
Bitcoin With Heterogeneous Block Sizes:
A Scaling Proposal

Santi J. Vives
jotasapiens.com/research

Abstract: We propose a bitcoin generalization as a solution to the problem of
scalability. The block is redefined as a sequence of sub-blocks of increasing sizes
that coexist as different levels of compromise between decentralization and
transactions throughput. Miners and users can decide individually the size they
use without affecting others.

Bitcoin is the first mathematical (cryptographic) construction to enable secure,
permissionless, and peer-to-peer money and payments. It solves many fundamental
problems, but others still need work. As it gains adoption, bitcoin begins to face problems
of scalability. The volume of transactions the network is capable of handling remains
small compared to traditional payment systems. The limit of transactions is currently
determined by a maximum block size agreed by the network. The block size can be
increased over time as hardware becomes more efficient. But increasing the size too
much or too early can lead to a centralized network, with a few miners controlling most of
the hashrate.

The problem can be described in a simple way. In the bitcoin network, we find a set of
different miners, with different hardware, capable of processing different volumes of
transactions. We can sort miners by the maximum block size they can handle. From the
smallest to the largest, we get:
m 0 < m1 < m2 < m3 < ... < mN

It's easy to see that if choose the size the smallest miner m0 can handle, every other miner

will be able to process the block as well, resulting in the most decentralization. On the
opposite side, if we choose the largest size mN can handle, the entire network would be

controlled by one single miner. It follows that any block size parameter we might choose
sets a trade-off between the security and the capacity of the network.

As we move to smaller block sizes, the space available for transactions shrinks and more
persons become unable to make payments. The demand combined with a lack of space
will raise fees. As fees get higher than the amount of coins stored in many addresses,
more persons loose access to their coins. On the other hand, as we move to larger block
sizes, the network becomes more centralized, increasing the risk of a miner controlling a
majority of the network, censoring transactions, and reversing them.

1. Introduction

1

When they decide a size which implies a trade-off between decentralization and capacity,
developers and miners choose between two properties that are the two desirable and
important. Since different persons have different preferences between the two, no matter
which block size is chosen it will always leave someone unsatisfied, leading to
fragmentation and conflict.

Through the paper we will make a series of modifications to the construction, until we
arrive to a generalization that allows increasing blocks to arbitrarily large sizes without
destroying decentralization. Instead of imposing a single size, multiple sizes coexist as
different trade-offs between security and capacity. Miners and users can choose
individually the size they use without affecting others.

To create the generalized construction, we will start by discarding the idea of having a
single, fixed block size in the network. Instead, we will define an infinite sequence of sizes
that will coexist in the chain. Each of the sizes corresponds to a different level of
compromise between decentralization, and transactions capacity.

To achieve that, we redefine the block as a series of sub-blocks. We start by defining a size
for the first sub-block (for example, 1 MB). Each next sub-block doubles the total size,
resulting in a sequence of sub-blocks with relative sizes:
1, 1, 2, 4, 8, 16, 32, 64, 128, 256...

Each miner chooses a cutoff point in the series, according to its capabilities. For example,
a miner only capable of processing 2 MB blocks, will process only the first sub-blocks with
relative sizes 1, 1. While a miner able to handle 8 MB blocks can process the first four sub-
blocks with relative sizes 1, 1, 2, 4, since they add up to 8.

Since the cutoff can differ among miners, the chain now consists of blocks of different
sizes. When large blocks are inserted in the chain, small-block miners are only able to
process the first sub-blocks up to their cutoff. For example, if a 8 MB block is generated,
the small-block miner with cutoff 2 will only process the first 2 sub-blocks, and ignore the
rest.

2. Blocks with many sizes

2

We will call the height of a sub-block the position it has within the block. The first, smallest
sub-block has height 0, the next sub-block has height 1, and so on. Height 0 is processed
by every miner in the network. And as we move up, each next height in the series is
processed by a smaller number of miners: a height y is processed by the set of miners
with cutoff ≥ y.

Since sub-blocks at different heights are observed and verified by different sets of miners,
we will make addresses and transactions at each height independent from the others:

Users generate addresses that belong to a specific height. Each 0-address, 1-address,
2-address ... n-address corresponds to sub-blocks at height 0, 1, 2 ... n. The height of an
address is the parameter that defines the trade-off between decentralization, and
transaction capacity.
Transactions move coins from addresses at one height to other addresses at the
same height.
To generate a new block, miners collect transactions of heights up to their cutoff.
They combine transactions that belong in a same height, and combine them in a
Merkle tree to form each sub-block.
As in the original bitcoin construction, miners collect fees and a predefined number of
new coins as a reward for their work. In this case, all fees collected from the
transactions at different heights, and the newly mined coins are paid to an address at
the top. This property will come handy later.

The chain now contains blocks of different sizes, including blocks with sizes that exceed
what small-block miners can process. We need a method that allows big-block miners to
broadcast only the first sub-blocks to small-block miners, and still allows small-block
miners to authenticate them. Small-block miners must be able to verify that the sub-

3. Heights

4. A stream of sub-blocks

3

blocks are members of the block, despite not knowing the block entirely. For that we will
use a stream, a type of hash tree we will call by that name for its ability to process and
authenticate chunks of data of arbitrary length in sequential order.

Every time a block is created, each miner starts with a list of sub-blocks of different
heights, each consisting of a Merkle trees with transaction. Let's name the trees, from the
smallest to the largest, t0, t1, t2 ... tn. Rather than including the Merkle trees directly, each

block will include a root of a stream tree, with one of the Merkle tree at each of its leaves.
To compute the stream, the miner hashes the last tree tn to obtain a value hn. Then the

miner hashes the previous tree tn-1 together with hn to obtain a new value hn-1. The

process is repeated from the last tree to the first, until obtaining the root of the stream h0.

Generally, a stream with root h0 that contains n+1 elements t0...tn is defined as:

hy = { hash (ty, hy+1)
hash (tn)

if y < n
if y == n

A sequence of trees from the stream can be authenticated with a single hash value. To
prove a sequence of t0...ty we only need hy+1,. By hashing them in the same order the

stream was created, we can authenticate them against the root h0. For example, a big-

block miner with cutoff 6 will produce a block with trees t0...t6. When connecting to a

miner with cutoff 2, the big-block miner needs to send trees t0...t2, and hash value h3.

h0

Miners can decrease or increase their cutoff at any time. In our example, the small-block
miner could lower the cutoff from 2 to 1 by dropping every tree t2, and storing h2. Instead,

to increase the cutoff from 2 to 4, the miner needs to download trees t3...t4, and value h5.

The miner can authenticate appended trees and h value by hashing them, and comparing
them against h3.

h3h0

t0 t1 t2

4

Each miner can now choose a size cutoff, and process part of the blocks without knowing
what's happening above. Still, big blocks need not to affect the security of small blocks.

Let's consider an example. There are 2 groups of miners, one processing small blocks, and
the other bigger ones. Among the big-block group, one dishonest miner publishes a block
that contains valid transactions at the lowest height, but invalid transactions at the heights
above. Next, an honest small-block miner, who sees the block as valid, extends the chain
with a valid small block. A third honest big-block miner is working to extend the chain. If
the third miner rejects blocks containing any invalid information, he would have to reject
the last two blocks. Then, the honest small-block miner worked on a chain that seemed
valid, only to be rejected later.

It follows that if we want to work on the chain without observing all information, and we
don't want bigger blocks to affect the security of smaller ones, extending the chain cannot
be considered as confirmation of past information.

To solve the problem, let's separate confirmation from extension. At each height we will
include the number of previous sub-blocks from that same height that we drop, either
because they are invalid or because they don't exist. A sub-block at position (x, y) that
drops n previous sub-blocks confirms sub-block (x−n−1, y). In addition, every time we drop
a sub-blocks, we will also drop all sub-blocks in the heights above. This is to ensure no
new coins are mined, and no fees are paid when sub-blocks are rejected.

5. Separation of extension and confirmation

5

Similarly to the original bitcoin construction, miners work to extend the longest valid
chains of sub-blocks at each height. If two of the same length are valid, they extend the
one that appears first on the main chain.

At this point the coins stored at different heights are completely independent. We could
exchange them as we would do with different coins, each with its price. But it would be
better to define a method to move coins between heights.

We'll start by moving a coin to an upper height, which is easier. Suppose we own a coin at
height y, and we want to move it to an address in an upper height y+n (for example, from
a 0-address to a 1-address). We need to insert the transaction at height y. Once the
transaction is included in a block:

Miners with cutoff less than y ignore the transaction.
Miners with cutoff at least y (but less than y+n) verify the signature, and remove the
coin from their database.
Miners with cutoff y+n or higher verify the signature, remove the coin from the
database at the lower height, and include it in the receiving address at the upper
height.

Now we need to figure out how to move coins down. Suppose we own one unspent coin
at height y, and we want to move it to the height below, y−1. To start, we need to
broadcast a transaction to be inserted at height y. Big-block miners with cutoff y or higher
can verify we own an unspent coin, and that we want to move the coin from the y-address
to a (y−1)-address. But a problem arises: small-block miners with cutoff y−1 can't observe
the transaction. They can't even verify that we own the coin.

To solve this, we need to make some modifications. Big-block miners can claim that a
resulting coin exists at the lower height after moving down, but they can never prove it to
small-block miners. We'll start by reflecting this in the construction.

In addition of the tree with regular transaction ty, each sub-block will include a tree with

claims cy., as well as distinct drop values for the number of previous transaction trees, and

previous claim trees. Big-block miners insert the transaction (moving a coin from y to y−1)
at height y, and include a claim that the recipient address has gained one coin at height

6. Moving up

7. Moving down

6

y−1. When extending the chain, big-block miners must verify that the claims and the
transactions match. Miners confirm or reject sub-blocks following these rules:

Miners with cutoff Y can confirm or reject transactions up to height Y, confirm or
reject claims up to Y−1, and only reject but not confirm claims at height Y.

1.

Blocks with heights 0...t are allowed to have claims at heights 0...t−1.2.
If transactions at some height are rejected, claims at the same height must also be
rejected. That is, if regular transactions are invalid the full sub-block is invalid.

3.

Transactions at some height can be accepted, even if claims at the same height are
rejected.

4.

Miners must verify that transactions trees ty and claim trees cy−1 are in agreement,

for y=1...Y. If either is rejected, the other must be reject as well.

5.

If a pair ty, cy−1 is rejected, everything above must also be rejected.6.

So far, coins that where at an upper height are now observable at the height below, but
they remain different and independent from regular coins. They don't even have the same
level of security, since they can be reversed if a sub-block above gets rejected. At some
point, transfered coins should become the same as regular coins.

Since miners cannot know information above their cutoff, if we want to move coins down
irreversibly, at some point we will have to accept them as valid even if the information
above is invalid. For that purpose, we will establish a number of confirmations after claims
can no longer be reversed. Pass that time, claimed coins will become regular coins. Sub-
blocks above will be dropped no matter how old if they include invalid transaction that do
not match the claimed coins below, but the claimed coins will remain. Thus, checking that
claims and upper transactions are in agreement is a weaker rule, only enforceable for
some time.

In upper heights, the hashrate is concentrated among fewer miners, increasing the
probability that an attacker could include a false claim without being reversed in the next
sub-blocks. To compensate, we will increase the required number of confirmations with
height. Thus, a dishonest miner would control a larger portion of the hashrate if he
produces larger blocks, but would also need to sustain an attack for a longer time to
succeed.

Suppose we lock coins for a basic period of 100 confirmations at height 0, and we increase
it linearly with height. A claim from height y, as well as fees and mined coins paid to an
y-address, can be spent after
(y+1)⋅100 confirmations

Let's consider an example scenario of a miner making a false claim. Suppose there are
100 coins. The dishonest miner includes valid transaction moving 10 coins down from
height y to height y−1. At height y−1, the miner claims the 10 coins resulting from the valid
transactions, and 1 additional coin to an address of his own not matching any transaction.
After the attack, the chain contains 101% the coins, without small-block miners noticing.
Clearly, to be secure, the construction needs a mechanisms to prevent dishonest miners
from arbitrarily inflating the money supply.

We can solve this problem by introducing a simple rule: a miner can only claim as many
coins as would be destroyed if the claim is false.

7.1 Transformation into regular coins

7.2 Preventing inflation

7

Let's remember some of the rules we got far. A sub-block is invalid if the transactions do
not match the claims below. The invalid sub-block, as well as all sub-blocks at the heights
above, will always be rejected and reversed, no matter how old. Since mined coins and
transactions fees are paid to an address at the top, those coins will get destroyed. Then, if
we want to prevent inflation, we must constraint the amount that can be claimed to the
observable amount that would be paid at the top.

For a miner verifying a sub-block at height y, it means that the amount claimed must be at
most the number of coins mined in that block, plus all the fees collected up to that height,
minus the amount already claimed at the heights below:

claimedy ≤ mined + ∑ y
n = 0 feesn − ∑ y−1

n = 0 claimedn

Miners must verify that all claims up to their cutoff follow this rule. If a sub-block includes
a claim tree with an invalid amount, the full sub-block must be rejected. Claims with
invalid amounts can never settle, no matter how old.

To sum up, claim validation follows a weak rule and a stronger one:

Miners must verify that claims are in agreement with the upper transactions they can
observe. This rule is weaker and is only enforced for a limited period of time. A sub-
block can still be accepted even when its claim is rejected.
Miners must verify that the amount claimed is at most the amount of fees and mined
coins observed up to that height. This is a stronger rule that must be always enforced.
If the rule is not satisfied, the entire sub-block must be rejected, no matter how old.

Now, let's revisit the attack with the introduced rule. A dishonest miner can include
transactions in disagreement with the claim tree below. The sub-block with transactions
will always be rejected by honest miners, no matter how many confirmations. The claim
tree can be accepted if it gets enough confirmations, sending coins to addresses of the
attacker's choosing. But those coins are at most the same ones the attacker would have
gained from mining the block, and collecting fees from the valid transactions below. Thus,
the attempted attack now results in the same output as if the invalid pair of transactions
and claims had never existed.

The same principles we've used to move coins one height down can be generalized to
move multiple heights. At each sub-block we will include trees of claims moving coins 1, 2,
4, 8... heights down. We will combine regular transactions and all claims in a stream to
form each sub-block. Second, we will combine the sub-block using another stream as
usual.

Using the notation c
z
y for a tree of claims moving coins from height z to y, a sub-block at

height y contains claims of the form c
y+2^n
y .

7.3 Offset

8

Extending the same principles as before, we get that:

A sub-block at some height now contains regular transaction and multiple claim trees.
Combined, they must be within the allowed size for that height.
When processing a sub-block, the miner must verify all of the claim trees it contains
to ensure the total amount that is claimed is within the allowed limit.
If a sub-block contains claims from z to y, all fees and mined coins must be paid to an
address at height at least z.
A claim moving coins from z to any height below must wait the same number of
confirmations as previously defined for a claim from z to z−1.
If a claim tree from z to y is dropped, all sub-blocks at heights z and above must be
dropped. Then, if a claim tree from z to y is dropped, any following claim tree in the
same sub-block (>z to y) must be dropped as well, since they move coins from a
height that is being rejected.

As time passes, demand to include transactions might increase, while capacity at any
height is constant. That increase in demand will result in an increase in transaction fees.
For addresses with a small amount of coins, it won't be possible to move funds.

We need to prevent coins from getting stuck due to high fees. For that purpose, let's
define a method to move coins to upper heights as times passes. Suppose we want to
store a coin, and we estimate that we will use it, at most, within a year. At the time of
creating the address we'll define a dynamic height using the following example rules:

During the first year the coins are spendable by inserting a transaction at height y.
From that point, the coins move 1 height up every 3 months.

Miners with cutoff y can include a transaction spending the coins within the first year, or
will remove the address if the year passes. Miners with cutoff y+1 will remove the address
from their databases after 3 more months. And so on.

8. Addresses with dynamic height

9

We've learned it is possible to increase bitcoin blocks to arbitrarily large sizes without
destroying decentralization, and that scaling can happen on-chain, preserving much of the
simplicity in the original construction. The proposed construction redefines a block as a
sequence of sub-blocks of increasing sizes that coexist in the same chain as different
trade-offs between decentralization and transactions capacity. Each miner, and each user
can decide the size to use. By taking away from miners and developers the ability to
define a block size for the entire network, the construction takes away the ability to make
a decision about other people's coins.

Each miner chooses a cutoff that determines the size of blocks generated by that
individual miner, and the number of sub-blocks to process from other miners. Miners can
increase or decrease their size cutoff at anytime. The network reaches consensus despite
the fact most miners only observe part of the information in the chain.

People can use sub-blocks at lower heights to store their savings, which offer the most
security and decentralization at the expense of more waiting time to make payments, and
higher fees. While consumers and merchants can use upper heights for regular payment,
which are capable of higher transactions throughput and lower fees at the expense of
more centralization and an increased risk of transactions reversal. Merchants can
compensate it by either waiting for more confirmations, or absorbing the risk as part of
the price.

[1] Satoshi Nakamoto - Bitcoin: a peer-to-peer electronic cash system (2008).
[2] Ralph C. Merkle - Secrecy, authentication, and public key systems (1979).
[3] Santi J. - From one to many: synced hash-based signatures (2017).

9. Conclusion

References

10

