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Some topological paradoxes of relativity (EPR). 
Einstein-Podolsky-Rosen Paradox1)  

 

V.A. Kasimov (E-mail: quadrica-m@mail.ru) 
 

In the wake of the article A. Aspect "BELL's THEOREM: the naive view of the experimenter" 2). 
Since the formula (23) was found to be a mistake (or a typo), I took the trouble to check the calculations from 1 to 5 

sections of the article. Some clarifying points important for understanding the essence are given.   
Given an elementary derivation of the formulas (3), which is omitted in the article. 

 
 

 The limited applicability of the point description to real space-time relations has become apparent 
since the formulation of the uncertainty principle in 1927 by Heisenberg.  It became clear that point 
topology does not work very well in quantum mechanics, but with the realization that the physical metric 
of space-time relations is lost in relativistic physics, these suspicions have become a problem today. 
Actually this is confirmed by the experiments of A. Aspect. As is known, velocity is the main topological 
parameters of conjugation of continuous space and time. Therefore, when interpreting the results of 
experiments A. Aspect and there are problems associated with the velocities of propagation of signals and 
cause preoccupation. 

 

 The connection of local theories with additional parameters and bell inequalities is a topic of the 
day in physics. In detail history of a question is covered in works [1, 2, 3, 4]. Results of A. Aspect and J. 
Bell belong to the physics of the microlevel description. 
 

 So what is the main thing in the Aspect's work? 
 

 1. The found theoretically correlations in the behavior of "entangled" States of the two photons 
can be explained by the introduction of additional parameters, "averaging" of which would theoretically 
allow to find agreement with the observed effects. 
 

 2. That Local Supplementary Parameters Theories (read-built on the basis of PMC-topology) are 
constrained by Bell's Inequalities.  
 

 3. That certain predictions of Quantum Mechanics violate Bell's Inequalities, and therefore that 
Quantum Mechanics is incompatible with Local Supplementary Parameters Theories. 
 

 4.  Fundamental assumption for this conflict is the Locality assumption.  
. 
 

 5. We will show that in a more sophisticated version of the E.P.R. thought experiment (« timing 
experiment »), the Locality Condition may be considered a consequence of Einstein's Causality, 
preventing faster-than-light interactions. 
 

 Concerning items 4 and 5 it is necessary to tell the following: 
 

 i4. The notion of locality of space-time relations in quantum mechanics lost its direct meaning 
after the appearance of Heisenberg uncertainty relations, retaining its indirect meaning only in connection 
with the classical ones macro interpretations of quantum mechanical measurements. The concept of a 
continuous trajectory that ensures the establishment of a genetic affinity of the positions of points of the 
same point body in a dynamic, as a causal sequence of events, has also disappeared. 

                                                           
1 ) In order not to disturb the coherence of the presentation, the author's words of the article A. Aspect will be highlighted in color 
and reproduced in the original. 
 

 Bell Theorem naive view 18 Alain Aspect. 
Text was prepared for a talk at a conference in memory of John Bell, held in Vienna in December 
2000. It has been published in “Quantum [Un]speakables – From Bell to Quantum information”, edited by R. 
A. Bertlmann and A. Zeilinger, Springer (2002).  https://www.dropbox.com/s/q8f5ehdudr2ixe6/0402001.pdf?dl=0 
 

2 )I beg your pardon for my not very good English!  The  original text in Russian: http://vixra.org/pdf/1804.0300v1.pdf 
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 i5. The Einstein's causality implies the need to include the notion of velocity as a "topological 
coupling" between a continuous time 1-manifold and a continuous 3-space manifold in PMC-topology. It 
is the speed that makes it possible to establish a genetic relationship between the positions of the 
trajectory points of a moving body that are or may be in the dynamic causal sequence of events. However, 
such concepts as speed, trajectory, genetic affinity, preserved in motion, are absent in quantum 
mechanics. Therefore to speak about violation of causality of big sense isn't present. Violation of the 
Einstein relativity principle for non-localized objects can also be seen in the macro-description of 
physical reality [6]. 
 

 The positive result of experiments A. Aspect is concluded that PMC-topology in KM stops 
working properly. 
 

 

 The locality of classical physics, CTR and GTR, is most likely a consequence of their asymptotic 
approximations, when macrodistances and macrotime periods far exceed the micro scales. 
 

 The very same occurrence of locality is the subject of "condensation" of Hilbert's description (of 
arbitrary dimension, countable-separable spaces) into (3+1)-dimensional pseudo-euclidean (riemannian) 
diversity. 
 

 In physics, today, with the help of "entangled" (mixed) microstates, attempts are made to recreate 
macrorealities, the description of which cannot be reduced to the description in PMC- topology. For them, 
the concept of speed and genetic affinity through speed is alien. Point Lorentz transformations cannot be 
applied to them either. 
 

1. Experimental scheme 
 
 

 Let us consider the optical variant of the Bohm’s version4 of the E.P.R. Gedankenexperiment 
(Fig. 1). A source � emits a pair of photons with different frequencies �� and �� , counterpropagating 
along 	
. Suppose that the polarization part of the state vector describing the pair is: 
 
 
 

  

where |�〉  and |��〉 are linear polarizations states. This state is remarkable: it cannot be factorized into a 
product of two states associated to each photon, so we cannot ascribe any well defined state to each 
photon. In particular, we cannot assign any polarization to each photon. Such a state describing a system 
of several objects that can only be thought of globally, is an entangled state. 
 

 We perform linear polarization measurements on the two photons, with analysers I and II . The 
analyser I, in orientation a, is followed by two detectors, giving results + or −, corresponding to a linear 
polarization found parallel or perpendicular to a. The analyser II , in orientation b, acts similarly‡. 
 

 
 
 
 
 
 
 
 
 
 
 
_______________________ 
 
‡ There is a one-to-one correspondance with the EPR Bohm Gedankenexperiment dealing with a pair of spin 1/2 
particles, in a singlet state, analysed by two orientable Stern-Gerlach filters. 

|��(�� , ��)〉 = 1√2 �|�, 〉 + |��, �〉� (1) 

Fig. 1. Einstein-Podolsky-Rosen-Bohm Gedankenexperiment with 
photons. The two photons �� � ! �� , emitted in the state ��(��, ��)〉 of  
Equation (1), are analyzed by linear polarizers in orientations a and b. 
One can measure the probabilities of single or joint detections in the 
output channels of the polarizers. 
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It is easy to derive the Quantum Mechanical predictions for these measurements of polarization, single or 
in coincidence. Consider first the singles probabilities "± ($) of getting the results ± for the photon �� , 
and similarly, the singles probabilities "±(%) of obtaining the results ± on photon ��. Quantum  
Mechanics predicts: 
 

 
 
 
 
 
These results are in agreement with the remark that we cannot assign any polarization to each photon, so 
that each individual polarization measurement gives a random result. 
 

 Let us now consider the probabilities "±± ($, %) of joint detections of �� and �� in the channels + or − of polarisers I or II , in orientations $ and %. Quantum mechanics predicts 3): 
 
 
 
 
 
We are going to show that these quantum mechanical predictions have far reaching consequences. 
 

2. Correlations 
 

 Consider first the particular situation ($, %& ) = 0, where polarisers are parallel. The Quantum 
Mechanical predictions for the joint detection probabilities (equations 3) are : 
 
 
 
According to this result, and taking into account (2), we conclude that when the photon �� is found in the 
+ channel of polarizer I, �� is found with certainty in the + channel of II (and similarly for the − 
channels). For parallel polarizers, there is thus a total correlation4) between the individually random 
results of  measurements of polarization on the two photons �� and ��. 
  

 A convenient way to measure the amount of correlations between random quantities, is to 
calculate the correlation coefficient. For the polarization measurements considered above, it is equal to 
 
 

  
 Note 1 
 

 To verify that (5) adequately reflects the degree of correlation between the orientations of vectors $ and %, 
two cases can be considered: complete independence (no correlation) and functional uniquely dependent between 
their values (full correlation). 
 

1) When the vectors a and b are completely independent and (2) is satisfied, we have: 
 
 
 
 
 
 Then from (5) we obtain: 
 

 
 that means that there is no correlation between the accepted values of $ and %. 

                                                           
3 ) The output of the formulas (3) is presented in Appendix. 
4 ) The correlation dependence, in contrast to the functional, determines the effect of the value of one quantity on the distribution 
of another. The correlation coefficient determines the tightness (strength) of this dependence. 
 

"'(%) = "((%) = 12 

 

Q.M. 
"'($) = "(($) = 12 

(2) 

"'(($, %) = "('($, %) = 12 sin�($, %& ) 

 

Q.M. 
"''($, %) = "((($, %) = 12 cos�($, %& ) 

(3) 

(4) "'(($, $) = "('($, $) = 0 

 

"''($, $) = "((($, $) = 12 

"''($, %) =  "'($) ∙ "'(%) = 12 ∙ 12 = 14 ; "((($, %) =  "(($) ∙ "((%) = 12 ∙ 12 = 14 ; 
"'( ($, %) =  "'($) ∙ "((%) = 12 ∙ 12 = 14 ; "('($, %) =  "(($) ∙ "'(%) = 12 ∙ 12 = 14 . (a) 

(b) 1($, %) = 0, 

(5) 1($, %) = "''($, %) + "((($, %) − "'(($, %) − "(' ($, %) 
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2) Now let each of the vectors $ and % can take one of two mutually exclusive values: " + " or " − ".  
Consider two options for functional dependence: 

a) if the projection of vector $ is positive (+), the projection of vector % also takes a uniquely 
positive value (+); 

b) if the projection of vector $ is positive (+), the projection of vector % takes a uniquely negative 
value (−). 

 

Denote by "(3|4) - probability of occurrence of the event B (+ or − the projection of the vector %), 
provided that has occurred event is A (+ or − the projection of the vector a). Considering vector $ as  
a cause, we obtain: 

 
 

 

 
 

Then 

 for the case of a): 
 

 

for case b): 
 
 
Substituting the found values (d) and (e) in (c), in both cases, taking into account (2), from (5) we obtain: 

 
 
that characterizes the complete correlation between the accepted values of the projections of vectors $ and %. 
It is easy to obtain similar results when considering the value of the projection of the vector % as the initial 

 event. 
 

Using the prediction (3) of Quantum Mechanics, we find a correlation coefficient EQM 
 

 

 In the particular case of parallel polarizers ((7, 8& ) = 0 ), we find  19:(0) = 1: this confirms that the 
correlation is total. 
 

 In conclusion, the quantum mechanical calculations suggest that although each individual 
measurement gives random results, these random results are correlated, as expressed by equation (6). For 
parallel (or perpendicular) orientations of the polarizers, the correlation is total (;19:; = 1). 
 

3. Difficulty of an image  
derived from the formalism of Quantum Mechanics 

 

 As a naive physicist, I like to raise the question of finding a simple image to understand these 
strong correlations. The most natural way to find an image may seem to follow the quantum mechanical 
calculations leading to (3). In fact, there are several ways to do this calculation. A very direct one is to 
project the state vector (1) onto the eigenvector corresponding to the relevant result. This gives 
immediately the joint probabilities (3). However, since this calculation bears on state vectors describing 
globally the two photons, I do not know how to build a picture in our ordinary space. 
 

 The situation with the experiment on a pair of "entangled" photons(see Note 1) is similar to the 
variant 2 of the functional dependence of the States of projections of vectors $ and % at |1($, %)| = 1 
described by the formulas (c), (d), (e), (f).  Indeed, when measuring the projection of the first photon, the 
state of which is unknown, the value of the projection of the second photon automatically becomes 
known, no matter how remote it is. 
 

 In order to overcome this problem, and to identify separately the two measurements happening on 
both ends of the experiment, we can split the joint measurement in two steps. Suppose for instance that 
the measurement on photon �� takes place first, and gives the result  + , with the polarizer I in orientation 
a. The + result (associated with the polarization state �|$〉) has a probability of 1/ 2 . To proceed with the 
calculation, we must then use the postulate of reduction of the state vector, which states that after this 
measurement, the new state vector �|�<(��, ��)〉 describing the pair is obtained by projection of the initial 

(6) 19:($, %) = cos 2 ∙($, %& ) 

 

(f) |1($, %)| = 1, 

(d) "(%'|$') = "(%(|$() = 1 , "(%(|$') = "(%'|$() = 0 ; 
 

(e) "(%'|$') = "(%(|$() = 0 , "(%(|$') = "(%'|$() = 1 . 
 

(c) 
"''($, %) =  "($') ∙ "(%'|$') "((($, %) =  "($() ∙ "(%(|$() "'(($, %) =  "($') ∙ "(%(|$') "('($, %) =  "($() ∙ "(%'|$() 
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state vector �|�  (��, ��)〉 (equation 1) onto the eigenspace associated to the result + : this two dimensional 
eigenspace has a basis ��|$, =〉, �|$, >〉�. Using the corresponding projector, we find after a little algebra 
   
 
 
 
 
 

 This means that immediately after the first measurement, photon �� takes the polarization �|$〉: this 
is obvious because it has been measured with a polarizer oriented along $, and the result + has been 
found. More surprisingly, the distant photon �� , which has not yet interacted with any polarizer, has also 
been projected into the state $ with a well defined polarization, parallel to the one found for photon �� . 
This surprising conclusion however leads to the correct final result (3), since a straightforward application 
of Malus law5) shows that a subsequent measurement performed along % on photon ��  will lead to 
 
 
 

 
The calculation in two steps therefore gives the same result as the direct calculation. But in addition it 
suggests a picture for the two steps measurement: 
 

i. Photon �� , which had not a well defined polarization before its measurement, takes the 
polarization associated to the obtained result, at the moment of its measurement: this is not 
surprising. 
 

ii. When the measurement on ��  is done, photon ��  , which had not a well defined polarization 
before this measurement, is projected into a state of polarization parallel to the result of the 
measurement on ��. This is very surprising, because this change in the description of �� happens 
instantaneously, whatever the distance between ��  and ��  at the moment of the first 
measurement.  

 

This picture seems in contradiction with relativity. According to Einstein, what happens in a given region 
of space-time cannot be influenced by an event happening in a region of space-time that is separated by a 
space like interval. It therefore not unreasonable to try to find more acceptable pictures for 
«understanding » the EPR correlations. It is such a picture that we consider now. 

 

4. Supplementary parameters 
  

  

 Correlations between distant measurements on two separated systems that had previously  
interacted are common in the classical world. For instance, if a mechanical object with a null linear (or 
angular) momentum is split in two parts by some internal repulsion, the linear (or angular) momenta of 
the two separated parts remain equal and opposite in the case of a free evolution. In the general case 
where each fragment is submitted to some interaction, the two momenta remain correlated since they are 
at each moment determined by their initial values, which had a perfectly defined sum. 
 

 It is tempting to use such a classical picture to render an account of the EPR correlations, in term 
of common properties of the two systems. Let us consider again the perfect correlation of polarization 
measurements in the case of parallel polarisers ($, %& )  =  0. When we find + for ��, we are sure to find 
also + for ��. We are thus led to admit that there is some property (Einstein said « an element of physical 
reality ») pertaining to this particular pair, and determining the result + +. For another pair, when the 
results is − −, we can similarly invoke a common property, determining the result − −. It is then 
sufficient to admit that half the pairs are emitted with the property + +, and half with the property − −, to 
reproduce all the results of measurement in this configuration. Note however that such properties, 
differing from one pair to another one, are not taken into account by the Quantum Mechanical state vector |��(��, ��)〉 which is the same for all pairs. This is why we can conclude with Einstein that Quantum 

                                                           
5
 

)
 The Malus law is a physical law that expresses the dependence of the intensity of linearly polarized light after its passage 

through the polarizer from the angle ? between the polarization planes of the incident light and the polarizer @ = AB@Ccos�?, 
where @C is the intensity of the light incident on the polarizer, @ is the intensity of the light exiting the polarizer, AB is the 
transmittance of the polarizer. 

 

(7) �<(��, ��) = |�$, $〉 

(8) "''($, %) = 12 cos�(7, 8& ) 
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Mechanics is not complete. And this is why such additional properties are referred to as « supplementary 
parameters », or «hiddenvariables»6). 
 

  

 As a conclusion, it seems possible to « understand » the EPR correlations by such a classical-
looking picture, involving supplementary parameters differing from one pair to another one. It can be 
hoped to recover the statistical Quantum Mechanical predictions when averaging over the supplementary 
parameters. It seems that so was Einstein’s position5,6,7. Note that at this stage of the reasoning, a 
commitment to this position does not contradict quantum mechanics: there is no logical problem to fully 
accept the predictions of quantum mechanics, and to invoke supplementary parameters giving an 
acceptable picture of the EPR correlations. It amounts to considering Quantum Mechanics as the 
Statistical Mechanics description of a deeper level. 
 

 Three decades after the publication of the EPR paper [4], Bell expressed in mathematical form the 
consequences arising from the previous discussion and explicitly introduced additional parameters[2]. The details of 
the events related to the subsequent statements about the impossibility to introduce additional parameters in 
quantum mechanics without contradictions AND the results of real experiments confirming the correlation 
connections of type (5) are presented in the work cited here [1]. It is our task here was to once again address the 
essence of space-time contradictions in the interpretation of experiments such as EPR with the refinement of 
additional calculations. 
 

5.Bell' inequalitoes 
 

5.1. Formalism  
 

 Three decades after the EPR paper, Bell translated into mathematics the consequences of the 
preceding discussion, and he explicitly introduced supplementary parameters, denoted l. Their 
distribution on an ensemble of emitted pairs is specified by a probability distribution ρ(λ), such that 
 
 

 

  
 
 
For a given pair, characterized by a given supplementary parameter D, the results of measurements are 
given by the bivalued functions 
 
 
 
A particular Supplementary Parameter Theory is completely defined by the explicit form of the function E(D), 4(D, $) and 3(D, %). It is then easy to express the probabilities of the various results of measurements. 
For instance, noting that the function ½[4(D, 7)  +  1] assumes the value +1 for the + result, and 0  
otherwise (and similarly ½[1 −  3(D, 8)]) assumes the value +1 for the − result, and 0 otherwise, we can 
write 
 
 
 
 
  
 
Similarly, the correlation function assumes the simple form 
 
 
 

  
 
 
 

                                                           
6 ) Einstein actually did not speak of « hidden variables » or « supplementary parameters », but rather of « elements of the 
physical reality ». Accordingly, many authors refer to « realistic theories » rather than to « hidden variable theories », or to  
« supplementary variable theories ». 

 1($, %) = I !DE(D)4(D, $)3(D, %) (12)  

E(D) ≥ 0         
I !DE(D) = 1 

 

 

(9)  
 

(11)  
  "'(($, %) = I !DE(D) [4(D, $) + 1]2  [1 − 3(D, %)]2  

 

 

"'($) = I !DE(D) [4(D, $) + 1]2  

 

4(D, $) = ±1 at analyzer  I (in orientation $)   3(D, %) = ±1 at analyzer II(in orientation %) 
 

(10)  
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 Note 2.   
 On the comparison of formulas for correlations (5) and (12). Along with the General definitions of 
correlation, as bearing information about the tightness of the influence of the value of one random variable on the 
distribution of another, the definition (5) is the most adequate. Its value of 1 indicates a direct functional dependence 
of the directions of vectors a and b (see Note 1). To determine the correlation in the General model for random 
variables X and Y, we have chosen for them a uniform distribution, which does not carry any information about the 
probabilities of their values, except for certain ones. Its value of 1 indicates a direct functional dependence of the 
directions of vectors a and b (see Note 1). To determine the correlation in the General model for random variables X 
and Y, we have chosen for them a uniform distribution, which does not carry any information about the probabilities 
of their values, except for certain ones. 
 In table. A data and results for the calculation of the standard correlation coefficient Q(R, S)) of random 
variables R and S, coinciding covariance T	U(R, S) [7]: 
 
 
 
 
 
 
 
 
 
 
 
 

 The additional parameter λ introduced in (12) provides the generality of the bell model. 
 

5.2. (Naive) example of a theory with additional parameters 
 

  As an example of a theory with an additional parameter, we consider a model in which each 
photon propagating along the Oz axis is assumed to have a well-defined linear polarization given by its 
angle (DVи DVV) with the  axis. To account for the tight correlation, we assume that two photons of the 
same pair are emitted with the same linear polarization, defined by the General angle D (Fig. 2). 
  
 
 
 
 
 
 
 
 
 
 
 
 
 The polarisation of the various pairs is randomly distributed, according to the probability 
distribution ρ(λ), that we take rotationally invariant: 
 
 
 
To complete our model, we must give an explicit form for the functions 4(D, 7) and 3(D, 8). We take the 
following form 
 
 
 
 
where the angles XV and XVV indicate the orientations of the polarisers. Note that these forms are very 
reasonable: 4(D, $) assumes the value +1 when the polarisation of photon �� makes an angle less than 
π/4 with the direction of analysis $, and −1 for the complementary case (polarisation closer to the 
perpendicular to $). 
 

Table A Y +1 −1 Y� +1 +1 ZY 1 2⁄  1 2⁄  \] = ^[_] = (� + �) 2⁄  ` a[R�] = (�� + ��) 2⁄  1 b[R] = a[R�] −  (a[R])� 1 c] 1 

 E(D) = 12d 

 

(13)  

4(D, $) = sign�cos 2 (XV − D)�, 3(D, %) = sign�cos 2 (XVV − D)�, 
 

(14)  

(g)  
 

 T	U(R, S) (fgfh)⁄ = ia[R, S] − jgjhk fgfhl =  Q(R, S) 

Fig. 2 - The naive example. Each pair of photons has a « direction of polarisation », 
defined by D, which is the supplementary parameter of the model. Polariser I makes a 
polarisation measurement along $, at an angle XV  from the  axis.. 

x 

y 

λ XV 

a 

Polarisation of a pair 

: direction of analysis 
for polariser I 
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 With this explicit model, we can use equations (11) to calculate the probabilities of the various 
measurements. We find for instance single probabilities 
 
 
identical to the Quantum Mechanical results. The model also allows us to calculate the joint probabilities, 
or equivalently the correlation function, and we find, using (12) : 
 
 
 
 
 Note 3 
 Let us present the conclusions of the formula (16).  
To facilitate the understanding of the relationship between the angles arising in the example, let us present two 
analyzers with the same orientation X = d 4⁄ with respect to the axis m. By rotating the first analyzer 
counterclockwise by an angle ∆� Bt orientating it along the direction $, the vector acquires the orientation  XV = X + ∆�. By rotating the second analyzer clockwise at an angle ∆�, orienting it in the direction %, we obtain an 
angle XVV = X − ∆�. Together with the analyzers, the areas of positive values for the coefficients 4(D, $) and 3(D, %) − blue and green , respectively, rotate 
 
 
       
 
                              
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 As a result, we obtain the following regions with the distribution of signs for A(λ, a) and B(λ, b).    
 
 
 
 
 
 
 
 
 
  
 
 

 The relationship between XYand ∆Y  is expressed by the pair of formulas: 
 
  
 
 
 The integral (12) in a closed loop counter-clockwise starting from the direction 4 given the data table B 
leads to the results (16) 
 
 This is a remarkable result. Note first that 1(7, 8& ) depends only on the relative angle (7, 8& ), as 
the Quantum Mechanical prediction (6). Moreover, as shown on Fig 3, the difference between the 
predictions of the simple supplementary parameters model and the quantum mechanical predictions is 

"'($) = "(($) = "'(%) = "((%) = 12 (15) 

Table B 

Domain The range of angles 
The absolute value 

of the angle 
A B 

1. ∆�≥ λ ≥ − ∆� ∆� + ∆� − + 
2. (d 2) − ∆�⁄ ≥ λ ≥  ∆� (d 2) − (∆� + ∆�⁄ ) + + 
3. (d 2⁄ )+∆�≥ λ ≥ (d 2) − ∆�⁄  ∆� + ∆� + − 
4. 2π -∆�≥ λ ≥(d 2) + ∆�⁄  3d 4 − (∆� + ∆�)⁄  − − 

1($, %) = 1 − 4 |XV − XVV|

d
= 1 − 4

|($, %)|

d
= 

for −
r

�
≤ XV − XVV ≤

r

�
 

(16) 

Fig. A. Directions 7 � ! 8 with their "neighborhoods" of positive values of 
A(λ, aaaa) and B(λ, bbbb)".  Maximum "raster" between the directions of polarization −  XV 

and  XVV,  is π∕2, that is: − d 2 ≤ XV − XVV ≤ d 2⁄⁄ . 
 

 
 
 
 
 
 

 

∆� 
 

∆� 
 

XVV 
 

Xv 
 

a 
 

b 
 

x 

y 

1 

2 
3 

4 

XV = ∆� + d 4;     ⁄ XVV = −∆� + d 4;    ⁄  
∆�= XV − d 4;      ⁄ ∆�= −XVV + d 4;    ⁄  

XV−XVV = ∆� + ∆�. 
 

(h) 
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always small, and the agreement is exact for the angles 0, ±d/4 and ±d/2 i.e. cases of total correlation. 
This result, obtained with an extremely simple supplementary parameters model, is very encouraging, and 
it might be hoped that a more sophisticated model could be able to reproduce exactly the Quantum 
Mechanical predictions. Bell’s discovery is the fact that the search for such models is hopeless, as we are 
going to show now. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

5.3. Bell's Inequalities 
  There are many different forms, and demonstrations of Bell’inequalities. We give here a very 
simple demonstration leading to a form directly applicable to the experiments7). 
 Let us consider the quantity 
 
 
 
Remembering that the four numbers 4 and 3 take only the values ±1, a simple inspection of the second 
line of (17) shows that 
 
 
 
The average of s over l is therefore comprised between + 2 and −  2: 
 
 
 
According to (12), we can rewrite these inequalities 
 
 
with 
 
 
 
 These are B.C.H.S.H. inequalities, i.e. Bell’s inequalitites as generalized by Clauser, Horne, 
Shimony, Holt 8. They bear upon the combination � of the four polarization correlation coefficients, 
associated to two directions of analysis for each polarizer ($ and $’ for polarizer I, % and %’ for polarizer II). Note that they apply to any Supplementary Parameter Theory of the very general form defined in 
section 5.1 (equations 9, 10, and 12), of which our naive model is only an example. 

                                                           
7 ) It is important to distinguish between inequalities which show a mathematical contradiction with quantum 
mechanics, but without the possibility of an experimental test with (necessarily) imperfect apparatus, and 
inequalities allowing an experimental test provided that the experimental imperfections remain in certain limits. 

90 60 30 0 -30 -60 -90 
X 

1(X) 
1 

-1 

Fig. 3 - Polarisation correlation coefficient, as a function of 
the relative orientation of the polarisers: (i) Dotted line : 
Quantum Mechanical prediction ; (ii) solid line : the naive 
model. 

�(D, $, $<, %, %<) = 1($, %) − 1($, %<) + 1($<, %) + 1($<, %<) (21)  

(17)  
y = 4(D, $)3(D, %) − 4(D, $)3(D, %<) + 4(D, $<)3(D, % ) + 4(D, $<)3(D, %<) = = 4(D, $)[3(D, %) − 3(D, %<)] + 4(D, $<)[3(D, % ) + 3(D, %<)] 

y(D, $, $<, %, %<) = ±2 (18)  

−2 ≤ I ! DE(D)y(D, $, $<, %, %<) ≤ 2 (19)  

−2 ≤ �(D, $, $<, %, %<) ≤ 2 (20)  
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6. Conflict with quantum mechanics 
 

6.1. Evidence 
 

 We can use the predictions (6) of Quantum Mechanics for EPR pairs, to evaluate the quantity �($, $′, %, %′) defined by equation (21). For the particular set of orientations shown on Fig. 4.a, the result 
is 
 
 
This quantum mechanical prediction definitely conflicts with the Bell’s inequality (20) which is valid for 
any Supplementary Parameter Theory of the general form defined in §5.1. 
 

 We have thus found a situation where the quantum mechanical predictions cannot be reproduced 
(mimicked) by Supplementary Parameters Theories. This is the essence of Bell’s theorem: it is impossible 
to find a Supplementary Parameter Theory, of the general form defined in § 3.1, that reproduces all the 
predictions of quantum mechanics. This statement is the generalisation of what appears on Fig. 3, for the 
particular supplementary parameter model considered in § 5.2: the model exactly reproduces the 
predictions of quantum mechanics for some particular angles (0, d/4, d/2), but it somewhat deviates at 
other angles. The importance of Bell’s theorem is that it is not restricted to a particular supplementary 
parameters model, but it is general. 
 
 . 
 

  
 
 
 
 
 
 
 
 
 
 

 

6.2. Maximum conflict 
 

 It is interesting to look for the maximum violation of Bell’s inequalities by the quantum 
mechanical predictions. Let us take the quantum mechanical value of  �9:: 
 
 

It 8) is a function of three independent variables  ($, %& ), (%, $& ′) и ($′, %& ′). Note that 
 
 
 Note 4 
 Introduce the notation: i$, %& k = {, i%, $′& k = |, i$′, %′} k = ~, i$, %′& k = � with 
  
 

 The Lagrangian takes the form: �({, |, ~, �) = cos 2{ − cos 2� + cos 2| + cos 2~ + j({ + | + ~ − �),  where j 
is the Lagrange multiplier. 
  Differentiating �({, |, ~, �) by independent variables {, |, ~, taking into account the relationship between the 
angles {, |, ~, � we obtain a system of equations: 
 **********************************************  
 
 
 
 
which has the solution 
 
 

                                                           
8
 ) The original text of the article contains the formula: �9:i$, $′, %, %′k  = cos ($, %& ) − cos ($, %′}) + cos i$′, %& k + cos ($′, %′} ) 

 

i$, %<}k = i$, %& k + i%, $<}k + i$<, %<} k 
 

  { + | + ~ = �.  
 

(i)  
 

  { = | = ~ = X, 
 

(k)  
 

(j)  
 

�sin 2{ = j 2⁄sin 2| = j 2⁄sin 2~ = j 2,⁄ � 
{ + | + ~ = �, 

��� �{⁄ = 0 �� �|⁄ = 0 �� �~⁄ = 0,� { + | + ~ = �, 
⇒ 

 

Fig. 4 - Orientations yielding the largest conflict  
between Bell’s inequalities and Quantum Mechanics.. 

b 
 

a 

b 

$< %< 
 67.5° 

a 
 a b $< %< 

22 .5° 

�9:  = 2.83 > 2 
 

(22)  
 

�9:($, $<, %, %<)  = cos 2 ∙($, %& ) − cos 2 ∙($, %<}) + cos 2 ∙i$<, %}k + cos 2 ∙($<, %<} ) (23)  
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and by virtue of the last equality 
 
  
 
 

 Equation 
 
 
we rewrite in the form 
 
 
The equation (n) has solutions for: 4X = r� + 2dA; 2X = dA,  from where X = r� + r� A;  X = r� A. At A = 0 we have: X = r�  и  0; при A = 1: X = �� d и  r�. 

 
 For a rigid construction defined by equations (i) and (k), the ratio is true 
 
 
 
 The table C shows values of �9:(X) for configurations with deviations from predictions of quantum 
mechanics are given: 
 
 
 
 
 
 
 
 
 

These values are the results of substitution of the values X   in (p). The orientation sets for для X = d 8⁄ и X = 3d 8⁄  

are shown in Fig. B. they give the greatest violations of Bell's inequalities. 
 
 A more General consideration shows that there is a large range of orientations that involve conflict with 
bell's inequalities (see Fig. 5); it is also clear, however, that there are many sets of orientations for which there is no 
such conflict. 
 
  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

� = 3X. (l)  
 

Таблица C   X �9:(X) 0 = 0° 2 d 8⁄ = 22,5° 2.83 3d 8⁄ = 67,5° -2.83 d 2⁄ = 90° 2 

 

(p)  
 

�9:(θ)  = 3 cos 2 θ − cos 6 θ 

 

Fig. B: linear approximation based on the dependence �9:(X)  from X 

 

�9:(X) 

X 

�� ��⁄ = 2sin 2� = j или  sin 2� = j 2⁄ = sin2X 
 

(m)  
 

sin 2� − sin2X = 2 cos(� + X) sin(� − X) = 2 cos 4X sin 2X = 0 . 
 

(n)  
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Fi.e 5: �9:(X), predicted by quantum mechanics for EPR-pairs. The 
conflict with Bell's inequalities occurs at |�| > 2 and it reaches a 

maximum for the set of orientations shown in Figure 4. 

��^(�) 

4 

3 

2 

1 

0 

-1 

-2 

-3 

�° 0 25 40 60 80 100 120 140 160 180 
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Appendix. A simple derivation of the basic formulas 
for a pair of "tangled" photons 

 

1. Light polarization 
 

 1. Polarization and helicity are examples of physical quantities taking only two quantized values. 
 

 Description of a photon as an object with dichotomous properties is possible using the property of helicity: 
the helicity of a photon in any direction can take only two values - positive and negative.  The situation is similar to 
the state of an electron with spin 1∕2 in the singlet state. 
 

 The concept of polarization, inherited from the classical properties of light, refers to the description of the 
properties of transverse electromagnetic waves. Polarization is described by two vectors, orthogonal to the direction 
of motion. The quantum dichotomy of the classical polarization parameter is manifested here. These two vectors are 
also orthogonal to each other, and if you know the direction of one vector, the orthogonal direction of the other 
vector can be represented by two directions - left or right, which distinguishes right or left polarized waves. 
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 2. The state of a photon with respect to its polarization can be described by two basic vectors of a 2-linear 
space |�〉, |��〉: 
 |�〉 − vector describing polarization along the axis R; |��〉 − vector describing polarization along the axis R; 

 

Vectors �|〉 and |��〉 represent the complete orthonormal system, so 
 

 
  

 Any state of the photon |��〉 can be represented as a linear combination of these two basic states 
 
 

 Let's 

 

describes the new polarization state (Fig. 1). From the obvious equalities �|<� = cos ? , ��|<� = sin ? 
should be 4 = cos ? , 3 = sin ?, that is 
 

 
a (5) will represent a photon polarized along the new axis R<.   
 

 Let's find the second basis vector �|�<〉 and write down 
  
 

 From orthogonality of vectors �| ′〉 and� |�<〉 we have: 
 
 

 

and from the normalization of the vector �|�<〉: 
 
 

The joint solution (6), (7) and (8) in real numbers gives 
 

(4) |�<〉 = 4|�〉 + 3|��〉 

(6) |��<〉 = T|�〉 + b|��〉. 
(7) ��<|<� = T∗ cos ? + b∗ sin ? = 0, 
(8) ��<|�<� = T∗T + b∗b = 1 

(2) �|� = ��|�� = 1, �|�� = ��|�∗ = 0 

(1) 

(9) 
T = ∓ sin ? b = ± cos ? 

(5) |�<〉 = cos ? |�〉 + sin ? |��〉 

Fig. 1 

_< 
�< 

_  

�  

� 

(3) |��〉 = 4|�〉 + 3|��〉, where 4 and 3 are in generally − complex numbers 
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So for |��<〉 we have two solutions: 
 
 
corresponding to the right and left polarizations of the photon. 
 

2. Experiment 

 

 

 

 

 

 

 Let's consider a two-photon system. Since photons do not interact with each other, the equation of state for 
this system allows for separation of variables and representation of the solution as a product of the state vectors of 
individual photons (1st and 2nd): 

 
 To represent the entangled state " of a pair of photons moving in opposite directions, needs choose states 
with opposite polarizations. Then, given (5), (10) and (11) when ? = 0, the expression for the first |�� 〉�  and the 
second |�� 〉� vectors of states take the form: 

 

 
According to (12), we have 

 

 
To satisfy the requirement of the particle identity principle, this state vector must be symmetric. This procedure will 
describe the real entanglement  of photons, after which it is impossible to distinguish the first and second photons. 
Therefore : 
  
 
 

 

 

 Finally, the vector of the singlet initial state of a pair of photons will take the form: 
 
 
 

 

 1. Let us consider the result of the measurement of pair, when the first |��〉� and the second |��〉� photons are 
recorded with the same polarization described by the vector (5) |�<〉 = cos ? |�〉 + sin ? |��〉: 
 

  

(11) |��<〉 = sin ?|�〉 − cos ? |��〉 (10) |��<〉 = − sin ? |�〉 + cos ? |��〉 

(12) |�� 〉�,� = |�� 〉� ∗ |�� 〉�  

|��〉� = �cos?�|�〉� + sin?�|��〉�� (17) 

Fig. 2 

X 

Y 

Z 

$�  
� 

(15) 
|�� 〉�,� = 12 (|� 〉� + |�� 〉�) ∗ (|� 〉� − |�� 〉� ) = 

= 12 �|� 〉� ∗ |� 〉� − |� 〉� ∗ |�� 〉� + |�� 〉� ∗ |�〉� − |�� 〉� ∗ |�� 〉�� 
 

|��〉 Y¡Y¢YB£ = 1√2 �|�� 〉�,� + |�� 〉�,�� = 

+ |� 〉� ∗ |� 〉� − |� 〉� ∗ |�� 〉� + |�� 〉� ∗ |�〉� − |�� 〉� ∗ |�� 〉�� = 

= 1√2 ∙ 12 ∙ �|� 〉� ∗ |� 〉� − |� 〉� ∗ |�� 〉� + |�� 〉� ∗ |�〉� − |�� 〉� ∗ |�� 〉�+ 

= 1√2 �|� 〉� ∗ |� 〉� − |�� 〉� ∗ |�� 〉�� 

(13)|�� 〉� = �√� �|� 〉� + |�� 〉��  
(14)|�� 〉� = �√� �|� 〉� − |�� 〉��  

 

(16) |��〉 Y¡Y¢YB£ = 1√2 �|� 〉� ∗ |� 〉� − |�� 〉� ∗ |�� 〉�� 

|��〉� = �cos?�|�〉� + sin?�|��〉�� (18) 
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 According to (16), (17), (18), get for the final state 

 

 

 

 For the amplitude of transition from the initial state |��〉 Y¡Y¢YB£ to final state |��〉�,�¤Y¡B£ are: 

 

 

 
 2. Now let us consider the result of the measurement of the pair, when the states of the first |��〉� and the 
second |��〉� photons are fixed with the same polarization, but described by the vector (10)  |��<〉 = − sin ? |�〉 + cos ? |��〉 : 
 

 According to (16), (21), (22), get for the final state 

 

 

 
 For the amplitude of transition from the initial state |��〉 Y¡Y¢YB£ to final state |��〉�,�¤Y¡B£ are: 

 

 

 3. Let us consider the result of the measurement of pair when the states of the first |��〉� and the second |��〉� 
photons are fixed with different polarizations described by vectors (5) and (10): |�<〉 = cos ? |�〉 + sin ? |��〉, |��<〉 = − sin ? |�〉 + cos ? |��〉: 
 
 

 According to (16), (25), (26), get for the final state 

 

 

 
 For the amplitude of transition from the initial state |��〉 Y¡Y¢YB£ to final state |��〉�,�¤Y¡B£ are: 

 

 

 In formulas (20), (24), (28) the angles ?�and ?� are represented in different coordinate systems − right and 
left. To bring their values to one coordinate system, it is necessary to replace ?�   ⇒  −?�. Fig. 3 explains the need 
for this replacement. 

|��〉� = cos ? |�〉 + sin ? |��〉 (25) |��〉� = �−sin?�|�〉� + cos?�|��〉�� (26) 

(19') 
      �,�¤Y¡B£〈�|� = = �cos?� cos?� � 〈|� � 〈|� + cos?� sin?� � 〈�|� � 〈| +�sin?� cos?� � 〈|� � 〈�|� + sin?� sin?� � 〈�|� � 〈�|�� 

(19) 
|��〉�,�¤Y¡B£ = |��〉� ∗ |��〉� = �cos?�|�〉� + sin?�|��〉�� ∗ �cos?�|�〉� + sin?�|��〉�� = = �cos?� cos?�|�〉�|�〉� + cos?� sin?�|�〉�|��〉� + sin?� cos?�|��〉�|�〉� + sin?� sin?�|��〉�|��〉�� 

|��〉� = �−sin?�|�〉� + cos?�|��〉�� (21) 

|��〉�,�¤Y¡B£ = |��〉� ∗ |��〉� = �−sin?�|�〉� + cos?�|��〉�� ∗ �−sin?�|�〉� + cos?�|��〉�� = = �sin?� sin?�|�〉�|�〉� − sin?� cos?�|�〉�|��〉� − cos?� sin?�|��〉�|�〉� + cos?� cos?�|��〉�|��〉�� 
(23) 

      �,�¤Y¡B£〈�|� = = �sin?� sin?� � 〈|� � 〈|� − sin?� cos ?�  � 〈�|� � 〈| −�cos?� sin?� � 〈|� � 〈�|� + cos?� cos?� � 〈�|� � 〈�|�� (23') 

|��〉�,�¤Y¡B£ = |��〉� ∗ |��〉� = �cos?�|�〉� + sin?�|��〉�� ∗ �−sin?�|�〉� + cos?�|��〉�� = = �−cos?� sin?�|�〉�|�〉� + cos?� cos?�|�〉�|��〉� − sin?� sin?�|��〉�|�〉� + sin?� cos?�|��〉�|��〉�� 
(27) 

      �,�¤Y¡B£〈�|� = = �−cos?� sin?� � 〈|� � 〈|� − co?� cos ?�  � 〈�|� � 〈| −�sin?� sin?� � 〈|� � 〈�|� + sin?� cos?� � 〈�|� � 〈�|�� (27') 

|��〉� = �−sin?�|�〉� + cos?�|��〉�� (22) 

(20) 
      �,�¤Y¡B£〈��|��〉 Y¡Y¢YB£  = 

∗  1√2 �|� 〉� ∗ |� 〉� − |�� 〉� ∗ |�� 〉�� = 1√2 �cos?� cos?� − sin?� sin?�� = 1√2 cos(?�+?�) 

= �cos?� cos?� � 〈|� � 〈|� + cos?� sin?� � 〈�|� � 〈| +�sin?� cos?� � 〈|� � 〈�|� + sin?� sin?� � 〈�|� � 〈�|�� ∗ 

(24) 

      �,�¤Y¡B£〈��|��〉 Y¡Y¢YB£  = 

∗   1√2 �|� 〉� ∗ |� 〉� − |�� 〉� ∗ |�� 〉�� = sin?� sin?� − cos?� cos?� = − 1√2 cos(?�+?�) 

= �sin?� sin?� � 〈|� � 〈|� − sin?� cos ?�  � 〈�|� � 〈| −�cos?� sin?� � 〈|� � 〈�|� + cos?� cos?� � 〈�|� � 〈�|�� ∗ 

∗

(28) 
      �,�¤Y¡B£〈��|��〉 Y¡Y¢YB£  = 

∗   1√2 �|� 〉� ∗ |� 〉� − |�� 〉� ∗ |�� 〉�� = −cos?� sin?� − sin?� cos?� = − 1√2 sin (?� + ?�) 

= �−cos?� sin?� � 〈|� � 〈|� − co?� cos ?�  � 〈�|� � 〈| −�sin?� sin?� � 〈|� � 〈�|� + sin?� cos?� � 〈�|� � 〈�|�� 
∗
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When replacing ?�   ⇒  −?� then the results (20), (24), (28) rewrite the form:  

 

 

 
 
 
 
 
 
 

б в ¦§ ¦¨ 

 

$� ¨ $� § 

Fig. 3 

¦¨ ¦§ а 

?� 

~-квант 

X 

Y 

Z 

?� 

~-квант 

X 

Z 

Y 

$� � 

_  

�  

?� 

$� � 

?� 

_  

�  

(20')       �,�¤Y¡B£〈��|��〉 Y¡Y¢YB£  =      1√2 cos(?�−?�) 

(28')       �,�¤Y¡B£〈��|��〉 Y¡Y¢YB£  = − 1√2 sin (?� − ?�) 

(24')       �,�¤Y¡B£〈��|��〉        Y¡Y¢YB£  =  − 1√2 cos(?�−?�) 
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 We introduce explicitly the angle difference ?�−?� as the angle between vectors $�, $�. Then the 
probability of transition, for example, (20') will take the form: 
 
 
 Following the Aspect[1], we introduce notation: 
 

 "''($¨, $§) − 
the probability to detect the polarization of the first photon along the vector $�, and the 
second photon along the vector $� 

 

 "((($¨, $§) − 
the probability to detect the polarization of the first photon perpendicular to the vector $�, and the second photon perpendicular to the vector $� 

 

 "'(($¨, $§) − 
the probability to detect the polarization of the first photon along the vector $�, and the 
second photo on the perpendicular vector $� 

 

 "('($¨, $§) − 
the probability to detect the polarization of the first photon perpendicular to the vector $�, and the second photon along the vector $� 
 

 

  
 From (20'), (24'), (28') should 
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 Abstract 
 

In the footsteps of the article by A. Aspect "BELL'S THEOREM: the naive view of an experimentalist".  
As in equation (23) has detected an error (or typo), I took the trouble to verify calculations from 1 to 5 
sections of the article. Are some clarifying points that are important for understanding the essence. Given 
an elementary conclusion of formulas (3), which is omitted in the article. 
 

The Bell's inequality, derived on the basis of the general model for a dichotomous variable, disturbed the 
quantum mechanical model for a pair of "entangled" photons. In Bell's article it is clearly (though not very 
detailed) shown.  
 

No " artificial gadgets" is not able to resolve this contradiction. The only thing that causes confusion is the 
procedure of creating a mixed state of two photons and the essence conceptual view of mathematics 
experiment. Theoretically, this procedure can be represented as a symmetrization of the wave function of 
the pair. However, how does the transfer of this idea to the technical essence of the experiment is unclear. 

 
 
 
 
 

(30) "((($�, $�) = 12 cos�($�, $�© ) 

 

; �,�¤Y¡B£〈��|��〉�,�Y¡Y¢YB£;� = 12 cos�($�, $�© ) 

(29) "''($�, $�) = 12 cos�($�, $�© ) 

 

(31) "'(($�, $�) = "('($, %) = 12 sin�($�, $�© ) 
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