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Earlier, the author stated that a localized spinning electromagnetic field, a Field 

Gyroscope, (FG), develops a mechanical torque [1, 2, 3, 4]     

This approach was based on a calculating the angular speed-depending mass, angular 

momentum and torque of FG formed by the spinning vector E: m(, E), L(,E), T(,E). 

This has been verified in the group of the experiments with L-shaped indicator exposed to 

spinning electromagnetic field [5].  

   

 An important specificity of the shown experiments is that they were carried out with the 

experimenter as an active component of the measurement system. The active role of an 

experimenter in developing the angular momentum of FG was stressed in [3]. 

Involvement of the operator can result in the driving FG up to speed phenomenon, which 

results in origination of the mechanical torque as a first derivative of the gradually 

increasing angular momentum of the spinning field.     

 

Unlike this approach, based on a calculation of the angular velocity-dependable mass and 

other derived values, another approach is proposed here.   

 

It has to be said, that back in early 20th Century it was revealed that the oblique passage 

of a beam of light through a plate of refracting material produces a mechanical torque [6].  

Later, as it reported in [7], it was refined that a circularly polarized electromagnetic wave, 

absorbed by a screen, develops the mechanical torque, having intensity for a unit of 

surface S/, where S is the Poynting vector and is the angular frequency of the wave. 

According to [7], the effect was first noted by A. Sadowski and later J.H. Poynting 

developed its complete theory.  

 

However, unlike the traveling EM wave, in the case of the Field Gyroscope, the total 

Poynting vector S=0. 

This can be proved in the following way.  

Fig.1 shows origination of the displacement current as the vector E spins.  

Here, vector E= E t+t - Et   

  



 

Fig.1 shows an origination of the displacement current j=εε0∂E/∂t as the vector E spins. 

 

It has to be said that for the rotating vector Es, according to Fig.1, 

∂E/∂t=ω×E   (1) 
Therefore, 

j=εε0(ω×E)  (2) 

This system of angle–varying displacement currents is identical to a set of spinning 

powered conductors, which acts as one virtual conductor, Fig.2, producing a magnetic 

field of a strengths H. 

 
Fig.2. The angle-varying displacement currents of Fig.1 are identical to a set of the spinning 

powered conductors, which act as one virtual conductor of a radius R producing a magnetic field.  

 

Fig.3 shows a distribution of the magnetic field strength inside this virtual conductor. 
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Fig.3. Distribution of magnetic field inside a virtual conductor of Fig.2. 

 

Because directions of the original spinning vector E and its rotation-caused displacement 

current tEj  /


 are mutually normal, the total Poynting vector S=0, Fig.4.  

 

 
Fig.4. Total Poynting vector of the crossing displacement current and electric field equals zero. 

However, it’s composed of two opposite Pointing vectors at the ends of the vector E, which 

experience rotation together with this vector. These local opposite vectors can produce a real 

mechanical torque.  

 

However, it’s composed of two oppositely directed Poynting vectors along the spinning 

vector Es, Fig.5.  These Poynting vectors S1 and S2 and original spinning vector Es  are 

located in one plane. Two opposite fluxes of energy in one object can result in origination 

of the torque which strives to move the object in the plane of the rotation vector Es.  
 



 
Fig.5. Mutual allocation of the spinning vector E and its derived current I and magnetic fields H. 

An interaction of these vectors results in origination of local Poynting vectors S, having opposite 

directions and the total zero value.  

 

This torque can be estimated by the following approach. 

Because Poynting vector shows a power per a unit of a total surface A and, on the other 

hand, the power is a dot product of force F(r) and linear speed v(r), then  

∫A S(r)dA=∫A v(r) dF(r)   (4) 

However, we can consider some average values of Poynting vector and the speed:  

SA=FV,  (5) 

 where A is a total surface crossed by the flux of energy S. 

 

The value of the total displacement current I, developed by the spinning process is  
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Taking into consideration (3) and (6), 
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Considering average values at r=R/2 and v=R/2, the force F is 
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Therefore, the value of mechanical torque T is  
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It’s directed normally to the plane of spinning Es and I. 

 

The derived result looks pretty strange, because it does not contain the angular frequency 

unlike that shown above in [1,2,3,4,7]. On the other hand, the -dependence of the 



torque takes a place for the propagating circularly-polarized EM wave, while the Field 

Gyroscope has no spatial propagation.  

 

Looks like the very fact of a spatial turn plays a major role, no mater what is a rate of the 

turn.  

Moreover, comparison of the results of -dependable torque [1,2,3,4,5,7 ]  and that 

shown above can witness in a favor of existence of two mechanisms of this phenomenon.  

 

Estimation of Real Values of the FG-related Torques.  

 

For a rotating E=100 V/m electric vector, (compatible to that of Earth-produced), 

localized in R=1m volume, the torque is 3.5E-08 N.m.  

 

Contemporary precision torsion balances can develop as order of 10-10 N m rad-1 

sensitivity, so it looks like they are capable to respond to this 3.5E-08 N.m torque even 

without an operator, who contributes the additional angular momentum.    

 

More coarse rotating instruments, the Divining Rods, practiced in Dowsing, Fig.6, are 

estimated by the author as needed the minimal torque as order of 2.5E-04 N.m.  

 
Fig.6. The dowsing instrument- a Divining Rod (designed by N. Virtuozov). The minimal force to 

turn this 0.25 m rod in a horizontal plane was estimated as order of 1.0E-03 N, which results in 

2.5E-04 N.m of the needed minimal torque.    

 

So, this above estimated natural 3.5E-08 N.m torque is not enough to drive this 

instrument itself, without an operator, who contributes an additional angular momentum 

into the system and develops the torque, according to [3].  The series of the experiments 

[5] confirms an active role of an experimenter in such the type of the experiments.   

 

During the years, the precision torsion balances were employed in the unconventional 

experiments where some forces caused their turns [8,9,10,11] even with no direct 

participation of an experimenter.  The author believes that the natural Field Gyroscopes 

played an important role in these phenomena.  
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