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Abstract: In these papers, physicists will find the latest mathematical analysis of the results 

of the Michelson-Morley experiment, which was the source of all papers for Fitzgerald, 

Lorentz, Poincare, Minkowski and Einstein. This analyzes are the result of a study of the 

elastic collision theory, and are quite different from those of early physicists who have 

paved the way for the emergence of relativity theory. This work will discuss Fitzgerald-

Lorentz's explanations and prove that they are not correct. 
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1. INTRODUCTION AND OVERVIEW 

Despite trying to provide definitive evidence of the invalidity of relativity theory, I will face many problems that 

arise as a result of a conflict over the theory's validity in the content of this letter. All physicists and mathematicians are 

called upon to be courageous in order to accept the bitter truth if the corruption of the theory of relativity is proved in 

this article, but indirectly. And back again to celebrate Newtonian physics triumphs, which was formulated by Newton 

in Principia [13], and in Opticks [14], after questioning its principles for more than a century.  

 In this article, I again demonstrate that Newton's laws are perfectly valid for the interpretation of many outstanding 

questions in physics, including the famous Michelson-Morley experiment [16], [17]. 

Unlike Newtonian physics, Einstein postulated that the velocity of light was constant in all Galileans references or 

independent of the relative motion of the source . Through this postulate, the special relativity theory [23], and general 
relativity theory [24] were founded.  It is well known that his papers were another attempt to address the historical 

problem that resulted from the null results of the famous Michelson-Morley experiment, using the Lorentz 

transformations [22]. In principle, all specialists agree on Einstein's relativity arising from the echo generated by the 

null results of the Michelson-Morley experiment as detailed in this article [18],[19]. And any radical change in the 

interpretation of its terms will change all the foundations that have resulted previously, including the transformations of 

Lorentz; the platform where Einstein's historical works were founded. 

If many physicists and mathematicians such as William de Sitter [39],[40] were convinced that the Michelson-

Morley experiment demonstrated that the speed of light was constant in all inertial reference frames, despite the null 

interpretation of their experiment by Michelson and Morley, Was repeated several times before the publication of 

Einstein's papers in 1905 and after its publication, before its adoption in 1919 and after its adoption, without a radical 

change on its theoretical framework. 

We can say that relativity has prevented any attempt to interpret it again in a different direction. With a few 

exceptions that confirmed that the work of Lorentz and Einstein can’t be excluded from criticism, and the famous 

physicist Kaufmann strongly criticized their work, and demanded the rejection of the "basic assumption of Lorentz and 

Einstein" (the relativity principle), after his experiments on the electron to investigate the validity of the principle or 

not [37], despite Max Blanc criticism of its accuracy [38]. 
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Only with technical improvements has the experiment been repeated in the present century as with Müller et al. 
[42]. And only to strengthen the applied branch of Lorentz's analyzes and Einstein's interpretations of light. But this did 

not prevent the emergence of criticisms of the theory of relativity because of the ambiguity that justified many 

scientific questions in physics, and we can see one of the criticisms of the theory in this article [43]. 

To these lines, I can say that I am in the right line to finish the argument around. This study, which examines the 

theoretical framework of the experiment, demonstrates the corruption of most of the assumptions adopted by 

Michelson and Morley, which caused the emergence of controversy over the validity of the laws of classical physics. 

In these papers, we present a new and different interpretation of Fitzgerald-Lorentz’s interpretation [20], [21] where 

we present the most recent analysis of the experiment using the laws of classical mechanics. 

the content of the research of four chapters where we offer in the second chapter to study the elastic collision in 

order to obtain the algebraic formulas of the velocity vectors after collision between two spheres, and the third chapter 

we derive the law of the fixed elastic collision [F.E.C], and then we are theoretically simulation to the generalization 

the law on optics.  

In Chapter 4, we review and discuss Michelson-Morley experiment with its results, and we try to find errors in its 

assumptions. After that, we theoretically apply the law of the fixed elastic collision [F.E.C] to the work of the 

Michelson's interferometer, and try to extract the information, and compare it with its assumptions. 

2. DESIGNATION THE ALGEBRAIC FORMULAS OF THE VELOCITY VECTORS 

RESULTING FROM THE ELASTIC COLLISION BETWEEN TWO OBJECTS 

As I mentioned in the introduction, I try in this article to explain the results of the experiment by Newton's classical 

laws, and it is known that the experiment built the movement of light in absolute space; I have to start this step, which 

is the cornerstone of this research. 

Although it is important to design algebraic formulas of the velocity vectors on any subject that addresses the 

elastic collision between any two bodies, whether an atom or electron, it has been neglected in several important 

research, including the two articles [11]and [12]. Where the first dealt with the subject of the collision between the 

hydrogen atom and the electron without the use of velocity vectors of the two bodies, and as the mass of the electron is 

neglected in front of the mass of the atom of hydrogen, the velocities after the collision will take other formulas and 

will be addressed in the next chapter. The second analyzed the Collision dynamics of granular particles with adhesion. 

Although the study is extensive, it did not address the relationship of velocity vectors after collision with adhesion. 

There is an exception in articles [8],[9] and [10] where Kosinski studied a subject related to the elastic collision in 

two-dimensional, and concluded this relationship through his research. 

{  
    = − + + .𝑮 +  … .𝒂= + + + .𝑮 +  …  

        In this chapter, we offer a more accurate analysis, which we can circulate to all studies that dealt with the elastic 

collision between two bodies. 

In my opinion, the reflection of light on the hard surface is only an accident of elastic collision. This does not 

contradict the wave nature of the light, and the evidence that the electron is of both a wave-particle nature is subject to 

the laws of collision like other objects in classical physics [12], [41]. So I have to set algebraic velocity formulas after 

colliding between two objects 

For a detailed exposition, we refer to reference textbooks [1],[2],[3] and [4]. In the Chapter 15: Collision Theory 

[4], physicist Lisa Randall  as many physicists analyzed the subject of collision between two objects in one-dimension  

and two-dimensions but a method known in the lessons of physics. Alongside, she did not study analytically collision 

in space of three-dimensional. So, we conduct an analytical study using a new mathematical method in order to obtain 

algebraic formulas of the velocity vectors after collision in all dimensions. 
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We will use the Hilbert Space lessons from two textbooks [5] and [6] in physics. It will be clear at the beginning of 

the proposition 2.5 when to demonstrate it, and to the following. The algebraic formulas of the velocity vectors will be 

the result of the study of elastic collisions in an isolated system. 

Again for clarity, the law of Conserved Energy will be essential for progress in the study. So, in the elastic collision 

field, assuming two hard-spheres  and (𝜟) respectively, with two centers  and 𝜟 respectively, and two mass   
and  (𝜟) respectively are colliding with the latter, and from this collision we get a set of information. 

 

 Let us consider two inertial reference frames 𝚺 and 𝚺  which distinguished by the center O and C respectively. 

The reference frame  𝚺   moves relative to  𝚺  with velocity ⃗⃗ ⃗⃗  ⃗  . According to the information in Fig №01 and Fig 

№02, we give the following definitions and propositions:  The most famous law in physics is the conservation of 

kinetic energy i.e. conserved before and after collision, and is written as follows. 

The conservation of kinetic energy 2.1: 

In the elastic collision field; the conservation of kinetic energy remains valid in all Galileans references i.e.   

 ∑ =∑  

As mentioned in the introduction, the two hard-spheres move towards colliding, which means that they have 

velocity vectors before and after collisions in two inertial reference frames 𝚺 and 𝚺 . Therefore, we put the basic 

definitions of velocity vectors. 

Definition 2.1: 

 In the Galilean reference  𝓡( ;  ;  ; ⃗⃗ ); we define that ⃗⃗ ⃗⃗   ( ⃗⃗ ⃗⃗  𝑖𝑣 𝑙𝑦) is the velocity vector of the hard-sphere  

(P) before the collision   ℎ  𝑙𝑙𝑖 𝑖  𝑖𝑣 𝑙𝑦  with the hard-sphere (Δ). 

Definition 2.2: 

In the Galilean reference  𝓡( ;  ;  ; ⃗⃗ ); we define that 𝚫⃗⃗ ⃗⃗    𝚫⃗⃗ ⃗⃗  𝑖𝑣 𝑙𝑦  is the velocity vector of the hard-sphere 

(Δ)  before the collision   ℎ  𝑙𝑙𝑖 𝑖  𝑖𝑣 𝑙𝑦  with the hard-sphere (P). 

In the collision field, physicists such as Randall in her textbook [5] and  Raymond [4] that point (C) is the centre 

of mass reference, which is not a fixed point but is a virtual point that is relatively moving for the colliders, so we put 

this definition of it. 

 Definition 2.3: 

We define that the point  is the center of mass reference relative to two hard- spheres  and (𝜟) i.e. . ⃗⃗ ⃗⃗  ⃗ + ∆. 𝚫⃗⃗ ⃗⃗  ⃗ = ⃗⃗  
And in the Galilean reference   𝓡( ;  ;  ; ⃗⃗ ); we define that ⃗⃗ ⃗⃗  ⃗ is the velocity vector of point . 
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In the inertial reference frame  𝚺 ; where the point (C) is centre, the velocity vector values of the objectors change 

in form and content before and after collisions. For this reason, we set the definitions of velocity vectors with the new 

Galilean reference. 

Definition 2.4: 

 In the Galilean reference  𝓡( ;  ;  ; ⃗⃗ ); we define that ⃗⃗ ⃗⃗   ( ⃗⃗⃗⃗  ⃗ 𝑖𝑣 𝑙𝑦) is the velocity vector of the hard-sphere  

(P) before the collision   ℎ  𝑙𝑙𝑖 𝑖  𝑖𝑣 𝑙𝑦  with the hard-sphere (Δ). 

Definition 2.5: 

In the Galilean reference  𝓡( ;  ;  ; ⃗⃗ ); we define that 𝚫⃗⃗ ⃗⃗   ( 𝚫⃗⃗⃗⃗  ⃗ 𝑖𝑣 𝑙𝑦) is the velocity vector of the hard-sphere 

(Δ)  before the collision   ℎ  𝑙𝑙𝑖 𝑖  𝑖𝑣 𝑙𝑦  with the hard-sphere (P). 

     Now, we may put the first proposition in which we determine the values of the velocity vector relative to Galilean 

reference  𝓡( ;  ;  ; ⃗⃗ ) in terms of values of the velocity vector relative to the Galilean reference  𝓡( ;  ;  ; ⃗⃗ ) and his 

proof. 

Proposition 2.1: 

 With the use of the definitions mentioned above, the followings relationships are deduced that: 

{⃗⃗ ⃗⃗ = ⃗⃗⃗⃗ − ⃗⃗⃗⃗  ⃗𝚫⃗⃗ ⃗⃗  = 𝚫⃗⃗ ⃗⃗  − ⃗⃗⃗⃗  ⃗  ℎ  𝑙𝑙𝑖 𝑖 , [{ ⃗⃗⃗⃗  ⃗ = ⃗⃗ ⃗⃗  − ⃗⃗⃗⃗  ⃗𝚫⃗⃗⃗⃗  ⃗ = 𝚫⃗⃗ ⃗⃗  − ⃗⃗⃗⃗  ⃗  ℎ  𝑙𝑙𝑖 𝑖  𝑣 𝑙𝑦] 
Proof 

01-Before the collision: 

With using Chasles relation, we have that:  ⃗⃗ ⃗⃗ ⃗⃗  = ⃗⃗⃗⃗⃗⃗ + ⃗⃗ ⃗⃗  ⃗  ⃗⃗ ⃗⃗  ⃗ = ⃗⃗⃗⃗ ⃗⃗ − ⃗⃗⃗⃗⃗⃗  𝝏𝝏 ⃗⃗ ⃗⃗  ⃗ = 𝝏𝝏 ⃗⃗⃗⃗⃗⃗ − 𝝏𝝏 ⃗⃗⃗⃗⃗⃗  ⃗⃗ ⃗⃗  = ⃗⃗⃗⃗ − ⃗⃗⃗⃗  ⃗ 
Again, with using Chasles relation, we have that:  𝚫⃗⃗⃗⃗⃗⃗ = ⃗⃗⃗⃗⃗⃗ + 𝚫⃗⃗⃗⃗  ⃗  𝚫⃗⃗ ⃗⃗  ⃗ = 𝚫⃗⃗⃗⃗⃗⃗ − ⃗⃗⃗⃗⃗⃗  𝝏𝝏 𝚫⃗⃗⃗⃗  ⃗ = 𝝏𝝏 𝚫⃗⃗⃗⃗⃗⃗ − 𝝏𝝏 𝚫⃗⃗⃗⃗⃗⃗  

𝚫⃗⃗ ⃗⃗  = 𝚫⃗⃗ ⃗⃗  − ⃗⃗⃗⃗  ⃗ 
02-After the collision: 

With using Chasles relation, we have that:  ⃗⃗ ⃗⃗ ⃗⃗  = ⃗⃗⃗⃗⃗⃗ + ⃗⃗ ⃗⃗  ⃗  ⃗⃗ ⃗⃗  ⃗ = ⃗⃗⃗⃗ ⃗⃗ − ⃗⃗⃗⃗⃗⃗  𝝏𝝏 ⃗⃗ ⃗⃗  ⃗ = 𝝏𝝏 ⃗⃗⃗⃗⃗⃗ − 𝝏𝝏 ⃗⃗⃗⃗⃗⃗  ⃗⃗⃗⃗  ⃗ = ⃗⃗ ⃗⃗  − ⃗⃗⃗⃗  ⃗ 
Again, with using Chasles relation, we have that:  𝚫⃗⃗⃗⃗⃗⃗ = ⃗⃗⃗⃗⃗⃗ + 𝚫⃗⃗⃗⃗  ⃗  𝚫⃗⃗ ⃗⃗  ⃗ = 𝚫⃗⃗⃗⃗⃗⃗ − ⃗⃗⃗⃗⃗⃗  
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𝝏𝝏 𝚫⃗⃗⃗⃗  ⃗ = 𝝏𝝏 𝚫⃗⃗⃗⃗⃗⃗ − 𝝏𝝏 𝚫⃗⃗⃗⃗⃗⃗  

𝚫⃗⃗⃗⃗  ⃗ = 𝚫⃗⃗ ⃗⃗  − ⃗⃗⃗⃗  ⃗ 
 

Then, the point C that is the center of mass reference has the velocity vector wC⃗⃗ ⃗⃗  ⃗ and its value is written in the 

flowing proposition: 

Proposition 2.2: 

In the Galilean reference  𝓡( ;  ;  ; ⃗⃗ ); the velocity vector of the point  is written as follows: ⃗⃗ ⃗⃗  ⃗ = + ∆ ( . ⃗⃗⃗⃗ + ∆. 𝚫⃗⃗ ⃗⃗  ) 
Proof 

With using Chasles relations, we have that:  ⃗⃗ ⃗⃗ ⃗⃗  = ⃗⃗⃗⃗⃗⃗ + ⃗⃗ ⃗⃗  ⃗ ⃗⃗⃗⃗⃗⃗ = ⃗⃗⃗⃗⃗⃗ − ⃗⃗ ⃗⃗  ⃗   . ⃗⃗⃗⃗⃗⃗ = . ⃗⃗⃗⃗ ⃗⃗ − . ⃗⃗ ⃗⃗  ⃗  
Again, with using Chasles relation, we have that:  𝚫⃗⃗⃗⃗⃗⃗ = ⃗⃗⃗⃗⃗⃗ + 𝚫⃗⃗⃗⃗  ⃗ ⃗⃗⃗⃗⃗⃗ = 𝚫⃗⃗⃗⃗⃗⃗ − 𝚫⃗⃗⃗⃗  ⃗   

𝚫 . ⃗⃗⃗⃗⃗⃗ = 𝚫 . 𝚫⃗⃗⃗⃗⃗⃗ − 𝚫. 𝚫⃗⃗ ⃗⃗  ⃗   . ⃗⃗⃗⃗⃗⃗ + 𝚫. ⃗⃗⃗⃗⃗⃗ = ( . ⃗⃗⃗⃗ ⃗⃗ − . ⃗⃗ ⃗⃗  ⃗) + ( 𝚫 . 𝚫⃗⃗⃗⃗⃗⃗ − 𝚫. 𝚫⃗⃗ ⃗⃗  ⃗) 
+ ∆ . ⃗⃗⃗⃗⃗⃗ = ( . ⃗⃗⃗⃗ ⃗⃗ + 𝚫 . 𝚫⃗⃗⃗⃗⃗⃗ ) − ( . ⃗⃗ ⃗⃗  ⃗ + 𝚫. 𝚫⃗⃗ ⃗⃗  ⃗⏟          =⃗⃗ ) 

According to the definition 2.3; we deduce: + ∆ . ⃗⃗⃗⃗⃗⃗ = . ⃗⃗⃗⃗ ⃗⃗ + 𝚫. 𝚫⃗⃗⃗⃗⃗⃗  ⃗⃗⃗⃗⃗⃗ = + ∆ ( . ⃗⃗⃗⃗ ⃗⃗ + 𝚫. 𝚫⃗⃗⃗⃗⃗⃗ ) 𝝏𝝏 ⃗⃗⃗⃗⃗⃗ = + ∆ ( . 𝝏𝝏 ⃗⃗⃗⃗⃗⃗ + 𝚫 . 𝝏𝝏 𝚫⃗⃗⃗⃗⃗⃗ ) 
⃗⃗ ⃗⃗  ⃗ = + ∆ ( . ⃗⃗⃗⃗ + ∆. 𝚫⃗⃗ ⃗⃗  ) 

In any inertial reference frames, the momentum quantity are conserved (just like in any other collision) and given in 

the following relationship: �⃗⃗⃗� = �⃗⃗⃗�   
That is, the momentum vector of the objects just after the collision is the same as it was just before the collision i.e. �⃗⃗⃗� = . ⃗⃗⃗⃗  ⃗ + ∆. ∆⃗⃗ ⃗⃗  = . ⃗⃗⃗⃗  ⃗ + ∆. ∆⃗⃗⃗⃗  ⃗ 
And in the inertial reference frames 𝚺  they are equal to zero-vector. Therefore, we present the following proposition 

and his proof. 

Proposition 2.3: 

In the Galilean reference  𝓡( ;  ;  ; ⃗⃗ ) , the value of the momentum quantity �⃗⃗⃗�  equal zero-vector i.e.  

{ . ⃗⃗⃗⃗  ⃗ + ∆. ∆⃗⃗ ⃗⃗  = ⃗⃗          ℎ  𝑙𝑙𝑖 𝑖𝒂. ⃗⃗⃗⃗  ⃗ + ∆. ∆⃗⃗⃗⃗  ⃗ = ⃗⃗         ℎ  𝑙𝑙𝑖 𝑖   
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Proof 

01-Before the collision: 

According to the definition 2.3; we have that: . ⃗⃗ ⃗⃗  ⃗ + ∆. 𝚫⃗⃗ ⃗⃗  ⃗ = ⃗⃗  . 𝝏𝝏 ⃗⃗ ⃗⃗  ⃗ + ∆. 𝝏𝝏 𝚫⃗⃗⃗⃗  ⃗ = ⃗⃗  . ⃗⃗⃗⃗  ⃗ + ∆. ∆⃗⃗ ⃗⃗  = ⃗⃗  
02-After the collision: 

According to the definition 2.3; we have that: . ⃗⃗ ⃗⃗  ⃗ + ∆. 𝚫⃗⃗ ⃗⃗  ⃗ = ⃗⃗  . 𝝏𝝏 ⃗⃗ ⃗⃗  ⃗ + ∆. 𝝏𝝏 𝚫⃗⃗⃗⃗  ⃗ = ⃗⃗  . ⃗⃗ ⃗⃗  ⃗ + ∆. ∆⃗⃗⃗⃗  ⃗ = ⃗⃗  
Again, the equalities .  and .  in the next proposition are very important for progress in the study. 

Proposition 2.4: 

In the Galilean reference  𝓡( ;  ;  ; ⃗⃗ ) , the following relationships are deduced that: 

.                                                       { ‖⃗⃗⃗⃗  ⃗‖ = ‖⃗⃗⃗⃗  ⃗‖ 𝒂 ‖ ∆⃗⃗ ⃗⃗  ‖ = ‖ ∆⃗⃗⃗⃗  ⃗‖                                                                                  
..  

Proof 

1-According to The law of Conserved Energy 2.1; we have that: ∑ =∑  

. . ‖⃗⃗ ⃗⃗  ‖ + . 𝚫. ‖ ∆⃗⃗ ⃗⃗  ‖ = . ‖⃗⃗⃗⃗  ⃗‖ + . 𝚫. ‖ ∆⃗⃗⃗⃗  ⃗‖  

.                        . ‖⃗⃗ ⃗⃗  ‖ + 𝚫. ‖ ∆⃗⃗ ⃗⃗  ‖ = . ‖⃗⃗⃗⃗  ⃗‖ + 𝚫. ‖ ∆⃗⃗⃗⃗  ⃗‖                                               .  

And, according to the proposition 2.3, we have that:  

                                    .      { . ⃗⃗⃗⃗  ⃗ + ∆. ∆⃗⃗ ⃗⃗  = ⃗⃗ 𝒂. ⃗⃗⃗⃗  ⃗ + ∆. ∆⃗⃗⃗⃗  ⃗ = ⃗⃗ {− ∆ . ⃗⃗⃗⃗  ⃗ = ∆⃗⃗ ⃗⃗  𝒂− ∆ . ⃗⃗ ⃗⃗  ⃗ = ∆⃗⃗⃗⃗  ⃗   …… .………                         . .  

Applying last result (2.4) in relation (2.3), we deduce the following result:   . ‖⃗⃗ ⃗⃗  ‖ + 𝚫. ‖− ∆ . ⃗⃗⃗⃗  ⃗‖ = . ‖⃗⃗⃗⃗  ⃗‖ + 𝚫. ‖− ∆ . ⃗⃗ ⃗⃗  ⃗‖  

[ + ∆ ] . ‖⃗⃗ ⃗⃗  ‖ = [ + ∆ ] . ‖⃗⃗⃗⃗  ⃗‖  

‖⃗⃗ ⃗⃗  ‖ = ‖⃗⃗⃗⃗  ⃗‖  

                                                             ‖⃗⃗ ⃗⃗  ‖ = ‖⃗⃗⃗⃗  ⃗‖ ….    …                           ……                               . .  

2- With using last result (2.4), we deduce the following result: 
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{  
  − ∆ . ⃗⃗⃗⃗  ⃗ = ∆⃗⃗ ⃗⃗  𝒂− ∆ . ⃗⃗ ⃗⃗  ⃗ = ∆⃗⃗⃗⃗  ⃗ {  

  ‖− ∆ . ⃗⃗⃗⃗  ⃗‖ = ‖ ∆⃗⃗ ⃗⃗  ‖𝒂‖− ∆ . ⃗⃗ ⃗⃗  ⃗‖ = ‖ ∆⃗⃗⃗⃗  ⃗‖ 

{  
  ∆ . ‖⃗⃗⃗⃗  ⃗‖ = ‖ ∆⃗⃗ ⃗⃗  ‖𝒂

∆ . ‖⃗⃗⃗⃗  ⃗‖ = ‖ ∆⃗⃗⃗⃗  ⃗‖ 

But, we have the equality .  that: ‖⃗⃗ ⃗⃗  ‖ = ‖⃗⃗⃗⃗  ⃗‖ 

So, we deduce: 

{  
  ∆ . ‖⃗⃗⃗⃗  ⃗‖ = ‖ ∆⃗⃗ ⃗⃗  ‖𝒂

∆ . ‖⃗⃗⃗⃗  ⃗‖ = ‖ ∆⃗⃗⃗⃗  ⃗‖ {  
  ∆ . ‖⃗⃗⃗⃗  ⃗‖ = ‖ ∆⃗⃗ ⃗⃗  ‖𝒂

∆ . ‖⃗⃗⃗⃗  ⃗‖ = ‖ ∆⃗⃗⃗⃗  ⃗‖ 

                                                   ‖ ∆⃗⃗ ⃗⃗  ‖ = ‖ ∆⃗⃗⃗⃗  ⃗‖                                                                                 . .  

 

Moreover, if we look at Fig №02, we see that the collision field is divided into two halves by the normal line (N), 

that its direction vector is   ⃗⃗ ⃗⃗   , so we put the definition of the vector   ⃗⃗  ⃗  and the vector  ⃗⃗  ⃗  . 
Definition 2.6: 

 We define that  ⃗⃗  ⃗ is the axis vector of the collision  [  ⃗⃗  ⃗ is the tangent vector respectively ] such that  ‖  ⃗⃗  ⃗‖ =   ,and  ⃗⃗  ⃗  
orthogonal with (⃗⃗⃗⃗  ⃗ + ⃗⃗⃗⃗  ⃗) [  ⃗⃗  ⃗  parallel to (⃗⃗⃗⃗  ⃗ + ⃗⃗⃗⃗  ⃗) respectively ]. 

Remark 2.1: 

In section of Hilbert space,  common in the mathematical notations that  ⃗⃗  ⃗ is a unit vector as the direction vector, and 

we must not differentiate between them. And in addition, I chose the operation . |.  as the relation of the scalar 

product. 

Lemma 2.1 

As we define the vector  ⃗⃗  ⃗and  ⃗⃗  ⃗in the definition 2.6, we concluded the flowing equalities: ⟨  ⃗⃗  ⃗|  ⃗⃗  ⃗⟩ = 𝒂 ⟨⃗⃗ |  ⃗⃗  ⃗⟩ =  

Proof: 

We have ⟨  ⃗⃗  ⃗|  ⃗⃗  ⃗⟩ = ‖  ⃗⃗  ⃗‖  

From the definition 2.6, where we define: ‖  ⃗⃗  ⃗‖ =  (  ⃗⃗  ⃗) =  ⟨  ⃗⃗  ⃗|  ⃗⃗  ⃗⟩ =  

Again, we have    ⃗⃗  ⃗ ⊥ (⃗⃗⃗⃗  ⃗ + ⃗⃗⃗⃗  ⃗) 𝒂 ⃗⃗ ∥ (⃗⃗⃗⃗  ⃗ + ⃗⃗⃗⃗  ⃗)  ⃗⃗  ⃗ ⊥  ⃗⃗  ⟨⃗⃗ |  ⃗⃗  ⃗⟩ =  

With all the data we mentioned and the results we obtained, we will write the algebraic formulas of velocity vector 

after the collision in this proposition 2.5, but in the Galilean reference 𝓡( ;  ;  ; ⃗⃗ )  , which is centered at (C) with his 

proof. 
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Proposition 2.5: 

In the elastic collision field relative to the Galilean reference ( ;  ;  ; ⃗⃗ ) , with used the latest notations, the velocity 

vectors after the collision between two objects are deduced that: 

.                                                    { ⃗⃗⃗⃗  ⃗ = ⃗⃗⃗⃗  ⃗ − . ⟨⃗⃗⃗⃗  ⃗|  ⃗⃗  ⃗⟩.  ⃗⃗  ⃗𝒂 𝚫⃗⃗⃗⃗  ⃗ = 𝚫⃗⃗ ⃗⃗  − . ⟨ 𝚫⃗⃗ ⃗⃗  |  ⃗⃗  ⃗⟩.  ⃗⃗  ⃗.                                                                
..  

Proof 

1- We use the latest notations and definitions. 

So, according to the proposition 2.4, we have the equality .  that: ‖⃗⃗⃗⃗  ⃗‖ = ‖⃗⃗⃗⃗  ⃗‖ ‖⃗⃗⃗⃗  ⃗‖ = ‖⃗⃗⃗⃗  ⃗‖  (⃗⃗⃗⃗  ⃗) = (⃗⃗⃗⃗  ⃗)  (⃗⃗⃗⃗  ⃗) − (⃗⃗⃗⃗  ⃗) =  (⃗⃗⃗⃗  ⃗ − ⃗⃗⃗⃗  ⃗)(⃗⃗⃗⃗  ⃗ + ⃗⃗⃗⃗  ⃗) =  (⃗⃗⃗⃗  ⃗ − ⃗⃗⃗⃗  ⃗) ⊥ (⃗⃗⃗⃗  ⃗ + ⃗⃗⃗⃗  ⃗) 
But, according to last definition 2.6, we have that:   ⃗⃗  ⃗ ⊥ (⃗⃗⃗⃗  ⃗ + ⃗⃗⃗⃗  ⃗) 
So, we deduce (⃗⃗⃗⃗  ⃗ − ⃗⃗⃗⃗  ⃗) ∥  ⃗⃗  ⃗ 

  ∃𝝀 ℝ / ⃗⃗⃗⃗  ⃗ − ⃗⃗⃗⃗  ⃗ = 𝝀.  ⃗⃗  ⃗ … ……… .……                              … . .  

Again, we have that:        ⃗⃗  ⃗ ∥  (⃗⃗⃗⃗  ⃗ + ⃗⃗⃗⃗  ⃗) 
.                                                              ∃ ℝ / ⃗⃗⃗⃗  ⃗ + ⃗⃗⃗⃗  ⃗ = . ⃗⃗  ……… .……                                … . .  

According to the two relations (2.7) and (2.8), we deduce the following result: 

  ∃𝝀, ℝ ∕ {⃗⃗⃗⃗  ⃗ − ⃗⃗⃗⃗  ⃗ = 𝝀.  ⃗⃗  ⃗𝒂⃗⃗⃗⃗  ⃗ + ⃗⃗⃗⃗  ⃗ = . ⃗⃗  (⃗⃗⃗⃗  ⃗ − ⃗⃗⃗⃗  ⃗) + (⃗⃗⃗⃗  ⃗ + ⃗⃗⃗⃗  ⃗) = 𝝀.  ⃗⃗  ⃗ + . ⃗⃗  . ⃗⃗⃗⃗  ⃗ = . ⃗⃗ + 𝝀.  ⃗⃗  ⃗ ⃗⃗⃗⃗  ⃗ = . ⃗⃗ + 𝝀.  ⃗⃗  ⃗ 
⟨⃗⃗⃗⃗  ⃗|  ⃗⃗  ⃗⟩ = ⟨ . ⃗⃗ + 𝝀.  ⃗⃗  ⃗|  ⃗⃗  ⃗⟩ 

⟨⃗⃗⃗⃗  ⃗|  ⃗⃗  ⃗⟩ = ⟨ . ⃗⃗ |  ⃗⃗  ⃗⟩ + ⟨ 𝝀.  ⃗⃗  ⃗|  ⃗⃗  ⃗⟩ 
⟨⃗⃗⃗⃗  ⃗|  ⃗⃗  ⃗⟩ = . ⟨⃗⃗ |  ⃗⃗  ⃗⟩⏟  = + 𝝀. ⟨  ⃗⃗  ⃗|  ⃗⃗  ⃗⟩⏟  =  

According to the lemma 2.1, we deduce the following result: 
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⟨⃗⃗⃗⃗  ⃗|  ⃗⃗  ⃗⟩ = 𝝀 𝝀 = . ⟨⃗⃗⃗⃗  ⃗|  ⃗⃗  ⃗⟩ 
Lastly, we apply the value of 𝝀 in relation (2.7), and we deduce the following result: ⃗⃗⃗⃗  ⃗ − ⃗⃗⃗⃗  ⃗ = 𝝀.  ⃗⃗  ⃗ ⃗⃗⃗⃗  ⃗ − ⃗⃗⃗⃗  ⃗ = . ⟨⃗⃗⃗⃗  ⃗|  ⃗⃗  ⃗⟩.  ⃗⃗  ⃗ ⃗⃗ ⃗⃗  ⃗ = ⃗⃗⃗⃗  ⃗ − . ⟨⃗⃗⃗⃗  ⃗|  ⃗⃗  ⃗⟩.  ⃗⃗  ⃗                                                               …… .   

2- According to the proposition 2.3, we have that: 

{ . ⃗⃗⃗⃗  ⃗ + ∆. ∆⃗⃗ ⃗⃗  = ⃗⃗ ∧. ⃗⃗⃗⃗  ⃗ + ∆. ∆⃗⃗⃗⃗  ⃗ = ⃗⃗ {  
  ⃗⃗⃗⃗  ⃗ = − ∆ . ∆⃗⃗ ⃗⃗  ∧⃗⃗⃗⃗  ⃗ = − ∆ . ∆⃗⃗⃗⃗  ⃗  …   …….                          … . .   

Applying the result .  in last equality (2.5), we deduce the following result (2.6): ⃗⃗ ⃗⃗  ⃗ = ⃗⃗⃗⃗  ⃗ − . ⟨⃗⃗⃗⃗  ⃗|  ⃗⃗  ⃗⟩.  ⃗⃗  ⃗ − ∆ . ∆⃗⃗⃗⃗  ⃗ = − ∆ . ∆⃗⃗ ⃗⃗  − . ⟨− ∆ . ∆⃗⃗ ⃗⃗  |  ⃗⃗  ⃗⟩ .  ⃗⃗  ⃗ − ∆ . ∆⃗⃗⃗⃗  ⃗ = − ∆ . ∆⃗⃗ ⃗⃗  − . [− ∆ . ⟨ 𝚫⃗⃗ ⃗⃗  |  ⃗⃗  ⃗⟩] .  ⃗⃗  ⃗ − ∆ . ∆⃗⃗⃗⃗  ⃗ = − ∆ . ∆⃗⃗ ⃗⃗  − . − ∆ . ⟨ 𝚫⃗⃗ ⃗⃗  |  ⃗⃗  ⃗⟩.  ⃗⃗  ⃗ − ∆ . ∆⃗⃗⃗⃗  ⃗ = − ∆ . [ ∆⃗⃗ ⃗⃗  − . ⟨ 𝚫⃗⃗ ⃗⃗  |  ⃗⃗  ⃗⟩.  ⃗⃗  ⃗] 
∆⃗⃗⃗⃗  ⃗ = ∆⃗⃗ ⃗⃗  − . ⟨ 𝚫⃗⃗ ⃗⃗  |  ⃗⃗  ⃗⟩.  ⃗⃗  ⃗  …………… . ……                                … . .  

 

Finally, we may put the text of the theory in which the algebraic formulas of vector velocities after the collision in 

the Galilean reference  𝓡( ;  ;  ; ⃗⃗ ) , and the proof will be simple. 

Theorem 2.1: 

In the elastic collision field relative to the Galilean reference  𝓡( ;  ;  ; ⃗⃗ ); the velocity vectors after the collision 

between two objects are written in the following form: 

      {  ⃗⃗ ⃗⃗  = ⃗⃗⃗⃗ − ∆∆+ ⟨⃗⃗⃗⃗ − 𝚫⃗⃗ ⃗⃗  |  ⃗⃗  ⃗⟩.  ⃗⃗  ⃗ … .𝒂  𝚫⃗⃗ ⃗⃗  = 𝚫⃗⃗ ⃗⃗  − ∆+ ⟨ 𝚫⃗⃗ ⃗⃗  − ⃗⃗⃗⃗ |  ⃗⃗  ⃗⟩.  ⃗⃗  ⃗                                                

..  

Proof 

1- According to the proposition 2.5, we have the equality (2.5) that: ⃗⃗ ⃗⃗  ⃗ = ⃗⃗⃗⃗  ⃗ − . ⟨⃗⃗⃗⃗  ⃗|  ⃗⃗  ⃗⟩.  ⃗⃗  ⃗ 
Again, with applying the equality of the proposition 2.1, we deduce the following result: (⃗⃗ ⃗⃗  − ⃗⃗⃗⃗  ⃗) = (⃗⃗⃗⃗ − ⃗⃗⃗⃗  ⃗) − . ⟨⃗⃗⃗⃗ − ⃗⃗⃗⃗  ⃗|  ⃗⃗  ⃗⟩.  ⃗⃗  ⃗ ⃗⃗ ⃗⃗  = ⃗⃗⃗⃗ − . ⟨⃗⃗⃗⃗ − ⃗⃗⃗⃗  ⃗|  ⃗⃗  ⃗⟩.  ⃗⃗  ⃗ 
Then, we use the value of the vector ⃗⃗ ⃗⃗  ⃗  to the proposition 2.2. 

So, we deduce the following result: 
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⃗⃗ ⃗⃗  = ⃗⃗⃗⃗ − . ⟨⃗⃗⃗⃗ − ⃗⃗⃗⃗  ⃗|  ⃗⃗  ⃗⟩.  ⃗⃗  ⃗ ⃗⃗ ⃗⃗  = ⃗⃗⃗⃗ − . ⟨⃗⃗⃗⃗ − + ∆ ( . ⃗⃗⃗⃗ + ∆. 𝚫⃗⃗ ⃗⃗  )|  ⃗⃗  ⃗⟩ .  ⃗⃗  ⃗ 
⃗⃗ ⃗⃗  = ⃗⃗⃗⃗ − . ⟨ + ∆+ ∆ . ⃗⃗⃗⃗  − + ∆ ⃗⃗ ⃗⃗  − ∆+ ∆ 𝚫⃗⃗ ⃗⃗  |  ⃗⃗  ⃗⟩ .  ⃗⃗  ⃗ 

⃗⃗ ⃗⃗  = ⃗⃗⃗⃗ − . ⟨ ∆+ ∆ . ⃗⃗⃗⃗  − ∆+ ∆ 𝚫⃗⃗ ⃗⃗  |  ⃗⃗  ⃗⟩ .  ⃗⃗  ⃗ 
⃗⃗ ⃗⃗  = ⃗⃗⃗⃗ − . ⟨ ∆+ ∆ . (⃗⃗⃗⃗ − 𝚫⃗⃗ ⃗⃗  )|  ⃗⃗  ⃗⟩ .  ⃗⃗  ⃗ 
⃗⃗ ⃗⃗  = ⃗⃗⃗⃗ − . ∆+ ∆ . ⟨⃗⃗⃗⃗ − 𝚫⃗⃗ ⃗⃗  |  ⃗⃗  ⃗⟩.  ⃗⃗  ⃗ 

2- According to the proposition 2.5, we have the equality (2.6) that: 

𝚫⃗⃗⃗⃗  ⃗ = 𝚫⃗⃗ ⃗⃗  − . ⟨ 𝚫⃗⃗ ⃗⃗  |  ⃗⃗  ⃗⟩.  ⃗⃗  ⃗ 
Again, with applying the proposition 2.1, we deduce the following result: 

𝚫⃗⃗ ⃗⃗  − ⃗⃗⃗⃗  ⃗ = 𝚫⃗⃗ ⃗⃗  − ⃗⃗⃗⃗  ⃗ − . ⟨ 𝚫⃗⃗ ⃗⃗  − ⃗⃗⃗⃗  ⃗|  ⃗⃗  ⃗⟩.  ⃗⃗  ⃗ 
𝚫⃗⃗ ⃗⃗  = 𝚫⃗⃗ ⃗⃗  − . ⟨ 𝚫⃗⃗ ⃗⃗  − ⃗⃗⃗⃗  ⃗|  ⃗⃗  ⃗⟩.  ⃗⃗  ⃗ 

Then, we use the value of the vector ⃗⃗ ⃗⃗  ⃗  to the proposition 2.2. 

So, we deduce the following result: 

𝚫⃗⃗ ⃗⃗  = 𝚫⃗⃗ ⃗⃗  − . ⟨ 𝚫⃗⃗ ⃗⃗  − + ∆ ( . ⃗⃗⃗⃗ + ∆. 𝚫⃗⃗ ⃗⃗  )|  ⃗⃗  ⃗⟩ .  ⃗⃗  ⃗ 
𝚫⃗⃗ ⃗⃗  = 𝚫⃗⃗ ⃗⃗  − . ⟨ + ∆+ ∆ 𝚫⃗⃗ ⃗⃗  − + ∆ ( . ⃗⃗⃗⃗ + ∆. 𝚫⃗⃗ ⃗⃗  )|  ⃗⃗  ⃗⟩ .  ⃗⃗  ⃗ 
𝚫⃗⃗ ⃗⃗  = 𝚫⃗⃗ ⃗⃗  − . ⟨ + ∆+ ∆ 𝚫⃗⃗ ⃗⃗  − + ∆ ⃗⃗ ⃗⃗  − ∆+ ∆ 𝚫⃗⃗ ⃗⃗  |  ⃗⃗  ⃗⟩ .  ⃗⃗  ⃗ 

𝚫⃗⃗ ⃗⃗  = 𝚫⃗⃗ ⃗⃗  − . ⟨ + ∆ 𝚫⃗⃗ ⃗⃗  − + ∆ ⃗⃗ ⃗⃗  |  ⃗⃗  ⃗⟩ .  ⃗⃗  ⃗ 
𝚫⃗⃗ ⃗⃗  = 𝚫⃗⃗ ⃗⃗  − . ⟨ + ∆ ( 𝚫⃗⃗ ⃗⃗  − ⃗⃗⃗⃗ )|  ⃗⃗  ⃗⟩ .  ⃗⃗  ⃗ 
𝚫⃗⃗ ⃗⃗  = 𝚫⃗⃗ ⃗⃗  − . + ∆ . ⟨ 𝚫⃗⃗ ⃗⃗  − ⃗⃗⃗⃗ |  ⃗⃗  ⃗⟩.  ⃗⃗  ⃗ 

Remark 2.2: 

I would like to remind you that the theorem are important and can be used for studying in the field of billiards and 

others. 

3. CONVERTING THE THEORETICAL RESULTS OF THE COLLISION 

In this chapter, we continue to study the results we have obtained from the second chapter. This is in order to obtain 

the algebraic formulas of the velocity vector after colliding between a material point and a solid flat plate in the 

absolute space, and considering the mass of the material point completely neglected by definition in front of the solid 

flat plate. However, the transition of the analytical study from collision between two hard-spheres to colliding between 

a material point and a solid flat plate should be done in two steps to maintain the logical serial correlation between the 

chapters. 

Therefore, we divide the study in this chapter into two steps. The first step is to study the results after colliding 

between a material point with a hard-sphere and then in the second step to study the results after colliding between a 

material point and a solid flat plate. 
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3.1 First step: From two different spheres to a collision between a material point and a 

hard-sphere. 
In the second chapter (2), the most important part of the study of collisions was to convert the study from a normal 

Galilean reference to a Galilean reference 𝓡( ;  ;  ; ⃗⃗ ) centered at the point (C) center of mass reference so that the 

momentum quantity is equal to zero-vector. Therefore, in this chapter, we conduct another analytical study from a 

collision between two hard-spheres to a collision between a material point and a hard-sphere.  

If we consider that the study was done between two hard-spheres, it is necessarily distinguished by two different 

radius and we define them as ( ) and ( (𝜟)) respectively. 

And also because they have two different mass, they may have two different volumetric mass, and we define them 

respectively (𝓒 ) and (𝓒(𝜟)). 
 So we now have to study it in the Galilean Reference  𝓡( ;  ;  ; ⃗⃗ ); which is centered on point (C). 

 In the moment of collision, the two spheres are in contact point (C), and from Fig №03 and Fig №04, we see that they 

have the same tangent plane  𝚫  , which the normalized vector is  ⃗⃗  ⃗, and the normal line (N) that is perpendicular to 

the tangent plane 𝚫  at the point of tangency (C). 

 

 

Now we are trying to find important relationships that relate to the elastic collision between a material point and a 

hard-sphere. So, if we consider that the mass of the sphere (P) is neglected for the sphere (Δ), that is to say: 

 

                                                                               (𝜟) ≅ ……                                                                …… . .   
 

Hence, we define 𝓥  and 𝓥(𝜟) respectively that the volumes of the hard-spheres (P) and (Δ) respectively. 

So, we have: 𝓥 = . . 𝒂 𝓥(𝜟) = . . (𝜟)  

Again, we have:  = 𝓒 .𝓥 𝒂 (𝜟) = 𝓒(𝜟). 𝓥(𝜟) 
So, we obtain:  

(𝜟) = 𝓒 .𝓥𝓒(𝜟). 𝓥(𝜟) = 𝓒𝓒(𝜟) . . .. . (𝜟) = 𝓒𝓒(𝜟) . (𝜟) = 𝓒𝓒(𝜟) . (𝜟)   
(𝜟) = 𝓒𝓒(𝜟)⏟= . (𝜟)  
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 (𝜟) = ⏟𝒂 . (𝜟)  

However, as the case is considered (3.11), we concluded the following: 

(𝜟) ≅ . (𝜟) ≅ (𝜟) ≅   ≅  , if considered (𝜟) constant. 

 

From this result, we can conclude that the sphere (P) is a point zero-dimensional by definition for the hard-sphere 

(Δ). Therefore, we conduct a theoretical simulation of the particular case mentioned. Thus, we put the following 

definition and the proposition with proof. 

Definition 3.1.1: 

 We call the fixed elastic collision, the collision of the hard-sphere (P) with the hard-sphere (Δ) respectively, and the 

mass of the hard- sphere (P) is negligible with respect to the mass of the sphere (Δ) i.e. (𝜟) ≅ . 

So we can consider the hard-sphere (P) as a material point for the hard-sphere (Δ). 

The text of the following proposition is named the law of the fixed elastic collision [F.E.C], which will be 

fundamental when discussing the assumptions on which the Michelson experiment was based and which will be 

discussed in the chapter (4) of this article. 

 Proposition 3.1.1:  

In the field of the fixed elastic collision [F.E.C] relative to the Galilean reference  𝓡( ;  ;  ; ⃗⃗ ); the velocity vector 

after the collision of the material point (P) with the hard-sphere (Δ) is written as follows: 

.                                                     ⃗⃗ ⃗⃗  = ⃗⃗⃗⃗ − ⋅ ⟨⃗⃗⃗⃗ − 𝚫⃗⃗ ⃗⃗  |  ⃗⃗  ⃗⟩.  ⃗⃗  ⃗ ……… .……                                   … . .  

And the velocity vector after the collision of the hard-sphere (Δ) is 𝚫⃗⃗ ⃗⃗   remaining without change. 

Proof 

According to the Theorem 2.1, we have the equality (2.9) that: ⃗⃗ ⃗⃗  = ⃗⃗⃗⃗ − ⋅ ∆∆ + . ⟨⃗⃗⃗⃗ − 𝚫⃗⃗ ⃗⃗  |  ⃗⃗  ⃗⟩.  ⃗⃗  ⃗ 
⃗⃗ ⃗⃗  = ⃗⃗⃗⃗ − ⋅ ∆∆∆∆ + ∆ . ⟨⃗⃗⃗⃗ − 𝚫⃗⃗ ⃗⃗  |  ⃗⃗  ⃗⟩.  ⃗⃗  ⃗ 
⃗⃗ ⃗⃗  = ⃗⃗⃗⃗ − ⋅ + ∆ . ⟨⃗⃗⃗⃗ − 𝚫⃗⃗ ⃗⃗  |  ⃗⃗  ⃗⟩.  ⃗⃗  ⃗ 

However, as the case is considered (3.11), we deduce: ⃗⃗ ⃗⃗  = ⃗⃗⃗⃗ − ⋅ + ∆⏟= . ⟨⃗⃗⃗⃗ − 𝚫⃗⃗ ⃗⃗  |  ⃗⃗  ⃗⟩.  ⃗⃗  ⃗ 
⃗⃗ ⃗⃗  = ⃗⃗⃗⃗ − ⋅ + . ⟨⃗⃗⃗⃗ − 𝚫⃗⃗ ⃗⃗  |  ⃗⃗  ⃗⟩.  ⃗⃗  ⃗ ⃗⃗ ⃗⃗  = ⃗⃗⃗⃗ − ⋅ ⟨⃗⃗⃗⃗ − 𝚫⃗⃗ ⃗⃗  |  ⃗⃗  ⃗⟩.  ⃗⃗  ⃗ 

Again, we have the equality (2.10) that: 

𝚫⃗⃗ ⃗⃗  = 𝚫⃗⃗ ⃗⃗  − ∆ + ⟨ 𝚫⃗⃗ ⃗⃗  − ⃗⃗⃗⃗ |  ⃗⃗  ⃗⟩.  ⃗⃗  ⃗ 
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𝚫⃗⃗ ⃗⃗  = 𝚫⃗⃗ ⃗⃗  − (𝜟)+ (𝜟) ⟨ 𝚫⃗⃗ ⃗⃗  − ⃗⃗⃗⃗ |  ⃗⃗  ⃗⟩.  ⃗⃗  ⃗ 
Thus, as the case is considered (3.11), we deduce:  

𝚫⃗⃗ ⃗⃗  = 𝚫⃗⃗ ⃗⃗  − + ⟨ 𝚫⃗⃗ ⃗⃗  − ⃗⃗⃗⃗ |  ⃗⃗  ⃗⟩.  ⃗⃗  ⃗⏟              =  

𝚫⃗⃗ ⃗⃗  = 𝚫⃗⃗ ⃗⃗   
3.2 Second step: From a material point with the sphere to a collision between a material 

point with a solid flat plate. 
 

Furthermore, Guttler et al. [7] studied the type of collision and called it the normal collision, but not in all inertial 

reference frames, without giving details of the velocity vectors of the collision in the inertial reference frame. 

So in this step, following the first step, we convert the collision from a material point with the hard-sphere to a 

collision between a material point with a Solid flat plate . We mentioned in Chapter (3), that there is a tangent plane 𝚫 between the two spheres at the moment of collision. We have seen that the laws remain intact, all of which have 

logical correlations with proposition 2.5. 

With regard to the proposition 2.5, we may see that equality is not at all associated with the value of mass or metric 

dimensions of objects, only has correlations between velocity vector values of objects. However, the result of the 

collision is entirely related to the tangent plane 𝚫. In other words, the results necessarily relate to the situation of the 

normal line (N), which is distinguished by the direction vector ⃗⃗ . 
Additionally, we simulate the proposition 3.1 in order to be valid for optics. Moreover, in classical dynamics, light 

is considered as an electromagnetic wave, which is described by Maxwell's equations [15]. As it is well-known, as 

Newton’s particle theory of light which states that light is only a particle subject to the laws of mechanics [13]. 

Newton proposed that light consists of little masses. This means that a horizontal beam of light near the earth is 

undergoing projectile motion, and forms a parabola. The straight line we observe is due to the fact that the speed of the 

particles is so great. 

Compared to what we have already said in second Chapter, we can say that light or, in other words, a photon is a 

material point, and the mirror is a solid flat plate. 

So, for a central Galilean reference 𝓡( ;  ;  ; ⃗⃗ ), if we assume that a material point (P) has collided with a solid flat 

plate  at point (C), the mass of the material point (P) is negligible for the solid flat plate . It is necessarily subject 

to the text of the proposition 2.5 we mentioned, but the normal line (N) of this collision is the same as for the solid flat 

plate , since the solid flat plate  is part of the tangent plane  𝚫, during the moment of collision. To simulate this, 

we can put this following definition with two propositions, and we may omit to prove them, because they are clear. 

Definition 3.2.1: 

We call the fixed elastic collision, the collision of the material point (P) with the solid flat plate  which the axis 

vector  ⃗⃗  ⃗  , and the mass of the material point (P) is negligible with respect to the mass of the solid flat plate (S) i.e. ≅ . 

Proposition 3.2.1: 

In the field of the fixed elastic collision [F.E.C] relative to the Galilean reference  𝓡( ;  ;  ; ⃗⃗ ); the velocity vector 

after the collision of the material point (P) with the solid flat plate (S) which the axis vector  ⃗⃗  ⃗ is written as follows: 

.                                                        ⃗⃗ ⃗⃗  = ⃗⃗⃗⃗ − ⋅ ⟨⃗⃗⃗⃗ − �⃗⃗⃗⃗⃗� |  ⃗⃗  ⃗⟩.  ⃗⃗  ⃗ ……….                                ……… . .  
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Proposition 3.2.2: 

If we consider that   ⃗⃗  ⃗ is the axis vector of the fixed elastic collision [F.E.C] between a material point (P) with the 

solid flat plate (S).      (−  ⃗⃗  ⃗) Is also an axis vector of the fixed elastic collision [F.E.C] between a material point (P) 

with the solid flat plate (S). 

Proof  

If we consider that   ⃗⃗  ⃗ is the axis vector of the fixed elastic collision [F.E.C] between the spheres  and (𝜟) 
respectively. That is to say:  ⃗⃗ ⃗⃗  = ⃗⃗⃗⃗ − ⋅ ⟨⃗⃗⃗⃗ − �⃗⃗⃗⃗⃗� |  ⃗⃗  ⃗⟩.  ⃗⃗  ⃗ ⃗⃗ ⃗⃗  = ⃗⃗⃗⃗ − ⋅ ⟨⃗⃗⃗⃗ − �⃗⃗⃗⃗⃗� |−(−  ⃗⃗  ⃗)⟩. [−(−  ⃗⃗  ⃗)] ⃗⃗ ⃗⃗  = ⃗⃗⃗⃗ + ⋅ ⟨⃗⃗⃗⃗ − �⃗⃗⃗⃗⃗� |(−  ⃗⃗  ⃗)⟩. [−(−  ⃗⃗  ⃗)] ⃗⃗ ⃗⃗  = ⃗⃗⃗⃗ − ⋅ ⟨⃗⃗⃗⃗ − �⃗⃗⃗⃗⃗� |(−  ⃗⃗  ⃗)⟩. (−  ⃗⃗  ⃗) 
We obtain the result that (−  ⃗⃗  ⃗) is also an axis vector of the fixed elastic collision [F.E.C] between a material point 

(P) and the solid flat plate (S). 

4. CRITICAL ANALYSIS OF THE THEORETICAL FRAMEWORK OF THE 

MICHELSON-MORLEY EXPERIMENT. 

Until the end of the nineteenth century, light was supposed to propagate in the medium called ether. 

Then the idea of the experiment realized by Michelson was suggested to him by a letter which Maxwell wrote in 1865 

[15], he set forth a method for measuring the velocity of the earth with respect to the ether, supposed motionless fluid 

in the space. 

According to this hypothesis, Earth and the ether are in relative motion, implying that a so-called "ether wind" 

should exist. Although it would be possible, in theory, for the Earth's motion to match that of the ether at one moment 

in time, it was not possible for the Earth to remain at rest with respect to the ether at all times, because of the variation 

in both the direction and the velocity of the motion. At any given point on the Earth's surface, the magnitude and 

direction of the wind would vary with time of day and season. By analyzing the return speed of light in different 

directions at various different times, it was thought to be possible to measure the motion of the Earth relative to the 

ether. The expected relative difference in the measured speed of light was quite small, given that the velocity of the 

Earth in its orbit around the Sun has a magnitude of about one hundredth of one percent of the speed of light [16]. 

Therefore, his goal of the experiment was to prove two issues: 

1 - To prove the existence of the medium called the ether so that the electromagnetic waves transmitted by it. 

2 - Prove the possibility of setting the velocity of the Earth for the sun. 

Michelson built the theoretical framework of the experiment on this example: so that two swimmers swim in one 

river; while one swims with the river back and forth, the other starts from the same point first and swims in the width 

of the river back and forth and cuts the same distance as the first cut it and the same Time and it became clear to him 

from the law of the collection of velocities that the two cannot return at the same time because the casual swim arrives 

first; that is also the light. Therefore, he believed that the time spent by the first swimmer is: 

                                                                         = 𝜷+ + 𝜷−  …………… .………                                         . .  

As for the period of time spent by the second swimmer so that it is perpendicular to the flow of the river (Fig №05) it 
will be: 

.                                                                             = .√ 𝜷 − …………… .……                                           … . .   
 Thus, the difference between the times for the longitudinal path and the transverse path, taking into account:  
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.                                                                 ≪ 𝜷 △ = − ≅ 𝜷 . ( 𝜷) ……… .…               …… . .  

In the case of Maxwell, the highest velocity of the Earth in its orbit is: = . . −  𝒂  = . . − ……… .…               …… . .  

This gives, for a length of: △ = . − . ……        … . …                              …… . .  

Michelson designed an entirely new and precise instrument that would enable him to measure the duration: the 

Michelson Interferometer. 

 

The difference of time between the return flow in the direction of the ether movement and in the orthogonal direction 

would therefore be: 

 △ = − ≅ 𝜷 . ( 𝜷) …        …… .…               ……    . .  

One of the waves propagating a little faster than the other, they would be slightly out of phase, which would 

manifest itself by a shift of the fringes of interference compared to the case where the Earth would be motionless. 

Unable to stop the Earth, Michelson's idea was to rotate his  interferometer while observing the fringes. The 

inversion of the role of the two arms of the interferometer therefore had to cease, at the level of the interference figure, 

a shift of the fringes due to the difference of the optical paths. How many fringes? 

= . 𝜷. △𝝀 ≅ . 𝝀 . 𝜷 ………   …… .… .…               …… . .  

Either for =    𝝀 =   a value of = .  

But he did not observe any movement of fringe!!!??? 

Joined by Morley [17], they enlarged the apparatus to the point of foreseeing a displacement of 4 fringes. Once 

again, they saw no fringe movement. This time the result was unambiguous: there was no detectable ether wind. 

The speed of light is not influenced by the motion of the Earth, as it is based on its conclusions. 

All experiments that have tried to measure the absolute motion of the Earth with respect to ether have failed. 

In principle, Michelson's idea is wonderful, but the conclusions related to this idea include several theoretical 

errors. If we try to examine previous conclusions, discuss the Michelson's idea, and look for errors in detail, we must 

discuss the assumptions of Michelson about what is true? What is wrong?  

For the idea of ethers, swimmers and the river: Michelson assumed that the swimmer who is swimming orthogonally 

with the river bank in case of going has two different velocities respectively [ 𝜷] and [√ 𝜷 − ], while the current 

is silent and while moving respectively. 

Let us ask: What if the absolute value of the flow velocity of the river is equal to the absolute value of the swimmer's 

velocity, that is: 
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{ = √ 𝜷 − 𝒂 𝜷 = } = …………… .…               …… . .  

That is, the velocity of the swimmer in the case of river flow is equal to zero, i.e. the swimmer will not move from its 

place, and this is strange.  

Let us ask again: What if the absolute value of the flow velocity of the river is greater than the absolute value of the 

swimmer's velocity, that is: { = √ 𝜷 − 𝒂 > 𝜷} = √−⏟ 𝓡 . √ − 𝜷 …… .…               …… . .  

That is, the swimmer's velocity value is not a real number, and we live a realistic experience, that means Michelson's 

wrong assumption. 

Also, for the swimmers to come and go, Michelson assumed in the case of the river's silent that the swimmers' 

departure was from a single point and their return was to a single point which is reasonable (see Fig №8, Fig №10). 

But if the current of the river is moving, Michelson assumed that the swimmers' departure was from a single point and 

their return was not to a single point, but rather their return to the river bank, which was unreasonable and unreliable. 

Again, What if we assume that in the case of the silence of the current of the river, where the second swimmer swims 

to the other bank with a deviation of the angle []. And go back to the same point where he began, passing the same 

swimming distance and the return of the first swimmer who swim in parallel with the first bank, and then analyze the 

situation again if the river is in a state of running. 

From this preliminary discussion, we see that the idea contains clear logical defects, so it must be free from logical 

defects and must be reformulated under logical conditions. 

This assumption was not put forward once in all the experiments that relied on  Michelson 's perceptions, and we 

can see the historical review of the experiment in this article [18], [19], that his critics did not address the question of 

the validity of his assumptions or not. With such criticisms, it is clear that Michelson adopted the theoretical 

framework of the experiment quickly, and did not pay attention, not once, to the possibility that he was mistaken in his 

assumptions after repeating his experience in 1887[17]. He repeated his assumptions in similar experiments, and the 

same with Morley and Miller [25],[26], Miller’s work alone [27], the experiments of Piccard and Stahel [31],[32],[33], 

the refinement of Kennedy [28], and Illingworth [30], the repetitions of Michelson et al. [34], up to Joos [35]. 

 Once again with Kennedy [29], he started with Thorndike a new class of experiments: a null-result in the M-M 

experiment was assumed, thus implying a length-contraction in the context of special theory of relativity, the objective 

was then to test the ensuing time-dilation and/or the isotropy of the space. There were no radical changes to the 

theoretical framework of the experiment except with Sagnac [36] who tried to prove the opposite of what Michelson 

had adopted, and tried to prove the existence of the medium called the ether, and the validity of the law of addition of 

velocities, which depend on the old classical view of Newton, and its content that the speed of light increases and 

decreases By changing reference frames inertia. 

From this analytical study, we will demonstrate that the results obtained by Michelson correspond exactly to the real 

reality, embodied by the results, which the waves that separated at the first point back to a single point at the same 

time.  Whether it is the first point for the Galilean reference where the earth is centered, or another point for the 

Galilean reference where the Sun is centered. 

  And to conclude that there is no delay between them, and this is contrary to what Michelson assumed. This is what 

we will interpret theoretically by the fixed collision law [F.E.C] that we get from the third chapter. 

Although we have discovered Michelson's errors in this preliminary discussion, how can we find the right solution 

to his assumptions? 

4.1 Discussion and comment on the Michelson idea ( part): 

In order to correct the mistakes in the idea of the river and the swimmers, it should be replaced by the following 

idea, which satisfies the conditions of going to and from the other river bank, in both cases, without contradicting one 

another as it was with the first. The following idea specifications are almost identical to the function of an 

interferometer. 
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We should use this experiment using the Fig №07. Consider a square ship which he named ((T)) of length d, 

situated on the river and installed in parallel with the banks of the river. 

Assume that the four researchers Copernicus, Galileo, Kepler and Newton agree to make measurements and 

record the experimental data from the surface of the square ship installed in parallel with the banks of the river. 

 Copernicus and Galileo agreed to walk back and forth on the edges of the square ship at the same velocity  𝜷, While 

Kepler remains constant at the head  E of the square ship ((T)). 

 
4.1.1 The   Case that the river's water is still and does not move. 

In the absence of the flow of the river water, this means that the value of the velocity of the square ship is equal to 

zero compared to Newton i.e. ⃗⃗ = ⃗⃗ , and therefore record the following information: Copernicus moves horizontally 

according to the equation that: 

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = {  
  𝜷. .                                        [ , 𝜷](− 𝜷. + . ).                  [ 𝜷 , .𝜷 ]……… .…               …… . .  

And Galileo moves vertically according to the equation that: 

𝑮⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = {  
  𝜷. .                                       [ , 𝜷](− 𝜷. + . ).                  [ 𝜷 , .𝜷 ]……… .…               …… . .  

Thus, the plane of the paths of the movement is the Fig №08: 

The conclusions of this case are as follows: Copernicus and Galileo move at the same velocity 𝜷 from the same point 

E, where the center of the reference frame  𝚺 ,  ,  , and they return to the same velocity 𝜷 at the same point E, 

and they move at the same distance  .  , and the dimensions of the square ship remain constant and equal to d. 

4.1.2 The    case that so the current of the river moves. 

In this case, the current or river water moves forward at constant velocity, as the square ship moves by the current, and 

Kepler imagines that Newton is moving horizontally on the bank opposite the current. Newton - represented by point 

S which is the center of the reference frame  𝚺 ,  ,  - moves horizontally relative to Kepler with the velocity 

vector   ⃗⃗ = − .  , contrary to a movement of Copernicus. And therefore record the following information: ⃗⃗⃗⃗  ⃗ = − . .           [ , .𝜷 ]………          …… .…               …… . .  



Abdelkader B. ZADEL 

 

 

18 

So:                        ⃗⃗ = 𝝏𝝏 ⃗⃗⃗⃗  ⃗ = − .  ………           …… .… .…               …… . .  

But, with using Chasles relation, we have that:  

{⃗⃗⃗⃗⃗⃗ ⃗⃗  ⃗ = ⃗⃗⃗⃗  ⃗ + ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝒂𝑮⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ⃗⃗⃗⃗  ⃗ + 𝑮⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ {⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − ⃗⃗⃗⃗  ⃗𝒂𝑮⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑮⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − ⃗⃗⃗⃗  ⃗ 
This means that:  

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = {  
  ( 𝜷 + ). .                                        [ , 𝜷][−( 𝜷 − ). + . ].                  [ 𝜷 , .𝜷 ]……… .…               …… . .  

And: 

𝑮⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = {  
  𝜷. .  +   . .                                     [ , 𝜷](− 𝜷. + . ).  +  . .               [ 𝜷 , .𝜷 ]……… .…               …… . .  

Therefore: 

⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝝏𝝏 ⃗⃗⃗⃗⃗⃗ ⃗⃗  ⃗ = {  
  +( 𝜷 + ).                  [ , 𝜷]−( 𝜷 − ).                  [ 𝜷 , .𝜷 ]……… .…               …… . .  

And: 

𝑮⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝝏𝝏 𝑮⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = {  
  𝜷.  +   .                             [ , 𝜷]− 𝜷.  +  .                     [ 𝜷 , .𝜷 ] ……… .…               …… . .  

This means that the absolute values of the velocity vectors are written as follows: 

‖⃗⃗⃗⃗ ⃗⃗  ⃗‖ = {  
  | 𝜷 + |                                     [ , 𝜷]| 𝜷 − |                                 [ 𝜷 , .𝜷 ]……… .…               …… . .  

And:  ‖ 𝑮⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ = √ 𝜷 + [ , .𝜷 ]        ……… .…               …… . .  

And the lengths of the paths of the movement are written as follows: 

, = {  
  | 𝜷 + |.                                    [ , 𝜷]| 𝜷 − |.                                 [ 𝜷 , .𝜷 ]……… .…               …… . .  

And: , 𝑮 = .𝜷  . √ 𝜷 + [ , .𝜷 ]               ……… .…               …… . .  

Thus, the plane of the paths of the movement is the Fig №09: 
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The conclusions of this case are as follows: 

Copernicus and Galileo move from the same point, and they return to the other point (a single point), but they move 

with the different vectors of velocities. 

By comparing the results obtained with the Michelson assumptions, we conclude the following: 

1-Michelson neglected the details of the study by relying on a single reference frame, from which he took false data, 

but the data changes from one reference frame to another. 

2- He also committed an error in assessing the velocity value, putting the value of √ 𝜷 −  (Fig №05) instead of  

‖ 𝑮⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ = √ 𝜷 +    (see Fig №06), and the latter is correct (4.32). So it is an illusion. 

3-The dimensions of the solids objects (square ship) remain constant and independent of the system changes 

References, stable or mobile. 

4-The paths of movement have changed each time the reference system has changed. This means that the measurement 

of the trajectory of the movement also changes (4.33), (4.34). 

5-The durations of the times of the movements remain constant and independent of the change of references of the 

system, that is to say:  

= | 𝜷 + |. 𝜷| 𝜷 + | + | 𝜷 − |.  𝜷| 𝜷 − | = 𝜷 + 𝜷 = . 𝜷……………               …… . .  

And:   

= 𝜷  . √ 𝜷 +√ 𝜷 +  + 𝜷  . √ 𝜷 +√ 𝜷 +  = 𝜷 + 𝜷 = . 𝜷… .… …                …… . .  

On the other hand, that is to say: = = . 𝜷  △ = − = …… .… .…… .…               …… . .  

This contrasts with Michelson's assumptions (4.14), (4.15), (4.16).   
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4.2 Discussion and comment on the Michelson idea ( part): 

 

So now we want to discuss the second and last part of Michelson's work. What is exactly, the result obtained from 

the device; he named the Michelson's interferometer. But how do we apply these laws to this experiment? When 

Michelson put the theoretical framework in which he concluded the flow of river water and swimmers, he go to 

practically applied to a machine designed for a fundamental purpose. 

 

The device which has been called the Michelson's interferometer consists of a beam splitter Sp separating a light 

beam in two, and two mirrors M1 and M2 placed at Equal distance d of the blade. The two reflected beams are 

recombined by the semi-reflecting plate Sp and their interference pattern is observed on a screen.  

From Fig №10 and Fig №11, we see that Michelson made another mistake, considering that the velocity vector for 

the motion of the earth is parallel to the sunlight beam, as it is in accordance with the first case. So it seems to the 

observer that the Earth is moving away from the sun, but the fact that the earth rotates around the velocity vector sun is 

also identical for the second case. But I want to study both cases using the laws already mentioned. In the analysis of 

the set of data in Fig №10 and Fig №11, we see that there are two movements of two distinct beams and after the 

separation of the two movements and plotted in the Fig №10 and №11, we note that each beam is exposed to a double 

reflection and I say to double collision. 

Initially, we look at the first case where Michelson based his experiment. And to recall once more that they do not 

coincide with the rotation of the earth on the sun, but it is a linear withdrawal movement (translation movement) of the 

Earth away from the Sun. 

To this point, we want to study the movement of the photon emitted by the sun in both cases that distinguish the 

movement of the Earth for the sun, and to begin first study for the Galilean reference where the sun center. 

4.2.1 The sun is the center of the reference system  

The sun is the center of our solar system, and its effect on the planets is clearly determined by the law of gravity. 

The influence of planets on the sun is negligible, and our assumption that it is the center of the reference frame remains 

intact in order to study the movement of any object within the solar system. And the photons resulting from the theory 

of the classical light version can be considered objects that are within the solar system, and focus on the movement of 

the photon, which emits from the sun towards the interferometer installed on the surface of earth. As the optical beam 

is divided into two parts as it reaches the separating mirror, we should assume that two photons are simultaneously 

launched and at the same speed from the sun, separated by the separator mirror. 

So we assume that the photons represented by the points ( ) and ( ) move according to this equation ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = . .  + .   
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, before separation when they arrive at the beam splitter Sp and continue to search for the rest of the equations of 

motion for the two points until they reach the line of the detector Det . 

Give the equations (4.38) and (4.39) respectively for the points ( ) and ( ) respectively, and we find them in both 

cases. ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = {⃗⃗ . + .  ⃗⃗⃗⃗  ⃗. + ⃗⃗⃗⃗ ⃗⃗⃗⃗  ⃗. + ⃗⃗⃗⃗       …
 [ , ] [ . ] [ . ] … . …               …….               …… . .  

And: 

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = {⃗⃗ . + .    ⃗⃗ ⃗⃗  ⃗. + ⃗⃗⃗⃗ 
 ⃗⃗ ⃗⃗  ⃗. + ⃗⃗⃗⃗       …

 [− 𝐂 , ] [ , ] [ . ] … … .…               …….         …… . .  

4.2.1.1 Such that the two vectors ⃗⃗  and �⃗⃗⃗⃗⃗�  are parallel (  Case): 

 

In this case where it corresponds to the motion of the Earth in relation to the sun as imagined by Michelson, the earth 

moves with a linear withdrawal movement, moving away from the sun according to this equation  (4.40).  ⃗⃗⃗⃗  ⃗ = . .  + .  … .……… .…               …… .…               …… . .  

 And with an interferometer installed on the surface of the earth, the components of an interferometer, including 

mirrors, move with the same velocity vector (4.41) as the earth speed vector.  �⃗⃗⃗⃗⃗�  = .  …… . . ……… .…               …… .…               …… . .  

Since we are only studying the movement in a two-dimensional Galilean reference, the mirrors or plates are rendered 

by projection as straight lines, and therefore their equations must be written. 

For the mirror M1 represented by the straight line (M1) whose beam of direction vector (⃗⃗ ⃗⃗  =  ), we also see that the 

point  . + + ,   belong to it, from which we conclude the following: 

⃗⃗ ⃗⃗ ⃗⃗  ⃗ ( − . − −− ) ⊥ ⃗⃗ ⃗⃗ ( ) − . − − . + − . =  

− . − − =  

Thus, the equation of the straight line  is written as follows: = { , ℝ / = + + . }……                              … … . .  

For the mirror M2 represented by the straight line (M2) whose beam of direction vector (⃗⃗ ⃗⃗  =  ), we also see that the 

point  ,   belong to it, from which we conclude the following: 

⃗⃗ ⃗⃗ ⃗⃗  ⃗ ( −− ) ⊥ ⃗⃗ ⃗⃗ ( ) − . + − . =  

− =  

Thus, the equation of the straight line (M2) is written as follows: = { , ℝ / = }………        . … . …               … … . .  

For the beam splitter Sp represented by the straight line (Sp) whose beam of direction vector  ⃗⃗ ⃗⃗  = √  −  , we also 

see that the point . + ,  belong to it, from which we conclude the following: 
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⃗⃗ ⃗⃗  ⃗ ( − . −− ) ⊥ ⃗⃗ ⃗⃗ ( 
 √−√ ) 

 − . − . √ − − . √ =  

− . − =  

Thus, the equation of the straight line (Sp) is written as follows: ( ) = { , ℝ / − . − = }……  …… .… .…               …… . .  

For the detector Det where the straight line (Det) whose beam of direction vector  ⃗⃗ ⃗⃗  =   , we also see that the point − ,  belong to it, from which we conclude the following: 

⃗⃗ ⃗⃗ ⃗⃗  ⃗ ( −+ ) ⊥ ⃗⃗ ⃗⃗ ( ) − . + + . =  

+ =  

Thus, the equation of the straight line (Sp) is written as follows: = { , ℝ / = − }……            . … . …               … … . .  

For the point  : 

From Fig №10, the beam of light is collided with the mirror M1 in the first collision, then it produces a light beam with 

a velocity vector ⃗⃗⃗⃗  ⃗.Thus, according to the proposition 4.1 or law of a fixed collision [F.E.C], the value of the vector 

is calculated as follows: ⃗⃗⃗⃗  ⃗ = ⃗⃗ − ⋅ ⟨⃗⃗ − �⃗⃗⃗⃗⃗� |⃗⃗ ⃗⃗  ⟩. ⃗⃗ ⃗⃗  ⃗⃗ − ⃗⃗⃗⃗  ⃗ = ⋅ ⟨⃗⃗ − �⃗⃗⃗⃗⃗� |⃗⃗ ⃗⃗  ⟩. ⃗⃗ ⃗⃗   
So, we have: ⃗⃗ − ⃗⃗⃗⃗  ⃗ = ⋅ .  − .  | .   ⃗⃗ − ⃗⃗⃗⃗  ⃗ = ⋅ − .  | .    ⃗⃗ − ⃗⃗⃗⃗  ⃗ = ⋅ − .  | ⏟= .   

⃗⃗ − ⃗⃗⃗⃗  ⃗ = ⋅ − .  …………         …… . . …               …… . .  

From this last equality (4.46) we conclude: ⃗⃗⃗⃗  ⃗ = ⃗⃗ − ⋅ ⟨⃗⃗ − �⃗⃗⃗⃗⃗� |⃗⃗ ⃗⃗  ⟩. ⃗⃗ ⃗⃗   ⃗⃗⃗⃗  ⃗ = .  − ⋅ − .   ⃗⃗⃗⃗  ⃗ = − − . .  …………… .… … … .… .…               …… . .  

After the first collision, the beam of light is last collision with the beam splitter Sp, then it produces a light beam with a 

velocity vector ⃗⃗⃗⃗  ⃗.Thus, to the proposition 4.1 or law of a fixed collision [F.E.C], the value of the vector ⃗⃗⃗⃗  ⃗ is 

calculated as follows: ⃗⃗⃗⃗  ⃗ = ⃗⃗⃗⃗  ⃗ − . ⟨⃗⃗⃗⃗  ⃗ − �⃗⃗⃗⃗⃗� |⃗⃗ ⃗⃗  ⟩ ⋅ ⃗⃗ ⃗⃗  ⃗⃗⃗⃗  ⃗ − ⃗⃗⃗⃗  ⃗ = . ⟨⃗⃗⃗⃗  ⃗ − �⃗⃗⃗⃗⃗� |⃗⃗ ⃗⃗  ⟩ ⋅ ⃗⃗ ⃗⃗   
So, we have: ⃗⃗⃗⃗  ⃗ − ⃗⃗⃗⃗  ⃗ = . ⟨− − . .  − .  | √  −  ⟩ ⋅ √  −   

⃗⃗⃗⃗  ⃗ − ⃗⃗⃗⃗  ⃗ = . √ ⋅ √⏟      = − − .  |  −   −   
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⃗⃗⃗⃗  ⃗ − ⃗⃗⃗⃗  ⃗ = − − .  |  −   −   ⃗⃗⃗⃗  ⃗ − ⃗⃗⃗⃗  ⃗ = − − . [  | ⏟= −  | ⏟= ]  −   

⃗⃗⃗⃗  ⃗ − ⃗⃗⃗⃗  ⃗ = − − .  −  ………… .… … .… .…               …… . .  

From this last equality (4.48) we conclude: ⃗⃗⃗⃗  ⃗ = ⃗⃗⃗⃗  ⃗ + − .  −   ⃗⃗⃗⃗  ⃗ = − − . .  + −  −   ⃗⃗⃗⃗  ⃗ = [− − . + − ].  − − .   ⃗⃗⃗⃗  ⃗ = .  − − .       ……                              ……        …… . .  

In order to set the coordinates of point ( ) in the interval [ , ], we have:  [ , ] / ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = ⃗⃗ . + .   ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = .  . + .   ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = . + .   
So: . + ,    [ , ] 
In order for point ( ) to belong to the straight line ( ) so that its equation (4.42) should be: ∃ [ , ] / . + = + + .  

= − ………… .…….     … … . … . …               … … . .  

Hence, if they:  [ , ]⋂[ . ] ⃗⃗ . + .   = ⃗⃗⃗⃗  ⃗. + ⃗⃗⃗⃗  ⃗⃗⃗⃗ = (⃗⃗ − ⃗⃗⃗⃗  ⃗). + .   
Using the result (4.46), we have: 

⃗⃗⃗⃗ = ⋅ − . − .  + .   ⃗⃗⃗⃗ = . +   
Otherwise, if:   [ . ] ∖ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = ⃗⃗⃗⃗ . + ⃗⃗⃗⃗  ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = − − . .  . + . + .   ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = [− − . . + . + ].   
So: − − . . + . + ,    [ . ] 
Again, In order for point ( ) to belong to the straight line ( ) so that its equation (4.44) should be: 
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∃ [ . ] / { = − − . . + . +=− . − =  

{ = − − . . + . +𝒂= . +  

. + − (− − . . + . + ) =  . + − . = . . − = .  

= .− ……    ……….      … … . …    . …               … … . .  

Hence, if they:  [ . ]⋂[ . ] ⃗⃗⃗⃗  ⃗. + ⃗⃗⃗⃗ = ⃗⃗⃗⃗  ⃗. + ⃗⃗⃗⃗   ⃗⃗⃗⃗ = (⃗⃗⃗⃗  ⃗ − ⃗⃗⃗⃗  ⃗). + ⃗⃗⃗⃗  
Using the result (4.48), we have: 

⃗⃗⃗⃗ = − − .  −  . . − + . +   ⃗⃗⃗⃗ = − . .  −  + . +   ⃗⃗⃗⃗ = .  + . .   
Also, order to set the coordinates of point ( ) in the interval [ . ], we have:  [ . ] / ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = ⃗⃗⃗⃗  ⃗. + ⃗⃗⃗⃗  ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = .  − − .  . + .  + . .   ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = . + .  + [ . − − . ].   
So: . + , . − − .    [ . ] 
Finally, in order for point ( ) to belong to the straight line ( ) so that its equation (4.45) should be: 

∃ [ . ] / { = . − − .= −  

. − − . = − − . = . +  

= . +− ………    … …….      … … .… .…               …… . .  

For the point  : 

In the same way, the beam of light is collided in the first collision with the beam splitter Sp, from the Fig №11, then it 

produces a light beam with a velocity vector   ⃗⃗ ⃗⃗  ⃗.Thus, to the proposition 4.1 or law of a fixed collision [F.E.C], the 

value of the vector is calculated as follows: 

 ⃗⃗ ⃗⃗  ⃗ = ⃗⃗ − . ⟨⃗⃗ − �⃗⃗⃗⃗⃗� |⃗⃗ ⃗⃗  ⟩ ⋅ ⃗⃗ ⃗⃗  ⃗⃗ −  ⃗⃗ ⃗⃗  ⃗ = . ⟨⃗⃗ − �⃗⃗⃗⃗⃗� |⃗⃗ ⃗⃗  ⟩ ⋅ ⃗⃗ ⃗⃗   
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So: ⃗⃗ −  ⃗⃗ ⃗⃗  ⃗ = . ⟨ .  − .  | √  −  ⟩ ⋅ √  −   

⃗⃗ −  ⃗⃗ ⃗⃗  ⃗ = . √ ⋅ √⏟      = − .  | −   −   

⃗⃗ −  ⃗⃗ ⃗⃗  ⃗ = − . [  | ⏟= −  | ⏟= ]  −   

⃗⃗ −  ⃗⃗ ⃗⃗  ⃗ = − .  −  …… .…                                             …… . .  

From this last equality (4.53), we conclude: 

 ⃗⃗ ⃗⃗  ⃗ = ⃗⃗ − − .  −   

 ⃗⃗ ⃗⃗  ⃗ = .  − − .  −   

 ⃗⃗ ⃗⃗  ⃗ = [ − − ].  + − .   
 ⃗⃗ ⃗⃗  ⃗ = .  + − .  ………… .… … … .… .…               …… . .  

After the first collision, the beam of light is last collision with the mirror M1, then it produces a light beam with a 

velocity vector  ⃗⃗⃗⃗⃗⃗ . Thus, to the proposition 4.1 or law of a fixed collision [F.E.C], the value of the vector  ⃗⃗⃗⃗⃗⃗    is 

calculated as follows: 

 ⃗⃗ ⃗⃗  ⃗ =  ⃗⃗ ⃗⃗  ⃗ − . ⟨  ⃗⃗ ⃗⃗  ⃗ − �⃗⃗⃗⃗⃗� |⃗⃗ ⃗⃗  ⟩ ⋅ ⃗⃗ ⃗⃗   ⃗⃗ ⃗⃗  ⃗ −  ⃗⃗ ⃗⃗  ⃗ = . ⟨  ⃗⃗ ⃗⃗  ⃗ − �⃗⃗⃗⃗⃗� |⃗⃗ ⃗⃗  ⟩ ⋅ ⃗⃗ ⃗⃗   
So: 

 ⃗⃗ ⃗⃗  ⃗ −  ⃗⃗ ⃗⃗  ⃗ = . .  + − .  − .  | ⋅   
 ⃗⃗ ⃗⃗  ⃗ −  ⃗⃗ ⃗⃗  ⃗ = . − .  | ⋅   
 ⃗⃗ ⃗⃗  ⃗ −  ⃗⃗ ⃗⃗  ⃗ = . − .  | ⏟= ⋅   

 ⃗⃗ ⃗⃗  ⃗ −  ⃗⃗ ⃗⃗  ⃗ = . − ⋅  ……    …… .…                              …… . .  

From this last equality (4.55), we conclude: 

 ⃗⃗ ⃗⃗  ⃗ =  ⃗⃗ ⃗⃗  ⃗ − . − ⋅   
 ⃗⃗ ⃗⃗  ⃗ = .  + − .  − . − ⋅   

 ⃗⃗ ⃗⃗  ⃗ = .  − − ⋅       ……                              ……        …… . .  

Hence, if they:  [− 𝐂 , ]⋂[ , ] ∖ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = . .  + .  =  ⃗⃗⃗⃗⃗⃗ . + ⃗⃗⃗⃗  ⃗⃗⃗⃗ = .   
In order to set the coordinates of point ( ) in the interval [ , ], we have:  [ , ] / ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = .  + − .  . + .   ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = . + .  + − . .   
So: 
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. + , . − .    [ , ] 
In order for point ( ) to belong to the straight line ( ) so that its equation (4.43) should be: 

∃ [ , ] / { = − .𝒂=  

− . =  

= − …          … … . …                                         … … . .  

Hence, if:  [ , ]⋂[ . ]  ⃗⃗⃗⃗⃗⃗ . + ⃗⃗⃗⃗ =  ⃗⃗⃗⃗⃗⃗ . + ⃗⃗⃗⃗   ⃗⃗⃗⃗ =  ⃗⃗⃗⃗⃗⃗ −  ⃗⃗⃗⃗⃗⃗ . + ⃗⃗⃗⃗  
Using the result (4.55), we have: ⃗⃗⃗⃗ = . − ⋅  . − + .   ⃗⃗⃗⃗ = . ⋅  . + .   
Otherwise, if:   [ . ] / ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  ⃗⃗⃗⃗⃗⃗ . + ⃗⃗⃗⃗  ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = .  − − ⋅  . + . ⋅  . + .   ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = . + .  + . − − ⋅ .   
So: . + , . − − ⋅    [ . ] 
Finally, in order for point ( ) to belong to the straight line ( ) so that its equation (4.45) should be: 

∃ [ . ] / { = . − − ⋅𝒂= −  

− = . − − ⋅  − . = . +  

= . +− …     … …    . …        .                               … … . .  

Now that we have finished studying the movement of points ( ) and ( ), which represent the photons emitted 

from the sun, from their separation at the beam splitter SP and their return to the detector Det we conclude that the 

points ( ) and ( ), reach the detector Det with the same velocity vector (4.49), (4.56), and the same period of time 

(4.52), (4.56), which means that they reach together at the same time. This is contrary to what Michelson assumed 

(4.16). 
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 4.2.1.2 Such that vectors ⃗⃗  and �⃗⃗⃗⃗⃗�  are orthogonal (  Case): 

 

In this case, unlike Michelson, although it is more correct, the rotation of the earth on the sun, through which the 

transverse velocity vector (�⃗⃗⃗⃗⃗� ) becomes perpendicular to the velocity vector  ⃗⃗ = .    of the photon, emitted from the 

sun. And considering that the motion of the Earth for the Sun is not straight linear, but for a very short period of time 

that the photon moves within the interferometer, we can consider the motion of the Earth for the Sun linear for that 

short period of time, and its velocity vector is orthogonal with the velocity vector of the photon. In this very short 

period, we can see that the earth moves within this equation (4.59). ⃗⃗⃗⃗  ⃗ = . .  + .  …… .… …… .… …… .…                 …… . .  

So, all the elements of the interferometer installed on the earth's surface, including the mirrors and the detector move 

with the same velocity vector (4.60), for the sun-centered Galilean reference. �⃗⃗⃗⃗⃗� = .  …… .… ………… .… …… .…                 …… . .  

Again, since we are only studying the movement in a two-dimensional Galilean reference, the mirrors or plates are 

rendered by projection as straight lines, and therefore their equations must be written. 

For the mirror M1 represented by the straight line (M1) whose beam of direction vector (⃗⃗ ⃗⃗  =  ), we also see that the 

point  + ,   belong to it, from which we conclude the following: 

⃗⃗ ⃗⃗ ⃗⃗  ⃗ ( − −− ) ⊥ ⃗⃗ ⃗⃗ ( ) − − . + − . =  

− − =  

Thus, the equation of the straight line  is written as follows: = { , ℝ / = + }…….     … …… . …                 … … . .  

For the mirror M2 represented by the straight line (M2) whose beam of direction vector (⃗⃗ ⃗⃗  =  ), we also see that the 

point  , . +   belong to it, from which we conclude the following: 

⃗⃗ ⃗⃗ ⃗⃗  ⃗ −− . − ⊥ ⃗⃗⃗⃗ ( ) − . + − . − . =  

− . − =  

Thus, the equation of the straight line (M2) is written as follows: = { , ℝ / = . + }………… . …      . …               … … . .  

For the beam splitter Sp represented by the straight line (Sp) whose beam of direction vector  ⃗⃗ ⃗⃗  = √  −  , (we also 

see that the point , .  belong to it, from which we conclude the following: 

⃗⃗ ⃗⃗  ⃗ ( −− . ) ⊥ ⃗⃗ ⃗⃗ ( 
 √−√ ) 

 − .√ − − . . √ =  

− = − .  

Thus, the equation of the straight line (Sp) is written as follows: ( 𝐩) = { , ℝ / − = − . }……    …… . …  …               … … . .  
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For the detector Det where the straight line (Det) whose beam of direction vector  ⃗⃗ ⃗⃗  =   , we also see that the point , . −  belong to it, from which we conclude the following: 

⃗⃗ ⃗⃗ ⃗⃗  ⃗ ( −− . + ) ⊥ ⃗⃗⃗⃗ ( ) − . + − . + . =  

− . + =  

Thus, the equation of the straight line (Sp) is written as follows: = { , ℝ / = . − }                … … …… . …          … … . .  

For the point : 

From Fig №10, the beam of light is collided with the mirror M1 in the first collision, then it produces a light beam 

with a velocity vector ⃗⃗⃗⃗  ⃗.Thus, according to the proposition 4.1 or law of a fixed collision [F.E.C], the value of the 

vector is calculated as follows: ⃗⃗⃗⃗  ⃗ = ⃗⃗ − ⋅ ⟨⃗⃗ − �⃗⃗⃗⃗⃗� |⃗⃗ ⃗⃗  ⟩. ⃗⃗ ⃗⃗  ⃗⃗ − ⃗⃗⃗⃗  ⃗ = ⋅ ⟨⃗⃗ − �⃗⃗⃗⃗⃗� |⃗⃗ ⃗⃗  ⟩. ⃗⃗ ⃗⃗   
So: ⃗⃗ − ⃗⃗⃗⃗  ⃗ = ⋅ .  − .  | .   ⃗⃗ − ⃗⃗⃗⃗  ⃗ = ⋅ [ .  | ⏟= − 𝑣.  | ⏟= ] .   

⃗⃗ − ⃗⃗⃗⃗  ⃗ = ⋅ .      …… .……… .…                            …… . .  

From this last equality (4.65), we conclude: ⃗⃗⃗⃗  ⃗ = ⃗⃗ − ⋅ .   ⃗⃗⃗⃗  ⃗ = .  − ⋅ .   ⃗⃗⃗⃗  ⃗ = − .  ……………… .… .… .…                             …… . .  

After the first collision, the beam of light is last collision with the beam splitter Sp, then it produces a light beam with a 

velocity vector ⃗⃗⃗⃗  ⃗.Thus, to the proposition 4.1 or law of a fixed collision [F.E.C], the value of the vector ⃗⃗⃗⃗  ⃗ is 

calculated as follows: ⃗⃗⃗⃗  ⃗ = ⃗⃗⃗⃗  ⃗ − . ⟨⃗⃗⃗⃗  ⃗ − �⃗⃗⃗⃗⃗� |⃗⃗ ⃗⃗  ⟩ ⋅ ⃗⃗ ⃗⃗  ⃗⃗⃗⃗  ⃗ − ⃗⃗⃗⃗  ⃗ = . ⟨⃗⃗⃗⃗  ⃗ − �⃗⃗⃗⃗⃗� |⃗⃗ ⃗⃗  ⟩ ⋅ ⃗⃗ ⃗⃗   
So:  ⃗⃗⃗⃗  ⃗ − ⃗⃗⃗⃗  ⃗ = . ⟨− .  − .  | √  −  ⟩ ⋅ √  −   

⃗⃗⃗⃗  ⃗ − ⃗⃗⃗⃗  ⃗ = . √ ⋅ √⏟      = − .  − .  | −   −   

⃗⃗⃗⃗  ⃗ − ⃗⃗⃗⃗  ⃗ = [− .  | ⏟= + .  | ⏟= ]  −   

⃗⃗⃗⃗  ⃗ − ⃗⃗⃗⃗  ⃗ = − −  −           …… .……                           …… . .  

From this last equality (4.67), we conclude: ⃗⃗⃗⃗  ⃗ = ⃗⃗⃗⃗  ⃗ + −  −   ⃗⃗⃗⃗  ⃗ = − .  + −  −   ⃗⃗⃗⃗  ⃗ = [− + − ].  − − .   ⃗⃗⃗⃗  ⃗ = − .  − − .       …….                           ……        …… . .  
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Again, if:    [ , ] / ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = ⃗⃗ . + .   ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = .  . + .  ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = . + .   
So: . + ,    [ , ] 
In order for point ( ) to belong to the straight line ( ) so that its equation (4.61) should be: ∃ [ , ] / . + = +  

= ………… .…                                               …… . .  

Hence, if:  [ , ]⋂[ . ] ⃗⃗ . + .   = ⃗⃗⃗⃗  ⃗. + ⃗⃗⃗⃗  ⃗⃗⃗⃗ = (⃗⃗ − ⃗⃗⃗⃗  ⃗). + .   
Using the result (4.65), we have: 

⃗⃗⃗⃗ = ⋅ .  . + .  ⃗⃗⃗⃗ = . +   
Otherwise, if:   [ . ] / ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = ⃗⃗⃗⃗  ⃗. + ⃗⃗⃗⃗  ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = − . .  + . + .  ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = (− . + . + ).   
So: − . + . + ,    [ . ] 
Again, in order for point ( ) to belong to the straight line ( ) so that its equation (4.63) should be: 

∃ [ . ] / { = − . + . +=− = − .  

{ = − . + . +𝒂= − . +  

− . + − [− . + . + ] = . − = .  

= .− …… .…  …… .…                                      …… . .  

Hence, if:  [ . ]⋂[ . ] ⃗⃗⃗⃗  ⃗. + ⃗⃗⃗⃗ = ⃗⃗⃗⃗  ⃗. + ⃗⃗⃗⃗   ⃗⃗⃗⃗ = (⃗⃗⃗⃗  ⃗ − ⃗⃗⃗⃗  ⃗). + ⃗⃗⃗⃗  
Using the result (4.67), we have: ⃗⃗⃗⃗ = − −  −  . .− + . +   

⃗⃗⃗⃗ = − . .  −  + . +   
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⃗⃗⃗⃗ = .  + . .   
Otherwise, if: [ . ] / ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = ⃗⃗⃗⃗  ⃗. + ⃗⃗⃗⃗  ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = [− .  − − .  ]. + .  + . .   ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = − . + .  + [ . − − . ].   
So: − . + , . − − .    [ . ] 
Finally, in order for point ( ) to belong to the straight line ( ) so that its equation (4.64) should be:: 

∃ [ . ] / { = . − − .= − + .  

. − − . = − + .  . + = − . + . . + = .  

= . + ………… .…                                            …… . .  

For the point  : 

In the same way, the beam of light is collided in the first collision with the beam splitter Sp, from the Fig №11, then 

it produces a light beam with a velocity vector   ⃗⃗ ⃗⃗  ⃗. Thus, to the proposition 4.1 or law of a fixed collision [F.E.C], the 

value of the vector is calculated as follows: 

 ⃗⃗ ⃗⃗  ⃗ = ⃗⃗ − . ⟨⃗⃗ − �⃗⃗⃗⃗⃗� |⃗⃗ ⃗⃗  ⟩ ⋅ ⃗⃗ ⃗⃗  ⃗⃗ −  ⃗⃗ ⃗⃗  ⃗ = . ⟨⃗⃗ − �⃗⃗⃗⃗⃗� |⃗⃗ ⃗⃗  ⟩ ⋅ ⃗⃗ ⃗⃗   
So: ⃗⃗ −  ⃗⃗ ⃗⃗  ⃗ = . ⟨ .  − .  | √  −  ⟩ ⋅ √  −   

⃗⃗ −  ⃗⃗ ⃗⃗  ⃗ = . √ ⋅ √⏟      = .  − .  | −   −   

⃗⃗ −  ⃗⃗ ⃗⃗  ⃗ = [ .  | ⏟= + .  | ⏟= ]  −   

⃗⃗ −  ⃗⃗ ⃗⃗  ⃗ = +  −    …… .…                                          …… . .  

From this last equality (4.72) we conclude:  

 ⃗⃗ ⃗⃗  ⃗ = ⃗⃗ − +  −   ⃗⃗ ⃗⃗  ⃗ = .  − +  −   

 ⃗⃗ ⃗⃗  ⃗ = − .  + +  ……  …… .… ….               ……………… . .  

After the first collision, the beam of light is last collision with the mirror M1, then it produces a light beam with a 

velocity vector  ⃗⃗ ⃗⃗  ⃗. Thus, to the proposition 4.1 or law of a fixed collision [F.E.C], the value of the vector  ⃗⃗ ⃗⃗  ⃗   is 

calculated as follows: 

 ⃗⃗ ⃗⃗  ⃗ =  ⃗⃗ ⃗⃗  ⃗ − . ⟨  ⃗⃗ ⃗⃗  ⃗ − �⃗⃗⃗⃗⃗� |⃗⃗ ⃗⃗  ⟩ ⋅ ⃗⃗ ⃗⃗   ⃗⃗ ⃗⃗  ⃗ −  ⃗⃗ ⃗⃗  ⃗ = . ⟨  ⃗⃗ ⃗⃗  ⃗ − �⃗⃗⃗⃗⃗� |⃗⃗ ⃗⃗  ⟩ ⋅ ⃗⃗ ⃗⃗   
So: 

 ⃗⃗ ⃗⃗  ⃗ −  ⃗⃗ ⃗⃗  ⃗ = . − .  + +  − .  | ⋅   
 ⃗⃗ ⃗⃗  ⃗ =  ⃗⃗ ⃗⃗  ⃗ − . − .  + +  − .  | ⋅   
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 ⃗⃗ ⃗⃗  ⃗ −  ⃗⃗ ⃗⃗  ⃗ = . − .  + .  | ⋅   
 ⃗⃗ ⃗⃗  ⃗ −  ⃗⃗ ⃗⃗  ⃗ = . [−  | ⏟= + .  | ⏟= ] ⋅   

 ⃗⃗ ⃗⃗  ⃗ −  ⃗⃗ ⃗⃗  ⃗ = . .        ……… .…                          …             …… . .  

From this last equality (4.74), we conclude: 

 ⃗⃗ ⃗⃗  ⃗ =  ⃗⃗ ⃗⃗  ⃗ − . .   ⃗⃗ ⃗⃗  ⃗ = − .  + +  − . .   
 ⃗⃗ ⃗⃗  ⃗ = − .  − − .       …                              ……        …… . .  

Thus, if: [− 𝐂 , ]⋂[ , ] / ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = . .  + .  =  ⃗⃗ ⃗⃗  ⃗. + ⃗⃗⃗⃗  
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = . .  + .  =  ⃗⃗ ⃗⃗  ⃗. + ⃗⃗⃗⃗  ⃗⃗⃗⃗ = .   

On the other hand, if:  [ , ] / ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  ⃗⃗ ⃗⃗  ⃗. + ⃗⃗⃗⃗  ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − .  + +  . + .   ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = − . + .  + + . .   
So: − . + , + .    [ , ] 
In order for point ( ) to belong to the straight line ( ) so that its equation (4.62) should be: 

∃ [ , ] ∖ { = + .𝒂= + .  

+ . = + . . =  

= …… .… …… .…                                           …… . .  

Hence, if:  [ , ]⋂[ . ]  ⃗⃗ ⃗⃗  ⃗. + ⃗⃗⃗⃗ =  ⃗⃗ ⃗⃗  ⃗. + ⃗⃗⃗⃗   ⃗⃗⃗⃗ =  ⃗⃗ ⃗⃗  ⃗ −  ⃗⃗ ⃗⃗  ⃗ . + ⃗⃗⃗⃗  
From this last equality (4.74), we conclude:  ⃗⃗⃗⃗ = . . .  + .  ⃗⃗⃗⃗ = . ⋅  + .   
On the other hand, if: [ . ] / ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  ⃗⃗ ⃗⃗  ⃗. + ⃗⃗⃗⃗  ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = − .  − − .  . + . ⋅  + .   
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⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = − . + .  + . − − ⋅ .   
So: − . + , . − − ⋅    [ . ] 
Finally, in order for point ( ) to belong to the straight line ( ) so that its equation (4.64) should be: 

∃ [ . ] / { = . − − ⋅𝒂= − + .  

− + . = . − − ⋅  − ⋅ + . = . +  . = . +  

= . + ……… .…              ….                           …… . .  

Again, in this case, which exemplifies exactly the Michelson experiment, after studying the movement of points 

( ) and ( ), which represent the photons emitted from the sun, from their separation at the beam splitter SP and 

their return to meet at the detector Det. Data obtained that points ( ) and ( ) reach the detector Det with the same 

velocity vector (4.68), (4.75), and the same time period (4.71), (4.77), that means that they reach together at the same 

moment Time, and there is no delay between them. This is contrary to what Michelson once again assumed (4.16). 

 

4.2.2 The earth is the center of the reference system  

 

We have studied the case 4.2.1 and in each of the two states in which the earth moves, where the Galilean reference 

is centered on the sun, and we follow how the points ( ) and ( ) representing the photons emitted from the sun 

reached to the detector at the same time and the same vector velocity, and we found that there was no delay between 

them, contrary to what Michelson assumed. 

Now in this case where the Earth is the center of the Galilean reference, we will study the movement of the points 

( ) and ( ) that represent the photons emitted from the sun or any other source. In my opinion, this subsequent 

study clearly reflects the results obtained by Michelson. 

Thus we assume that the movement of the two points ( ) and ( ) are reflected in the equations (4.78) and (4.79), 

and then we assign the unknown values. 

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = { ∞⃗⃗ ⃗⃗  ⃗.     [ , ],⃗⃗ ⃗⃗ ⃗⃗  ⃗. + ⃗⃗⃗⃗      [ . ],⃗⃗ ⃗⃗ ⃗⃗  ⃗. + ⃗⃗⃗⃗      [ . ]      …… .…                          …… . .  

 And 

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = { 
 ∞⃗⃗ ⃗⃗  ⃗.      [− , ],⃗⃗ ⃗⃗ ⃗⃗  ⃗. + ⃗⃗⃗⃗      [ , ]

,⃗⃗ ⃗⃗ ⃗⃗  ⃗. + ⃗⃗⃗⃗      [ . ]     …… .…                          …… . .  

Again, since we are only studying the movement in a two-dimensional Galilean reference, the mirrors or plates are 

rendered by projection as straight lines, and therefore their equations must be written. 

For the mirror M1 represented by the straight line (M1) whose beam of direction vector (⃗⃗ ⃗⃗  =  ), we also see that the 

point  ,   belong to it, from which we conclude the following: 
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⃗⃗ ⃗⃗ ⃗⃗  ⃗ ( −− ) ⊥ ⃗⃗ ⃗⃗ ( ) − . + − . =  

− =  

Thus, the equation of the straight line  is written as follows: = { , ℝ / = }         … … . …                             … … . .  

For the mirror M2 represented by the straight line (M2) whose beam of direction vector (⃗⃗ ⃗⃗  =  ), we also see that the 

point  ,   belong to it, from which we conclude the following: 

⃗⃗ ⃗⃗ ⃗⃗  ⃗ −− ⊥ ⃗⃗ ⃗⃗ ( ) − . + − . =  

− =  

Thus, the equation of the straight line (M2) is written as follows: = { , ℝ / = }              … … . …                       … … . .  

For the beam splitter Sp represented by the straight line (Sp) whose beam of direction vector  ⃗⃗ ⃗⃗  = √  −  , we also 

see that the point ,  belong to it, from which we conclude the following: 

⃗⃗ ⃗⃗  ⃗ ( −− ) ⊥ ⃗⃗ ⃗⃗ ( 
 √−√ ) 

 − .√ − − . √ =  

=  

Thus, the equation of the straight line (Sp) is written as follows: = { , ℝ / = }                 …… .…                        …… . .  

For the detector Det where the straight line (Det) whose beam of direction vector  ⃗⃗ ⃗⃗  =   , we also see that the point ,−   belong to it, from which we conclude the following: 

⃗⃗ ⃗⃗ ⃗⃗  ⃗ ( −+ ) ⊥ ⃗⃗ ⃗⃗ ( ) − . + + . =  

+ =  

Thus, the equation of the straight line (Det) is written as follows: = { , ℝ / = − }                      … …     … … . …          . .  

By assuming that the earth is the center of the reference system, this means that the velocity vector of the 

interferometer installed on the surface of the earth is a zero-vector (�⃗⃗⃗⃗�  ⃗ = ⃗⃗ ), and that all components of the device 

remain constant including mirrors and detectors. And assume that the photons emitted from the sun moving according 

to the velocity vector: ∞⃗⃗ ⃗⃗  ⃗ = ∞ 𝜽 .  + 𝜽 .                 ……                           …… . .  

For the point  : 

From Fig №10, the beam of light is collided with the mirror M1 in the first collision, then it produces a light beam 

with a velocity vector ,⃗⃗ ⃗⃗ ⃗⃗  ⃗. Thus, according to the proposition 4.1 or law of a fixed collision [F.E.C], the value of the 

vector is calculated as follows: 
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,⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ∞⃗⃗ ⃗⃗  ⃗ −  ⟨ ∞⃗⃗ ⃗⃗  ⃗ − �⃗⃗⃗⃗⃗� |⃗⃗ ⃗⃗  ⟩. ⃗⃗ ⃗⃗  ∞⃗⃗ ⃗⃗  ⃗ − ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  ⟨ ∞⃗⃗ ⃗⃗  ⃗ − �⃗⃗⃗⃗⃗� |⃗⃗ ⃗⃗  ⟩. ⃗⃗ ⃗⃗   
So: ∞⃗⃗ ⃗⃗  ⃗ − ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ∞ 𝜽 .  + 𝜽 .  | .   

∞⃗⃗ ⃗⃗  ⃗ − ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ = . ∞. 𝜽 .  + 𝜽 .  | .   
∞⃗⃗ ⃗⃗  ⃗ − ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ = . ∞. [ 𝜽 .  | ⏟= + 𝜽 .  | ⏟= ] .   

∞⃗⃗ ⃗⃗  ⃗ − ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  . ∞. 𝜽 .            …… .…      …… .…            …… . .  

From this last equality (4.85), we conclude: ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ∞⃗⃗ ⃗⃗  ⃗ − ⟨ ∞⃗⃗ ⃗⃗  ⃗ − �⃗⃗⃗⃗⃗� |⃗⃗ ⃗⃗  ⟩. ⃗⃗ ⃗⃗  ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ∞⃗⃗ ⃗⃗  ⃗ − . ∞. 𝜽 .   
,⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ∞ 𝜽 .  + 𝜽 .  − . ∞. 𝜽 .   

,⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ∞ − 𝜽 .  + 𝜽 .          . …      …… .…            …… . .  

After the first collision, the beam of light is last collision with the beam splitter Sp, then it produces a light beam with a 

velocity vector ((⃗⃗⃗⃗  ⃗)).Thus, to the proposition 4.1 or law of a fixed collision [F.E.C], the value of the vector ⃗⃗⃗⃗  ⃗   is 

calculated as follows: ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ −  ⟨ ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ − �⃗⃗⃗⃗⃗� |⃗⃗ ⃗⃗  ⟩. ⃗⃗ ⃗⃗  ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ − ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  ⟨ ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ − �⃗⃗⃗⃗⃗� |⃗⃗ ⃗⃗  ⟩. ⃗⃗ ⃗⃗   
So:   

,⃗⃗ ⃗⃗ ⃗⃗  ⃗ − ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ = . ⟨ ∞ − 𝜽 .  + 𝜽 .  −  ⃗| √  −  ⟩ . √  −   

,⃗⃗ ⃗⃗ ⃗⃗  ⃗ − ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ = . √ . √⏟      = . ∞ − 𝜽 .  + 𝜽 .  | −  .  −   

,⃗⃗ ⃗⃗ ⃗⃗  ⃗ − ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ∞. [− 𝜽 .  | ⏟= − 𝜽 .  | ⏟= ] .  −   

,⃗⃗ ⃗⃗ ⃗⃗  ⃗ − ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ = − ∞. 𝜽 + 𝜽 .  −          …… .…                   …… . .  

From this last equality (4.87), we conclude: ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ + ∞. 𝜽 + 𝜽 .  −   

,⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ∞ − 𝜽 .  + 𝜽 .  + ∞. 𝜽 + 𝜽 .  −   

,⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ∞[− 𝜽 .  + 𝜽 + 𝜽 .  + 𝜽 .  − 𝜽 + 𝜽 .  ] 
,⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ∞. 𝜽 .  − 𝜽 .       …                         ……        …… . .  

Furthermore, point ( ) is characterized by coordinates in the interval [ , ]: ∞. . 𝜽 , ∞. . 𝜽    [ , ] 
In order for point ( ) to belong to the straight line ( ) so that its equation (4.80) should be: ∃ [ , ] / ∞. . 𝜽 =  

= ∞. 𝜽      …… .…              ….                          …… . .  
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Otherwise, if:  [ , ]⋂[ . ] ∞⃗⃗ ⃗⃗  ⃗. = ,⃗⃗ ⃗⃗ ⃗⃗  ⃗. + ⃗⃗⃗⃗  ⃗⃗⃗⃗ = ( ∞⃗⃗ ⃗⃗  ⃗ − ,⃗⃗ ⃗⃗ ⃗⃗  ⃗) 
Using the result (4.85), we have: 

⃗⃗⃗⃗ = ∞. 𝜽 . ∞. 𝜽 .   

⃗⃗⃗⃗ = . .   
Otherwise, if:   [ . ] / ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = ,⃗⃗ ⃗⃗ ⃗⃗  ⃗. + ⃗⃗⃗⃗  ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = ∞ − 𝜽 .  + 𝜽 .  + . .   ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = − 𝜽 . ∞. + . .  + ∞. 𝜽 .   
So: − 𝜽 . ∞. + . , 𝜽 . ∞.     [ , ] 
Again, in order for point ( ) to belong to the straight line ( ) so that its equation (4.82) should be: ( ) ∃ [ , ] / − 𝜽 . ∞. + . = 𝜽 . ∞.  . = 𝜽 . ∞. + 𝜽 . ∞. . = . ∞. 𝜽 + 𝜽  

= .∞. 𝜽 + 𝜽      …     …… .…                             …… . .  

Well, on the other hand, if:  [ . ]⋂[ . ] ,⃗⃗ ⃗⃗ ⃗⃗  ⃗. + ⃗⃗⃗⃗ = ,⃗⃗ ⃗⃗ ⃗⃗  ⃗. + ⃗⃗⃗⃗  ⃗⃗⃗⃗ = . ( ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ − ,⃗⃗ ⃗⃗ ⃗⃗  ⃗) + ⃗⃗⃗⃗  
Using the result (4.87), we have: ⃗⃗⃗⃗ = − ∞. 𝜽 + 𝜽 . ∞. 𝜽 + 𝜽 .  −  + . .   

⃗⃗⃗⃗ = − . .  −  . + . .   ⃗⃗⃗⃗ = . .   
Otherwise, if:  [ . ] / ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = ,⃗⃗ ⃗⃗ ⃗⃗  ⃗. + ⃗⃗⃗⃗    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = ∞. 𝜽 .  − 𝜽 .  . +  . .   ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = ∞. 𝜽 . .  + . − ∞. 𝜽 . .     
So: 

∞. 𝜽 . , . − ∞. 𝜽 .     [ , ] 
Finally, in order for point ( ) to belong to the straight line ( ) so that its equation (4.83) should be: 
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∃ [ , ] / . − ∞. 𝜽 . = −  

∞. 𝜽 . = . +  

Lastly, we find: 

= . +∞. 𝜽     …… .…                 …… .…             …… . .  

For the point  :  

In the same way, the beam of light is collided in the first collision with the beam splitter Sp, from the Fig №12, then 

it produces a light beam with a velocity vector   ⃗⃗ ⃗⃗  ⃗. 
Thus, to the proposition 4.1 or law of a fixed collision [F.E.C], the value of the vector is calculated as follows: ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ∞⃗⃗ ⃗⃗  ⃗ −  ⟨ ∞⃗⃗ ⃗⃗  ⃗ − �⃗⃗⃗⃗⃗� |⃗⃗ ⃗⃗  ⟩. ⃗⃗ ⃗⃗  ∞⃗⃗ ⃗⃗  ⃗ − ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  ⟨ ∞⃗⃗ ⃗⃗  ⃗ − �⃗⃗⃗⃗⃗� |⃗⃗ ⃗⃗  ⟩. ⃗⃗ ⃗⃗   
So: ∞⃗⃗ ⃗⃗  ⃗ − ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  ⟨ ∞⃗⃗ ⃗⃗  ⃗ − �⃗⃗⃗⃗⃗� |⃗⃗ ⃗⃗  ⟩. ⃗⃗ ⃗⃗   

∞⃗⃗ ⃗⃗  ⃗ − ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  ⟨ ∞ 𝜽 .  + 𝜽 .  −  ⃗| √  −  ⟩ . √  −   

∞⃗⃗ ⃗⃗  ⃗ − ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  . √ ⋅ √⏟      = . ∞ 𝜽 .  + 𝜽 .  | −  .  −   

∞⃗⃗ ⃗⃗  ⃗ − ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  . √ ⋅ √⏟      = . ∞. [ 𝜽 .  | ⏟= − 𝜽 .  | ⏟= ] .  −   

∞⃗⃗ ⃗⃗  ⃗ − ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ∞. 𝜽 − 𝜽 .  −            …                          …… . .  

From this last equality (4.92), we conclude: ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ∞⃗⃗ ⃗⃗  ⃗ − ∞. 𝜽 − 𝜽 .  −   

,⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ∞ 𝜽 .  + 𝜽 .  − ∞. 𝜽 − 𝜽 .  −   

,⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ∞[ 𝜽 .  + 𝜽 .  − 𝜽 .  + 𝜽 .  + 𝜽 .  − 𝜽 .  ] 
,⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ∞. 𝜽 .  + 𝜽 .               ………                          …… . .  

After the first collision, the beam of light is last collision with the beam splitter Sp, then it produces a light beam with a 

velocity vector ((⃗⃗⃗⃗  ⃗)).Thus, to the proposition 4.1 or law of a fixed collision [F.E.C], the value of the vector ⃗⃗⃗⃗  ⃗   is 

calculated as follows: ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ −  ⟨ ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ − �⃗⃗⃗⃗⃗� |⃗⃗ ⃗⃗  ⟩. ⃗⃗ ⃗⃗  ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ − ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  ⟨ ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ − �⃗⃗⃗⃗⃗� |⃗⃗ ⃗⃗  ⟩. ⃗⃗ ⃗⃗   
So:   

,⃗⃗ ⃗⃗ ⃗⃗  ⃗ − ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  . ⟨ ∞. 𝜽 .  + 𝜽 .  −  ⃗| ⟩.   
,⃗⃗ ⃗⃗ ⃗⃗  ⃗ − ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  . ∞. [ 𝜽 .  | ⏟= + 𝜽 .  | ⏟= ] .   

,⃗⃗ ⃗⃗ ⃗⃗  ⃗ − ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  . ∞. 𝜽 .                                   …….         …… . .  

From this last equality (4.94), we conclude: 

,⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ − . ∞. 𝜽 .   
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,⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ∞. 𝜽 .  + 𝜽 .  − . ∞. 𝜽 .   
,⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ∞. 𝜽 .  − 𝜽 .       ……                    ……        …… . .  

Hence, if:  [ , ] / ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = ,⃗⃗ ⃗⃗ ⃗⃗  ⃗.   ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = ∞. 𝜽 . .  + ∞. 𝜽. .   
So: ∞. 𝜽 . , ∞. 𝜽.    [ , ] 
In order for point ( ) to belong to the straight line ( ) so that its equation (4.81) should be: ∃ [ , ] / ∞. 𝜽. =  

= ∞. 𝜽     …… .…                            …               …… . .  

Hence, if:  [ , ]⋂[ . ] ,⃗⃗ ⃗⃗ ⃗⃗  ⃗. = ,⃗⃗ ⃗⃗ ⃗⃗  ⃗. + ⃗⃗⃗⃗  ⃗⃗⃗⃗ = ( ,⃗⃗ ⃗⃗ ⃗⃗  ⃗ − ,⃗⃗ ⃗⃗ ⃗⃗  ⃗).  

Using the result (4.94), we have:  ⃗⃗⃗⃗ = . ∞. 𝜽 .  . ∞. 𝜽 ⃗⃗⃗⃗ = . .   
On the other hand, if:  [ . ] ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = ,⃗⃗ ⃗⃗ ⃗⃗  ⃗. + ⃗⃗⃗⃗  ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = ∞. 𝜽 .  − 𝜽 .  . + . .   ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = ∞. 𝜽 . .  + . − ∞. 𝜽 . .   
So: ∞. 𝜽 . , . − ∞. 𝜽 .    [ . ] 
Finally, in order for point ( ) to belong to the straight line ( ) so that its equation (4.83) should be: ∃ [ . ] / . − ∞. 𝜽 . = −  

∞. 𝜽 . = . +  

Lastly, we find: 

= . +∞. 𝜽     …….    ….                                   ……        …… . .  

In this case, the earth is the center of the Galilean reference, after studying the movement of points ( ) and ( ), 

which represent the photons emitted from any source, including the sun, from their separation at the beam splitter SP 

and their return to the detector Det. We conclude from the data obtained that the two points ( ) and ( ) reach the 

detector Det with the same vector speed (4.88), (4.95) and the same time period (4.91), (4.97). This means that they 

reach together at the same time, and there is no delay between them.  
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4.3 Re-formatting the data obtained above: 

 

By analyzing the movement of the points ( ) and ( ), which represent the photons emitted from any source, 

including the sun, within the interferometer, in all cases where the earth moves for any source, we find that they reach 

together to the detector line at the same time. There is no delay between them. This leads us to the fact that the results 

obtained by Michelson were already positive and identical to reality, contrary to what he had expected. 

Now we must correlate the computational results to determine the relationships between the branches with the last 

branch of the study and to determine the absolute values of the speed of light in both references where the Earth and 

the Sun are central. We start with the first case. 

The first case:  

With using Chasles relations, we have that: ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = ⃗⃗⃗⃗  ⃗ + ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − ⃗⃗⃗⃗  ⃗ 𝝏𝝏 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝝏𝝏 ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝝏𝝏 ⃗⃗⃗⃗  ⃗    …                    ……        …… . .  

𝝏𝝏 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = { ⃗⃗ − .   ⃗⃗⃗⃗  ⃗ − .  ⃗⃗⃗⃗  ⃗ − .         …
 [ , ] [ . ] [ . ]  𝝏𝝏 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = { .  − .  − − . .  − .   .  − − .  − .        …  [ , ] [ . ] [ . ]  𝝏𝝏 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = {+ − .  − − .  − − .        …  [ , ] [ . ] [ . ]    …                    ……        …… . .  

Again, we’ve got: 

𝝏𝝏 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = { ∞⃗⃗ ⃗⃗  ⃗,⃗⃗ ⃗⃗ ⃗⃗  ⃗
,⃗⃗ ⃗⃗ ⃗⃗  ⃗       …  [ , ] [ . ] [ . ] 

𝝏𝝏 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = { ∞ 𝜽 .  + 𝜽 .  ∞ − 𝜽 .  + 𝜽 .  ∞. 𝜽 .  − 𝜽 .        …  [ , ] [ . ] [ . ]   …         …… . .  

In comparing between (4.99) and (4.100), we conclude the following: 

{ ∞ + 𝜽 .  + 𝜽 .  = + − .  ∞ − 𝜽 .  + 𝜽 .  = − − .  ∞. + 𝜽 .  − 𝜽 .  = − − .  { ∞ = −𝒂𝜽 =   …         …… . .  

[ = ∞ ∧ = .∞ ∧ = . +∞ ] 
Again, we’ve got: 

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = {⃗⃗ . + .   ⃗⃗⃗⃗  ⃗. + ⃗⃗⃗⃗ ⃗⃗⃗⃗  ⃗. + ⃗⃗⃗⃗       …
 [ , ] [ . ] [ . ] 𝝏𝝏 ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = { ⃗⃗ ⃗⃗⃗⃗  ⃗⃗⃗⃗⃗  ⃗       …  [ , ] [ . ] [ . ] 

‖ 𝝏𝝏 ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ = { ‖⃗⃗  ‖ = ‖ .   ‖‖⃗⃗⃗⃗  ⃗‖ = ‖− − . .  ‖‖⃗⃗⃗⃗  ⃗‖ = ‖ .  − − .  ‖      …
 [ , ] [ . ] [ . ] 

‖ 𝝏𝝏 ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ = {  − .  √ − +        …  [ , ] [ . ] [ . ]    …      ……      …… . .  

When we compensate (4.101) at (4.102), we get the result following: 
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‖ 𝝏𝝏 ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ = { ∞ +∞ −√ ∞ +       …  [ , ] [ . ] [ . ] 
Again, we have:  

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = {⃗⃗ . + .    ⃗⃗ ⃗⃗  ⃗. + ⃗⃗⃗⃗ 
 ⃗⃗ ⃗⃗  ⃗. + ⃗⃗⃗⃗       …

 [− 𝐂 , ] [ , ] [ . ] 𝝏𝝏 ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = { ⃗⃗   ⃗⃗ ⃗⃗  ⃗
 ⃗⃗ ⃗⃗  ⃗       …  [− 𝐂 , ] [ , ] [ . ]  

‖ 𝝏𝝏 ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ = {  
  ‖⃗⃗  ‖ = ‖ .   ‖ ‖  ⃗⃗ ⃗⃗  ⃗‖ = ‖ .  + − .  ‖‖  ⃗⃗ ⃗⃗  ⃗‖ = ‖ .  − − .  ‖      …

 [− 𝐂 , ] [ , ] [ . ]  

‖ 𝝏𝝏 ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ = {√ − +       …  [− 𝐂 , ] [ . ]    ……      ……      …… . .  

When we compensate (4.101) at (4.103), we get the following: 

‖ 𝝏𝝏 ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ = { ∞ +√ ∞ +       …  [− 𝐂 , ] [ . ]      ……           …      …… . .  

From the initial observation of these results, after comparing them with the data of branch 4.1, we obtain the match of 

the results (4.31) and (4.32), with (4.103) and (4.104), if we consider ( ) and ( ) represent points ( ) and ( 𝑮), 

we derive the following result: 

∞ + = 𝜷 + ∞ = 𝜷 

This confirms once again the validity of our assumptions, compared to Michelson's assumptions. 

Second case:   

Now we must correlate between the computational results to determine the relationships between sections with the last 

section of study. Let us begin with the first case. 

Using the result (4.98), we have: 𝝏𝝏 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝝏𝝏 ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝝏𝝏 ⃗⃗⃗⃗  ⃗  

𝝏𝝏 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = { ⃗⃗ − .   ⃗⃗⃗⃗  ⃗ − .  ⃗⃗⃗⃗  ⃗ − .         …
 [ , ] [ . ] [ . ]  𝝏𝝏 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = { .  − .  − .  − .   − .  − − .  − .        …  [ , ] [ . ] [ . ]  
𝝏𝝏 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = { .  − .  − .  − .   − .  − .        …  [ , ] [ . ] [ . ]    …      ……   …   … . . .  

Again, we have: 

{ ∞ 𝜽 .  + 𝜽 .  = + .  − .  ∞ − 𝜽 .  + 𝜽 .  = − .  − .  ∞. 𝜽 .  − 𝜽 .  = − .  − .        …  [ , ] [ . ] [ . ] { ∞. 𝜽 =  𝒂∞. 𝜽 = −   
∞ = √ +  𝒂  { 

 𝜽 = √ +𝜽 = −√ +    …      …      …….   …… . .  
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[ = = ∧ = .− ∧ = = . +      ] 
 

From this case, which actually represents the Earth's motion for the Sun, which is a rotation, we conclude that the 

absolute value of the speed of light varies from any frame of reference to another.  Again, we do not see any trace of 

value (√ − ) in this analysis by the fixed elastic collision law [F.E.C], as Michelson hypothesized. 

 So, can we set the earth's velocity for the sun by the interferometer? This question is very accurate, since we have 

confirmed that there is no delay between points ( ) and ( ) when they reach the detector Det. The answer is that 

the speed value can be set, but in practice I doubt it will succeed, and the detail as follows: 

Any light source - whatever its velocity - produces the interference fringes by the interferometer. 

To determine the Earth's speed for the sun, we should carry out two independent and consecutive experiments on a 

single interferometer. 

The first experiment is done with a constant source of light for the interferometer on a monochromatic light, and the 

second experiment is carried out by a moving source - the sun - for the interferometer on the same monochromatic 

light. Assuming in the first experiment that the light comes from a constant source, we may realize that calculating the 

path difference as follows: 

We know that wavelength is the multiplication between the speed of light with the period of the wave T, assuming that 

the velocity of monochrome light varies from two sources, one fixed and the other moving. Also, let's say that the 

monochrome velocity of the constant source is  and  ∞ from the moving source. 

So, the wavelength in each of the source situations is: 𝝀 = . 𝒂 𝝀∞ = ∞.     
When the wave is subjected to wave interference by the interferometer, it gives the fringe after passing through two 

slits, separated by a distance d and strike a screen a distance D, from the slits, where the lengths are as follows: ≅ . 𝝀. 𝒂 ∞ ≅ . 𝝀∞. / = , , , …… 

By dividing the length of the fringe over the other, we conclude this relationship: 

∞ ≅ ( . 𝝀∞. ) ÷ ( . 𝝀. ) = 𝝀∞𝝀 = ∞.. = ∞ = √ +
 

√ + = . ∞ = ( ∞) − = .√( ∞) − …   …… . .  

As I mentioned, its designation depends on the quality of the technology, knowing that the length of the fringes is in 

the order of millimeters. We calculate arithmetically that the value of the difference between the fringes is difficult to 

observe in any work well, and using the relationship (4.17) with the values (4.107), we have: 

∞ ≅ √ + ∞ ≅ .√ + = .√ + 𝚫𝐲 = ∞ − = √ + −  

𝚫𝐲 ≅ + . − ≅ . ≅ .. . ≅ . −
 

For the ether, is there medium called ether? It is known that the physicists agreed to reject the idea of ether and 

ruled out its existence after being confused by the null results of the Michelson-Morley experiment.  And not 

necessarily any object characterized by the nature wave, there is a medium transmitted by it, for example: the iron 

spring is vibrated by the powers of mechanical pressure, and if moving in the absolute space, it does not mean there is a 

medium where it moves by shaking. 
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5. CONCLUSION 

 

In order to strengthen his interpretation and to reinforce his hypothesis about the experiment mathematically, 

Lorentz presented the theory of Lorentz transformations, and like other physicists he believed that Michelson's 

assumptions were correct, although we demonstrated the contrast that there was no delay between the motion of the 

two light beams when they were separated and returned to the detector in any Galilean reference. Hence, no matter how 

much we try to reform or update his work - Lorentz's transformations- this reform will not work, because it is based on 

corrupt assumptions. Also, experiments that support their validity are no lesson to them, and we can refute them by 

more credible counter-experiments. 

 We have concluded that with the change of the Galilean references, the paths change and their length changes, but 

the metric dimensions of the moving object remain constant, independent of the change in the Galilean references, 

which is contrary to Lorentz's hypothesis. 

 As for Einstein's postulate, it is very clear from this study that the speed of light changes from one reference to 

another, and we have never had to deal with it as constant in all references, and it is contrary to the principle of 

relativity, although it is the basis of modern physics. And in the future, we can reform a great deal of theories that have 

been associated with relativity and Lorentz transformations. 
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	Definition 2.4:
	Definition 2.5:
	Proof
	Then, the point C that is the center of mass reference has the velocity vector ,,w-C.. and its value is written in the flowing proposition:
	Proposition 2.2:
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	Proof
	Proposition 2.4:
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	Proof
	1-According to The law of Conserved Energy 2.1; we have that:
	2- With using last result (2.4), we deduce the following result:
	Moreover, if we look at Fig №02, we see that the collision field is divided into two halves by the normal line (N), that its direction vector is , 𝑨 . , so we put the definition of the vector  ,𝑨 .  and the vector ,𝑩 .  .
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	Remark 2.1:
	Proof:
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	With all the data we mentioned and the results we obtained, we will write the algebraic formulas of velocity vector after the collision in this proposition 2.5, but in the Galilean reference 𝓡,𝑪;,𝒊.;,𝒋.;,𝒌..  , which is centered at (C) with his p...
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	Finally, we may put the text of the theory in which the algebraic formulas of vector velocities after the collision in the Galilean reference  𝓡,𝑶;,𝒊.;,𝒋.;,𝒌.. , and the proof will be simple.
	Theorem 2.1:
	Proof
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	Then, we use the value of the vector ,,𝒘-𝑪..  to the proposition 2.2.
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	Then, we use the value of the vector ,,𝒘-𝑪..  to the proposition 2.2.
	Remark 2.2:
	I would like to remind you that the theorem are important and can be used for studying in the field of billiards and others.
	3. CONVERTING THE THEORETICAL RESULTS OF THE COLLISION
	In this chapter, we continue to study the results we have obtained from the second chapter. This is in order to obtain the algebraic formulas of the velocity vector after colliding between a material point and a solid flat plate in the absolute space,...
	Therefore, we divide the study in this chapter into two steps. The first step is to study the results after colliding between a material point with a hard-sphere and then in the second step to study the results after colliding between a material point...
	3.1 First step: From two different spheres to a collision between a material point and a hard-sphere.

	In the second chapter (2), the most important part of the study of collisions was to convert the study from a normal Galilean reference to a Galilean reference 𝓡,𝑪;,𝒊.;,𝒋.;,𝒌.. centered at the point (C) center of mass reference so that the moment...
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