Weighted Tribonacci sums*

Kunle Adegoke

Department of Physics and Engineering Physics,
Obafemi Awolowo University, 220005 Ile-Ife, Nigeria

Abstract

We derive various weighted summation identities, including binomial and double bi-
nomial identities, for Tribonacci numbers. Our results contain some previously known
results as special cases.

1 Introduction
For m > 3, the Tribonacci numbers are defined by
Ty = m—1+Tm—2+Tm—3a T0:07 Th=T=1. (11)

By writing T,,_1 = T2 + T3 + T),—4 and eliminating 7, o and 7T,, 3 between this
recurrence relation and the recurrence relation (1.1)), a useful alternative recurrence relation
is obtained for m > 4:

TmZQTmfl—Tmf4, TOZO, T1:T2:1, T3:2 (12)

Extension of the definition of T}, to negative subscripts is provided by writing the recurrence

relation (1.2) as

T—m - 2T—m+3 - T—m+4 . (13)
Anantakitpaisal and Kuhapatanakul [2] proved that
/A R N (1.4)

The following identity (Feng [3], equation (3.3); Shah [7], (ii)) is readily established by the
principle of mathematical induction:

Tm+r =T.Tn 2+ (Tr—l + TT)Tm—l + TT+1Tm : (15)

Irmak and Alp [5] derived the following identity for Tribonacci numbers with indices in
arithmetic progression:

T;fm—l—’r - /\1< )T;f(m 1)+r +)\2( ),I;Em 2)+r +)‘3( )T;fm 3)+r > (16)
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where,

A(t) =o' + 8"+ Xa(t) = —(aB) — ()" = (B7)",  As(t) = (aBy)",

where «, 3 and 7 are the roots of the characteristic polynomial of the Tribonacci sequence

2 —2? —x — 1. Thus,

1
:§(1+\‘°’/19+3\/§+ \3/19—3@) :

1

:§<1+w 19+ 3 3—|—w2\3/19—3\/33>
1

=3 <1 + w19+ 3vV33 + wi/19 — 3\/33) :

where w = exp (2im/3) is a primitive cube root of unity. Note that A\i(t), A2(t) and A3(t)
are integers for any positive integer ¢ [5]; in particular, A;(1) =1 = Ay(1) = A3(1).

and

2  Weighted sums

Lemma 1 ([I], Lemma 2). Let {X,,} be any arbitrary sequence, where X,,, m € Z, satisfies
a second order recurrence relation X,, = f1Xm_a + foXm_p, where f1 and fo are arbitrary
non-vanishing complex functions, not dependent on m, and a and b are integers. Then,

k

Xm— a—b+a,
fQZ k] an AR fk fl m—(k+1)a » (21)
j=0 fl
"X
fiy T = T o X (kg (2.2)
=0 fg f2

and

k

me —a a —a)j X
Z ((b Yetat(—a)j _ J1 TS S (2.3)
7=0

—f2/ )7 (= f/h)
for k a non-negative integer.

Theorem 1. The following identities hold for any integers m and k:

k

> 2T pagy = 2T k1 — 27T, (2.4)
j=0
k
2 Z (=) T aprvaj = (=) T+ Trn—ara (2.5)
=0
and
k
> Y Tsirvyy = 2T — Tsis. (2.6)
=0



Proof. From the recurrence relation (1.2), make the identifications f; =2, fo = -1, a =1

and b = 4 and use these in Lemma [I] with X = T.

Particular instances of identities ([2.4))—(2.6|) are the following identities:

k

D 27T =42 T,

=0
giving,
=0

and

k

2) (1T = (1) Tr — 1
=0

and

k
> Ty =2 Ty,
=0

O

(2.7)

(2.10)

Lemma 2 (Partial sum of an n'" order sequence). Let {X;} be any arbitrary sequence, where
X, j € Z, satisfies an'™ order recurrence relation X; = f1Xj_c,+ foXjoes -+ fuXje, =
S fmXj—en, where fi, fo, ..., [ are arbitrary non-vanishing complex functions, not
dependent on j, and c1, co, ..., ¢, are fixed integers. Then, the following summation identity

holds for arbitrary x and non-negative integer k :

n Cm cm . — k j
L Zm:l {35 fm (Zj:l xr JX*J' - Zj:kfcm+1 xJXJ)}

X, = —

Z J 1 I Z _ Cm fm

Proof. Recurrence relation:

X;=> fuXie,.
m=1

We multiply both sides by 2/ and sum over j to obtain

k n k n k—cm
Z$ij = Z (fmzijij> - Z (xcmfm Z ijj) )
j=0 m=1 j=0

m=1 j=—Cm

after shifting the summation index j. Splitting the inner sum, we can write

k n -1 k k—cm
J _ Cm J J J
Eij—E " fn g ij+Eij+ E X5 |.
j=0 m=1 j=—cm 7=0 Jj=k+1
Since

-1 Cm k—cm k

5 ' X; = E x 7/ X_; and 5 ' X;=— E v’ X,
j=—cCm j=1 j=k+1 j=k—cm+1



the preceding identity can be written

k n Cm k k
S X, =Y a (Zm—jx_j +Y X - Y g;ij>.
§=0 m=1 j=1 §=0

j:k_cm+1
Thus, we have
n Cm k
S:Zmefm (Zx_jX_j—i—S— Z ijj> ,
m=1 Jj=1 j=k—cm+1

where i
S=Su(z) =) 27X,
j=0

Removing brackets, we have

k

S = il’cmfm (czm JT_jX_j — Z ijXj) + S i xcmfma
m=1 j=1 m=1

j=k—cm+1
from which the result follows by grouping the S terms. [

Lemma 3 (Generating function). Under the conditions of Lemma @ if additionally x* X,
vanishes in the limit as k approaches infinity, then

s (2 fn o 270X )
L=z f 7

Seo() = Za:ij =
=0

so that S (x) is a generating function for the sequence {X;}.

Theorem 2 (Sum of Tribonacci numbers with indices in arithmetic progression). For
arbitrary x, any integers t and r and any non-negative integer k, the following identity
holds:

(1= M)z = Xa(t)2” = As()2°) Y 2Ty = Ty + (2 da(t) + 2°Xs(t)) Ty

j=0
+aXs(t) - — xk+1T(k+1)t+r
— Ik+2<)\2 (t) + l’)\g (t))Tkt—H"
- $k+2>\3(t)T(k:—1)t+r )

where,

M) =o'+ 6+ Xa(t) = —(af) = (@) = (B7)",  As(t) = ()",

where «, B and v are the roots of the characteristic polynomial of the Tribonacci sequence
3 2

> —x°—z— 1.
Proof. Write identity (1.6) as X; = fiX;_1 + faX;_2 + f3X;_3 and identify the sequence
{X,} = {T}j+-} and the constants ¢; = 1, ¢, = 2, ¢z = 3 and the functions f; = A (),
fo = Aa(t), f3 = A3(t), and use these in Lemma

[



Corollary 3 (Generating function of the Tribonacci numbers with indices in arithmetic
progression). For any integerst and r, any non-negative integer k and arbitrary x for which
¥ T, vanishes as k approaches infinity , the following identity holds:

iij .= T + (@hg + 22 X3) Tt + 2 A3 Tr
tj+r — 1— /\11' o )\2$2 . /\31,3 9

where,

M=a" 4+ 8"+ X=—(aB) — ()" = (B7)", A= (aBy),

where a, B and 7 are the roots of the characteristic polynomial of the Tribonacci sequence

-2 —x—1.

Many instances of Theorem [2l may be explored. In particular, we have

(M) + Aa2(t) + As(t) — 1) ZTtJ+7" = =T, — (A2(t) + A3()) Tt
(2.11)
= AT -2t + Trrayerr
+ (Mo (t) + A3(8) Thtr + A3 (E)T—1)tr »
which at » = 0 gives
(Ac(t) + A2(t) + As(t) — 1) ZTt] )+ A(W)TE g — Th2Th)
(2.12)
— Xs(0) (T — Tor—oToe) + Ty
+ (Aa2(t) + As(t)) Tt + A3 (t) T -1y 5
and
k .
(1+ Ai(t) — A2(t) + As(2)) Z (=1 Thjur = T + (As(t) — A2(8)) Tt
=0
— A3(t) Lo + (— 1) Tl 1)t4r (2.13)

+ (1) (A3 (t) = Ao (t)) T
— (=" As(t) Tk 1ysr »

which at r = 0 gives

k
(T4 A(t) — A1) + As(t) Z 1Ty = (As(t) = () (T2, — ThoTy)

7 = () (T5_y = Tor—2Tot) + (=1) Ty
+ (—D)*(As(t) — Ao (t)) The
— (=1 As(t) The—1ye -
(2.14)

Many previously known results are particular instances of the identities and -
For example, Theorem 5 of [6] is obtained from identity (2.12)) by settmg t = 4. Sums of
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Tribonacci numbers with indices in arithmetic progression are also discussed in references [4)
9, [6] and references therein, using various techniques.

Weighted sums of the form Z?:o JPT}j+r, Where p is a non-negative integer, may be eval-
uated by setting x = €Y in the identity of Theorem [2| differentiating both sides p times
with respect to y and then setting y = 0. The simplest examples in this category are the
following;:

2> T = —Tyoa+ 3T, + (k — 1)Thspy

e (2.15)
+ (2]{5 - 1)Tk+r + (k - 2)Tk+7’+1
and
k
2> Ty = —3Ty — 5T, — 6T,
= (2.16)
+ (k* = 2k + 3)Thyr1 + (2% — 2k + 5)Tiyr
+ (kQ — 4k + 6)Tk+r+1 )
with the particular cases
k
23 Ty =2+ (k= )Ty + (2k — DT + (k — 2)Tha (2.17)
j=0
and
k
2> Ty = =6+ (k* — 2k + 3)Tiyrs
j=0 (2.18)

+ (2k* — 2k + 5)T,
+ (k* — 4k + 6) Ty 1 -

3 Weighted binomial sums

Lemma 4 ([I], Lemma 3). Let {X,,} be any arbitrary sequence. Let X,,, m € Z, satisfy a
second order recurrence relation X,, = fiXm_a+ foXm_p, where fi and fo are non-vanishing
complex functions, not dependent on m, and a and b are integers. Then,

Mk i X,
5) (6) roe

J=0

> (§) e = () =

J=

) s ()=

Jj=0

and

for k a non-negative integer.



Theorem 4. The following identities hold for any integer m and any non-negative integer k:

> (=1 (k) 2T aitsj = (1) T, (3.4)

Yk
> (J.)Tmsk+4j = 2T, (3.5)
and

Zk: ( )2 TTisheg =2 Ty . (3.6)

Jj=0

Proof. Identify X =T in Lemma [4] and use the fi, f3, a and b values found in the proof of
Theorem [l O

Particular cases of (3.4)), (3.5) and ({3.6) are the following identities:

> (-1y (?) YTy = (—1)" T, (3.7)

Jj=0

and

i ( ) 27T = 27M(T5_y — Ton—2Tir) - (3.9)

Jj=0

4 Weighted double binomial sums

Lemma 5. Let {X,,} be any arbitrary sequence, X,, satisfying a third order recurrence
relation X,, = f1Xm—a+ foXm_p+ f3Xm_e, where f1, fo and f3 are arbitrary nonvanishing
functions and a, b and c are integers. Then, the following identities hold:

B GIHIANCO RIS
B GIYIINORSTS SE
SO () (1) vsicacn i
S5 ()0) (4 (5) orcomimn= (4) 5o s
ST ()0 () (5) wcmicsn= () 5



and

EL TN /i N\ s k
Z (j) (Z) (%) (_%) me(bfc)k+(bfa)j+as = (_%) X - (46)
j=0 s=0

J

Proof. Only identity (4.1]) needs to be proved as identities (4.2)—(4.6|) are obtained from (4.1)
by re-arranging the recurrence relation. The proof of (4.1]) is by induction on k, similar to

the proof of Lemma 3 of [I]. O

Theorem 5. The following identities hold for non-negative integer k, integer m and integer
ré¢{—=17,—-4,—1,0}:

k J .
k\ (J N T
Z < > (S> (T, 1+ T.) Ter-le—(r—i—Q)k-l—j—l—s = T (4.7)
=0 s=0 J T r
k J . i
EN (7\ T77°T%, T,
L T (r )25 = o —— 4.8
22 (;) () T e G A T (48)
k J . j—s
k) (]) qufl (TT‘—2 + Tr—l)s Tm
Z . : Tm—(r—l)k—2j+s = Tk (49)

k J . i k
s k J <Tr—1 + TT‘)J 3 k Tr—l—l
S5 () () -0 () 7o

)
3 0 () () i o (B )

J

and
Y B (7 T T, \*
—1)* T i = —1’“(—T )Tm. 4.12
>3 >(j)(8>(TT_1+TT)j s = (I (o (4.12)

Proof. Write the identity (1.5) as T,, = T, T2+ (Tr—1 + 1) Tyn—y—1 + T s1Tn—r, identify
fi=T, fo=T, 1+T,, fs=T41,a=1r+2 b=r+1, c=r and use these in Lemma

with X =1T. O
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