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Abstract. I will provide a solution of the Erdös-Moser equation, based on the

properties of Bernoulli polynomials, and prove that there is only one solution

satisfying the above-mentioned equation.

1. Notation

1 + 2p + 3p + ... + (k)p = (k + 1)p represents the Erdös-Moser equation, where
k, p ∈ N. Let bn denote Bernoulli numbers and Bn(x) =

∑n
k=0

(
n
k

)
bn−kx

k denote
Bernoulli polynomials for n ≥ 0.

.

2. Introduction

The Erdös-Moser equation (EM equation), named after Paul Erdös and Leo
Moser, has been studied by many number theorists throughout history since com-
bines addition, powers and summation together. An open and very interesting
conjecture of Erdös-Moser states that there is no other solution of the EM equation
than trivial 1 + 2 = 3. Investigation of the properties and identities of the EM
equation and ultimately prove the conjecture is the main purpose of this article.

3. Solution

Lemma 3.1. The EM equation is equivalent of

(3.1)

x∑
k=0

kp ≡ Bp+1(x + 1)

p + 1
= (x + 1)p

x, p ∈ N ∧ x > 2 ∧ p > 1 since we are seeking other solution than trivial.

Proof. Sum of pth powers is defined as
x∑

k=0

kp =
Bp+1(x + 1)−Bp+1(0)

p + 1

Leo Moser proved that for another solution of the EM equation two must divide
p, see [1], which yields that p + 1 must be odd and Bp+1(0) with odd subscripts is
equal to zero. �
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Lemma 3.2.

(3.2) Bp+1(x + 1)−Bp+1(x) = (p + 1)xp

(3.3) Bp+1(x + 2)−Bp+1(x + 1) = (p + 1)(x + 1)p

Proof. Relation of Bernoulli polynomials given by Whittaker and Watson, see [2],
in general form is defined as Bn(x + 1)−Bn(x) = nxn−1. �

Lemma 3.3. Eq. (3.1) in combination with rearranged Eq. (3.2) gives a relation

(3.4)
Bp+1(x + 1)

Bp+1(x)
=

(x + 1)p

(x + 1)p − xp

Proof. Let us express p + 1 from Eq. (3.2) as

(3.5)
Bp+1(x + 1)

xp
− Bp+1(x)

xp
= p + 1

then by putting LHS of Eq. (3.5) in Eq. (3.1) we get

Bp+1(x + 1) = (x + 1)p
(
Bp+1(x + 1)

xp
− Bp+1(x)

xp

)
and after elementary rearrangements we can rearrange Eq. (3.1) to the form defined
in Lemma (3.3.). �

Theorem 3.4. The EM equation has other solution than trivial if and only if holds
the following equation.

(3.6)
Bp+1(x + 2)

Bp+1(x + 1)
= 2

x, p ∈ N ∧ x > 2 ∧ p > 1.

Proof. Let us rearrange Eq. (3.1) as

(3.7) Bp+1(x + 1) = (p + 1)(x + 1)p

the RHS of Eq. (3.3) and Eq. (3.7) are equal, so we can define

Bp+1(x + 2)−Bp+1(x + 1) = Bp+1(x + 1)

Bp+1(x + 2) = 2Bp+1(x + 1)

Bp+1(x + 2)

Bp+1(x + 1)
= 2

�

Lemma 3.5. Let us define a set

Z =

{
Bp+1(xz + 1)

Bp+1(xz)
=

(xz + 1)p

(xz + 1)p − xp
z
| xz, p ∈ N ∧ p > 1

}
which contains Eq. (3.4) defined in Lemma (3.3.)

Example 3.6. Z =
{

Bp+1(1)
Bp+1(0)

= (1)p

(1)p−0p ,
Bp+1(2)
Bp+1(1)

= (2)p

(2)p−1p . . .
}

.
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and a set

F =

{
Bp+1(xf + 2)

Bp+1(xf + 1)
= 2 | xf , p ∈ N ∧ xf > 2 ∧ p > 1

}
which contains all Eq.(3.6) with all possible non-trivial solutions xf satisfying this
equation

Example 3.7. Let us assume that xf = 4 is the non-trivial solution. Then F ={
Bp+1(6)
Bp+1(5)

= 2
}

.

then
F ⊆ Z

Remark 3.8. From the definitions of the sets in Lemma (3.5.) follows that xf is

a variable of a corresponding element
Bp+1(xf+2)
Bp+1(xf+1) = 2 and xz is a variable of a

corresponding element
Bp+1(xz+1)
Bp+1(xz)

= (xz+1)p

(xz+1)p−xp
z
.

Proof. The rules in the sets Z and F are sufficient to prove Lemma (3.5.) since we
are seeking other solution than trivial and for xf > 2∧ p > 1. It is more than clear
that F ⊆ Z since for every variable xf holds the following relation

(3.8) ∀xf : xf = xz − 1

and the corresponding elements of the variables xz, xf , which are in relation (3.8),
in both sets are equal, and that proves Lemma (3.5.), (see Example 3.9.).

Example 3.9. Similarly as in Example (3.7.), let us assume that xf = 4 would
be the non-trivial solution. This example demonstrates the fact that F ⊆ Z,
which follows from Lemma (3.5.), since the elements in both sets of corresponding
variables xz, xf , which are in relation (3.8), are equal. In this case when xf = 4
according to relation (3.8) xz = 5 and the corresponding elements are equal (see
below).

xz Elements of set Z xf Elements of set F
Bp+1(xz+1)
Bp+1(xz)

= (xz+1)p

(xz+1)p−xp
z

Bp+1(xf+2)
Bp+1(xf+1) = 2

3
Bp+1(4)
Bp+1(3)

= (4)p

(4)p−3p

4
Bp+1(5)
Bp+1(4)

= (5)p

(5)p−4p 4
Bp+1(6)
Bp+1(5)

= 2

5
Bp+1(6)
Bp+1(5)

= (6)p

(6)p−5p

...
...

�

Theorem 3.10. There is no element in the set Z which is equal to two for xz >
2 ∧ p > 1 and since F ⊆ Z the EM equation does not have any other solution than
trivial.

Proof. From Lemma (3.5.) follows F ⊆ Z. It is clear that the elements of each set
are equations. The elements of corresponding variables xz, xf , which are in relation
(3.8), are equal and thus these equations must be equal as well. Let us recall that

every element in the set Z is defined as
Bp+1(xz+1)
Bp+1(xz)

= (xz)
p

(xz)p−xp
z

and every element in

the set F is defined as
Bp+1(xf+2)
Bp+1(xf+1) = 2 (see definitions of the sets in Lemma (3.5.)).
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Since F ⊆ Z and every element in the set F is equal to two, in order to prove
Theorem (3.10.) it is enough to prove that no element in the set Z has an integral
solution, equal to two, for p > 1 since it will be in contradiction. It is trivial to

see that the expression (xz)
p

(xz)p−xp
z

has an integral solutions for xz > 1 if and only if

0 < p < 2 since by using the binomial expansion of the elements in the set Z we
get

Bp+1(xz + 1)

Bp+1(xz)
=

(xz + 1)p

(xz + 1)p − xp
z

=
xp
z + pxp−1

z + ... + 1

pxp−1
z + ... + 1

=
xp
z

pxp−1
z + ... + 1

+ 1

where is clear that (pxp−1
z + ... + 1) - xp

z for p > 1. In other words, there is no
element in the set Z which is equal to two for p > 1 and that is in contradiction
with the fact that F ⊆ Z. On the basis of this facts we can state that there is
only a trivial solution of the EM equation, when p = 1, as it follows from the basic

formula of summation
∑x

k=0 k
1 ≡ x∗(x+1)

2 = x+1⇒ x
2 = 1, where x must be equal

to two. All of the above-mentioned facts unconditionally prove Theorem (3.10.)
and at the same time the Erdös-Moser conjecture.

�

Example 3.11. Let us assume that xf = 4 is the non-trivial solution. The cor-

responding Eq.(3.6) (after substitution
Bp+1(6)
Bp+1(5)

= 2) holds for this xf and this

Eq.(3.6) is an element of the set F . Since F ⊆ Z, and thanks to the relation
(3.8), we are able to define xz = 5 and the corresponding element of the set Z as
Bp+1(6)
Bp+1(5)

= (6)p

(6)p−5p . LHS of the elements in both sets are equal, so RHS must be

equal as well, but there is no element in the set Z which is equal to two for p > 1,
which is in contradiction, and therefore xf = 4 can not be the non-trivial solution.
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