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Abstract

We discovered a way to write the equation x"+y"-z"=0 first studied by
Fermat, in powers of 3 other variables defined as; the sum t = x+y-z, the
product (xyz) and another term r = x’+yz-xt-t°>. Once x"+y"-z" is written in
powers of t, r and (xyz) we found that 3 cases of a prime factor q of x*+yz
divided t. We realized that from this alternative form of Fermat’s equation if
all cases of q divided t that this would lead to a contradiction and solve
Fermat’s Last Theorem. Intrigued by this, we then discovered that the fourth
case, g=3sp+1 also divides t when using a lemma that uniquely defines an
aspect of Fermat’s equation resulting in the following theorem:

If xP+yP-zP=0 and suppose x,y,z are pairwise co- prime then any prime factor

q of (x2 +yz) will divide t ,where t=x+y-z
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2 ON FERMAT’S LAST THEOREM

Introduction

There have been thousands of attempts to solve Fermat’s Last Theorem (FLT) using Elementary
Number Theory (ENT) over the centuries. Naturally when considering a problem that can be easily
stated and understood one would assume a relatively easy proof in ENT would exist. However, none
were found with the equation as it is written, with the exception of Andrew Wile’s proof using
modern number theory techniques.

When in 1993 Andrew Beal conjectured that there were only common factor solutions to the general
case of FLT namely x*+y"-z°=0 when a,b,c>2 one then assumed that there were common factor
solutions to FLT but obviously these solutions would cancel out and be non-existent in the special
case. We therefore wondered what would be a good way of showing common factors or more
specifically what term’s prime composition would give common factors if they shared a prime? We
found 3 good candidates x*+yz, y*+xz, and z°-xy because if they shared a prime factor (q) with powers
of X, y, z or xy, Xz, yz or xyz then we get common factor solutions g.

We can’t see how to use this with Fermat’s equation as it is written but when we were trying to
factor x*+yz into the n=3,5,7 equation we initially found a separation of the terms (x+y-z) and (xyz).
We then wondered whether this was possible for all n. What we wanted to do was see if we can put
this equation in terms of( x+y-z) and (xyz), or more specifically powers of (x+y-z) and powers of (xyz)
and indeed we could if we introduce a new term we call the symmetric r= x*+yz-xt-t*> which happens
to have a x*+yz component.

For example we have Fermat’s equation for n=7,

X+ y7 -z2'=0
and in the new representation we have for n=7,

29t7 +56t5r —35( xyz )t4 +35r2t3 —35( xyz )t2r + 7tr3 +7( xyz)zt —7r2(xyz) =0

One can see this is written in powers of the 3 terms t, r,(xyz) and these terms completely replace the
powers of X, y and z to become the arguments or variables in the problem.

We then studied this new equation and realised that if we showed all the prime factors of x*+yz or
y>+xz, or z°-xy divided t we could solve Fermat’s Last theorem because this leads to a contradiction
X’+yz< tbut x? +yz >tin FLT as the case in point.

We first show that /=0mod3 and recognized that if we take a prime factor (q) of x*+yz we can easily
show that for one case of g and two sub-cases of g namely,

q#3sp+1
g=sp+1, s£#M3
q=3s+1, s#Mp
when n is prime (p) we get t=0modq or we get common factor solutions for these cases.

The 4th case q=3sp* +1 is more difficult but we develop methods to deal with it. We use a lemma
(lemma 5) that defines a particular property of Fermat’s equation namely; x+y=c’, z-y=aP, z-x=b" .
Then, along with the possible solutions when q=3sp+1, we show that these ¢’s must also divide t. We
further generalize to all k using an exponentiation method that combined with lemma 5 shows all q(k)
divide t.

We therefore end up with t=0modq for all possible cases of g. When we look at our new
representation of Fermat’s equation, we can show that with the decomposition of ,

X% +yz =@, 2(%)g,9(%) g a(t) where q; is prime and q(q;) the highest power dividing x*+yz,

that these higher power terms must also divide t but we have that x? + yz >t which obviously
eliminates integer solutions.

Remark: The premise behind solving this problem is quite simple - all we are showing is all the
prime factors of a particular term divide t or we get common factor solutions, resulting in the theorem;

If xP+yP-zP=0 and suppose X, Y,z are pairwise co- prime then any prime factor q of (x?+ yz) will divide t
where t=x+y-z

© Copyright Chris Sloane 2018
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Historical Note: Although, FLT is an ancient problem it is only relatively recently (30 years) that we
have found the generalized version of the problem almost certainly has only common factor solutions.
If ancient mathematicians had known this, they would have realised that common factor solutions to
the special case would not exist and would be a good way of solving FLT. It is difficult to find
common factor methods working with three independent variables. However changing the form of
Fermat’s equation to incorporate specific terms like x*+yz creates an environment friendly to common
factor approaches. With this alternative version of Fermat’s equation also unknown to mathematicians
until now, then the problem may not be outside the realms of elementary number theory after all.

Definitions
We define the dependent variable t as,

t= X+y-z (1.01)

Another way of writing 2tisto let, x+y=C,z—y=A, z—x=B.

2t=—A-B+C (1.02)
X=A+t (1.03)
y=B+t (1.04)
z=C -t (1.05)
We define the symmetric r in general as,
r(v) =x%+yz- xt+vt®> = y2 + xz - yt +vt? = 22 - xy + zt + vt? (1.06)
We can also write this as,
r(v) = Xz+ yz - Xy + vt? (1.07)
In this work we will only be using v= -1,
r(-1) or r = xz+ yz-xy-t? (1.08)
The symmetric parts are defined as,
r(x/t)= X + yz, r(y/ t)= y2 +xz, r(-z/t)= 2% - Xy, r(0)= xz+yz- xy (1.09)

We canuse any of r(x/t)=x2+yz, r(y/t)=y?+xz, r(-z/t)=2z%-xy, to contain our prime factors q
In this work we will use,

r(x/tyor r'= x? +yz (1.10)

We use capitalization when refering to these definitions in x?,y?,z"ie x> x?, y—>y’, z—>2°

Hence,
T=x"+y"-z° (1.13)
R=x"zP +yPzP -xPyP -T? (1.12)
R'=x*+yPzP (1.13)
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Remark: ‘M’ stands for ‘multiple of” at some places in this work.

We derive the new form of Fermat’s equation using combinatorial arguments. This proof is quite long and as
one knows combinatorial proofs take a long time to work through (over 14 pages in this instance). Hence not to
distract the reader with this cumbersome proof we will state the results Theorem 1.1 and Corollary 1,2 for
brevity. One can use a calculator or computer to check the validity of these equations for any input. If one
requires the rigorous proof please see extract 2

Proposition 1 We can write X" +y" +(=z)" in terms of (xyz)", r® and t*

Starting with,

X" +y" 2" =(A+t)" +(B+t)" —(C-t)"
We initially factor A>+BC-At-t in this derivation and convert back to x*+yz-xt-t%. In general we end up getting

forn and ¢;
n=odd ¢ =even

#n=even(=o0dd —» -1
n+((-3)n+(L-5) n—-((+1) n+(/-5) n—-(/+1) n—(3#) n—(5#) n-((+1)

n—(-3
—((n 2 |2| | 2 +n 2 o '2 +..n 2 2 r 2 )tfxyzr 2
011101 (c—2)11111 1!1!(7)!
n+({=5)n+((-=7) n—((+7) n+(0-7) n—(L+7) n—(5#) n—(7#) n—(L+7) N—(—9
3 2 2 2 2 2 2 2 7 2 ¢ 3 2
(n 3Ton +n TEYENT +..n l|3.(ﬁ), o (xyz)'r
!
n(n+(C—m—2))(n+(C—m—4))m((n—(C+3m—2) n(n+(€—m—4))((n+(€—m—6))m((n—([+3m—2))
< 2 2 2 N 2 2 2 +..
'm!o! (£=2)'m!1!
n(n—(m+2#))((n—(m+4#))m((n—(C+3m—2) n—(—3m
2 2 2 oy 2 (1.14)
1!m!@!
2
n=odd ¢ =odd

*n=even,( =even - +1
n+((-2)n+(L-4) n-(£-2) n+((-4) n-((-2) n—(*)n-(3) n-((-2)

n-{
((n 2 2 2 +n 2 2 N 2 2 2 )tC,1r7+
100! (£-2)1011! po "y,
10— )
n+((-4)n+(L-6) n—(L+4) n+((-6) n—((+4) n—(3)n-(5) n-((+4) N6
2 ) 2 T2 2 2 T2 e 2
(n TR N — oam " RN H(yz) Lr 2
12)(—-)!
n(n+(€—2m—2))(n+(f,—2m—4))m((n—((+23m—2)) n(n+(€—2m—4))((n+(ﬂ;m—G))m((n—(Czsm—Z))
+( + +...
(1m0} (0-2)Imi1!
n(n—(r;1+1*))((n—(r2n+3"))m((n—(CJ;Sm—Z))))(( | Mjm -
— t (xyz)" ,r 1.15
prm (71,
2
This gives,
n+({-2s-m-2
, Ler2) [(n-0)r3] (—+( ) ))! n-3m-(
t" termsforx” +y" +(-z)" =+ ¥ > n( P — )t (xyz)"r 2 (1.16)
$=0 m=0 (0-2s)Imtsl( )!

m+n+(=1mod 2
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Therefore we can write,

Theorem 1.1 t dependent equation v =-1, (n > 0)
N+((-2s-m-2)

)t (xyz)"r 2

n
X"+y"+(-2)"= £ X > (-1)" 1) n(
“0s=0 m=0 ((-25)!m!s!(@)!

m+n+.{=1mod 2

Where r is the v= -1 symmetric x?+yz-xt-t*
n-3m-—/¢

Making o =
g 2

Ler2] L(n—¢)/3] 0 — _
Xyt (-z) = 3 S (DN (et S DLyl ym e
(=04_9 m=0 (L=2s)Im!s!l(w)!
m+n+(¢=1mod 2
Corollary 1
zn—xn=(z—x)n+n(z—x)nfzzx+¥(z—x)n74zzx2+W(z—x)n76z3x3+
n-2_n-4
W 2 X 2 -t 12 _.nl2\n/2.nl2
ot - (zn —x" )zn X" (n=even)
|
)
n-1.,n-3
)2 1)/2 (n-1)/2
...+—(z—x)z(n_) (1) (n=odd)
(n-1),
, !
Corollary 2
n,.n n nt na1 n! n-1 n! n-2 2 n! 2.n-2
X = - X - X - X —_— .
vy =(xry) (n-1D)! y 1!(n—1)!y (n-2)12! y 21(n-2)!
n! m. n-m n! n-m_m nt . n/2.n/2
- X —-——X X =
m!(n—-m)! y (n=m)I'm! y n.n, y (n=even)
o x(N-1)/2,(n-1)/2 (n = odd)
(n-1),(n+1),
2 2
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First Examplesv =-1

-6 -6

X +y o+ zf6 = (t12 + 6t10r +6xyzt9 +15t8r2 + 24xyzt7r + 20t6r3 +3( ><yz)2t6 +36xyzt5r2 +15r4t4 +0( xyz )2t4r + 24xyzt3r3

-10( xyz )3t3 +6t2r5 79t2(xyz)2 r2 +6t><yzr4 —12t( xyz )3r+ r6 - 6( xyz)2 r3 +3( xyz )4 ) xyz )76

X4 yi5 0 (t10 +5t8r+5xyzt7 1101072 +15xyzt5r 10t +0( xyz)zt4 +15xyzt3r2 154 -5 xyz)ztzr +5xyztr3
—5(xyz )3t i 5( xyz )2 2 )(xyz )75

x4 y74 PP (t8 vadrs 4><yzt5 rorlt? +8><yzrt3 rart? 2 xyz)zt2 +4><yztr2 ot -4 xyz)2 r)(xyz )74
an y73 _8 e (t6 caty +3><yzt3 il Ixyztr + P -3 ><yZ)2 Y(xyz )73

X2+ y72 2722 (t4 cotr s 2xyzt + ¢ )( xyz )72

R N S CON

xo + y0 + z0 =3

N yl P

><2 +y2 +z2 =3t2 +2r

x3 + y3 - z3 = 4t3 +3tr - 3xyz

x4 + y4 + z4 = 7t4 +8t2r— 4xyzt + 2r2

x5 + y5 - z5 :llt5 +15t3r —10><yzt2 +5r2t— 5xyzr

><6 + y6 + z6 = 18t6 + 30t4r —18xyzt3 +15r2t2 —12xyztr + 2r3 +3( xyz)2

><7 + y7 - z7 = 29t7 +56t5r —35><yzt4 +35r2t3 —35xyzt2r+7tr3 +7(xyz)2t—7r2xyz

x8 + y8 + 28 = 4718 +1O4t6r - 64><yzt5 + 80r2t4 —80xyzt3r + 24t2r3 +20( xyz )2 t2 - 24><yztr2 + 2r4 +8(xyz) 2r

)23

><9 + y9 - z9 = 76t9 +189t7r —ll7><yzt6 +171r2t5 —180xyzt4r + 66t3r3 +45(xyz) t —81><yzt2r2 + 9tr4 +27( xyz)zrt - 9xyzr3 - 3(xyz )3

xlo + le + z10 = 123t10 + 340t8r - 210>(yzt7 + 355r2t6 - 380xyzt5r +170t4r3 +100( ><yz)2t4 - 220><yzt3r2 + 35t2r4 +90(xyz) 2rt2 - 40><yztr3
-10( xyz )3t + 2r5 +15r2 ( xyz)2

1 11

X4y - z11 = 199t11 + 605t9 r- 374xyzt8 + 715r2t7 - 781xyzt6 r+ 4O7t5 r3 +209( xyz )2 t5 - 561><yzt4r2 + 110t3r4 +242( xyz )2

rt3
—154xyzt2r3 —33(xyz )E’t2 +11r5t + 66r2(xyz)2t —11xyzr4 —-11( xyz )3 r

Computer Verification. One may care to verify these results by computer where t = x+y-z and

I =X°+yz-Xt-'=y?+xz-yt-'=7°-xy+zt-t*

There are many corollaries but notable corollaries required for FLT are as follows:
Corollary 3 When n is a multiple of 3 then the equation ends with +3(xyz)"*

Proof
. n-3m
From (1.17) with¢=0, we have =0 then n=3m hence,
(n-(m+2))|
: —1)!
inz—(xyz)m :inM:ig_mzig(xyz)m
O!m!(L'gm)! m! m
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7 ON FERMAT’S LAST THEOREM

Corollary 4 For n=M3-1 or n=M3+1 and =0 then the coefficients of (xyz)™r or (xyz)" r? respectively
is +n

Proof
. n-3m
From (1.17) with (=0, we have =1 then n—3m= 2 hence,
n-(m+2)
) (m)!
n—=_——(xyz)"r=+n—-2(xyz)"r =xn(xyz)"r =£n(xyz)"r
otm1("=3My, m!
2
N=3M _5 then n—3m=4
n-(m+2)
I (2m)!
J_rn—3(xyz)mr =in|—"(xyz)n r? =+n(xyz)"r? =+n(xyz)"r?
O!m!(%)! m!2!

Corollary 5 For n=M3+1 and =1 then the coefficient of (xyz)™ is +n and for n=M3-1 and ¢=2 then the
coefficient of (xyz)™t* is +n(m+3)/2

Proof
| (n-1)/3] A=(m+D),, n—(3m+1)
The t sequence for x" + y" +(-2)" = > J—rn%t(xyz)mr 2 .21
m=0 even(n odd) 1!m!(%)!
m=1 odd(neven)
for W:O we get,
n—-(m+1
(— (2 ) ™ ™ — et
Fn =+n—t(xyz)" = £nt(xyz
1!m!(n—3m—1)! m!
2
The t%sequence for x" +y" +(—z)"
(n—2)/3 n=(m)y, n=(m+2),, n—(3m+2)
=+ : > J n ( 23 ) 5+ ( 23 )2 N2(xyz)Mr 2 (1.22)
m=0 even(n even) 2!m!(%)! O!m!(&)!
m=1 odd(nodd)
for W=O we get,
(n—(m))l (n—(m+2))|
n=tm,, n=m+2)y, :
(2 ) (2 NP (92)" = (T T ()" = (T (xy2)”
- - - - ! m! 2
2mIC— ) om0

Corollary 6 The total sum of the exponents in each term add to n (n > 0) and 2n (n < 0) if we include the x,y,z
degree (xyz) =3, r=2andt =1 as a weighting factor.
Proof

3m—/

Equation (1.17) the total sum is 8+m+% —(+3m+n-3m—/=n

We therefore have for n = M3, lone (xyz)"™ terms (Corollary 3)

n-2 n-2
For n=M3-1we have (xyz) 3 t*> and (xyz) 3 _,rtermsinn >0 and vice versa in n < 0. For n=M3+1 we
n-4 n-4
3

have (xyz )Tt and (xyz) ,1r2terms inn>0 (Corollaries 4,5)

© Copyright Chris Sloane 2018
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Corollary 7 The first term coefficient is given by the Lucas sequence over n and for n= p(prime) is congruent to
1modp, all the other terms are congruent to Omodp. The first term coefficient is generated from the Lucas
function and hence L, is congruent to 1modn if n is prime [2]
Proof

We have when ¢ =n and m=0 from thm 1.1

[n/2]

N (n—-s-1! i
0 S'(n-2s)!

This is a formula for the Lucas sequence hence and for n= p, L, is congruent to Imodn if n is prime [2]

We can seefrom 1.1 that if ¢ n then the denominator factorials are always less than n so if
n=p then there is a p term in the numerator hence all terms when ¢ = n are congrurent to Omod p

Corollary 8 We can apply the t, r, (xyz) representation to any three variable equation of the form Axa+Byb-
Cz° =D if we make T equal the equation in question T=D and X=Ax?*Y=By", Z=Cz*
T dependent equation,

n [0r2] [(n-0)3) (e=2s-m-2), n—3m—
X" H(-2)'= ¥ Y z (-1)"(=2)"n( 2 —yrixvz)"R 2 (1.23)
[=0s=0  m=0 (=25)tmisi ("=

m+n+(=1mod 2
Where XY, Z represents the terms in the equation and R=X2+YZ -XT -T2 =Y2 4+ XZ YT -T2 =72 - XY +ZT -T2
For example in FLT we have that T=x? +yP -zP =0

soT is 0 and R=x2P +yPzP —xPT -T2 =x?P 4 yP7P

Hence,
o Ler2] [(n-1)/3] (W)! ( n-3m-f
P +(y" ) +(=2")' = T 3 I (D) T O )TR 2 w2
(=0s=0 m=0 ((’—25)!m!s!(T)!

m+n+(=1mod 2
Henceif T =0 then we necessarily have {=0and we get the T independent equation
n-(m+2)

)! n-3m
[n/3] ) m
O+ (") +(=2") = (A (YR (R) 2 (1.25)
m=0(n,meven) O!m!(T)!
m=1(nmodd)

Where R =x2P +yPzP

Lemma 1 If x> +yz=0modq and x” +y®? —z° =0 then x*° +y°z? =0modq, y*" +x"z” =0modq,
7** —x"y? =0mod q

Proof x?° +yP”z® can be factored into x* +yz since p is odd hence x*” +y°z” =0modq
With x? +y? —z° =0 thenx® +yPzP =x"(z" —y")+y"z° =x"z° +y" (2" - x") = y*" +x"z"
hence if x*° +y”z? =0modq so must y** +x°z” =0mod g

Similarly, x*® +yPz? =x?(z° —y")+yPz" =z° (X" + y?) - xPyP =2°" —xPyP
hence if x°® +y®z? =0modq so mustz*® —x°y® =0modq

© Copyright Chris Sloane 2018
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Lemma 2 If x,y,z #0mod q and x? +yP-zP =0, and where q >0 is a prime factor of any
of the symmetric partsR =x?P +yPzP =0mod g or R = y?P +xPzP =0mod g or R=2z2P —xPyP =0mod g
we can write;
g"xP =1mod q
g°my®P =1mod g
9°Mz%P =—1mod g
Where g™ is defined as the multiplicative primitive root set generator

Proof
q has a primitive root g and we use the primitive root as the generator of the

multiplicative set of integers mod ulo g or g™ generates all residues mod g, for 0 <m<q
Lets choose a g™ acting on x? such that the residue is 1mod g hence,
g"xP =1mod q
With x2P +yPzP = y2P 1 xPzP = 72P _xPyP =0mod q from lemma 1 we have
g™x2P +g™yPzP =0mod q
xP +gMyPzP =0mod g

and with g™y?P +zP =0mod q

2m

hence, xP —g2™y3P = 0mod g
1-g%"y3P =0mod q

and with, g"z2P —yP =0mod g
xP +g*"z%P =0mod q

1+9%"2*P =0mod q

Therefore,
g™x? =1mod q (1.26)
g°My®P =1mod g (1.27)
9°"z%P =—1mod g (1.28)
-.we have 3P = y*Pmodq, 2P =—y3P mod q, 2°P =—x*P mod q (1.29)

Lemma 3 If g™xP =1mod q then, g™yP #1mod q and g™zP % —1mod q therefore g2My2P, g®Mz%P x1mod g
Proof

When g"xP =1mod q, g®"y3P =1mod q, g®"z°P =—1mod q then,

(g™yP -1)(g®"y?P +gMyP +1)=0mod q, (g™zP +1)(g®™ z2P —g™zP +1)=0mod g.

If g"yP =1modq org™z” =—1mod q, then g™zP =2mod q or yP =—2mod q respectively

from g"xP +gMyP —gMzP =0

Then from g2"x?P +g®™yPzP =0modq we get 3=0mod q which it is not

hence g™yP =1modg,g™zP #-1mod q,

Lemma4 We have 2 quadratic congruences in yP and zP with 2 unique solutions for yP,zP
Proof

We can write  y3P +2z3P =0mod q, (yP +zP )(y?P —yPzP +2z?P)=0mod q

If yP =—zP modq then 2g™yP =—-1mod q,2g™zP =1mod q from gMxP+g™yP-gMzP =0,

- 4g%My2P 4 492" xPzP =0mod q, and 1 +2g™xP =0mod q,

which is a contradiction 3= 0mod q hence yP = zP mod q so y?P —yPzP +z2P =0mod q.

So we have 2 quadratic congruences in yP and zP with 2 unique solutions for yP,zP

© Copyright Chris Sloane 2018
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Fermat’s Last Theorem

x"+y"-z" = 0 has no non zero integer (and hence rational) solutions when n > 2.

Proof

Make n prime (p). We assume that x,y,z have no common divisors for if they did we could factor them out and
find a new solutionto the equation.

If one of x,y,z=M3 then the other 2 variables must be +1mod3 to satisfy xP+yP-zP =0
i.e. (M3)P +(M3+1)P —-(M3£1)P =0
S X+Yy-z=t=0mod 3 (5.01)
If x,y,z#M3 then only (M3+1)P +(M3+1)P ~(M3%1)" =0 is allowed, hence t=M3+1+M3+1-M351=M3
~t=0mod 3 (5.02)
x,y,z>0and t=x+y-z soif x+y<zthen z=x+y+d and x" +yP —(x+y+d)? <0 an inequality, hence t >0
With z>x,y and r'= X2 +yz ~.r'>0 and r'is odd as one of X,y,z must be even and t is even. Furthermore,
X2 +yz>t ie (z—y+t)2 +yz>t. We canalso show this for r(y/t), r(-z/t). (5.03)

Using r'= X2 +yz, lets make g a prime decomposition factor of r'which is odd >3

Proposition5 For all the cases of q we show that t =0mod q or X, Y,z share common factor q or we get a contradiction
modulo q.

If q=3then t=0mod q as above, otherwise We need to define 2 cases(plus 2sub-cases)when q #3:

1) q=#3sp+1 (5.05)
1b) g=sp+1,s=M3 (5.06)
1c) q=3s+1,s=Mp (5.07)
2) q=3sp+1 (5.08)

Case 1. Write Ip=uq-v and make u—-v=1. This is an extention of Bezoult's lemma where g, p are co-prime or if
gq=p then GCD is p (v=Mp). Hence,

Ip=(v+1)g-v=v(q-1)+q (5.09)
Choose v such that v(q-1)+q=Ip where | # M3 and from our (T independent) representation (Corollary 8) with T =0
as (=5 a0 (ShHEEE -5
O) +(yP) (7)) =0-1002)° (R) 2+ 22 (an)P(R) 2w BB B )P (R)
((l—(n+2)))((|—(n+4)))m((|—(3n—2))) 1-3m
L 2 2 | 2 (XyZ)(m_l)p(R) 2 ) (5.10)
m!

LHS=tmodq ie. (x+y-z)+Mg=t+Mg=tmodq if x,y,z=Mq (from Fermat's little theorem)
RHS=0modq. (R=x%P+yPzP—0xP-0=Mr)

~t=0mod q (5.12)
Remark: If one of x,y,z contain g then so do the other 2 variables and we have a common factor solution which
must factor out.
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11 ON FERMAT’S LAST THEOREM

Case 1b) Write Ip=ugq-v and make u-v=3p,

Ip=(v+3p)g-v=v(q-1)+3pq (5.12)
I=vs+3q where s iseven #3 .. | is odd = M3 hence from (C.29), T =0.
-5 1-7 -11_1-
3 ()2) -9 (7)(7)(7)(7) 1-15
)+ y”) ") =0l (R) 2+ Eo P R) 2 ettt (P (R)
((I_(n+2)))((l_(n+4)))...((l_(3n_2))) 1-3m
ot 2 2 : : (xy2) ™ PP R) 2 ) (5.13)
m!
LHS = x°P + 3P — 23" mod q if X, Y,z # Mg
RHS =0modq
-.-3(xyz)? =0mod g (5.14)

Hence we get common factor solutions in this case.

Case 1c) Write Ip=uq-v and make u-v=1,

Ip=(v+1)g-v=v(q-1)+q (5.15)
Ip=v3s+q where s is even g=M3.. | is odd #M3.

9 (D a9 (CHEEHED 115
0P +(yP) (2P ) =0-102)P((R) 2+ ()P(R) 2 ¢ttt () (R) 2
((I—(n+2)))((l—(n+4)))m((l—(3n—2))) 1-3m
- 2 2 I 2 (xyz)(m_l)p(R) 2 (5.16)
m!
LHS =tmod q if x,y,z = Mq
RHS =0mod g
~t=0modq (5.17)

Case 2) With q=3sp+1, we can factor r' from R=xP +(yz)P by Lemmal

For case 2 we need to uniquely define x°+yP-z°=0 as opposed to x"+y’-z"=0modq. This is done via this
lemma 5

Lemma 5, If x” +y°-z°=0 then Case 1) We can write x+y=c’, z-y=a’, z-x=b" if x’+y"-z°=0 if p does
not divide x,y,z
Case 2) If one of x,y,z=Mp then we can write z-y=p"*aP,z-x=p”'b® x+y=p”c” respectively

Proof

Case 1) Withn = p factorout x+y =C therefore C must divide z
Make z = cw where ¢ is any common divisor of (x+ y) and z
From Corollory 2 (see extract 2) we have,

|o(2 3) )P5,2,2

X?+y" — 2P = (xr y{(x+y) P L p y) PRy (x+y

ot p(x

Hence, (x+y)=c¢ P otherwise xy would share all common factors with z

(P72, (pDI2)y o (5.22)

(excluding p) which isnot possible in the special case.
Therefore, if p does not divide C then x+y=C = cPandz=cw
and z” is divisable by all of x+y

p

Similarly, z-y= A mustdivide xP and from Corollory 1(see extract 2) z-y=A=a" andx=au

and z-x:B:bpandy:bv for a,b,c>0
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12 ON FERMAT’S LAST THEOREM

Furthermore, if none of A, B,C contain p then we have,

x=au=A+t =aP +t anda/t (5.23)
y=bv=B+t =bP +t andb/t (5.24)
z=cw=C-t =cP +t andc/t (5.25)

Furthermore, (x+ y)IO —zP = Mp hence C—-z=MpbutC-z=t.. p/t
Moreover we now can write , A+ B —-C =-2t
Hence,

aP +bP —cP = 2t= —2mpabc (5.26)
Case 2) If p divides, say C, and hence z then we have C = pp*lcp
However, the other terms A, B will not contain p otherwise we have a common factor p.
Because we have a p coefficient in the last term of corollary 2 the shared common

factor p between x + y and z does not need to be to the power p but one less p -1.

Soletssayp=5andx+y = p5 and 25 = p5w5 So from corollary 2

5,4 5,2 2.2
pPwP = pPL(p)* = p(p°) xy + px“y“}
4 2 2.2
wP ={(p>)* —p(p>)2 xy + px?y?}
hence w= Mp andin turn xy = Mp giving common factor solutions p
Therefore, x+ y = p°*c where c is the other shared factors as above.

If g"xP=1modg, g®"y*P =1modq, g™ z*P =—1mod q and ¢ =3sp+1 then from lemma 3,4 either:

9%zP =—yP modq and g*xP =-z" modq and g*®y” =xP modq (5.27)
or

2sp

92 zP =—yP modq and g%PxP =—zP modq and g®*yP =x" modq (5.28)

3141)

Lemma 6 We can also write g©*9%zP = —yP modq for 1 = 0,1,2...(p-1) etc. for each of these congruences.

There must exist one ¢=31+1 such that gz =-ymodq
Proof Write,

g¥zP =-yP mod g
g°@PzP = _yP mod g

g*PzP =—yP mod

gsCPDDP 2P — _yP mod g
Factoring we get,
(0°z+y)(g* PPt - (P AzP-2y 4 yP Y

(g4SZ n y)(g4s(p—l)z p-1 g4s(p—2)zp—2 Yot yp—l)

We have p rows with each one having a unique solution otherwise we get common factor solutions if
they share the same solution. Since there are atmost p—1 unique solutions in the second brackets there
must be one solution in the first braketon any particular row.
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Likewise for the other relations so we can write a table as follows;

ON FERMAT’S LAST THEOREM

Table 1 g*
g°z=-ymodq g°x=-zmodq g®y=xmodq
g%z=-ymodq g*x=-zmodq g*y=xmodq
g’%z=-ymodq g’ x=-zmodq g’Sy=xmodq
g%z =-ymodq 2% = —zmodq g%y =xmodq

g®P 257 =_ymodq

g

gCP2sx = _zmodq

gCP=2sy = xmod g

or g>®
9%¥z=-ymodq g%x=-zmodq g%y =xmodq
9%z=-ymodq g>x=-zmodq 9>y =xmodq
9% z=—ymodq g¥x=-zmodq g%y =xmodq
g*z=—ymodq g“*x=-zmodq gy =xmodq
g®p D5, = _ymodg 9GP sy = _zmodq gBP sy =xmodq

Lemma 7: When one of X*+yz=0modg, y*+xz=0modq, 7°-xy=0modq then two of the solutions to
lemma 6 must fall on the same row.
Proof

There are a number of ways to show this. We have X2+ yz =0mod g hence we have,

gnx = ymodq for some gn if X,y,z=Mq

gnx2 +gnyz =0modq

y(x+gnz) =0modq

so we have g_ny =xmod g and g_n =-zmod( (so /o = (g in the top table)

For y2 +xz=0modq, {1 =13

For z° -xy=0modq, (1 =19

For x*+yz and our two lemma 7 solutions being on the same row, they must be on the ps or 2ps row.

because by lemmab5 taken together we have g* (x+y)=(x-z)modg —g“c’=-bPmodq But we must have
a g"c=-bmodq if a,b,c£Mq hence raising both sides to p means £=Mp

There is only one p exponent on each of the tables if s#Mp and this occurs 1/3 partition points; 2ps
and ps.

For Case 2 of lemma 5 depending on which x,y,z is divisible by p we choose a decomposition term
such that we have two of a°,bP,c” giving the 1/3, 2/3 partition points;

If x=Mp then choose x* +yz

If y=Mp then choose y*+xz
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14 ON FERMAT’S LAST THEOREM

If z=Mp then choose z2-xy
These 1/3, 2/3 points mean t=0modq as follows.

We work out what aP is in terms of b” and c” for example. This is independent on what the first
column solution is and is only dependent on the ps or 2ps solution given by lemma 5 and 7

2ps

Write g“°z—g?Px=aP modq

gsp (gfls—ZSp _1)Z+92$p (z—x) =3P mod g

and write —g“°z—g®Py=cP modq
~g® (g™ P 1)z - g*P(z—-y) =cP modq

- g%PpP —g?PaP =aP +cP modq (5.29)
(Hence it is independent of ¢,) but g?cP =-bP modq

. —(g%® +1aPf = (g*" +1)c” modq (5.30)
Now (g2 +1)(g*% +1)~1 = g2*P mod q since g3 =1modq

-.g%PaP =—cP modq (5.31)

Next we have from (5.29)
- (g*P +1)bP = g%P (g% +1aP mod q (5.32)
bP =g%PaP modq or g®PbP =aP modq
Hence we can write; g2PaP +g?PbP —g?PcP =—cP +aP +b” modq
g2sP (—2t)=—2tmod q
(g% —1)2t=0mod q and since (g2 —1)=0modq
~t=0modq (5.33)

Therefore, t must also be divisible by g=3sp+1, s#Mp. However, this is not necessarily true when
q=3sp"+1 for n>1. To generalize to all n we do the following.
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15 ON FERMAT’S LAST THEOREM

Lemmas8 If q=3sp" +1and x° +y? —z" =0 then we also have x* +y* —z* =0
Proof
Starting with g = 3sp® +1 we can write from the lemma 6 Table 1

g¥z=-ymodq g¥x=-zmodq g®¥y=xmodq
g**z=-ymodq g™ x=-zmodq g“*y=xmodq
g™®z=-ymodq g"®x=-zmodq g’®y=xmodq
g"™®z=-ymodq g'*Px=-zmodq g"®Py=xmodq
g ?®z=—ymodq g ?®x=—zmodq g®P?®y = xmodq

Assume the g* solution and ¢,,(,,(, are solutions respectively.
One cansee if q=3sp>+1 we have the exponents of g being multiples of p
From lemma 5 we have x=au, y=hv, z=cw

There is no loss of generality if we write g**x=-z +dq where d 0moda or d #0modu,
since x=au and if z=M¢(a,u) they wouldshare common factors a, u.
Moreover, there must exist an o such that g =dmodq for some @, & #0modq
where § is the residue mod g whereby rising it to p we have 6° =-zmod g
Example, if —z=2mod151 then 6 =22 if p=5
Also without loss of generality we can write, g'“a =J+hq (h=0moda or h=0mod q)
We can add g"*h to both sides for h, =0,1,2..i, 0<i<a or 0<i<u-1 thereby givingus,

9% (a+h)=5+(+g"°h)q (5.34)
Hence,

9 (@)’ =(@+(h+9"*h)g)’ =2+ f'g (5.35)
where a'=a+h,
We can get all residues moda or modu on the RHS by adjusting h such that f'=dmoda or f'=dmodu
because z,9,q=0moda or =0mod u
(Note: if a=g or u=g then choose another primitive rootas q is now large 3sp® +1 and has many
primitive roots)
Therefore, if we make the residue d moda or d modu we have

9"x-g"**a'"” =Maq, or=Muq (5.36)
Moreover, since x=au then a® = Ma’ or Mu®
Example: Let p=5, q=151, a=7, —z=2mod151, d =5modq, f =h+g'#(0,1,2,3,4,5,6) =0,1,2,3,4,5,6 mod a
—(22+0q)* —-2=(5mod 7)q, (22 +19)" -2=(2mod 7)q, (22+2q)" -2 =(4mod 7)q, (22+3q)" -2 = (1mod 7)q,
(22+4q)* —2=(6mod 7)q, (22+5q)* -2 =(3mod 7)q, (22+6q)* —2=(0mod 7)q
Hence if d =d'a+5 then we choose (22+0q)” =5mod a,
Furthermore, we can get all residues in the coeficients of the a,a”, a’...a” terms moda (that being d',d"...etc.)
oru,u’,u’..u” modu by adding multiples of a, u respectively and since d'=(0,1..a—1)mod a we can make
M=m'aorm'a’.. m'a®"giving g"*x-g"*"a'" =m'a’..m'a” hence we can make x = MaP. Likewise x = Mu®
Example:as above if we add n7q,(0<n<7)to both sidesof [5.29] for (22+0q)" -2=5moda,we get
—((3mod 7)7+5mod 7)q, (Lmod 7)7 +5mod 7)q, (6 mod 7) 7+ 5mod 7)q, ((4mod 7)7+5mod 7)q,
((2mod 7)7+5mod 7)q, ((Omod 7)7+5mod 7)q
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16 ON FERMAT’S LAST THEOREM

So we can add multiples of ag,a’q...a”"q andug, u®q..u""qtoboth sides of (5.34) to get
the exponentiation of x=(au)” =(x")* where x' isobviously less than x or we could view

it as x is a power.

Remark, we can do this because we have g"** inour tablel which can be eliminated in
(5.36). If we did not have p in the exponent then we could not eliminate it leaving g" terms
meaning a®,u® would not necessarily divide x.

Likewise, we can do this for the other columns of table 1 to get y = (bv)? =(y)°, z=(cw)? =(z)°
Hence, we can write

X'y oz =0 (5.37)
-y

One can see from Lemma5 x'+ y':c'pz,z =a"™,z-x'=b" and a',b',c' do not necessarily
equal a,b,c

Now we have from Lemma 1 that x*" +y®z? = y*® + xPz? = z°® —x"yP which is the same as
X-sz_i_y’pzz-p2 :y-2pz+)(-|u2 7' g 20" yp? y-p2

Therefore, we get X =y =z modq

We have from table 1 and lemma 6

gPx"® =-z""modq, g*Py" =x"" modq

However, now ¢, = Mp for we have 7-x'=b", x'+ y'=c'" so if we have g'*x'=—-z'modq
then ¢, = Mp? and this is the 1/3,2/3 solution points. Therefore t'=x'+y'-z'=0modq

andt=x+y—-z=0modaq.

We can repeat this for q=3sp®+1 to give X" +y"” —z"" =0 etc...q=3sp" +1
— x"™P 4y _z"P" —0 and we get smaller triples x" < x"<x'< X etc. as n increases.
The above arguments hold for all n therefore all q's divide t

Theorem 2.1

If xP +yP —zP =0 and suppose x,y,z are pairwise co— prime then any prime factor q of (x2 +yz) will divide t
where t=x+y-z2
Corollary 39

Theorem 2.1 s valid for any prime factor q of (y?+xz) or (2% -xy)

This follows from the symmetry of the problem and methods above

Closing Argument
If we have common factors, the special case x" +y"-z" =0 loses no generality in assuming that the greatest

common divisor of x; y and z is 1. Hence t must contain all the prime decompositions q of (x2 +yz).

We can now use 3 inequality arguments for exponent p in xP +yP —zP congrurent to 1 modulo 3,
congrurent to 2modulo3, and exponent p=q. We need our equationl.1in primes p and Corollaries 9,15,18.

We will write /.1 = x2 +yz = g% %)q,9(%)q,9(%) g (%) where g; is prime and g(g; ) is defined to be the

highest power of g; dividing X2 + yz.
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Lemma 9: For exponent p>3 congrurentto Imodulo 3 and g; # exponent p then t=M ,,,r

Proof. If q(q; ).q(q,).q(a;)..q(q, ) are all equal to 1 then t=M ,,;r but x% +yz >tfrom [5.03].
Hence, we have an inequality and contradiction. Therefore one or more of q(q; ).q(d, ).q(d3 )..q(q, )>1
Lets firstly assume g(o; )=2

From corollaries 9,15,18 we have xP +yP —zP =Mg;® + p(xyz)™t - p(x? + yz—xt—t? )2(xyz)" =0
One can see p(xyz)™t =Mg? because the last term p(x° +yz—xt—t? )*(xyz)™ = Mq,?

hence t = Mq12 because (xyz) gives us common factors q in x;y and z

then t =M ,,,r but x*+yz >t hence wehave an inequality and contradiction as before.

Lets make q(cy )=23 we still get t = Mg, so then the higher terms in t? ;r or t ;r®=Mg® we write,

m+lt _

xP +yP —2P =M, + p(xyz) p(x? +yz—xt—t2)2(xyz)" =0

m+1t _

Hence, p(xyz)
Next make q(q, ) =4 we still get t= Mql4 and our higher terms become Mql8 hence,

xP +yP —2P =Ma® + p(xyz)™ -

(5.38)

(5.39)

Ma,* and t > x2+yz butx?+yz >t hence we have an inequality and contradiction as before.

p(x2 +yz- xt—t2 )2( xyz)" and t = Mql8 and we get our contradiction again.

Therefore, for any q(q; ) we get t= Mqlz"( “W . As g in %2 +yz increases in powers g( ;). tincreases in powers

2q(q;) so then must the higher terms containing higher t,_; r combinations which in turn increases t and we

continue to get the contradiction as q(¢; ) — .

One can seethis is true for all q(q; ),q(a, ).q(03)..q(q,)=1 so we can conclude t =M ,,r which isa
contradiction ,,r>t.

Lemma 10: For exponent p>3 congrurentto 2mod ulo 3 and g; = exponent p then t=M ,;;r

Proof. If q(q;).q(d,).q(d;).-q(q, ) are all equal to 1 then t=M ,,,r but x% +yz >tfrom [5.03].
Hence we have an inequality and contradiction. Therefore one or more of q(q; ).q(d, ).q(d; )-.q(q, )>1
Lets firstly assume q(q; ) =2

From corollaries 9,15,18 we have x” +yP —zP = Mg,® - meJr?’(xyz Y™t2 = p(xyz)™ (X% +yz-xt—t?)=0
hence, xt = Mql2 in the last term _;r but x gives us common factor g, in x;y and z so t= Mql2

then t =M ,,,r but x*+yz >t hence wehave an inequality and contradiction as before.

Lets make q(q; )=3 we still get t=Mg,> and higher terms in t_,r? and t* ;r = Mq,® we write,
xP +yP—zP = Mg - meJr?’(xyz)mt2 —p(xyz)™(x% +yz-xt-t?)=0

- xt=Ma;> hence t = Mg, and we get a contradiction as before

Next make q(q; )=4 we still get t= Mql?’ and hence xt = Mq14 and t = Mq14 and we get a contradiction again

Therefore, for any q(q, ),we get t =Ma,%%) and we get a contradiction as q(q, ) — .
One can seethis is true for all g(q; ).q(0, ).q(03)..q(q,)=1 so we can conclude t=M ,,r which is a
contradiction ,;,r>t.

From Corollary 20, in that the coefficients of all terms are congrurent to 0mod p except the first we need to

make sure the contradiction still works for g; = p or ,,;r contains a power of p
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Lemma 11 For exponent p>3and g; = p then lemma 11,12are unchanged; t=M ;1
From corollary 20 the coefficients of all terms are congrurent to 0mod p except the first which is congrurent to 1mod p
so if t = Mp then we divide out p leaving the relavent end terms coefficents equal to 1 so we have the same form of the

equation but with thefirst term tP deminished by p so that term is Mp"™ however this term is irrelevant in the above
arguments so our contradiction holds in this case too.

For p=3 we get directly 3xyz=0mod q if q>3 hence common factor solutions again.

If q=3,and since t=M3 then 3xyz=M3? therefore, one of X,y,z=M3 and then so must the other 2 variables
hence share a common factor 3.

Remark t =0 even if x or y is negative for we would just rearranged the equation for odd exponents

i.e if yis a negative integer x" —y" =z" becomes y" +z" =x" and x becomes the higher term but in that case we
would just write X <> z

With n=4 solved by Fermat we can conclude there are no discrete solutions to Fermat's equation for n> 2,
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