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Abstract 

 

Schrodinger equation has been established and solved for the non-spin Solar QM {N,n} structure model in paper 

SunQM-3. In current paper, the 1st order spin-perturbation problem has been solved for the spinning Sun's {N,n} QM 

structure. The result shows that the spin-perturbation causes nLL orbit to have the lowest orbit energy (or highest probability 

density), and it is named as "nLL effect". This study suggests that the nLL effect is the driving force for the Sun's (and all 

other celestial bodies') flattening, disk-lyzation, ring formation. It is mass occupancy that determines whether the outer shell 

of a pre-Sun ball goes to flattening or disk-lyzation. The nL0 effect (which is the companion effect of nLL effect) is the 

driving force for the bipolar outflow and astronomic jet. Additionally, a central G-force caused spherical spin frame theory is 

established, and our Sun's reference-spin-frame model is expected to be ωn-spin = ω1-spin / n^x, with x≈3. 

 

 

Introduction 

 

Thanks those QM scientists who invented the 1st order perturbation QM theory. 

As described in wiki "Solar System": "as the pre-solar nebula... collapsed, conservation of angular momentum 

caused it to rotate faster. The centre, where most of the mass collected, became increasingly hotter than the surrounding 

disc. As the contracting nebula rotated faster, it began to flatten into a protoplanetary disc with a diameter of roughly 200 

AU." So it was well known that the flattening and disk-lyzation of the pre-Sun ball-like structure was mainly caused by its 

spinning. 

In previous paper SunQM-3 
[1]

, I established a non-spinning solar system's (or pre-Sun's) QM model based on {N,n} 

QM structure and Schrodinger equation/solution. In current paper SunQM-3s1, I will use the same pre-Sun QM model, 

except now it is spinning, with spin-period (at equator) = 25.38 days, or ωspin = 2π/T = 2.865E-6 arc/sec, at Sun's surface 

{0,2}. Then I will treat the spin of the pre-Sun ball as a small perturbation of non-spin pre-Sun ball {N,n} QM model. So 

then I am going to solve the 1st order perturbation QM of a spinning pre-Sun ball based on a non-spin pre-Sun ball model. 

 

Note-1: The orbital rotation angular velocity at Sun's surface {0,2} is 6.28E-4 arc/s, (using data from paper SunQM-2 table 1, 

calculated as  vorbit / rorbit = 4.37E+5 (m/s) / 6.96E+8 (m) ). So ωSun-spin / ωSun-orbit-rotation = 2.87E-6 / 6.28E-4 = 0.46%. 

Therefore, I can treat the spin of the pre-Sun ball as a small perturbation of non-spin pre-Sun ball model. 

Note-2: For {N,n} QM nomenclature as well as the general notes for {N,n} QM model, please see my paper SnQM-p1 

section VII.  

Note-3: Microsoft Excel's number format is often used in this paper, for example: x^2 = x
2
, 3.4E+12 = 3.4*10

12
, 5.6E-9 = 

5.6*10
-9

. 

 

 

I.   A central G-force caused spin frame QM ωn theory, its |ω| value contour line is spherical shaped, and decreases as 

rn increases 
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In this section, I will develop a reference spin frame which is very different from the classical one. 

 

 

I-a.   The physics meaning of spin frame's ω decreasing with r increasing 

 

From book "The physics of everyday phenomena, a conceptual introduction to physics," by W. Thomas Griffith, 5th 

ed. 2007, pp152, in Figure 8.16, an ice skater goes into a spin. In action-1, she bring back her arms (so that her hands' r1 = 

0.25 m, away from spin axis), and her body has angular velocity ω1 at r1 = 0.25 m. In action-2, she extend her arms (so that 

hands' r2 = 0.5 m, away from spin axis), and now her body has angular velocity ω2 at both r1 = 0.5 m and r2 = 0.25 m. From 

angular momentum conservation, we know that ω1 > ω2. 

Now in action-1 (ω1 at r1 = 0.25 m), if we want to setup a reference-spin-frame (RefSpnFrm) with ω1, this 

RefSpnFrm at r1 = 0.25 m has angular velocity = ω1, what is the RefSpnFrm's angular velocity at r2 = 0.5 m? The Newton 

physics tell us that it is still ω1 , but now I am going to challenge it: It should be ω2, not ω1 ! The reason is, you can reverse 

action-1 and action-2 many times, the hands at r2 = 0.5 m only feel ω2, never feel ω1 ! To extract the physics from this model, 

in this two-actions spin system, if you choose action-1 as the RefSpnFrm, it is equivalent that you choose ω1 at r1 = 0.25 m in 

a RefSpnFrm, then the same RefSpnFrm at r2 = 0.5m must have ω2 which slower than that at r1 = 0.25 m. Or, if you choose 

action-2 as the RefSpnFrm, it is equivalent that you choose ω2 at r2 = 0.5m in a RefSpnFrm, then the same RefSpnFrm at r1 = 

0.25 m must have ω1 which faster than that at r2 = 0.5 m. The key I learned from this example is that the (traditional 

Newton's) abstract RefSpnFrm (without mass distribution history) is not practically useful. Only the RefSpnFrm (which 

carried its mass distribution history) is practically useful! 

Now let's add an action-3. Suppose in both actions-1 & -2, the skater's left foot's r1 = 0.25 m. In action-3, she 

extended her left leg so that her left foot's r2 = 0.5 m, and now her body has angular velocity ω2' at both r2 = 0.5 m and r1 = 

0.25 m. From angular momentum conservation, we know that ω1 > ω2 > ω2'. (Note: a real ice skater will start spinning from 

slower ω to faster ω, or from action-3, to -2, then to -1. Here I setting ω1 > ω2 > ω2' is try to match numbers to that in pre-

Sun's spin frame in the next discussion.) 

Now if we choose action-1 as the RefSpnFrm (so ω1 at r1 = 0.25 m), what is the ω at r2 = 0.5 m? It is ω2, or ω2' ? It 

depends on what action we are studying. If we study the action-2 relative to action-1, we choose a RefSpnFrm with ω2 at r2 = 

0.5 m, and ω1 at r1 = 0.25 m. If we study the action-3 relative to action-1, we choose a RefSpnFrm with ω2' at r2 = 0.5m, and 

ω1 at r1 = 0.25 m. Or if we study the action-3 relative to action-2, we choose a RefSpnFrm with ω2' at r2 = 0.5 m, and ω2 at r1 

= 0.25 m ! 

What we learned from this excises is that even when we chosen a RefSpnFrm (e.g., ω1 at r1 = 0.25m), the ω of this 

RefSpnFrm at r2 = 0.5 m is still uncertain. It depends on the mass distribution along r that perpendicular to spin axis. If we 

know that distribution, then the ω of this RefSpnFrm at r2 = 0.5 m is fixed. 

A simplified skater's RefSpnFrm model can be like a series of co-spin-axis hollow cylinders. The most inner one (a 

cylinder of r ≤ r1) has ω1, the outside hollow cylinder ( r1 ≤ r ≤ r2) has ω2, and the further outside hollow cylinder  ( r2 ≤ r ≤ r3) 

has ω3, and  ω1 > ω2 > ω3. The value of ω2 is depend on the hollow cylinder's moment of inertia (I = 0.5*m*(r1
2
 + r2

2
)). If the 

mass (m) of the hollow cylinder's I is smaller, then ω2 value will be smaller, and vise versa. 

 

 

I-b.   The pre-Sun ball's reference-spin-frame (SunSpnFrm) model with ωn-spin=ω1-spin / n^x 

 

Now let's apply this knowledge to the pre-Sun ball's reference-spin-frame (SunSpnFrm) that we are really interested 

in. Here I summarize the two major characters of SunSpnFrm (after many testing and re-thinking): 

1)   Based on its point-center-radiated G-force-field and mass-distribution, SunSpnFrm's contour lines of |ωn| values are 

spherical shells shaped, with the inner ω (= ωn) value always > the outer ω (= ωn+1) value. 

 

2)   After some tests, I realized that there is a relationship  

 

ωn-spin = ω1-spin / n^x           Eq-1  
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where x can be any real value between 0 and 4. The actual x value depends on the mass distribution along rn. 

 

3)   In a series of simplified models, x can be any one of these integer numbers x= 0, 1, 2, 3, and 4,   

 

Here are some examples: 

Example 1, if x=0, then  

ωn-spin = ω1-spin            Eq-2  

 

It become a classical RefSpnFrm in which ω is independent of rn . This does not happen in astronomy physics, because high 

rn will produce high ωn that its vn-spin will tear apart everything. 

 

Example 2, if we have a constant mass density evenly distributed in a ball, first with radius = r1, with a ball’s angular 

momentum L1= ω1 * I1  = ω1 * (2/5)*m*r1^2 , then (for same amount of mass) its radius changed to r2 (= r1 * 2^2= r1*4), with 

L2 = ω2 * I2 = ω2 * (2/5)*m*r2^2. With angular momentum conservation, L2 = ω2 * (2/5)*m*(r1*2^2)^2 = ω2 * (2/5)*m*r1^2 

* (2^4) = ω2*(2^4) * I1 , which should conserve and equal to L1 =ω1 * I1, it gives ω2-spin=ω1-spin / 2^4, which can be expanded 

to   

ωn-spin =ω1-spin / n^x, at x=4.          Eq-3 

 

So a constant mass ball decreasing its size from rn to r1 (with mass density always evenly distributed), it will have ωn-spin = ω1-

spin / n^x, with x=4. In our pre-Sun ball collapse model each collapse causes > 99% of mass from {N,n=2..6} shell space fly 

into the {N,1}RF ball, so it is close to a fixed mass ball decreases its r from r2 to r1. The major difference is that our pre-Sun 

ball has a log-log mass distribution relative to r, not a mass density = constant.  

 

Example 3, our planets orbit vn has a relationship of vn-orbit = v1-orbit  / n . If SunSpnFrm also has a relationship of vn-spin = v1-spin 

/ n, then ωn-spin * rn = ω1-spin r1 /n ,  ωn-spin = ω1-spin (r1/rn)  / n , we obtain ωn-spin = ω1-spin /n^3. So it gives a SunSpnFrm with  

ωn-spin = ω1-spin / n^x, at x=3         Eq-4 

 

I believe that our Solar system has a SunSpnFrm with ωn-spin = ω1-spin / n^x, with x around 3, mainly because this makes spin 

velocity has the same relationship (vn-spin = v1-spin / n ) as that of orbital velocity.  

 

Example 4, in certain arm region of a galaxy, there is a vn-orbit ≈ v1-orbit relationship (see wiki "Dark matter"). If ωn-spin and ωn-

orbit are interchangeable, this will result in vn-spin = v1-spin , ωn-spin * rn = ω1-spin * r1 , ωn-spin = ω1-spin *(r1/rn) , ωn-spin = ω1-spin / n^2 . 

So it gives a SunSpnFrm with  

ωn-spin = ω1-spin / n^x, at x=2         Eq-5 

 

In Table 1 below I listed the possible integers for x (=0, 1, 2, 3, 4). It should cover the whole range of x (real or integer). 

 

Table 1. List of ωn-spin = ω1-spin / n^x, for x=0, 1, 2, 3, and 4. 

 
 

In section II-c2, II-c5, II-c6, and II-c7, we will use these relations to calculate the 1st order spin-caused perturbation energy 

for pre-Sun ball disk-lyzation. 

x= ωn-spin= ω1-spin/n^x comment

0 ωn-spin=ω1-spin a classical RefSpnFrm in which ω is independent of rn

1 ωn-spin=ω1-spin/n

2 ωn-spin=ω1-spin/n2 match v1-spin = vn-spin , as in galaxy's arm region.

3 ωn-spin=ω1-spin/n3 match v1-spin = vn-spin *n

4 ωn-spin=ω1-spin/n4
a decreasing size mass ball with D=cnst
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4)   A G-forced spin-frame without information of mass distribution along r is not much meaningful in physics! It only 

provides the information of ω1 > ωn, but can't provide information of x. So in astronomical physics, a G-force spin-frame's 

effect on rn has to associate with its historical mass distribution along r (up to rn)! This is just like that the space and time have 

to be intertwined (in Einstein's special relativity). In a spin reference frame, the radius (to the spin axis) and the mass 

density distribution in r-dimension have to be intertwined! 

 

5)   In paper SunQM-1s1, I modeled Solar system's mass density in space between {2,1} to {4,6}, it is D = 4.37E+28 / r^3.28 

(kg/m^3). In paper SunQM-3 section I-f, I modeled Sun ball's mass density, and find that inside Sun ball, it is D=1.26E+23 

/r^2.33 (kg/m^3). From my physics sense I believe that our SunSpnFrm is ωn-spin = ω1-spin / n^x, with x=3.28 for space 

between {2,1} to {4,6}, and with x=2.33 inside Sun ball. For the same reason, I believe that in the galaxies arm region where 

vn-orbit ≈ constant, it should have mass density D = C/r^2 , where C is a constant. However, I still need to figure out how to 

prove it mathematically. 

 

 

II.   The spin causes pre-Sun ball to disk-lyze as shown by solving the 1st order perturbation problem in the Solar QM 

{N,n} structure 

 

 

II-a.   Define a central G-force Sun-spin-frame for {N,1}RF pre-Sun ball, its |ω| value contour line is spherical shaped, 

and |ω| value  decreases as rn increases 

 

After some tests and a longtime thinking, I realized that we need to analyze the disk-lyzation of a pre-Sun-ball in a 

Solar system's spin frame (SunSpnFrm). Now let us define the SunSpnFrm. 

Using the right-hand rule (refer to wiki "right-hand rule, A rotating body"), the Sun spin vector ωspin point to the 

north (the direction of thump), its spin defined as eastward (the direction of four fingers). All planets and belts in Solar 

system are also orbital rotating eastward, with their rotation axis overlapping with Sun's spin axis. So the SunSpnFrm is also 

defined as in eastward spin. 

 

     
 

Figure 1. Define the right-hand rule for the spin of Solar system. Figures are copied from: 

https://en.wikipedia.org/wiki/Right-hand_rule#/media/File:Right-hand_grip_rule.svg 

http://davidpratt.info/images/fred2.gif 

 

The purpose to setup a SunSpnFrm is that we want to study the effect of a {N,1}RF pre-Sun ball's spin on its nearby 

out-space, i.e., the spherical shell space between {N,2} to {N,6}. A classical cylinder shaped spin frame is not going to work 

for it. A spherical shaped spin frame, inspired by the Earth (where a spinning Earth ball affects its outer atmosphere), is 

adapted here. For a solid ball (like Earth), its spin angular velocity ω is same everywhere on its surface, from equator to pole. 

For celestial gas ball, I define a zero order approximation of spinning ball surface: its spinning spherical surface like a solid 

ball's surface, i.e., its ωspin is same everywhere on its surface from equator to pole. For a pre-Sun ball {N,1}RF (remember it 

is a ball made of almost pure hydrogen gas ~5 billion years ago), we apply the zero order approximation to its spin, i.e., its 

ωspin is same everywhere on its surface from equator to pole. 

As mentioned in paper SunQM-3, when {N+1,1}RF pre-Sun ball collapsed into {N,1}RF pre-Sun ball, > 99% of 

mass in shell space between {N,2} and {N,6} fell into {N,1}, so according to the law of angular momentum conservation, 

ω(N) > ω(N+1). After applying the zero order approximation of spin, the {N,1}RF pre-Sun ball also has same ωspin value 
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everywhere on its surface from equator to pole. So the SunSpnFrm in space between {N,2} and {N,6} is dominated by the 

spinning {N,1}RF ball, which has ω(N),  which is > ω(N+1)! After repeating the collapse process, we obtain a SunSpnFrm 

ω(N-3) > ω(N-2) > ω(N-1) > ω(N) > ω(N+1). We can apply the same principle to every n shell within each N super-shell, 

then we obtain a SunSpnFrm which has a quantized ωn value, with its |ω| value contour line is spherical shaped, and |ω| value 

decreases as rn increases.  

So any central G-force spin-frame (including SunSpnFrm) can be modeled as a series of concentric spherical shells, 

each (rigid) shell (at rn) has a specific ωn-spin value , and this ωn-spin value is same on every position in this (rigid) shell, no 

matter how close (or how far) this position is from the spin axis! There is a relationship ωn-spin = ω1-spin / n^x. When x > 0, the 

inner (rigid) spherical shell always spins faster than the outer (rigid) spherical shell. When x = 0,   ωn-spin = ω1-spin , so it 

degenerated back to the classical (cylinder shaped) spin frame. When x < 0, the inner (rigid) shell always spins slower than 

the outer (rigid) shell. 

Our Sun-spin-frame has x > 0, so its  inner (rigid) shell always spin faster than the outer (rigid) shell, Most likely, it 

also follow the v1-spin = vn-spin *n relationship like vn-orbit does, which means its x=3, or ωn-spin = ω1-spin / n^3. 

This ωn-spin model is supported by "recent analysis of SOHO mission data favors a faster rotation rate in the core 

than in the radiative zone above" (see wiki "Sun"). Also, in García’s paper 
[3]

, it mentioned that "we obtain better 

correlations with those having an inner rotation rate in the range three to five times higher than the rest of the radiative 

region". 

 

 

II-b.   The centrifugal force is the main driving force to disk-lyze the pre-Sun's ball structure. 

 

For a spinning pre-Sun ball {N,n}, let us treat the {N,1}RF as the central ball, and study the movement of an object 

in spherical space between {N,2} and {N,6}. This immediately bring us to remember that how people studied the atmosphere 

above the spinning Earth. Using the same treatment, we know that there are two forces we need to concern: Coriolis force 

(Fcori) and centrifugal force (Fcntfgl). After studied both forces, I found that it is Fcntfgl (not the Fcori) that make the main 

contribution to pre-Sun ball disk-lyzation. So in this paper, I only present how the Fcntfgl drives the pre-Sun disk-lyzation in  

QM analysis. 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 2. Left: an object m is doing a circular orbit movement around a self-spinning center object M (spin axis along z-axis). 

Point A [x,y,z] = [0,r,0].  Point B [x,y,z] = [r*cos(θ'), 0, r*sin(θ')]. Point B has the maximum z in the orbit trace. Right: the 

centrifugal force vector analysis for object m at position B in x-z plane. 

 

Now in our model (as shown in Figure 2-left), the pre-Sun ball {N,1}RF (as shown in M) is spinning along z-axis in 

angular velocity ω. An arbitrary object (a gas molecule, or a rocky fragment) with a orbital radius r in space between {N,2} 

and {N,6}, moving in a arbitrary circular orbit. Let us set a coordinate so that its z-axis overlaps pre-Sun ball's spin axis, and 

the point B (which has the highest z-value in the orbit trace) is in x-z plane. So in this coordinate, the angle between the orbit 

plane and x-y plane is θ', Point B [x,y,z]= [r*cos(θ'), 0, r*sin(θ')].  

Now let us do the force vector analysis at Point B (as shown in Figure 2-right). As described in wiki "Centrifugal 

force",  

x
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Fcntfgl = -m ωspin  (ωspin  d)          Eq-6 

 

where d is the vertical distance between point B and spin-axis. d = |d| = r * cos(θ'). Consider in Schrodinger equation, it only 

uses θ, and θ = π/2 - θ'. So d = r*cos( π/2 - θ), or  

 

d = r*sin(θ)            Eq-7 

 

As expected, the centrifugal force always points radial outward from the spin axis, or  

 

Fcntfgl = -m * d * ωspin
2
            Eq-8  

 

Let us decompose the vector Fcntfgl into Fr in r-direction (or in r-dimension), and Ft in tangential direction (or θφ-2D-

dimension, or actually is θ-dimension). Fr in the same r-dimension as gravity force Fg , also |Fg|  >> |Fr|. I will analyze the 

effect of Fr later in section III.  

 

Ft = Fcntfgl *sin(θ') = Fcntfgl *cos(θ)          Eq-9 

 

It points to the equator of the SunSpnFrm's spherical shell. Because Ft > 0 (comparing to the non-spin SunSpnFrm where Ft = 

0), even it is not big in value, its relative effect is big. Indeed, as we will see that in the end, this Ft is the major driving force 

that disk-lyzed the pre-Sun ball. 

 

Ft = Fcntfgl *cos(θ) = -m *d * ωspin^2 *cos(θ) = -m *r *ωspin^2 *sin(θ) *cos(θ)      Eq-10 

 

The potential energy that Ft generated in the θ-dimension is 

 

Vθ = ∫ Ft r*dθ = ∫ (-m *r *ωspin^2 *sin(θ) *cos(θ) ) * r*dθ = -m *r^2 *ωspin^2 * ∫ sin(θ) *cos(θ) dθ = (1/2) m *r^2 *ωspin^2 

*cos(θ)^2            Eq-11 

or  

 

Vθ = (1/2) m* r^2 *ωspin^2 *cos(θ)^2         Eq-12 

 

It is obvious that the minimum potential is at θ=π/2 where Vθ = 0. Actually in θ-1D-dimension force analysis, the object 

moves like a pendulum, where Fcntfgl is equivalent to Fgravity , and both have minimum V at θ'=0. Note: to double check the 

sign of Vθ : just like that moving to the direction of Fg will get lower Vg , here moving to the direction of Fθ will get lower Vθ, 

so Vθ has the right sign. 

According to section II-a, SunSpnFrm's spherical shell shaped spin ω value decreases as rn increases, so it should be 

written as ωn-spin . So 

 

Vθ =  (1/2) m*rn^2 *ωn-spin^2 *cos(θ)^2         Eq-13 

 

and at 

θ=0, Vθ =  (1/2) m*rn^2 *ωn-spin^2  

θ=π/2, Vθ = 0 

θ=π, Vθ =  (1/2) m*rn^2 *ωn-spin^2  

 

This is a single object (in rn shell) that has orbit plane angle = θ' and has (the highest z value) B point in z-x plane. In 

rn shell of the real pre-Sun ball, there are almost countless objects that have orbit plane angle = θ', and their (highest z valued) 

B points form a collection of x-axis that fills all x-y plane (or fill all φ-dimension space from 0 to 2π, see more detailed 
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explanation of RF motion inside pre-Sun ball in my paper SunQM-2s1). If we average all these objects over φ, then re-

present each of these objects using the averaged-represented object, then all of them have θ-dimension’s potential energy 

formula as Eq-13. Since this formula has a variable θ which covers from 0 to π, so this formula covers all objects on the rn 

shell of the pre-Sun ball (after integrating θ from 0 to π). 

As for the φ-dimension, since Fcntfgl always perpendicular to φ-dimension, so Fcntfgl-φ always =0, so Vcntfgl-φ ≡ 0. 

Therefore, in θφ-2D-dimension, Vcntfgl-θφ = Vcntfgl-θ + Vcntfgl-φ = Vcntfgl-θ . Note: in θφ-2D-dimension, for integration ∫∫ Vcntfgl-θφ 

sin(θ) dθ dφ, Vcntfgl-θ + Vcntfgl-φ have to be separated, it cannot be fused into one item. 

 

 

II-c.   First order spin-perturbation energy calculation (Fcntfgl-θφ only) for pre-Sun ball disk-lyzation (under nLL effect) 

 

Note: in this section, we only consider Fcntfgl-θφ = Fcntfgl-θ , ignore Fcntfgl-r and ignore the Coriolis force.  

 

 

II-c1.   Build up the formula Enlm
(1θφ)

 = <nlm|H1θφ|nlm> 

 

Now let us build a time-independent perturbation model for the spinning pre-Sun {N,n} QM structure. In paper 

SunQM-3, we had a non-spin pre-Sun ball, and gravity force Fg (exist only in r-dimension), so Fr = Fg , Fθ = 0, Fφ = 0, hence 

this forms a the zero-order perturbation. So the unperturbed Hamiltonian H0 = H0r ≠0, and H0θ = 0, H0φ =0. 

In section II-b, with SunSpnFrm's ωspin > 0, The total force = Fg + Fcntfgl , so the total Fr = Fg + Fcntfgl-r , Fθ = Fcntfgl-θ , 

Fφ =0. For pre-Sun ball disk-lization, we only interesting what is happening in θφ-2D-dimension, so the perturbation in r-

dimension is ignored at this time. Note: later on (in section III) we will find that Fcntfgl-r also contributes to the pre-Sun ball 

disk-lyzation. According to John S. Townsend's book "A Modern Approach to QM" 2nd ed. 2012. pp381, eq-11.1 and eq-

11.15, the total Hamiltonian   (unperturbed  0 plus spin-perturbed  1) 

 

  =  0 +  1             Eq-14 

 

and, the 1st order En shift is the expectation value of H1 averaged in the unperturbed state wave function, 

 

En
(1)

 = <φn
(0)

| 1| φn
(0)

>           Eq-15 

 

Here I use a subscript in   to indicate the order of the approximation, and use a superscript in parentheses in E and the wave 

function φ to indicate the order of the approximation. We have 

 

  =  0 +  1 =  0r +  0θ +  0φ +  1r +  1θ +  1φ , where  0θ  =  0φ =  1φ =0     Eq-16 

 

After removing those =0, we have the effective Hamiltonian  

 

 0 +  1 =  0r +  1r +  1θ           Eq-17 

 

Therefore for the perturbed total En 

 

En = En
(0)

 + En
(1)

 = <nlm|( 0 +  1)|nlm> =  <nlm|( 0r +  1r +  1θ)|nlm> =  <nlm| 0r|nlm>  +  <nlm| 1r)|nlm>  +  <nlm| 1θ 

|nlm>              Eq-18 

 

where |nlm> = Rnl * Ylm . The (1st item) non-perturbation En
(0)
 = <nlm|( 0r)|nlm> has been solved for pre-Sun ball in paper 

SunQM-3: En = -3.81E+11 *(m/n^2), where m is the orbit moving object's mass (in kg), and n is the total n of the orbit using 

Sun core {0,1} as r1 , and En in unit J. The 2nd item, the perturbed energy Enlm
(1r)

 = <nlm| 1r)|nlm> , will be analyzed in 
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section III. It is the 3rd item, the perturbed energy Enlm
(1θ)

 = <nlm| 1θ |nlm>,  makes the major contribution for the pre-Sun 

ball disk-lyzation. In the rest part of this section I will show that how I solved this 1st order perturbation problem. 

From section II-b, we know that 

 

 1θ = Vθ = (1/2) m * rn^2 *ωn-spin^2 *cos(θ)^2        Eq-19 

 

Let us define 

An = (1/2) m * rn^2 *ωn-spin^2          Eq-20 

 

which is not a variable of θ or φ, so it keeps as a constant in <Ylm| 1θ|Ylm> integration. Now  

 

 1θ = An *cos(θ)^2           Eq-21 

 

Because Ylm function is a θφ-2D-dimension function, it is more straight forward to present everything in θφ-2D-dimension 

rather than θ-1D-dimension. So I change Enlm
(1θ)

 = <nlm|  1θ |nlm>  into Enlm
(1θφ)

 = <nlm|  1θφ|nlm>. They are equivalent 

because  1φ =0 so that  1θ =  1θφ . So now we have  

 

Enlm
(1θφ)

 = <nlm|  1θφ|nlm> = <Rnl Ylm|An *cos(θ)^2|Rnl Ylm> = <Rnl|An|Rnl> <Ylm|cos(θ)^2|Ylm>   Eq-22 

 

My explorative calculation revealed that for one n, all l(s) (from 0 to n-1) and all m(s) (from -l to +l) have the same 

value of <Rnl|An|Rnl> (see section II-c2). For pre-Sun ball disk-lyzation, we only need to know the Enlm
(1θφ)

 within each single 

n shell, so we can treat <Rnl|An|Rnl> as the unit of <Ylm|cos(θ)^2|Ylm> . Also, after spin, the degeneracy of l and m for each n 

is removed, so we need to replace Enlm
(1θφ)

 by Enl'm',nlm
(1θφ)

 . Therefore, we have (a matrix of) 

 

Enl'm',nlm
(1θφ)

 = <Rnl’|An|Rnl> <Yl’m’|cos(θ)^2|Ylm>         Eq-23 

 

This is the ultimate equation for the centrifugal force caused 1st order spin-perturbated En
(1)

 in θφ-dimension. 

 

 

II-c2.   Calculation of <Rnl’|An|Rnl> for our SunSpnFrm under (the most possible) ωn-spin=ω1-spin / n^3 model 

 

Eq-20 shows that An is ωn-spin dependent. Table 1 shows our SunSpnFrm has ωn-spin = ω1-spin / n^x, with possible x 

from 0 to 4, and the most possible x is =3. So here let us calculate <Rnl|An|Rnl> for our SunSpnFrm under (the most possible) 

ωn-spin = ω1-spin / n^3 model. Using ωn-spin = ω1-spin / n^3 and rn = r1 *n^2 to formula Eq-20, An =  (1/2) m * rn^2 *ωn-spin^2 = 

(1/2) m*(r1^2 *n^4) * (ω1-spin^2 /n^6) = =  (1/2) m * r1^2 *ω1-spin^2 / n^2 = A1 *(r1/rn), where A1 =  (1/2) m * r1^2 *ω1-spin^2 . 

Let us define  

 

A = A1 = (1/2) m * r1^2 *ω1-spin^2           Eq-24  

 

Then we obtain 

 

An = A r1/rn             Eq-25 

 

Since we only interesting in En’l'm',nlm
(1θφ)

 within a single n shell, so δn'n is enforced here. For non-diagonal elements in 

Enl'm',nlm
(1θφ)

 matrix, l' ≠ l,  <Rnl'|An|Rnl> = A r1 <Rnl'|1/rn|Rnl> , which is not equal to zero. For diagonal elements, l' = l,  <Anl> 

= <Rnl|An|Rnl> = A r1 <Rnl|1/rn|Rnl> = A /n^2 , as shown below (Note: all integrations using the online calculator 

"WolframAlpha" (https://www.wolframalpha.com), or using program R). 
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<R10|An|R10> = A r1 <R10|1/rn|R10> = A. 

<R20|An|R20> = A r1 <R20|1/rn|R20> = (1/4) A. 

<R21|An|R21> = A r1 <R21|1/rn|R21> = (1/4) A. 

<R30|An|R30> = A r1 <R30|1/rn|R30> = (1/9) A. 

<R31|An|R31> = A r1 <R31|1/rn|R31> = (1/9) A. 

<R32|An|R32> = A r1 <R32|1/rn|R32> = (1/9) A. 

<R42|An|R42> = A r1 <R42|1/rn|R42> = (1/16) A. 

<R43|An|R43> = A r1 <R43|1/rn|R43> = (1/16) A. 

<R54|An|R54> = A r1 <R54|1/rn|R54> = (1/25) A. 

<R65|An|R65> = A r1 <R65|1/rn|R65> = (1/36) A.        Eq-26 

 

So if vn-spin = v1-spin /n, like the non-perturbate En
(0)

 , the 1
st
-order spin-perturbed En

(1)
 in r-dimension at n state is also =1/n^2 

of that at E1
(1)

 for diagonal elements. So we can define  

 

<An,l> = <Rnl|An|Rnl> =A / n^2           Eq-27 

 

In sections II-c3, II-c4, II-c5, and II-c6, I will calculate the <Yl'm'|cos(θ)^2|Ylm> under this SunSpnFrm for n=1, 2, 3, 5 

respectively. (Note: for x other than 3, I will make a discussion in section II-c7). 

 

 

II-c3.   For n=1, only one state |1,0,0> = |R10> |Y00>,  calculate the spin-perturbed Enl'm',nlm
(1θφ)

 = <nl'm'|  1θφ|nlm> in 

θφ-dimension 

 

Now let us calculate the <Yl'm'|cos(θ)^2|Ylm> part for the 1
st
-order perturbated Enl'm',nlm

(1θφ)
 for all n, l = 0, 1, 2, … n-

1, and m = -l, …+l. From wiki "Spherical coordinate system", the differential solid angle is 

dΩ = sin(θ) dθ dφ            Eq-28 

 

so the integration of <Yl'm'|Ylm> in the θφ-2D-dimension is 

 

<Yl'm'|Ylm> = ∫ ∫ Y*l'm' * Ylm * sin(θ) dθ dφ, θ=[0, π], φ=[0, 2π]       Eq-29 

 

Note: All spherical harmonic function |Ylm> are obtained from wiki "Table of spherical harmonics". All integration was 

performed using an online calculator "WolframAlpha" (https://www.wolframalpha.com/).  

 

The ground state n = 1 is not degenerate, so its spin-perturbed Enlm
(1θφ)

 is straight forward. 

 

E100
(1θφ)

 = <R10|An|R10> <Y00|cos(θ)^2|Y00> 

 

Or, 

E100
(1θφ)

 = <R10|An|R10>  ∫ ∫ 1/sqrt(4π) *cos(θ)^2 * 1/sqrt(4π) *sin(θ) dθ dφ = A/3     Eq-30 

 

 

II-c4.  For n=2, calculate the Fspin-perturbed Enl'm',nlm
(1θφ)

 = <Yl'm'|  1θφ|Ylm> in θφ-dimension  

 

For the first excited state n = 2, there are four degenerate states |2,0,0>, |2,1,0>, |2,1,1>, |2,1,-1>,  we need to use the 

Higher-Order Degeneracy perturbation theory (see Davis J Griffiths 's book "Introduction to Quantum mechanics", 2nd ed. 

2005. pp266, Chapter 6 Time-independent perturbation theory, Section 6.2.2 Higher-Order Degeneracy). According to 

Griffiths book’s eq-6.28 and eq-6.29: 
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          Eq-31 

 

           Eq-32 

 

let us build a 44 matrix of <Yl'm'|  1θφ|Ylm> using the four degenerate states |2,0,0>, |2,1,0>, |2,1,1>, |2,1,-1> as a basis. So 

each element of the matrix is E2l'm',2lm
(1θφ)

 = <2l'm'|  1θφ|2lm> = <R2l'|An|R2l> <Yl'm'|cos(θ)^2|Ylm> in θφ-dimension. From 

section II-c2, we know <R2l|An|R2l> = A/4. The calculated matrix of <Yl'm'|cos(θ)^2|Ylm> is shown in Table 2a, 

 

Table 2a.  <Yl'm'|cos(θ)^2|Ylm> 

 
 

and matrix of <2l'm'|  1θφ|2lm> is shown in Table 2b: 

 

Table 2b.  <2l'm'|  1θφ|2lm> = <R2l'|An|R2l> <Yl'm'|cos(θ)^2|Ylm> with known <R2l'|An|R2l> =A/4. 

 
Note:  all matrix elements with m' ≠ m should = 0. Because cos(θ)^2 does not contain φ, all ∫ exp[i(-m'+m)φ] dφ in [0,2π] =0, 

but <Rnl|Rn'l'>  ≠ δnn'δll' . 

 

Comparing it to the matrix of unperturbed Enl'm',nlm
(0θφ)

 = <nl'm'|  0θφ|nlm> in θφ-dimension (shown in Table 2c): 

 

Table 2c. Unperturbed Enl'm',nlm
(0θφ)

 = <nl'm'|  0θφ|nlm> 

 
 

Result & discussion (for section II-c4): 

1)   The diagonal only matrix in Table 2b means that the spin-perturbed eigenvector (state) space is exactly the same as the 

unperturbed eigenvector (state) space. So we can directly compare the values of diagonal elements (which equal to the 1st 

order spin-perturbed energy) in the unperturbed states. 

 

2)  In θφ-dimension, spin perturbation increase all four states' energy from =0 to >0, with E210
(1θφ)

 (=0.15A) > E200
(1θφ)

 

(=0.083A) > E211
(1θφ)

 (=0.05A) =  E21-1
(1θφ)

 (=0.05A). So the 4-fold degenerate of unperturbed E(n=2)
 (1θφ)

  = 0 has been 

removed after spin perturbation. 

 

3)   We see that in the l = 1 sub-shell, the higher |m| (at equator) has lower perturbated E (or higher probability density). Also 

between sub-shells l = 1 and l = 0, the largest l number and the largest m number (|nlm> = |211>) has the lowest Enlm
(1θφ)

 . 

<Yl'm'|cos(θ

)^2|Ylm> |Y00> |Y10> |Y11> |Y1-1>

<Y00| 1/3 0 0 0

<Y10| 0 0.6 0 0

<Y11| 0 0 0.2 0

<Y1-1| 0 0 0 0.2

<2l'm'|H1θφ|

2lm> |200> |210> |211> |21-1>

<200| 0.083 A 0 0 0

<210| 0 0.15 A 0 0

<211| 0 0 0.05 A 0

<21-1| 0 0 0 0.05 A

<2l'm'|H0θφ|

2lm> |200> |210> |211> |21-1>

<200| 0 0 0 0

<210| 0 0 0 0

<211| 0 0 0 0

<21-1| 0 0 0 0
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Later on we will see that result 3) is the major QM driving force for pre-Sun disk-lyzation.  

 

 

II-c5.  For state n=3, l =0, 1, 2, m= -2…+2, calculate the spin-perturbed Enl'm',nlm
(1θφ)

 = <nl'm'|  1θφ|nlm> in θφ-

dimension, the nLL effect 

 

For n=3, there are total 9 states . The unperturbed En of these 9 states are completely degenerate in either r-

dimension (En = -3.81E+11 *(m/n^2) J for Solar QM {N,n} structure), or En = 0 in θφ-dimension. Same as in section II-c4, 

we can construct a 99 matrix for unperturbed Enl'm',nlm
(0θφ)

 = <nl'm'|  0θφ|nlm> in θφ-dimension, where all elements (include 

the diagonal elements) =0 (not shown here). 

From section II-c2, we know <R3l'|An|R3l> =A/9. So each element of the matrix E3l'm',3lm
(1θφ)

 = <3l'm'|  1θφ|3lm> = 

<R3l'|An|R3l> <Yl'm'|cos(θ)^2|Ylm> in θφ-dimension. The result of <Yl'm'|cos(θ)^2|Ylm> in θφ-dimension is shown in a 99 

matrix in Table 3a below (using <R3l'|An|R3l> as unit). The result of spin-perturbed E3l'm',3lm
(1θφ)

 = <3l'm'|  1θφ|3lm> in θφ-

dimension is shown in Table 3b. 

 

Table 3a.   The result of <Yl'm'|cos(θ)^2|Ylm> (using <R3l'|An|R3l> as unit). 

 
 

Table 3b.   The result of spin-perturbed E3l'm',3lm
(1θφ)

 = <3l'm'|  1θφ|3lm> in θφ-dimension 

 
Note: all empty cells in Table 3 have value =0. 

Note: Calculated <R32|An|R30> = A r1 <R32|1/rn|R30> = 0.035 A. 

 

There are two non-diagonal elements ≠0. Extract out them to form a sub-matrix in Table 3c: 

 

Table 3c. A sun-matrix extracted out from Table 3b where non-diagonal elements ≠0. Unit=A. 

 
 

Solve the eigenvalue problem for this sub-matrix (by using Wolfram's online calculator "Eigenvalue and Eigenvector (22)", 

or by using R program), and put them into a new sub-matrix in Table 3d: 

<3l'm'|H1θφ|3lm> |300> |310> |311> |31-1> |320> |321> |32-1> |322> |32-2>

<300| 1/3 <A3,0> 0 0 0 0.298 <30|An|32>

<310| 0 0.6 <A3,1> 0 0

<311| 0 0 0.2 <A3,1> 0

<31-1| 0 0 0 0.2 <A3,1>

<320| 0.298 <32|An|30> 0 0 0 11/21 <A3,2> 0 0 0 0

<321| 0 0 0 0 0 3/7 <A3,2>

<32-1| 0 0 0 0 0 0 3/7 <A3,2>

<322| 0 0 0 0 0 0 0 1/7 <A3,2>

<32-2| 0 0 0 0 0 0 0 0 1/7 <A3,2>

<3l'm'|H1θφ|3lm> |300> |310> |311> |31-1> |320> |321> |32-1> |322> |32-2>

<300| 0.037 A 0 0 0 0.010 A

<310| 0 0.067 A 0 0

<311| 0 0 0.022 A 0

<31-1| 0 0 0 0.022 A

<320| 0.010 A 0.058 A

<321| 0.048 A

<32-1| 0.048 A

<322| 0.016 A

<32-2| 0.016 A

<3l'm'|H1θφ|3lm> |300> |320>

<300| 0.037 0.01

<320| 0.01 0.058
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Table 3d. The eigenstate matrix of Table 3c. 

 
 

Then put these diagonalized elements back to Table 3b, we obtain Table 3e. 

 

Table 3e. The eigenvector solution of Table 3b. 

 
 

Result & discussion (for section II-c5): 

1)  In θφ-dimension, spin perturbation increase all 9 states' energy from =0 to >0, so the 9-fold degenerate of unperturbed 

E(n=3) =0 has been removed. 

 

2)   In Table 3e we see that within each l sub-shell, the higher the |m| value (meaning the closer to equator), the lower the 

perturbated E (meaning the higher probability density). Also between l sub-shells, the largest l number and the largest |m| 

number (|nlm> = |322>) has the lowest Enlm
(1θφ)

 . So for each n, it not only makes the m = ± l the lowest Enl'm',nlm
(1θφ)

 among all 

possible m(s) (as I originally expected), at the same time, it also make the l = n-1 the lowest Enl'm',nlm
(1θφ)

 among all possible 

l(s) (I thought I need to do more math to get that)! 

Let us define the L as the maximum value of l (among all possible values of 0, 1, … n-1) for a quantum orbit n. Also 

let us define the L as the maximum value of |m| (among all possible values of -l, …, +l) for a quantum orbit l = L. Table 3e 

tells us that for each n shell (containing l sub-shells and m layers), only nLL orbits have the lowest Enl'm',nlm
(1θφ)

 . I name it as 

(spin caused) "nLL effect". Example of nLL are: nlm = 211, 322, 433, 544, … 

From John S. Townsend's book "A Modern Approach to QM" 2nd ed. 2012. pp356, eq-10.45 through eq-10.50, we 

know that not every rnlm satisfies rn = r1 * n^2 , only nLL orbits satisfy this relationship. (Note, nLL orbit with m = -L will be 

explained later). The 3D plot of |Ylm|^2 (from any QM text book) shows that the |YLL|^2 forms highest probability density at 

(or near) equator of the l sub-shell. 

 

3)   Although in Table 3e matrix, both |nlm> = |3,2,+2> and |3,2,-2>  have the same lowest energy of perturbation, we can 

differentiate these two state energy in the following way: In SunSpnFrm, both |n,L,m=+L> and |n,L,m=-L> states can be 

simplified as doing circular movement only in x-y plane. They have the same orbit v value, but in opposite direction. Let us 

define that |n,L,m=+L> state's vorbit has the same direction as that of SunSPnFrm's ωn-spin , so its orbit v relative to the non-

spin frame is |vn-orbit| + |rn ωn-spin| . Then, |n,L,m=-L> state will have its orbit v = |vn-orbit| - |rn ωn-spin| in the non-pin frame. The 

general circular orbit energy En = -(1/2) mvn
2
 means that the higher the orbit v, the lower the orbital E. So the state E between 

<3l'm'|H1θφ|3lm>

-0.93|300> + 

0.37|320>

0.37|300> + 

0.93|320>

-0.93|300> + 

0.37|320> 0.033 0

0.37|300> + 

0.93|320> 0 0.062

<3l'm'|H1θφ|

3lm>

-0.93|300> + 

0.37|320> |310> |311> |31-1>

0.37|300> + 

0.93|320> |321> |32-1> |322> |32-2>

-0.93|300> + 

0.37|320> 0.033 A 0 0 0

|310> 0 0.067 A 0 0

|311> 0 0 0.022 A 0

|31-1> 0 0 0 0.022 A

0.37|300> + 

0.93|320> 0.062 A

|321> 0.048 A

|32-1> 0.048 A

|322> 0.016 A

|32-2> 0.016 A
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|n,L,m=+L> and |n,L,m=-L> is differentiated in the spin frame. Therefore only nLL state (not both nLL and nL-L states) has 

the lowest state E among m = -L, …+L. 

The molecular basis (or the particle physics view) of this phenomenon has been explained in paper SunQM-3: 

During collapsing of the pre-Sun ball, only < 1% of objects (at the high end of Boltzmann velocity distribution) in each n 

shell will have high enough v, and close enough to nLL orbit, to survive from the collapse, and transform theirs RF heat 

(micro random) movement v into the (non-random) macro movement (as orbit v), and re-gain the sustaining force (now it is  

F = m a = m vn
2
/rn) to stay in the original n shell! 

 

4)   So now let us construct a simple pre-Sun QM model, with each n shell allow only one object to stay in. the best 

chance we will find these objects are in orbit nlm = 211, 322, 433, 544, etc. These nLL orbits locate at (or near) the 

equator of the spinning pre-Sun ball, and satisfy rn = r1 *n^2 relationship. This is almost same as the Bohr model, except now 

it is for a spinning pre-Sun QM {N,n} model! So from Schrodinger equation and solution, we can deduce a Bohr-like 

model for the Solar QM {N,n} structure. And this is the basis of my work in paper SunQM-1, where I only used rn = r1 

*n^2 relationship to explore the Solar system QM. 

Of cause, one of the most important differences between Schrodinger equation solution and Bohr model is that as n 

decrease, the uncertainty (or RF) of the orbit in θφ-2D dimension greatly increases. It has been discussed in my paper 

SunQM-2, and SunQM-2s1. 

One important result come out of this analysis (actually partly come out from paper SunQM-3s2) is that in the 

spinning pre-Sun, if the mass occupancy is <1% for orbit n, then all mass in space between {N,n} and {N,n+1} at different m 

layers falls into m = L layer at equator, meanwhile the same mass also falls into the most inner (l = L) sub-shell. This means 

that the orbit n collected all mass in n shell space (between rn to rn+1). In other word, the mass of Earth at {1,5} orbit is the 

result of collection all mass in the spherical shell space between {1,5} Earth and {1,6} Mars. So in my previous paper 

SunQM-1s1 Table 3b, when using the Solar system's mass radial distribution formula D = 4.37E+28 / r^(3.279) to calculate 

the total mass in each n shell, I need to use rn to rn+1 for the spherical shell volume calculation. 

 

5)   Kinetically nLL effect has two steps: first from a spherical shell |nlm> to a disk |nlL>, and then (or at the same time) from 

a disk |nlL> to a set of separated rings |nLL>. Although both process are driven by the same spin-perturbated QM force, the 

forming of disk |nlL> is faster than forming a set of separated rings |nLL> in kinetics. 

 

 

II-c6.  For state n =5, l =0,…4, m = -l…+l,  calculate the spin-perturbed Enl'm',nlm
(1θφ)

 = <nl'm'|  1θφ|nlm> in θφ-

dimension  

 

My purpose in this section is to show people that for n = 5, it still obey the rule that only the nLL state has the 

lowest (1
st
-order) spin-perturbed energy. For n = 5, there are total 25 states. The result of <Yl'm'|cos(θ)^2|Ylm> in θφ-

dimension is shown in a 2525 matrix in Table 4 below (using <R5l'|An|R5l> as unit). 

 

Table 4.   The result of spin-perturbed Enl'm',nlm
(1θφ)

 = <nl'm'|  1θφ|nlm>  for n =5 in a 2525 matrix. 
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Note: in Table 4, all empty elements have value =0. There are some non-diagonal elements ≠0 and they all have m = m' for 

their <Yl'm'|cos(θ)^2|Ylm>. 

Note: as shown in section II-c2, <A5,0> = <A5,1> = <A5,2> = <A5,3> = <A5,4> = A/25. 

 

Immediately we notice that there are many non-diagonal elements not equal to zero. <Rnl'|Rnl> is not orthogonal, so 

<Rnl'|An|Rnl> will not add any more zero element in the matrix of Table 4. It is not easy to solve the eigonvalue problem for 

this 2525 matrix. Even it is diagonalized in its eigen-vector space, it is still not very helpful for explaining the result. 

Here I use two ways to show that this 2525 matrix still obey the rule that EnLL
(1θφ)

 is the lowest. 

1)   If we use following eight states (in Table 4), |532>, |53-2>, |533>, |53-3>, |543>, |54-3>, |544>, |54-4> to form a 88 sub-

matrix (not shown), this 88 matrix is a natural diagonal matrix, means we can compare theirs Enlm
(1θφ)

 directly under the 

unperturbed states. This 88 sub-matrix still shows that within each l sub-shell, the higher the |m| value, the lower the 

perturbated E. Also between l sub-shells, the largest l number and the largest |m| number (|nlm> = |544>) has the lowest 

Enlm
(1θφ)

 . So at least for those high m and high l elements in the 2525 matrix, they follow the rule that nLL has the lowest 

Enlm
(1θφ)

 . 

 

2)   To prove nLL has the lowest Enlm
(1θφ)

 , I only need to compare the sequential order of each state's  Enl'm',nlm
(1θφ)

 , I don't 

need to know the exact value of  Enl'm',nlm
(1θφ)

 . In Table 3c, the non-diagonal elements (=0.010 A1) are only 1/3 ~ 1/6 of 

diagonal elements (0.01/0.037, or 0.01/0.058). As a physicist, I can see that this matrix can be treated as the diagonal only 

matrix plus some (limited) deviation contributed by the small non-diagonal elements. The deviation will not change the 

original sequential order which is set by the main contributor (the diagonal elements). This means that if I ignore the non-

diagonal elements, the diagonal only matrix will still give the right order sequence! This analysis is valid for matrix from 

Table 3a through Table 3e, and it should be also valid for matrix in Table 4. So comparing the diagonal elements in Table 4, 

we see clearly that nLL = |544> has the lowest Enlm
(1θφ)

 . 

 

There are some other properties that worthwhile to discuss here. 

<nl'm'|

H1θφ|nl

m> |500> |510> |511> |51-1> |520> |521> |52-1> |522> |52-2> |530> |531> |53-1> |532> |53-2> |533> |53-3> |540> |541> |54-1> |542> |54-2> |543> |54-3> |544> |54-4>

<500| 1/3 <A5,0> 0 0 0

0.298 

<50|An|52>

<510| 0 0.6 <A5,1> 0 0 0

0.262 

<51|An|53>

<511| 0 0 0.2 <A5,1> 0 0

0.214 

<51|An|53> 0

<51-1| 0 0 0 0.2 <A5,1> 0

0.214 

<51|An|53> 0

<520|

0.298 

<52|An|50> 0 11/21 <A5,2> 0 0 0 0

0.256 

<52|An|54>

<521| 0

3/7 

<A5,2> 0

0.233<52|

An|54>

<52-1| 0

3/7 

<A5,2> 0

0.233<52|A

n|54>

<522|

1/7 

<A5,2>

0.165<52|

An|54>

<52-2|

1/7 

<A5,2>

0.165<52|

An|54>

<530| 0

0.262 

<53|An|51> 0 23/45 <A5,3> 0 0 0 0 0 0

<531|

0.214 

<53|An|51> 0 7/15 <A5,3> 0

<53-1|

0.214 

<53|An|51> 0 7/15 <A5,3> 0

<532| 0

1/3 

<A5,3>

<53-2| 0

1/3 

<A5,3>

<533|

1/9 

<A5,3>

<53-3|

1/9 

<A5,3>

<540| 0 0

0.256 

<54|An|52> 39/77 <A5,4>

<541| 0

0.233<54|

An|52> 0

37/77 

<A5,4>

<54-1| 0

0.233<54|

An|52> 0

37/77 

<A5,4>

<542|

0.165<54|

An|52> 0

31/77 

<A5,4>

<54-2|

0.165<54|

An|52> 0

31/77 

<A5,4>

<543| 0

21/77 

<A5,4>

<54-3| 0

21/77 

<A5,4>

<544|

7/77 

<A5,4>

<54-4|

7/77 

<A5,4>
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1)   In section II-c3, we see E100
(1θφ)

 = A/3. Then carefully analyzing of Table 4 (also Table 3, and Table 2) shows that all l 

sub-shells (in a single n = 5 shell) have the same averaged Enlm
(1θφ)

 = A/3 (as shown in column 4 of Table 5a). So before spin, 

for a pre-Sun ball, not only all l sub-shells of each n shell have the same Enl
(1θφ)

 value, but also for all m layers in each l sub-

shell have the same Enl
(1θφ)

 value (or we say all m layers are degenerated). After spin, each l sub-shell still has the same Enl
(1θφ)

 

value (see Eq-26), but now m layers are differentiated, each m layer has its own Enlm
(1θφ)

 value (with the EnLL has the lowest 

value), although the total averaged Enlm
(1θφ)

 value still equals to the pre-spin Enl
(1θφ)

 value.  

This really helped me to understand the meaning of remove degenerate in QM: it divides the space (like θ) into 

many (virtual) sub-spaces (like m), and then re-average the physics value (like E) in each sub-space, while keep the total 

averaged value unchanged. Now let me re-phrase it. In classical physics, Vθ-spin (= (1/2) m *r^2 * ωspin^2 *cos(θ)^2) 

continuously decrease as θ increasing, minimum at θ=π/2. In QM, e.g., l =4, m = -4 ...+4, θ has been quantized into 9 quanta, 

then  1θ = (1/2) m * rn^2 *ωn-spin^2 *cos(θ)^2 is averaged in each quantum of θ by <lm|  1θ |lm> ! So that in QM's Elm, there 

is no θ, it is replaced by m. 

 

Table 5a.   Extraction of the characterized results from the diagonal elements in Table 4 and Table 5b. 

 
 

Wiki "Table of spherical harmonics" listed spherical harmonic function |Ylm> up to l =10, so n =11 is the highest n that I can 

calculate for Enl'm',nlm
(1θφ)

 . Table 5b shows the result of spin-perturbed diagonal elements Enlm
(1θφ)

 = <11lm|  1θφ|11lm>  for n 

=11, l =10, two lowest m (m =0, 1) and two highest m (m =9,10) values in a truncated matrix. 

 

Table 5b.   The result of spin-perturbed Enlm
(1θφ)

 = <11lm|  1θφ|11lm> for n =11 in a truncated matrix. 

Enlm
(1θφ) = 

<nlm|H1θφ|nlm>

avg Enlm
(1θφ) for 

each l sub-shell

ratio EnL(L-1)
(1θφ) / 

EnLL
(1θφ)

Unit A/n^2, in fraction

A/n^2, in real 

value A/n^2

n,l,m

1,0,0 1/3 0.333 1/3

2,0,0 1/3 0.333 1/3

2,1,0 3/5 0.600

2,1,1 1/5 0.200 1/3 3

2,1,-1 1/5 0.200

…… …… …… …… ……

5,0,0 1/3 0.333 1/3

5,1,0 3/5 0.600

5,1,1 1/5 0.200 1/3

5,1,-1 1/5 0.200

5,2,0 11/21 0.524

5,2,1 3/7 0.429

5,2,-1 3/7 0.429

5,2,2 1/7 0.143 1/3 3

5,2,-2 1/7 0.143

5,3,0 23/45 0.511

5,3,1 7/15 0.467

5,3,-1 7/15 0.467

5,3,2 1/3 0.333

5,3,-2 1/3 0.333

5,3,3 1/9 0.111 1/3 3

5,3,-3 1/9 0.111

5,4,0 39/77 0.506

5,4,1 37/77 0.481

5,4,-1 37/77 0.481

5,4,2 31/77 0.403

5,4,-2 31/77 0.403

5,4,3 3/11 0.273

5,4,-3 3/11 0.273

5,4,4 1/11 0.091 1/3 3

5,4,-4 1/11 0.091

…… …… …… …… ……

11,10,0 219/437 0.501

11,10,1 217/437 0.497

…… …… …… …… ……

11,10,9 3/23 0.130

11,10,10 1/23 0.043 3
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2)   Table 4 also shows one important character: the ratio of EnL(L-1)
(1θφ)

 / EnLL
(1θφ)

 always =3 (calculated shown in column 5 of 

Table 5a), no matter what n it is. Also the ratio of Enl(m-1)
(1θφ)

 / Enlm
(1θφ)

 is highest at equator, lowest at pole for all n and l (data 

not shown). This ratio reflects the disk-lyzation driving force of pre-Sun ball in θφ-dimension: the higher the ratio value, the 

stronger the disk-lyzation driving force. So in θφ-dimension, spin causes the strongest disk-lyzation driving force of pre-Sun 

ball at near equator for each m layer. Since this ratio is independent of n (the n-dependent <An,l> is cancelled out), so this 

strong disk-lyzation driving force near equator goes all the way to high n. This is the reason of why centrifugal force is the 

main driving force (in comparing to the Coriolis force, data not shown) for pre-Sun disk-lysation.  

 

 

II-c7.   Enl'm',nlm
(1θφ)

 for pre-Sun ball disk-lyzation: for a SunSpnFrm model with ωn-spin = ω1-spin /n^x, where x=2 to 4, 

other than x=3 

 

The analysis in sections from II-c2 through II-c6 are under a SunSpnFrm model ωn-spin = ω1-spin /n^x where x=3 . 

Although x=3 is the most possible model, but I am not absolutely sure. However I know that our SunSpnFrm must have x 

between 2 and 4. So it is necessary to analyze the SunSpnFrm model under x =2, and x =4, to see if they still follow the rule 

that EnLL
(1θφ)

 is the lowest. 

 

1)   For x=2, using ωn-spin = ω1-spin /n^2 and rn = r1 * n^2 to formula 

An =  (1/2) m *rn^2 *ωn-spin^2 = (1/2) m* (r1 *n^2)^2 * (ω1-spin /n^2)^2 = (1/2) m*r1^2 *ω1-spin^2 = A1 =A.  Eq-33 

 

So An = A and it is no longer a rn variable function. For this reason, all analysis for x=3 in sections from II-c2 through II-c6 

are exactly the same for x=2. Therefore, a SunSpnFrm with x =2 is also holding the rule that nLL has the lowest Enlm
(1θφ)

. 

 

2)   For x =4, using ωn-spin = ω1-spin /n^4 and rn = r1 * n^2 to formula 

An =  (1/2) m *rn^2 *ωn-spin^2 = (1/2) m* (r1 *n^2)^2 * (ω1-spin /n ^4)^2 =  [(1/2) m *r1^2 *ω1-spin^2] /n^4 = A1 /n^4 = A 

(r1/rn)^2 , so  

An = A (r1/rn)^2             Eq-34 

 

We still only interesting in Enlm
(1θφ)

 within a single n shell, so δn'n is enforced here. For non-diagonal elements, l' ≠ l, 

<Rnl'|An|Rnl> = A1 *r1^2 <Rnl'|1/rn^2|Rnl> , which is not equal to zero. For diagonal elements, l' = l,  

 

<An,l> = <Rnl|An|Rnl> = A1 *r1^2 <Rnl|1/rn^2|Rnl>        Eq-35 

 

The result is shown below: 

<R10|An|R10> = A r1^2 <R10|1/rn^2|R10> = A. 

<R20|An|R20> = A r1^2 <R20|1/rn^2|R20> = (1/4) A. 

<R21|An|R21> = A r1^2 <R21|1/rn^2|R21> = (1/12) A. 

<R30|An|R30> = A r1^2 <R30|1/rn^2|R30> = (2/27) A. 

<R31|An|R31> = A r1^2 <R31|1/rn^2|R31> = (2/81) A. 

<R32|An|R32> = A r1^2 <R32|1/rn^2|R32> = (2/135) A. 

<R42|An|R42> = A r1^2 <R42|1/rn^2|R42> = (1/160) A. 

<R43|An|R43> = A r1^2 <R43|1/rn^2|R43> = (1/224) A. 

<R54|An|R54> = A r1^2 <R54|1/rn^2|R54> = (2/1125) A. 

<11lm|H1θφ|

11lm> |11,10,0> |11,10,1> … |11,10,9> |11,10,10>

<11,10,0| 219/437 <A11,10>

<11,10,1| 217/437  <A11,10>

… …

<11,10,9| 3/23  <A11,10>

<11,10,10| 1/23  <A11,10>
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<R65|An|R65> = A r1^2 <R65|1/rn^2|R65> = (1/1188) A.        Eq-36 

 

The rest analysis is the same as that in sections from II-c2 through II-c6. Therefore, a SunSpnFrm with x=4 is also holding 

the rule that nLL has the lowest Enlm
(1θφ)

. 

Thus, we have proved that our SunSpnFrm, as long as its x between 2 and 4, it holes the rule that nLL has the lowest 

Enlm
(1θφ)

. 

 

 

III.   Fcntfgl-r 's contribution to the pre-Sun ball's flattening and disk-lyzation 

 

In this section, let us discuss the Fcntfgl-r 's contribution to the pre-Sun ball's flattening and disk-lyzation. 

 

 

III-a.   Deduce  1r from Fcntfgl-r 

 

From Eq-6 and Figure 2,  

 

Fcntfgl-r = Fcntfgl *cos(θ') = Fcntfgl *sin(θ) = -m *d * ωspin^2 *sin(θ) = -m *r *ωspin^2 *sin(θ) *sin(θ)    Eq-37 

 

It points away from the origin. This Fcntfgl-r caused Vcntfugl-r is: 

 

Vcntfugl-r = ∫ Fcntfgl-r dr = ∫ (-m *r *ωspin^2 *sin(θ)^2 ) dr = -m *sin(θ)^2  *  ∫ (rn *ωn-spin^2 ) dr  = -m *sin(θ)^2  *  ∫ (rn *ω1-spin^2 

* (r1/rn)^x) dr = -m *sin(θ)^2  *ω1-spin^2 *  ∫ (rn * (r1/rn)^x) dr        Eq-38 

 

From ωn-spin = ω1-spin / n^x, we can obtain  

 

ωn-spin^2 = ω1-spin^2 * (r1/rn)^x          Eq-39    

 

In this section, I only analyze the 1st order spin-perturbation under SunSpnFrm of x=3. For x=3, apparently  

 

Vcntfugl-r = ∫ Fcntfgl-r dr [0, ∞] = -m *sin(θ)^2  *ω1-spin^2 *  ∫ (rn * (r1/rn)^3) dr = +m *sin(θ)^2 *ω1-spin^2 * r1^3 /rn  

 

The sign change is due to ∫ (1/r^2) dr = -1/r + cnst.     

Now let us check the sign of Vcntfugl-r : just like that moving to the direction of Fg will get lower Vg , here moving to 

the direction of Fcntfgl-r (always point away from spin axis) will get higher Vcntfugl-r , so Vcntfugl-r has the wrong sign! The reason 

is that instead of integrate from r =0 to infinity, it should from infinity to 0, so it gains a negative sign for Vcntfugl-r . So the 

right formula is: 

 

Vcntfugl-r = ∫ Fcntfgl-r dr [∞, 0] = -m *sin(θ)^2 *ω1-spin^2 * r1^3 /rn       Eq-40 

 

Define:  

Bn = m *ω1-spin^2 * r1^3/rn = B *r1 /rn          Eq-41 

 

Define:  

B =B1 = m *ω1-spin^2 * r1^2          Eq-42 

 

 1r = Vcntfugl-r = -m *sin(θ)^2 *ω1-spin^2 * r1^3/ rn = -sin(θ)^2 * Bn       Eq-43 

So, 

Enl'm',nlm(1r) = <nl'm'|  1r|nlm> = - <nl'm'|sin(θ)^2 * Bn|nlm> = - <Rnl'|Bn|Rnl> <Yl'm'|sin(θ)^2|Ylm>    Eq-44 
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Note: for <Rnl'|Bn|Rnl>, the integration still from 0 to infinity as usual, not the opposite. Now we have  

 

<nl'|Bn|nl> = B *r1 *  <Rnl'|1/rn|Rnl>           Eq-45 

 

For diagonal elements, it has the similar result as Eq-26 (although A is replaced with B here): 

<R10|Bn|R10> = B r1 <R10|1/rn|R10> = B. 

<R20|Bn|R20> = B r1 <R20|1/rn|R20> = (1/4) B. 

<R21|Bn|R21> = B r1 <R21|1/rn|R21> = (1/4) B. 

<R30|Bn|R30> = B r1 <R30|1/rn|R30> = (1/9) B. 

<R31|Bn|R31> = B r1 <R31|1/rn|R31> = (1/9) B. 

<R32|Bn|R32> = B r1 <R32|1/rn|R32> = (1/9) B. 

<R42|Bn|R42> = B r1 <R42|1/rn|R42> = (1/16) B. 

<R43|Bn|R43> = B r1 <R43|1/rn|R43> = (1/16) B. 

<R54|Bn|R54> = B r1 <R54|1/rn|R54> = (1/25) B. 

<R65|Bn|R65> = B r1 <R65|1/rn|R65> = (1/36) B.        Eq-46 

 

So for the diagonal elements,  

Enlm,nlm
(1r)

 = <nlm|  1r|nlm> = - <Ylm|sin(θ)^2|Ylm> B/n^2       Eq-47 

 

For the non-diagonal elements,  

Enl'm',nlm
(1r)

 = <nl'm'| 1r|nlm> = - <Yl'm'|sin(θ)^2|Ylm> <Rnl'|1/rn|Rnl>       Eq-48 

 

 

III-b.   Build Enl'm',nlm
(1r)

 matrix for n =3, l =0, 1, 2 and m = -2,… +2 

 

Now let us study the pre-Sun ball's n =3 shell. A spin-perturbed Enl'm',nlm
(1r)

 = <nl'm'|  1r|nlm> for n =3 in a 99 matrix has 

been constructed in Table 6a. 

 

Table 6a.   The result of spin-perturbed Enl'm',nlm
(1r)

 = <nl'm'|  1r|nlm> for n =3 in a 99 matrix. 

 
Note: Calculated <R32|Bn|R30> = B r1 <R32|1/rn|R30> = 0.035 B. 

Note: <R3l|Bn|R3l> = B/9. 

 

It is interesting to see that due to <Yl'm'|Ylm> = δl'lδm'm , and due to sin(θ)^2 + cos(θ)^2 =1, for diagonal elements,  

<Ylm|sin(θ)^2|Ylm> = 1- <Ylm|cos(θ)^2|Ylm> , for non-diagonal elements, <Yl'm'|sin(θ)^2|Ylm> = - <Yl'm'|cos(θ)^2|Ylm>. There 

are two non-diagonal elements ≠0. Extract out them to form a sub-matrix in Table 6b: 

 

Table 6b.  Extract out non-zero elements from Table 6a to form a sub-matrix (in unit B). 

<nl'm'|H1r|nlm> |300> |310> |311> |31-1> |320> |321> |32-1> |322> |32-2>

<300| -2/3 B/9 0 0 0 0.298 <30|Bn|32>

<310| 0 -0.4 B/9 0 0

<311| 0 0 -0.8 B/9 0

<31-1| 0 0 0 -0.8 B/9

<320| 0.298 <32|Bn|30> -10/21 B/9 0 0 0 0

<321| -4/7 B/9

<32-1| -4/7 B/9

<322| -6/7 B/9

<32-2| -6/7 B/9
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Solve the eigenvalue problem for this sub-matrix, and put them into a new sub-matrix in Table 6c. 

 

Table 6c. Represent Table 6b in its eigenvector space. 

 
 

Then put these diagonalized elements back to Table 6a, we obtain Table 6d. 

 

Table 6d. Represent Table 6a in its eigenvector space (unit = B). 

 
 

Result & discussion (for Table 6d): 

1)   From Table 6d, we see that within each l sub-shell, the higher the |m|, the lower the Enlm
(1r)

 . Between l sub-shells, the 

higher the l, also the lower the Enlm
(1r)

 . So same as that of  1θφ ,  1r part of spin-perturbation also makes nLL the most high 

probability state due to its lowest Enlm
(1r)

 .  

 

2)   In the discussion of Table 5a, I mentioned that the ratio of Enl(m-1)
(1θφ)

 / Enlm
(1θφ)

 is highest at equator, lowest at pole for all 

n and l (data not shown). And the ratio of EnL(L-1)
(1θφ)

 / EnLL
(1θφ)

 always =3 no matter what n it is. So Fcntfgl-θφ is the major 

driving force for pre-Sun disk-lyzation (and flattening). In comparison, at nLL = 322, the ratio of EnL(L-1)
(1r)

 / EnLL
(1r)

 = -0.063 

/ (-0.095) = 0.66 close to 1. Even more, the spin-perturbed EnLL
(1r)

 is directly additive to gravity's En
(0r)

, where | En
(0r)

| >> 

|EnLL
(1r)

| . So Fcntfgl-r only makes small contribution to the pre-Sun ball's disk-lyzation. 

 

3)   Similarly, the n = 5 (2525) matrix can also be constructed for <nl'm'|H1r|nlm> as in Table 4, and be analyzed as in Table 

6. Due the length limitation of this paper, I am not going to present it here. 

 

 

IV.   It is mass occupancy that determines whether the out-shell of a pre-Sun ball goes to flatten or disk-lyzation 

 

The best example is the Jupiter, which has a p{N,n=2..5//5} QM structure (or p{N,n=1..4//5}o orbit, see my paper 

SunQM-1s3 and SunQM-3s2). n//5 means that base-pfactor-n = 4*5^. Jupiter's surface is set as p{0,1}. The self-spin of 

Jupiter produced a reference-spin-frame, and provided the disk-lyzation force for each shell of p{N,n} QM structure. In the 

inner shell of p{0,1}RF, which is p{-1,n=1..4}o, the high mass density makes all |nlm> states are fully occupied by mass. So 

the disk-lyzation force of Fcntfgl-θφ and Fcntfgl-r (plus un-discussed Fcori) is only able to flatten the Jupiter's surface, but not able 

to disk-lyze it. So Jupiter surface's flatten = 0.0649. However, for those shells outside of Jupiter surface p{0,1}, including 

<3l'm'|H1r|3lm> |300> |320>

<300| -0.074 0.010

<320| 0.010 -0.053

<3l'm'|H1r|3lm>

-0.93|300> + 

0.37|320>

-0.37|300> - 

0.93|320>

-0.93|300> + 

0.37|320> -0.078 0

-0.37|300> - 

0.93|320> 0 -0.049

<nl'm'|H1r|nl

m>

-0.93|300> + 

0.37|320> |310> |311> |31-1>

-0.37|300> - 

0.93|320> |321> |32-1> |322> |32-2>

-0.93|300> + 

0.37|320> -0.078

<310| -0.044

<311| -0.089

<31-1| -0.089

-0.37|300> - 

0.93|320> -0.049

<321| -0.063

<32-1| -0.063

<322| -0.095

<32-2| -0.095
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p{0,n=1..4}o, {1,n=1..4}o, and beyond, they have very low mass density (because >99% of mass had fallen into p{0,1} 

during collapse). So the disk-lyzation force of Fcntfgl-θφ (plus Fcntfgl-r and Fcori) forces the residue mass to fill in the lowest 

energy nLL states, and this form the individual rings outside the Jupiter. The further accretion of mass in each ring forms the 

moons of Jupiter. So there should be a critical mass density (which is temperature dependent) to determine whether it is 

flattening or disk-lyzing. 

To further illustrate the importance of the mass density in determine how much flatten of a planet/star, let us 

compare two gas planets: Jupiter and Saturn. Jupiter's flatten = 0.064 (spin period T = 9.925 hrs), Saturn's flatten =0.098 

(spin period T = 10.55 hrs). The question is why Saturn's flatten > Jupitor's? The larger flattening should be caused by either 

the larger r, or faster spin (= smaller spin-period). Jupiter's spin period is similar as (or a little bit faster than) that of Saturn's. 

If theirs mass densities were same, then due to it has a larger r, Jupiter should have larger flattening than that of Saturn. The 

only reason that Saturn's flatten > Jupitor's flatten is that Saturn has a lower mass density (or more accurately, lower mass 

occupancy) than that of Jupiter. 

My best explanation is:  

1)   Jupiter's surface has a n shell of p{-1,5} QM structure. Although from p{-1,4} to p{-1.5} is mainly made of n=4 orbit, 

but at the surface there is a thin layer of |nlm>=|54m> QM state. (By my scientific reasoning) it has high mass occupancy (let 

us say ~90%) at n =5, l =4 sub-shell. And let us further assume (by my scientific reasoning) that in this l =4 sub-shell, the 

mass occupancy = 100%, 95%, 90%, 85% and 80% for states|54±4>, |54±3>, |54±2>, |54±1>, and |540>. This is based on the 

nLL (=|544>) has the lowest state energy, or the highest mass occupancy, and the total averaged mass occupancy for all m 

layers is 90%, so this |54m> sub-shell has a relative low flatten because its m =0 state (which correlate to the pole region of 

the p{-1,5}RF ball) has close to full mass occupancy (=80%, close to 100%). 

 

2)   In comparison, Saturn's surface has p{-1,3} QM structure. Although from p{-1,2} to p{-1,3} is mainly made of n=2 orbit, 

but at the surface there is a thin layer of |nlm>=|32m> QM state. (Again by my scientific reasoning) it has much lower mass 

occupancy (let us say ~50%) at n =3, l =2 sub-shell. And let us further assume that in this l =2 sub-shell, the mass occupancy 

= 80%, 50%, 20%, for states|32±2>, |32±1>, |320>, so this |32m> sub-shell has a relative high flatten because its m =0 state 

(which correlate to the pole region of the p{-1,3}RF ball) has much less than the full mass occupancy (= 20%, << 100%). So 

mass occupancy (which equivalent to the mass density or the degenerate pressure of Pauli Exclusion Principle) does play a 

important role here. 

 

For the Sun, the situation is complicated by the hydrogen fusion. We know that Sun surface has {0,2} QM structure, 

though the main orbit is n=1, but top thin layer is at |nlm> = |21m> QM state. (By my scientific reasoning) it has low (let us 

say ~50%) mass occupancy at n =2, l =1 sub-shell. Let us further assume (by my scientific reasoning) that in this l =1 sub-

shell, the mass occupancy = 80%, and 20% for states|21±1>, and |210>. So without H-fusion, the current Sun surface {0,2} 

would have a very flattened shape, due to its pole region state |210> has very low (20%) mass occupancy. However, the heat 

of H-fusion excited the mass from lowest energy states |2,1,±1>  to the high energy state |2,1,0>, make all three states almost 

evenly populated with mass (which equivalents to re-degenerate the three states of |21m>). Meanwhile the high temperature 

generated extremely high thermal pressure to prevent the under-numbered mass in {0,2} shell to collapse. So now the Sun's 

surface {0,2} is almost perfectly spherical with flatten = 9E-6. A second way of explanation: the % mass occupancy is 

temperature (or thermal pressure) dependent. At the cold-G, the mass in Sun's {0,1}o orbit is only ~ 50% mass occupancy, so 

it should be in oval shape. But at high temperature, the high thermal pressure decreases the mass capacity, now the mass 

occupancy becomes ~100%, so it becomes spherical shape. 

However, for those shells outside of Sun surface {0,2}, including {0,3…6}, {1,2..6}, {2,2..6} and beyond, they have 

very low mass density (because >99% of mass fell into {0,2} during collapse). So the disk-lyzation force of Fcntfgl-θφ (and 

Fcntfgl-r and Fcori) forces the residue mass to fill in the lowest energy nLL states, and this form the individual rings outside the 

Sun. The further accretion of mass in each ring forms the planet like Earth. 

In summary (based on wiki "Degenerate matter" and added my {N,n} QM theory), in the Solar {N,n} QM, the 

{N,1}RF pre-Sun ball is stabilized by the high % of mass occupancy and the high thermal pressure. In atom, the n shell is 

stabilized by the -/- electron repelling force in the same shell which against the +/- attraction force to the nuclei. In white 

dwarf, the {N,n} shells is stabilized by the high % occupancy of electron and degeneracy pressure of electron. In neutron star, 
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the {N,n} shells is stabilized by the high % occupancy of neutron and degeneracy pressure of neutron. So the degenerate 

pressure and the thermal pressure are naturally unified for the function of preventing gravity collapse for a star,  a pre-Sun 

ball, a white dwarf, a neutron star, and even an atom, and both pressures are mass density dependent (also see the discussion 

in paper SunQM-3). 

 

 

V.   Using the 1st order spin-perturbation result to explain celestial ball's flattening, disk-lyzation and ring structure 

 

From Eq-24 and Eq-42, we know B (= m *ω1-spin^2 * r1^2) = 2A. If we can combine Table 3e & 6d, then we can 

obtain the total spin-perturbed orbital energy change <3l'm'|H1rθφ|3lm> for n =3 shell. After several tries, I realized that we 

cannot simply add Table 3e's result (in θφ-dimension) to Table 6d's result (in r-dimension) due to that they belong to two 

different dimensions. I guess that we can use the orthogonal vector adding method (z^2 = x^2 + y^2) to add them. I did not 

do it because of the unnecessary complication. Finally, even I guess it may not be right, I still use the simple addition of 

Table 3e to 6d to obtain Table 7, but name it as the combined spin-perturbed orbital energy (of Enlm
(1θφ)

 and Enlm
(1r)

, instead of 

total Enlm
(1rθφ)

 ). The only purpose to construct Table 7 is to show that for almost all states (including |322>), the combined 

orbit-E are below zero, so spin stabilizes these orbital objects.  

 

Table 7.   The combined (not the total) spin-perturbed orbital energy (Enlm
(1)

 , by simply add Enlm
(1θφ)

 in Table 3e to Enlm
(1r)

 in 

Table 6d. Unit = A (= (1/2)m *ω1-spin^2 * r1^2) . 

 
 

Result and discussion (of Table 7): 

1)   As expected, the nLL effect is still valid for the combined Enlm
(1)

 (for n =3 shell as well as for all other n shells). For a 

~100% mass occupied celestial body, this nLL effect causes the flatten of its spherical shape. For detailed study, please see 

paper SunQM-3s4. For a < 1% mass occupied orbital space, this nLL effect causes the disk-lyzation of a collapsed N super-

shell. For detailed study, please see paper SunQM-3s2. For a < 1% mass occupied orbital space, this nLL effect also causes 

the ring structure (e.g., Saturn's ring). For detailed study, please see paper SunQM-3s4. 

 

2)   Combining Table 3e & 6d, the QM calculation reveals that Spin-frame does decrease the nLL orbit-E (in absolute value) 

than that of the non-spin frame (besides nLL has the lowest orbit-E among all nlm)! The combined Enlm
(1)

 matrix has negative 

diagonal elements. It means the spin perturbation stabilizes the orbital (planetary) objects. The unit A = (1/2)m *ω1-spin^2 * 

r1^2 demonstrates that the higher the spin velocity (of the SunSpnFrm), the more stable effect the QM will provide. This 

provide the explanation (in paper SunQM-1s2 section VI) that it is unlikely for a non-spin star to generate (through quantum 

collapse of N super-shells) and maintain a planetary system. For a slow-spinning star, it can only generate and maintain a 

small planetary system (meaning planets are within {0,n=1..5}o super-shell). Only for fast-spinning (and large mass) star, it 

is possible to generate and maintain a large planetary system (like our Solar system with planets reach to {2,n=1..5}o, or even 

higher). Of cause, those captured planets are not included in this discussion. The same conclusion should also be valid for 

galaxies. 

<3l'm'|H1θφ|3lm>

-0.93|300> + 

0.37|320> |310> |311> |31-1>

0.37|300> + 

0.93|320> |321> |32-1> |322> |32-2>

-0.93|300> + 

0.37|320> -0.123 0 0 0

|310> 0 -0.021 0 0

|311> 0 0 -0.156 0

|31-1> 0 0 0 -0.156

0.37|300> + 

0.93|320> 0.16 ?

|321> -0.078

|32-1> -0.078

|322> -0.174

|32-2> -0.174
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VI.   Using the 1st order spin-perturbation result to explain the nL0 effect and the bipolar outflow 

 

From Table 3e we can see that m =0 states of |300> and |320> are hybridized. It means that objects in |300> state is 

also automatically (and partially) in |320> state. The probability density of both |Y(l=1,m=0)|^2 and |Y(l=2,m=0)|^2 shows a 

bipolar extrude along z-axis (shown in Figure 3). This shape looks so similar to the shape of bipolar outflow that I believe it 

must have a cause-effect relationship. 

 

 
 

Figure 3. Probabilty density of |Y(l=1,m=0)|^2 (left), and |Y(l=2,m=0)|^2 (right), created by using online free software 

MathStudio (http://mathstud.io). 

 

Now I can explain that how the bipolar outflow is formed in {N,n} QM model for n=3 shell: From a particle QM 

view, before pre-Sun {N,n=2..6} super-shell collapse, all objects in this super-shall are in RF movement. We know that those 

objects in |nlm> state with m = +l have theirs Lz maximized and Lxy minimized. In contrast, those objects in |nlm> state with 

m =0 have theirs Lz minimized and Lxy maximized. For a spinning pre-Sun ball, during collapsing of {N,n=2..6} super-shell, 

only < 1% of objects (at the high end of Boltzmann velocity distribution) in each n shell will have high enough v (or 

equivalent to either high Lz, or high Lxy), to survive from the collapse. Those high Lz objects (they must have Lxy ≈0) 

transform theirs RF heat (micro random) movement v into (non-random) macro movement orbit v in x-y plane, and re-gain 

the sustaining force (now it is  F = ma = mvn
2
/rn) to stay in the shell! This is equivalent to the spin-perturbation's nLL effect 

that fills some objects to the lowest orbital energy state at |nLL>. On the other hand, those high Lxy objects (they must have 

Lz ≈0) are forced to fill in to the highest orbital energy state (at m =0 of each l sub-shell, see Table 3e and 6d), So all 

maximum Lxy objects in l =2 sub-shell are forced to |320> state, all max Lxy objects in l =1 sub-shell are forced to |310> state, 

and all max Lxy objects in l =0 sub-shell forced to |300> state. Because |300> is hybridized with |320>, so all max Lxy in 

|300> state are eventually go (or tunneling) to the even higher orbital energy|320> state. Therefore immediately after 

collapse, these objects still stay in orbit of |320> and |310>, and have the probability density shape of |Y20|^2 plus |Y10|^2 

(shown in Figure 3). In this way, these leftover objects in |310> and |320> states form the (apparently) bipolar outflow of n = 

3 shell (so bipolar leftover is more accurate than bipolar outflow in this situation). Because these m = 0 states are the highest 

energy states, so objects in these states are only transient stable, they will be pull back to {N,1} before too long. So the 

transient bipolar leftover looks like a burst of bipolar outflow! This is my explanation on how the (transient) bipolar outflow 

is formed (after collapse) using the {N,n} QM model. Because this is a companion effect of nLL effect, and it is m = 0, so I 

name it as "nL0 effect". 

Of cause, the real situation is much more complicated. For example, in n = 5 shell, besides m = 0, most of m =1, m 

=2 states are also hybridized. However, the final result is the same: during collapsing, those maximum Lxy objects will move 

to the m =0 state (by tunneling through the hybridized states) and stay there transiently to become the (apparently a burst of) 

bipolar outflow. 

Furthermore, my previous calculated spin-perturbation energy <nl'm'|  1|nlm> was forced to be within each n shell. 

In the real situation, En'l'm',nlm
(1)

 may have some small contribution come from the hybridization of different n states. In this 

case, during collapse, the maximum Lxy (m =0, or m =small) objects at low n state may tunneling to high n states through the 

state-hybridization (e.g., |210> tunneling to |320>, |430> or even higher n), and this forms the true bipolar outflow. I believe 

that this is how a black hole produces bipolar outflow when consuming a star (see paper SunQM-3s5). The Astrophysical jet 

can also be explained in this way once combined with the high-frequency multiplier n' theory (see paper SunQM-3s5). 
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VII.   Construct a complete Solar system in r-dimension based purely on Schrodinger equation solution and {N,n} QM 

structure 

 

Now let us build a complete (current) Solar system structure's probability density distribution in r-dimension based 

purely on solutions of Schrodinger equation we learned so far. 

 

 

VII-a.   Using solution of Schrodinger equation to construct a radial probability density distribution for super-shell 

space of {-1,n=1…6} 

 

The super-shell space {-1,n=2..6} is inside the Sun core {0,1}, so it is belong to the interior {N,n}, and they have 

orbit of {-1,n=1..5}o. For orbital shell space n =1 of {-1,1}o, majority of mass is in state of |nlm>=|100>. For simplicity, let 

us ignore the minority of mass that in states of n ≠ 1 (due to high n(s) have some residue |Ψ|
2
 in n = 1's orbit space). The 

probability density distribution of mass is presented by the solution of Schrodinger equation r^2 *|R(nl)|^2 *|Y(lm)|^2 *sin(θ) 

= |R(1,0)|^2 *|Y(0,0)|^2 . Its radial mass density distribution is expected to be similar as the single object's radial probability 

density distribution r^2 *|R(1,0)|^2 . 

For shell space n = 2 of {-1,2}o, majority of mass is in state of |nlm>=|n=2,l=0,1,m>. The small amount of mass that 

from states of n ≠ 2 is also ignored. The probability density distribution of mass that presented by the solution of Schrodinger 

equation r^2 *|R(nl)|^2 *|Y(lm)|^2 *sin(θ) is now composed by two of l sub-shells, l =0, and l =1. They are: |R(2,0)|^2 

*|Y(0,0)|^2 and |R(2,1)|^2 *|Y(1,m)|^2 . Similarly, the radial mass density distribution is  r^2 *|R(2,0)|^2 and r^2 *|R(2,1)|^2 . 

According to Figure 2a in paper SunQM-3, l =0 sub-shell is a little bit outside of l =1 sub-shell. According to section II & III, 

a SunSpnFrm causes l =1 sub-shell to have a lower state energy than that of l =0 sub-shell. 

The same analysis for n = 2 can be extended to n =3, 4, 5, and 6. So now we have the QM state related mass density 

distribution along r for {-1,n=1..5}o orbits from the most inner to the outer as (Note: r^2 *sin(θ) is omitted): 

|R(1,0)|^2 *|Y(0,0)|^2,  

|R(2,1)|^2 *|Y(1,m)|^2 , |R(2,0)|^2 *|Y(0,0)|^2 ,  

|R(3,2)|^2 *|Y(2,m)|^2 , |R(3,1)|^2 *|Y(1,m)|^2 , |R(3,0)|^2 *|Y(0,0)|^2 , 

 |R(4,3)|^2 *|Y(3,m)|^2 , |R(4,2)|^2 *|Y(2,m)|^2 , |R(4,1)|^2 *|Y(1,m)|^2 , |R(4,0)|^2 *|Y(0,0)|^2 ,  

|R(5,4)|^2 *|Y(4,m)|^2 , |R(5,3)|^2 *|Y(3,m)|^2 , |R(5,2)|^2 *|Y(2,m)|^2 , |R(5,1)|^2 *|Y(1,m)|^2 , |R(5,0)|^2 *|Y(0,0)|^2 , 

 

Because these states are inside of Sun core {0,1}, so they have 100% mass occupancy for all orbits, so the lower state energy 

of nLL makes no practical difference for all l sub-shells, there are plenty of mass to fill all sub-shells. The lower state energy 

of nLL may flatten {-1,n=1..5}o, but the effect is overcome by the heat generated from hydrogen fusion. As the result, the 

super-shell of {-1,n=2..6} is almost perfectly spherical. 

In this way, I have used the solution of Schrodinger equation to fill the mass into Sun's super-shell orbit space {-

1,n=1..5}o. The radial part is shown in Figure 4 as the curve of {-1,n=1..5}o Sun core. 

 

 

VII-b.   Construct a complete Sun ball by repeating the mass density distribution for super-shell of N= -1, -2, -3, … 

 

Simply repeat section VII-a for the super-shell space of {-2,n=2..6}, and {-3,n=2..6}, …, down to {-∞,n}, or r / r1 = 

0. So we have a complete Sun core {0,1} filled with mass which is based purely on the solution of Schrodinger equation. 

Figure 4 shows how to use Schrodinger equation's solution to construct the probability density for a Sun ball for two super-

shell orbits from {N=-1,n=1..5}o to {N=-2,n=1..5}o . It is done simply by taking the N = -1's Σn=1..5 curve, scale down r/r1 

to 1/36 (because it is moved from N = -1 to N = -2 super-shell). You can add the probability density distribution of super-

shell N = -3, or N = -4, to Figure 4, simply by taking the Σn=1..5 curve, scale down r/r1 to 1/36^2, or 1/36^3, then add to the 

Figure 4. 
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Figure 4.   Using Schrodinger equation solution to construct the radial probability density distribution for Solar system for 

super-shells from {N=-2,n=1..5}o to {N=2,n=1..5}o. The N =0 super-shell cut-off at r/r1 = 4. 

Note-1: The intensities of r^2*|R(n,l)|^2 in Figure 4 are not on scale between each N super-shell. 

Note-2: in plot, r1=0.174 with unit = E+9 meters. 

Note-3: in the radial probability vs, r plot, only r^2 *|R(nl)|^2 part is presented, the |Y(lm)|^2 is omitted.  

Note-4: the flattening effect is ignored in Figure 4 plot. If consider the flattening effect, then Figure 4 only (closely) presents 

the radial probability at θ = π/2. 

 

 

VII-c.   For super-shell space of N ≥ 1, or {1,n=2…6} and beyond 

 

The super-shell space of {1,n=2..6} is also composed by many n shells and l sub-shells, and they can be listed (from 

inner to outer) in the same way as that in section VII-a. However, this super-shell is at outside of Sun, so it is belong to the 

exterior {N,n}. It has the mass occupancy < 1% for all possible orbital space, so only the lowest energy orbit nLL of each n 

shell is occupied by mass. Therefore, mass forms rings at nLL= 211, 322, 433, 544, and 655 in super-shell of N =1, which is 

equivalent to orbits in {N,n} system as {1,2}, {1,3}, {1,4}, {1,5}, and {1,6}. Within hundreds of million years, the mass in 

these rings accreted into planets as we see today: Mercury at {1,3}o, Venus at {1,4}o, Earth at {1,5}o, and Mars at {1,6}o. I 

believe that the mass at orbit {1,2}o was evaporated after Sun got matured and expand its rock-evap-line to {1,2}. 

In this way, we have used the solution of Schrodinger equation to successfully build the planets in Sun's super-shell 

space {1,n=2..6}. By repeating this process, we can build the planets/belts for super-shell spaces {2,n=2..6}, {3,n=2..6}, and 

{4,n=2..6}. At shell space {4,n=4..6}, the strong interstellar wind overcome the weak disk-lyzation force by Sun's QM, so 

that the outer Oort cloud remains as more spherical rather than disk. Figure 4 shows the probability density up to {2,6}o 

orbit. 

 

 

VII-d.   Shell space of {0,2} and the shell space of {0,n=3…6} 

 

The shell spaces of {0,n=3..6} can be treated similarly as in section VII-c. Although the nLL still has the lowest 

orbit E, but due to the Sun's heat, the difference between EnLL and other Enlm getting smaller as orbit more close to the Sun. 

As the result, more mass will stay at state with m ≠ L, so that the disk becomes more donut shape, or even more spherical, 

when n become really small. Again, I believe that the mass in shell spaces {0,3..6} was evaporated after Sun got matured and 

expand its rock-evap-line to {1,2}. Although the Sun excites some mass from {0,2} to the higher excitation states {0,n=3..6} 

time upon time, most of this mass will transition back to the lower excitation state {0,2} within hours. As the result, the Sun's 

corona in space {0,n=3..6} has a spherical shape at {0,3}, and tend to be more flattened as n increases. The estimated Δθ' 

range of corona at each n shell is shown in Figure 2 of paper SunQM-1. 
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Sun's shell space of {0,2} is in a very unique situation: it is neither a complete interior {N,n} structure (which 

should be ~100% mass occupied), nor an exterior {N,n} structure (which should be <1% mass occupied). From wiki "Solar 

core", the Sun core (inside 0.20 of the solar radius) contains 34% of the Sun's mass, but only 0.8% of the Sun's volume. I 

guess that mass occupancy in shell space between {0,1} and {0,2} is no more than 50% of the total available (orbital) space. 

So as I have discussed before, hydrogen fusion's heat re-shapes a flattened Sun into to perfect sphere, and sustain this under-

mass occupancy {0,2} QM structure with abnormal high thermal pressure. 

In this way, we have constructed a complete Solar system structure based purely on solutions of Schrodinger 

equation (the wave function), and the Solar {N,n} QM structure, under a spinning SunSpnFrm. For a better understanding of 

the concept and process, please check two more examples in paper Solar-QM-p3s3, where I constructed Jupiter’s (and 

Earth’s) {N,n} QM ball by using the r-dimension probability, the {N,n} QM structure, and the mass occupancy, and then I 

used QM to explained the circulation pattern of their atmosphere. 

 

 

Conclusion 

 

1)   A central G-force caused spherical spin frame theory is established, its |ωn| value contour line is spherical shaped, and 

quantum decreases as rn increases. Our pre-Sun ball's reference-spin-frame (SunSpnFrm) model is expected to be ωn-spin = ω1-

spin / n^x, with x ≈ 3. 

 

2)   The 1st order spin-perturbation problem has been solved for the spinning pre-Sun ball's {N,n} QM structure. The QM 

calculation shows that the spinning of Sun removes the degeneration of Enlm , and causes nLL state (near equator) to be the 

lowest spin-perturbed orbit energy state among all nlm states. Therefore the nLL effect shows that the spin perturbation 

causes nLL orbit to have the highest probility density. Furthermore, the nLL effect is the driving force for the Sun's (and all 

other celestial bodies') flattening, disk-lyzation, ring formation. The nL0 effect (which is the companion effect of nLL effect) 

is the driving force for the bipolar outflow and astronomical jet. 

 

3)   It is mass occupancy that determines whether the outer shells of a pre-Sun ball goes to flattening or disk-lyzation. 

 

4)   A complete Solar system in r-dimension has been constructed solely based on {N,n} QM structure and solution of 

Schrodinger equation. 
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