex functions, not dependent on m, and a and b are integers. Then,

f2

k∑
j=0

Xm−ka−b+aj

f j
1

=
Xm

fk
1

− f1Xm−(k+1)a , (2.1)

f1

k∑
j=0

Xm−kb−a+bj

f j
2

=
Xm

fk
2

− f2Xm−(k+1)b (2.2)

and
k∑

j=0

Xm−(b−a)k+a+(b−a)j

(−f2/f1)j
=

f1Xm

(−f2/f1)k
+ f2Xm−(k+1)(b−a) . (2.3)

for k a non-negative integer.

Theorem 1. The following identities hold for any integers m and k:

k∑
j=0

2−jTm−k−4+j = 2Tm−k−1 − 2−kTm , (2.4)

2
k∑

j=0

(−1)jTm−4k−1+4j = (−1)kTm + Tm−4k−4 (2.5)

and
k∑

j=0

2jTm−3k+1+3j = 2k+1Tm − Tm−3k−3 . (2.6)
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Proof. From the recurrence relation (1.2), make the identifications f1 = 2, f2 = −1, a = 1
and b = 4 and use these in Lemma 1 with X = T .

Particular instances of identities (2.4)–(2.6) are the following identities:

k∑
j=0

2−jTj = 4− 2−kTk+4 , (2.7)

giving,
∞∑

j=0

2−jTj = 4 , (2.8)

and

2
k∑

j=0

(−1)jT4j = (−1)kT4k+1 − 1 (2.9)

and
k∑

j=0

2jT3j = 2k+1T3k−1 . (2.10)

Lemma 2 (Partial sum of an nth order sequence). Let {Xj} be any arbitrary sequence, where
Xj, j ∈ Z, satisfies a nth order recurrence relation Xj = f1Xj−c1 +f2Xj−c2 +· · ·+fnXj−cn =∑n

m=1 fmXj−cm, where f1, f2, . . ., fn are arbitrary non-vanishing complex functions, not
dependent on j, and c1, c2, . . ., cn are fixed integers. Then, the following summation identity
holds for arbitrary x and non-negative integer k :

k∑
j=0

xjXj =

∑n
m=1

{
xcmfm

(∑cm

j=1 x−jX−j −
∑k

j=k−cm+1 xjXj

)}
1−

∑n
m=1 xcmfm

.

Proof. Recurrence relation:

Xj =
n∑

m=1

fmXj−cm .

We multiply both sides by xj and sum over j to obtain

k∑
j=0

xjXj =
n∑

m=1

(
fm

k∑
j=0

xjXj−cm

)
=

n∑
m=1

(
xcmfm

k−cm∑
j=−cm

xjXj

)
,

after shifting the summation index j. Splitting the inner sum, we can write

k∑
j=0

xjXj =
n∑

m=1

xcmfm

(
−1∑

j=−cm

xjXj +
k∑

j=0

xjXj +
k−cm∑
j=k+1

xjXj

)
.

Since
−1∑

j=−cm

xjXj ≡
cm∑
j=1

x−jX−j and
k−cm∑
j=k+1

xjXj ≡ −
k∑

j=k−cm+1

xjXj ,
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the preceding identity can be written

k∑
j=0

xjXj =
n∑

m=1

xcmfm

(
cm∑
j=1

x−jX−j +
k∑

j=0

xjXj −
k∑

j=k−cm+1

xjXj

)
.

Thus, we have

S =
n∑

m=1

xcmfm

(
cm∑
j=1

x−jX−j + S −
k∑

j=k−cm+1

xjXj

)
,

where

S = Sk(x) =
k∑

j=0

xjXj .

Removing brackets, we have

S =
n∑

m=1

xcmfm

(
cm∑
j=1

x−jX−j −
k∑

j=k−cm+1

xjXj

)
+ S

n∑
m=1

xcmfm ,

from which the result follows by grouping the S terms.

Lemma 3 (Generating function). Under the conditions of Lemma 2, if additionally xkXk

vanishes in the limit as k approaches infinity, then

S∞(x) =
∞∑

j=0

xjXj =

∑n
m=1

(
xcmfm

∑cm

j=1 x−jX−j

)
1−

∑n
m=1 xcmfm

,

so that S∞(x) is a generating function for the sequence {Xj}.

Theorem 2 (Sum of Tribonacci numbers with indices in arithmetic progression). For
arbitrary x, any integers t and r and any non-negative integer k, the following identity
holds:

(
1− λ1(t)x− λ2(t)x

2 − λ3(t)x
3
) k∑

j=0

xjTtj+r = Tr + (xλ2(t) + x2λ3(t))Tr−t

+ xλ3(t)Tr−2t − xk+1T(k+1)t+r

− xk+2(λ2(t) + xλ3(t))Tkt+r

− xk+2λ3(t)T(k−1)t+r ,

where,

λ1(t) = αt + βt + γt, λ2(t) = −(αβ)t − (αγ)t − (βγ)t, λ3(t) = (αβγ)t ,

where α, β and γ are the roots of the characteristic polynomial of the Tribonacci sequence
x3 − x2 − x− 1.

Proof. Write identity (1.6) as Xj = f1Xj−1 + f2Xj−2 + f3Xj−3 and identify the sequence
{Xj} = {Ttj+r} and the constants c1 = 1, c2 = 2, c3 = 3 and the functions f1 = λ1(t),
f2 = λ2(t), f3 = λ3(t), and use these in Lemma 2.
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Corollary 3 (Generating function of the Tribonacci numbers with indices in arithmetic
progression). For any integers t and r, any non-negative integer k and arbitrary x for which
xkTk vanishes as k approaches infinity , the following identity holds:

∞∑
j=0

xjTtj+r =
Tr + (xλ2 + x2λ3)Tr−t + xλ3Tr−2t

1− λ1x− λ2x2 − λ3x3
,

where,
λ1 = αt + βt + γt, λ2 = −(αβ)t − (αγ)t − (βγ)t, λ3 = (αβγ)t ,

where α, β and γ are the roots of the characteristic polynomial of the Tribonacci sequence
x3 − x2 − x− 1.

Many instances of Theorem 2 may be explored. In particular, we have

(λ1(t) + λ2(t) + λ3(t)− 1)
k∑

j=0

Ttj+r = −Tr − (λ2(t) + λ3(t))Tr−t

− λ3(t)Tr−2t + T(k+1)t+r

+ (λ2(t) + λ3(t))Tkt+r + λ3(t)T(k−1)t+r ,

(2.11)

which at r = 0 gives

(λ1(t) + λ2(t) + λ3(t)− 1)
k∑

j=0

Ttj = −(λ2(t) + λ3(t))(T
2
t−1 − Tt−2Tt)

− λ3(t)(T
2
2t−1 − T2t−2T2t) + T(k+1)t

+ (λ2(t) + λ3(t))Tkt + λ3(t)T(k−1)t ;

(2.12)

and

(1 + λ1(t)− λ2(t) + λ3(t))
k∑

j=0

(−1)jTtj+r = Tr + (λ3(t)− λ2(t))Tr−t

− λ3(t)Tr−2t + (−1)kT(k+1)t+r

+ (−1)k(λ3(t)− λ2(t))Tkt+r

− (−1)kλ3(t)T(k−1)t+r ,

(2.13)

which at r = 0 gives

(1 + λ1(t)− λ2(t) + λ3(t))
k∑

j=0

(−1)jTtj = (λ3(t)− λ2(t))(T
2
t−1 − Tt−2Tt)

− λ3(t)(T
2
2t−1 − T2t−2T2t) + (−1)kT(k+1)t

+ (−1)k(λ3(t)− λ2(t))Tkt

− (−1)kλ3(t)T(k−1)t .

(2.14)

Many previously known results are particular instances of the identities (2.11) and (2.13).
For example, Theorem 5 of [6] is obtained from identity (2.12) by setting t = 4. Sums of
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Tribonacci numbers with indices in arithmetic progression are also discussed in references [4,
5, 6] and references therein, using various techniques.

Weighted sums of the form
∑k

j=0 jpTtj+r, where p is a non-negative integer, may be eval-
uated by setting x = ey in the identity of Theorem 2, differentiating both sides p times
with respect to y and then setting y = 0. The simplest examples in this category are the
following:

2
k∑

j=0

jTj+r = −Tr−2 + 3Tr+1 + (k − 1)Tk+r−1

+ (2k − 1)Tk+r + (k − 2)Tk+r+1

(2.15)

and

2
k∑

j=0

j2Tj+r = −3Tr−1 − 5Tr − 6Tr+1

+ (k2 − 2k + 3)Tk+r−1 + (2k2 − 2k + 5)Tk+r

+ (k2 − 4k + 6)Tk+r+1 ,

(2.16)

with the particular cases

2
k∑

j=0

jTj = 2 + (k − 1)Tk−1 + (2k − 1)Tk + (k − 2)Tk+1 (2.17)

and

2
k∑

j=0

j2Tj = −6 + (k2 − 2k + 3)Tk+r−1

+ (2k2 − 2k + 5)Tk

+ (k2 − 4k + 6)Tk+1 .

(2.18)

3 Weighted binomial sums
Lemma 4 ([1], Lemma 3). Let {Xm} be any arbitrary sequence. Let Xm, m ∈ Z, satisfy a
second order recurrence relation Xm = f1Xm−a+f2Xm−b, where f1 and f2 are non-vanishing
complex functions, not dependent on m, and a and b are integers. Then,

k∑
j=0

(
k

j

)(
f1

f2

)j

Xm−bk+(b−a)j =
Xm

fk
2

, (3.1)

k∑
j=0

(
k

j

)
Xm+(a−b)k+bj

(−f2)j
=

(
−f1

f2

)k

Xm (3.2)

and
k∑

j=0

(
k

j

)
Xm+(b−a)k+aj

(−f1)j
=

(
−f2

f1

)k

Xm , (3.3)

for k a non-negative integer.
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Theorem 4. The following identities hold for any integer m and any non-negative integer k:

k∑
j=0

(−1)j

(
k

j

)
2jTm−4k+3j = (−1)kTm , (3.4)

k∑
j=0

(
k

j

)
Tm−3k+4j = 2kTm (3.5)

and
k∑

j=0

(−1)j

(
k

j

)
2−jTm+3k+j = 2−kTm . (3.6)

Proof. Identify X = T in Lemma 4 and use the f1, f2, a and b values found in the proof of
Theorem 1.

Particular cases of (3.4), (3.5) and (3.6) are the following identities:

k∑
j=0

(−1)j

(
k

j

)
2jT3j = (−1)kT4k , (3.7)

k∑
j=0

(
k

j

)
T4j = 2kT3k (3.8)

and
k∑

j=0

(−1)j

(
k

j

)
2−jTj = 2−k(T 2

3k−1 − T3k−2T3k) . (3.9)

4 Weighted double binomial sums
Lemma 5. Let {Xm} be any arbitrary sequence, Xm satisfying a third order recurrence
relation Xm = f1Xm−a + f2Xm−b + f3Xm−c, where f1, f2 and f3 are arbitrary nonvanishing
functions and a, b and c are integers. Then, the following identities hold:

k∑
j=0

j∑
s=0

(
k

j

)(
j

s

)(
f2

f3

)j (
f1

f2

)s

Xm−ck+(c−b)j+(b−a)s =
Xm

f3
k

, (4.1)

k∑
j=0

j∑
s=0

(
k

j

)(
j

s

)(
f3

f2

)j (
f1

f3

)s

Xm−bk+(b−c)j+(c−a)s =
Xm

f2
k

, (4.2)

k∑
j=0

j∑
s=0

(
k

j

)(
j

s

)(
f3

f1

)j (
f2

f3

)s

Xm−ak+(a−c)j+(c−b)s =
Xm

f1
k

, (4.3)

k∑
j=0

j∑
s=0

(
k

j

)(
j

s

)(
f2

f3

)j (
− 1

f2

)s

Xm−(c−a)k+(c−b)j+bs =

(
−f1

f3

)k

Xm , (4.4)

k∑
j=0

j∑
s=0

(
k

j

)(
j

s

)(
f1

f3

)j (
− 1

f1

)s

Xm−(c−b)k+(c−a)j+as =

(
−f2

f3

)k

Xm , (4.5)
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and
k∑

j=0

j∑
s=0

(
k

j

)(
j

s

)(
f1

f2

)j (
− 1

f1

)s

Xm−(b−c)k+(b−a)j+as =

(
−f3

f2

)k

Xm . (4.6)

Proof. Only identity (4.1) needs to be proved as identities (4.2)–(4.6) are obtained from (4.1)
by re-arranging the recurrence relation. The proof of (4.1) is by induction on k, similar to
the proof of Lemma 3 of [1].

Theorem 5. The following identities hold for non-negative integer k, integer m and integer
r /∈ {−17,−4,−1, 0}:

k∑
j=0

j∑
s=0

(
k

j

)(
j

s

)
(Tr−1 + Tr)

j−s T
s
r+1

T j
r

Tm−(r+2)k+j+s =
Tm

T k
r

, (4.7)

k∑
j=0

j∑
s=0

(
k

j

)(
j

s

)
T j−s

r T s
r+1

(Tr−1 + Tr)j
Tm−(r+1)k−j+2s =

Tm

(Tr−1 + Tr)k
, (4.8)

k∑
j=0

j∑
s=0

(
k

j

)(
j

s

)
T j−s

r−1 (Tr−2 + Tr−1)
s

T j
r

Tm−(r−1)k−2j+s =
Tm

T k
r

, (4.9)

k∑
j=0

j∑
s=0

(−1)s

(
k

j

)(
j

s

)
(Tr−1 + Tr)

j−s

T j
r

Tm−2k+j+(r+1)s = (−1)k

(
Tr+1

Tr

)k

Tm , (4.10)

k∑
j=0

j∑
s=0

(−1)s

(
k

j

)(
j

s

)
T j−s

r+1

T j
r

Tm−k+2j+rs = (−1)k

(
Tr−1 + Tr

Tr

)k

Tm (4.11)

and

k∑
j=0

j∑
s=0

(−1)s

(
k

j

)(
j

s

)
T j−s

r+1

(Tr−1 + Tr)j
Tm+k+j+rs = (−1)k

(
Tr

Tr−1 + Tr

)k

Tm . (4.12)

Proof. Write the identity (1.5) as Tm = TrTm−r−2 +(Tr−1 +Tr)Tm−r−1 +Tr+1Tm−r, identify
f1 = Tr, f2 = Tr−1 + Tr, f3 = Tr+1, a = r + 2, b = r + 1, c = r and use these in Lemma 5
with X = T .
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