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Solving the Navier-Stokes equations for 3D boundary layer of the incompressible flow 

of Newtonian fluids is the most unsolved problem in fluid mechanics. A lot of authors 

have been executing their researches to obtain the analytical and semi-analytic solutions 

for the boundary layer approximation of Navier-Stokes equations, even for example for 

2D case of compressible gas flow. But there is an essential deficiency of 3D solutions 

for the boundary layer indeed. 

In current research, an elegant ansatz is developed to obtain 3D solutions for the 

boundary layer approximation of Navier-Stokes equations of incompressible fluids (in 

the vicinity of the point of separating of boundary layer from surface to the outer ideal 

flow). The governing equation for such the process is proved to be the Poisson equation 

for each the component of velocity field of boundary layer flow, which could 

nevertheless be reduced to the Laplace equation in case of the uniform outer flow.  
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1. Introduction, the system of equations. 

 

Navier-Stokes equations for the boundary layer of incompressible flow of Newtonian 

fluids [1], along with the equations for the outer ideal flow with respect to such the 

boundary layer, could be presented in the Cartesian coordinates as below [2-6] (under 

the proper initial conditions, including no-slip condition at the wall): 

 

 

 

- where 

ρ is the fluid density; 

p is the pressure (which should be the same for both the boundary layer, and the outer 

ideal flow limiting the influence of the boundary layer), 

u is the flow velocity of the boundary layer, a vector field; 

v is the velocity of the outer flow (outer with respect to the boundary layer), outer flow 

is supposed to be presented by the ideal flow of Newtonian fluids, a vector field; 

 is the kinematic viscosity, 

and F = -∇   represents external force (per unit of mass in a volume) acting on the 

fluid, with potential  (which should be the same for both the boundary layer, and the 

outer ideal flow limiting the influence of the boundary layer). 

 

As for the boundary conditions for the outer flow, we will consider only the Cauchy 

problem in the whole space (the domain in which the flow occurs). 
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Using the identity (u∇)u = (1/2)∇(u2
) – u×(∇×u) for (1.2) along with identity (v∇)v = 

(1/2)∇(v2
) – v×(∇×v) for (1.3), we could present equations (1.2)-(1.3) as below [7-8]: 

 

 

 

 

Let us consider the point of separating of the boundary layer from the surface (to the 

outer ideal flow), see Fig.1. 

 

Let us recall that boundary layer is known to be separating from surface (to the outer 

flow) only at the moment when kinetic energy of the boundary layer is significantly 

decreased up to the negligible magnitude of the square of velocity field (u2
) [1]. 

It means that solutions of the boundary layer equations (1.4) could be transformed and 

mutually combined with the outer flow (1.5) if only the condition below is valid for 

such a solutions, in the vicinity of the point of separating of boundary layer from 

surface (to the outer ideal flow):  

 

- where  u = ∇2u is the designation of vector Laplacian in Cartesian coordinate 

system. 

 

 

 

 

 

)5.1()(
2

1
)( 2


















 p
vvv

t

v 


)4.1(,)(
2

1
)( 22


















 p
uuuu

t

u 


 6.10)(
2

1 2 









 vu





4 

2. The spatial part of solution at the point of separating of the boundary layer. 

 

Equation (1.6) is known to be the Poisson equation; in case of the uniform outer flow v 

(∇ (v2
) = 0), it is reduced to the Laplace equation for each component of flow velocity 

u at the point of separating of the boundary layer from surface (to the outer flow): 

 

  

- which is proved to have the proper exact solution as below (r  0,  = const): 

 

 

 

Let us present the plot of solution (2.2) of Eq. (2.1) at Fig.2 (for the chosen meanings of 

time-parameter t = t0 and z = z0), in the vicinity of the point of separating of the 

boundary layer from surface (to the outer ideal flow): 

 

Under the appropriate dynamical influence from the outer flow, such the emerging 

bubble of the boundary layer (at the point of separating of the boundary layer) should be 

then distorted according to the direction of the velocity of the outer flow v (Figs. 5-7). 

So, 2D-profile of the emerging bubble of the boundary layer should be presented as at 

Fig.1: it is well-known fact [1] that velocity field changes its direction in the vicinity of 

the point where boundary layer is separating from the surface to the outer ideal flow. 

 

 

 

3. Discussion. 

 

Navier-Stokes equations for the boundary layer of incompressible flow of Newtonian 

fluids [1] are known still to be the most desired for solving but unsolved problem in 

fluid mechanics. 
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The main motivation of current research is the understanding the dynamics of the  

boundary layer separating from the surface (to the outer flow). The ultimate condition 

for this proccess is that the boundary layer solutions (1.4) should be transformed to the 

flows of ideal fluid and then it should be mutually combined with the solutions for the 

outer ideal flow (1.5). It let us obtain equation (1.6) for the spatial part of solution 

which corresponds to the case of boundary layer separating from the surface. 

We should especially note that the main assumption which is afterwards successfully 

converted to the key governing equation (1.6) is that the kinetic energy of the boundary 

layer should be significantly decreasing up to the negligible magnitude at this point [1]. 

Indeed, there is a lot of examples of such the solutions in fluid mechanics (see bubbles 

of separating of the boundary layer at Figs.3-4). 

 

Having been dynamically loaded from the outer flow, the aforementioned bubbles of 

the boundary layer (at the point of separating of the boundary layer) should be then 

distorted according to the direction of the velocity of the outer flow v (see Figs.5-7). 

 

 

 

Conclusion. 

 

Solving the Navier-Stokes equations for 3D boundary layer of the incompressible flow 

of Newtonian fluids is the most unsolved problem in fluid mechanics. A lot of authors 

have been executing their researches to obtain the analytical and semi-analytic solutions 

for the boundary layer approximation of Navier-Stokes equations [12-13], even for 2D 

case of compressible gas flow [14-15]. But there is an essential deficiency of 3D 

solutions for the boundary layer indeed. 

According to previously suggested ansatz [10], we have developed such the elegant 

approach in the current research to obtain 3D solutions for the boundary layer 

approximation of Navier-Stokes equations of incompressible flow of Newtonian fluids, 

in the vicinity of the point of separating of the boundary layer from surface to the outer 

ideal flow. 

 



6 

The uniqueness of the presented solutions is not considered. In this respect we confine 

ourselves to mention the paper [16], in which all the difficulties concerning the 

uniqueness in unbounded domain are remarked. 
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Fig.1. Separation proccess in the boundary layer (schematically imagined). 

https://en.wikipedia.org/wiki/Poisson%27s_equation
http://en.wikipedia.org/wiki/International_Standard_Book_Number
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Fig. 2. Solution (2.2) (z = 20), at the point of separating of boundary layer from surface. 

 

 

 

 

 

Fig.3. Separating of bubbles in the boundary layer (see 2 points on the sphere). 
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Fig.4. Separating of the bubbles in the boundary layer 

(at the top of the cylinder with the rounded edges). 

 

 

 

 

 

Figs. 5. Solution (2.2) (z = 20), under the appropriate dynamical influence 

                 from the outer flow v (at the point of separating of boundary layer). 
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Figs. 6. Solution (2.2) (z = 20), under the appropriate dynamical influence 

                 from the outer flow v (at the point of separating of boundary layer). 

 

 

 

 

Fig. 7. Solution (2.2) (z = 20), under the appropriate dynamical influence 

                 from the outer flow v (at the point of separating of boundary layer). 

 

 

 


