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Abstract I outline a new hypothetical approach issuing a second gravitational equation in 

the scope of a promising model tackling the gravitational wave problem. This wave 

equation for graviton is framed in the endeavour to bridge the puzzling missing link to 
allow for quantum scale physics in a unifying gravity theory, through a new coupling 

constant S: thus wave is regarded as a symmetry breaking of general covariance of field 

equations through contraction of Riemann tensor by a constant pseudo-tensor. That also 
allows an inertial mass to be assigned to the graviton (OE-25 eV/c

2
). This extension of 

General Relativity stems from self-evident considerations on the differential conditions of 

compatibility involving the two fundamental tensors on the curvature of the Space-Time 
continuum. Some considerations about last detected events are broached on the gauging of 

S constant, bringing forth a value that differs of two orders of magnitude with respect to the 

fitting of known binary star systems, unless source parameters be revised. 
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1. Introduction  

 

The latest LIGO and VIRGO’s  success [1] in marking the first four gravitational wave 

(GW) signals ever caught [1,2,3,4], while reinforcing testing methods in numerical 

relativity for BBH’s last merging stage [5,6], matters in keeping up interest in alternative 

theories too, though the latest GW170814 event makes harder the constraints about the 

possibility of the mixing presence of non purely 2-spin tensor General Relativity (GR) 

polarization states [1,7]. 

  Recently a new equation has been put forward by Tailherer [8] (so-called Vortex model) 

which expounds in a new very way the genesis and propagation of physical waves by the 

introduction of another field derived from the metric tensor constituting the 2
nd

 

fundamental tensor [9] of Space-Time    = g/2c, (  proper time)  also equal to the 

deformation speed tensor referred to the 4-velocity of a testing object
1
 1/2(h vk +k vh ) . 

What makes the theory compelling is the way it tethers these two fundamental fields by a 

second gravitational equation (see equ.1) through the contrivance of a new universal 

gravitational constant (S) featuring the intrinsic V4 inertia to spread gravitational energy, 

(in analogy to heat equation a sort of conductivity or measure of rate of gravitational 

energy flow for Space-Time continuum) and which allows an inertial mass value to be 

assigned to the graviton. Aim of this paper is to debate what drags on adding an extra field 

                                                
1  We take occasion to remark a slip in [9] where we talked about the 2nd rank  symmetric tensor as a 2  
    spin-2 field. Strictly speaking, being not traceless, it cannot be so, but rather it has a spurious 

    decomposition in angular momenta as 0  2 in gaussian gauge (g0i = 0, g0i = 1), so in all (2j1+1)+(2j2+1)=6  
    modes being reduced to 2 by 4 further accessory boundary conditions.  
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and a new universal constant to the fundamental symmetry of Einstein’s theory for which 

gravitational equations should remain invariant for general coordinate transformations, and 

what implies for this prospect to include the attested reality of gravitational waves. 

  The core ideas of our Model are borrowed from the vorticity gradient formula of 

continuum mechanics propped up by the device of identifying the vorticity tensor to the 

contracted Riemann tensor through a constant tensor  (so non general-globally invariant) 

and via the constant S (see equ.(1)). 

The theory so built turns out not invariant in the sense of general relativity [10,11], though 

covariant in the form of equations, just preserving at the most Lorentz invariance for only a 

particular choice of  and setting off the special frame in which S is calculated (usually the 

center of mass system of the system of bodies), but this comes home to our subject by 

making up a breaking of the invariance of Einstein's gravitational equation from which the 

GW phenomenon springs out. 

  Riddling GR inasmuch as insufficient in getting GW's can be gathered this way. As well-

known and highlighted f.i. in [12], just from sheer GR an interplay ensues between 

curvature, determined by the content of any form of energy-momentum through Einstein’s 

equations, and gravitational waves, as usually held. However this would in principle 

contrast with Weyl’s evidenced GR feature of plasticity of the continuum Space-Time and 

non-consistence with it of physical ripples of metric as shown in [13,14] : actually, it 

suffices choosing four suitable components of the metric tensor at our disposal in passing 

to a new gauged manifold (for only interacting gravitational forces just a co-moving 

reference frame) for which the motion of a dust particle can be geodesically blotted out 

[15]. Alternatively, assuming Fermi’s coordinates, the metric tensor is self-parallel 

transported according to Fermi-Walker on the world line, geodesic or not, leaving out the 

chance of gravitational radiation, d 
FW

g/d = 0 implying gconstant.  

 

2. Further shortcomings of  GR  

 

 From a mathematical point of view, it can be shown that the characteristic hypersurfaces 

of Einstein’s equations, implying a discontinuity being propagated -so-called a wave-, 

coincide with the light hypercone [16,17], i.e. a developable hypersurface whose Riemann 

tensor vanishes identically, that is to say a constant metric can be assigned on a light ray as 

well. 

  As to back-reaction
2
 of gravitational radiation [18,19] in the full non-linear theory in 

medium-strong regime (Gm/rc
2
 1/5) based on Post-Newtonian expansion (near zone) and 

backed up by the sophisticated post-Minkowskian one (far zone) by Blanchet-Damour, 

would want for an existence theorem
3
 for which these configurations converge to the exact 

solutions of Einstein’s equations, even worse unknown for the two body problem. 

Moreover these expansion methods could be questioned by the simple argument of energy 

conservation of motion for any closed system, whose mechanics is unequivocally 

characterized by the travelled geodesics of material bodies, in addition to the continuity 

equation (we recall the apsidal precession derived among others in Schwarzschild metric 

just from the energy’s integral of motion). Thus an inspiralling trajectory would mismatch 

a geodesic not as much differently a lexodrome (as known being not geodetic) would onto 

a bi-dimensional sphere. Furthermore, still admitting a wave propagation phenomenon, it 

can be shown that for a reference frame riding the wave front, the metric tensor is 

                                                
2 Contributions starting from 2.5PN terms i.e. O (1/c5). 
3 Even in math we know functions whose expansion does not tend continuously to a point limit as f.i.      

  exp(-a/x)=1-(a/x)+1/2(a/x)2+… that for a>0 gets worse with the order for x tending to 0,while the limit for  

  the starting function equals 0 being quite regular in its neighborhood  
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practically time-independent and consequently, by Serini’s theorem, Serini’s theorem for 

which the constant metric is the only regular Einstein’s solution, the Riemann curvature 

tensor vanishes, hence carrying no metric undulation. 

 

3. Vortex model of GW  

 

Accordingly, the only presence of a curvature (R  0 ) would not necessarily imply a 

propagating field, what as to Vortex theory there would make a gradient of curvature 

instead or, terming it with GR’s parlance by the equivalence principle, a gradient of 

acceleration. For plainness, let us lay down Tailherer’s equation got identifying, up to a 

constant, the 4-vorticity   with the skew tensor C = R
 

  (dubbed skew C-

tensor), i.e. the ansatz = CS  with      
= 1   for  ,   consecutive indexes  and

 
  

 
= -

  det   



 C = S ( K - K  )                            ( ,,  =1,2,3,4 )                  (1) 

 

We assumed for the 
matrix to transform as a contravariant tensor  even though it is not 

invariant for a general coordinate transformation, so the x

(x’


) frame in which we 

calculate  S ,i.e. the center of mass system, takes on a special meaning: it is a privileged 

frame whose track cannot be deleted by a transformation that so keeps trace of it. We mean 

to say that 
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

and last expression has the same form 

than the previous one (covariance) except that the x

 appertain to a peculiar frame, i.e. we 

got local covariance. Namely, equ. (1) is not a general invariant law as Einstein’s equation, 

so that we might say that GW’s make up a symmetry breaking of  the general relativistic 

covariance, as it should be since we have showed how Einstein’s theory, in his own 

formulation, would not actually entail physically and energetically consistent wavy 

solutions.  Indeed only light waves obey globally invariant formulation. Given the 

arbitrariness in choosing 
, had we picked up for it the pseudo-tensor 

’


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 
 
 
 
 

 

,(det ’  =1), we would have further kept invariance with respect 

to Lorentz transformations, which might provide in case a suitable starting ad-hoc inertial 

frame to assess the constant S. The S gauged (cf.[9] §3.2) by this option associated with 

equ.(1) would have been of the same order of magnitude than our evaluated                         

S = (2.5±1.2)E-19 m
-1

, got averaging the fitting of the orbital energy loss decay of four 

known binary systems
4
 [20] (see Fig.1 for the B1913+16 period fitted decay). This would 

brand the passage from classical relativity into quantum gravity -likewise on turn Planck 

constant did with respect to classical mechanics- through the gauging of the length of 

interaction involved, represented by the Compton length  S
-1 

= h/mGc  referred to the 

inertial mass of graviton mG = (3±1)E-25 eV/c
2
, so tested to be within the bound found for 

GW150914 [4]  (<7.7E-23 eV/ c
2
).  

                                                
4 The best fit for the  relativistic system  J0737-3039  provides  an agreement in a period change with 

  extrapolated experimental data that can barely be discriminated to within the approximation precision, 

  despite the coarse starting  assumptions for the curvature tensor. 
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Fig1: B1913+16 period change in the damping of system  paralleling GR, Vortex prediction and fitted data 

vs Modified Julian Day Time from 1975 to 2013. On sight the three functions cannot be distinguished. By 

magnifying we can observe how the GR approximates closer up to 0.2% to the data in comparison with 

Vortex Theory prediction which indeed is seen in the detail inset to anticipate of about 0.5%  (After [20]). 

 

  By doubling the tensorial curl (incomplete) of equ.(1) the radiative behaviour becomes 

evident in the RHS getting a □–grad(div) operator [8 eq.4.18] on K (to note a 

d’Alambertian is a 4 dimensional laplacian). In spite of the hypothetical massive gravity 

equation for a 2-spin tensor derived from the Proca-Fierz action [21], this one does not 

subrogate Einstein’s one (anyway linearized), but would endow it with the right radiative-

dissipative feature. Now, it is known how to relate the metric tensor to the matter via 

Einstein’s equation through the Ricci tensor,  but there is not a way to elicit from it the full 

Riemann tensor R
 
 to yield the C  tensor. The best that can be done is to estimate it as  

(1)
R = gR /4  just because of R= Rg


 

so being not a sufficient condition to 

get it (actually it corresponds to approximate a tensor  with its trace times a term 

proportional to the metric tensor) . Rather, it is a stopgap to insert the energy-momentum 

into the C  tensor by means of Einstein’s equation viz. 
4

8 1
=

24

G
C g T g T

c



   

  
   

   

as starting position of a recursive method to build  R solving equ.(1). Computing the 

latter has been proved decisive in the calculations [20]. Therefore, we have not only the 

gravitational field g linked to the energy-momentum  as from GR but also  by means 

of its gradient (C ∝ R
 ∝ T ), thus bearing on energy wave propagation, namely 

radiated energy related to the action density  -1/4


 whose field   = K/-

K/ .  Indeed, the problem well put is to get from equ.(1) and then gfrom 

integration with respect to the proper time.   

We dwell on the form of the integral solution at large distance r  [8, equ.4.20a]: 
 

4 4

22 2 22

0 0

1 1S ( x')
K d x' S ( x')d x'

S S rx' x x x'



 
 

    
  

  
[( ) ]

            (2) 

 with S  source forcing term depending on energy-momentum                                                   

T= i d t s 

(x

 
- x


) mi u


u


 . 

The integrand is meant as function of the Nth iterated  
N
K   reckoned  starting from    

(0)
K  = 0  i.e. 

(0)
g = 2c K d    , Minkowski metric. As for the case of quoted four 

binaries we stopped to the stage N=1. 
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On first inspection, this solution might appear improper because 1/[c
2
(t’0s - tob )

2
 - r

2
 ]   as 

depending on integration variables could not be taken out of the integral naively as 1/r
2
 by 

evaluating it at the same times in gaussian gauge. The correct solution would be then to 

consider the previous solution as Green function  G(x0s-yob) = (1 / [(c
2
(t0s - tob )

2
- r

2
-i] 

between two points x0s  (source) and yob (observer) of the Space-Time at different instants 

and integrate with respect to source time just along a closed contour in the complex plane 

as usual for propagators, with respect to the pole t0s-tob =-r/c what gives the retarded 

potential 1/r.  

Nevertheless differently from electromagnetism where a space 4-current density 

distribution enter the integrand letting the time variable to be integrated in the complex 

plane, here rather a stark 4-dimensional problem is concerned, namely any component of 

the Riemann tensor gradient different from zero could, at least ideally, represent a source 

term on LHS of equ.(1); thus technically we cope with a  4-dimensional Dirac source term 

in the Green function rather than a 3-dimensional one, what involves an 1/s
2
 solution of a 

2
nd

 order PDE  taken in account of the homogeneity property of Dirac delta (sx) = (x)/s
4 
.  

Indeed as also checked a delayed potential 1/r is not at all advisable out of the 

computational bulking  not only linked to the rather mild iterative convergence . 

Thereby in order to avoid the denominator singularity without performing the integral in 

dt’0s in the complex variable there can be exploited the translational invariance of a 

problem about quasi-periodic system like in the case of binaries, by evaluating  the 

integrand at the time t*0s= t0s + r/c = tob at the cost of an additive phase factor in S ( x')   

immaterial when averaged over the period in getting the radiated energy loss, but such that 

the difference t*0s - tob elides at the denominator leaving just 1/r
2
  , which definitely betters 

the iteration convergence.   

Thus working out the solution this way gives more significant results just from the first 

approximation. Worth noting is that the radiated energy associated with the K wave 

running as 1/r
2 

still gets conserved provided that the related inferred metric be considered  

in the flux of the energy-momentum and in rising/lowering indexes therein. This comes 

from the relation t

i.e. 

1 1
0

2

( t g ) g
t

x xg



  

 

  
 

 
 and on disregarding the 

last term on LHS O(1/r
3
), the quantity  

0 3t gd V    gets conserved. 

 

4.  Some fingerprints of the model  
  

What is peculiar in this theory is that a cosmological constant does not contribute the 

radiation field nor a constant energy momentum tensor (f.i. the electromagnetic cosmic 

background energy density, excluding anisotropy), so retrieving the static condition 

satisfied  by the 2
nd

 fundamental tensor  with respect to crossed derivation, that is to say the 

Mainardi-Codazzi conditions [22,23] (let us recall that for a globally isotropic manifold the 

expression for the Riemann tensor holds: R
 
= K (g g- g gwhose gradient 

vanishes because of the Schur’s theorem [24]). 

That the notion of curvature inherent in the Riemann tensor is not sufficient to characterize 

the evolution of continuum Space-Time can also be seen from the fact that for an ordinary 

surface the local curvature of a generic section depends not only on Gaussian curvature K 

= c1 c2  but also on  pseudo-invariant expressed by the trace  H = 
c1 + c2   via Euler 

curvature formula [25]: c = c1 cos
2 + c2 sin

2 = 
2 4

2

H H  K
cos

2  
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+
2 4

2

KH H 
sin

2 ,  thus still two parameters, ( c1/2  principal curvatures and   the 

section angle with respect to the first one) . 

From a mere kinematic point of view we may express as well the variation of the 4-

velocity of a test moving object in the continuum Space-Time [26] as act of motion with 

vierbein representation e

 i.e.

5
  v = (+e


x


or by means of Tailherer’s ansatz                   

(+ CSe

x


,thus evidencing the need of considering both the tensors for a full 

description of motion, C including all kind of interactions underlying the Riemannian 

manifold. However, the last expression says more on the structure of continuum Space-

Time, because even if the gradient of C vanished and so there were no gravitational 

radiation according to equ.(1), in the first order neighbourhood of any point there would 

yet appear the quantity S as a characterizing mark of curved Space-Time.  

Because we are dealing with a  02 K field (note 1), there are extra-modes rather than 2 

that can be taken away by suitable null boundary radiation conditions at infinity as 

instanced in [9,§2.3] in Minkowsky referred background asymptotic metric.  

  More specifically the hallmark of this theory versus GR occurs in the polarization mode 

 [20, Appendix] whose strain hVortex=
1 0

0 1
 , differently from GR  mode 

1 0

0 1
 , 

would cause equal phase displacement of laser path in LIGO-like detectors, so space 

symmetric events like supernova explosions would need other apparatus than Michelson 

interferometry that would turn out blind to them at normal GW impact. Then an alternative 

new type has been sketched in [9,§4]. Moreover it predicts the lack of the uncoupling of 

the  and  polarization modes [9, §2.3] in correspondence of edge-on line of sight of 

binary systems (this latter  polarized according to linearized GR [27]). This is for checks 

to come. Apparently, according to Vortex theory, recent detection of GW events would be 

ascribed chiefly to the  mode. 

Further, pointing out the analogy between equ.(1) and Faraday-Neumann equation in 

electromagnetism, we could correspond the E’s and B’s vector role to the and 

gtensors  (the latter through the Riemann  C-tensor) by saying that a variation of energy-

momentum linked to C(LHS of equ.(1)) would cause a propagation of the field over 

the Space-Time (RHS), and vice versa, by applying the Green-Stokes theorem
6
 to equ.(1) 

for a sufficiently large 2-surface   enclosing the mass system (for details see equ.4 in [9])  

 

 K d x C / S

                 (   =1,2,3,4 )                        (3)  

 

it holds true that a cyclic discontinuity in the circulation of would cause a variation of 

the flux of energy-momentum through the Riemann C-tensor.  

 

 

 

 

 

                                                
5 This is prompltly seen by taking the gradient of 4-velocity  h v = qhk  e k   whose matrix  qhk   can always be    
  split up in a symmetrical part and a skew-symmetric one  identified by the deformation speed tensor and 4- 

  vorticity  qhk =h v e k  = Khk + hk                                                

6 Let recall the Green identity  
1

-
2

K dx df K K 
         , with df  4-facet surface element. 
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5.  A glance at recent discoveries  

 

Finally, applying the Vortex Model in the non relativistic regime to the GW150914 event 

for the circularized black-holes’orbit and on retaining the estimated source parameters,  

outputs a fitted value S = 1.7E-17m
-1

 (corresponding to graviton mass  mG = hS/c =        

2E-23 eV/c
2
 ) at the GR’s luminosity peak of 3.6E49 J/s [2], hence two orders of 

magnitude larger than that of binary pulsars’ analysis, unless involved masses be lowered 

and/or source distance be increased. (Of course radiated power should not depend on 

distance from source but in the approximated theory it does). Keeping to that value for S 

would imply a given out luminosity of O(1E60) J/s apparently unacceptable. A similar 

result is obtained for GW151226 outputting a fitted S = 3E-17m
-1

 whilst 1.7E-17m
-1

 and  

1.9E-17m
-1

 concerning GW170104 and GW170814 events, which thus confirms a 

systematic drawing away of GR from Vortex Model’s expectations. Indeed, the binary 

pulsars’s estimate for S is to be accepted as the more reliable one, as upheld on collation of 

observational astronomical data and non-radiative general relativistic effects (up to 2PN) 

such as periastron advance and Shapiro or Einstein’s delay [28]. Anyway for BBH’s 

events, a thorough general relativistic treatment encompassing calculation of   at the 

further recursive stage requires bigger computational efforts in terms of available RAM 

(>60 Gb), which nevertheless should be carried out for a comprehensive description with 

respect to curved background metric provided by the former reckoning step. 

 

6.  Conclusions 

 

We have briefly reviewed a modified gravity theory based on the introduction of the new 

fundamental 2
nd

-rank symmetric field  =g/2c  and a consequently a 3th-rank skew 

field   = K/- K/in the action (mimicking the strength tensor in 

electromagnetism), that among others things we deem as requisite on grounds of 

differential geometry (sect.4) in completing Einstein’s description and in particular the 

gravitational wave phenomenon. Indeed, gravitational wave is seen as a break of the 

general invariance as implied by Einstein’s theory whose stint, as discussed in the sect.1-2, 

would consist in describing only a conservative system that does not lose gravitational 

energy: actually, as remarked in [13,14,15] it is impossible to admit a physical wave and 

general invariance. The experimented radiative phenomenon therefore would ultimately 

mean in dynamical gravity to overcome this stark einstenian principle towards local frame-

dependent invariance entailed by an ad-hoc privileged coordinate relevant to an appropriate 

"seed" metric (lorentzian when needed) in which we calculated the new universal constant S 

featuring the specific inertial property of Space-Time to spread gravitational radiation. 

Mathematically this translates into the property of local invariance owned by the Riemann 

tensor saturated with a constant skew-symmetric tensor R
 

.  This leads to the Vortex 

equations of the model (equ.(1)) constituting a differential link between the field and 

the aforementioned Riemann curvature contracted tensor (sect.3). 

Direct resolution of vortex equations through Kelvin-like integral equ.(2) [cf.also [20], 

equ.1] relied on successive approximations for catalogued binary systems, thus proving 

very clumsy. Neverthless it puts forth an estimate for S= 3E-19 m
-1

  differing by two order 

from recent discovery events (sect.5),but still within the related experimental inferred 

graviton’s mass bound OE-23eV/c
2
. Therefore one could think that exploiting the integral 

version of Vortex equations-equ.(3) would lighten the calculus burden for , bettering 

the valuation for S, but at this time it is not at all evident how to manage it profitably. 

And yet the better insights of the theory have to be expected in applying the model to the 

cosmological problem solving the equations  with respect to the FLRW initial metric, since 

all the cosmological constant energy density conundrums, as noted before in sect.4, get 
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superfluous in determining the evolution of the universe scale factor, inflationary ones 

included. 
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