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Abstract

A brief tour of the developments of the Extended Relativity Theory in Clifford
Spaces (C-space) is presented. These include : (i) Novel physical consequences
like generalized dispersion relations, energy-dependent speed of light propagation,
extended Lorentz transformations, relative locality, generalized Weyl-Heisenberg al-
gebra and uncertainty relations, tensionless branes, superluminality, generalized ve-
locities. (ii) Generalized areal, volume, - - - metrics and gravitational field equations
in C-space. (iii) A unified description of particles, strings and branes. (iv) Clifford
gravity based cosmology and dark energy. (v) Moyal deformations of Clifford gauge
theories of gravity. (vi) N-ary algebras. We conclude with a brief discussion on
symplectic Clifford algebras and generalized geometries.

Keywords : Clifford algebras; Extended Relativity Theory in Clifford Spaces; String
theory; M-theory; Generalized geometries.

1 The Extended Relativity Theory in Clifford
Spaces

1.1 Introduction

In the past years, the Extended Relativity Theory in C-spaces (Clifford spaces) and
Clifford-Phase spaces were developed in [1], [2]. The Extended Relativity theory in
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Clifford-spaces (C-spaces) is a natural extension of the ordinary Relativity theory whose
generalized coordinates are Clifford polyvector-valued quantities which incorporate the
lines, areas, volumes, and hyper-volumes degrees of freedom associated with the collec-
tive dynamics of particles, strings, membranes, p-branes (closed p-branes) moving in a
D-dimensional target spacetime background. C-space Relativity permits to study the
dynamics of all (closed) p-branes, for different values of p, on a unified footing.

The theory has 2 fundamental parameters : the speed of a light ¢ and a length scale
which can be set equal to the Planck length. The role of “photons” in C-space is played
by tensionless branes. The polyvector valued coordinates

x, xh, xfrr = gl gk — o ghemns (1.1)

are now linked to the basis generators 1, vectors 7#, bi-vectors generators v, A 7, tri-
vectors generators 7y, AYu, AV, .. of the Clifford algebra, including the Clifford algebra
unit element (associated to a scalar coordinate).

These polyvector valued coordinates can be interpreted as the quenched-degrees of
freedom of an ensemble of p-loops associated with the dynamics of closed p-branes, for
p=20,1,2,...., D —1, embedded in a target D-dimensional spacetime background. C-space
is parametrized not only by 1-vector coordinates z* but also by the 2-vector coordinates
xM 3-vector coordinates x#“, ..., called also holographic coordinates, since they describe
the holographic projections of 1-loops, 2-loops, 3-loops,..., onto the coordinate planes .
By p-loop we mean a closed p-brane; in particular, a 1-loop is closed string.

For example, when X is the Clifford-valued coordinate corresponding to the ClI(1,3)
algebra in four-dimensions it can be decomposed as

X =sl+a"vy+ 2" A+ 2" %Ay + 27 A Ay, Ay (1.2)

where we have omitted combinatorial numerical factors for convenience in the expansion
of eq-(1.1). If one imposes the lexicographic ordering of indices p1 < po < pg < ---
then it is not necessary to include combinatorial numerical factors in the (1.2). To avoid
introducing powers of a length parameter L (like the Planck scale L,), in order to match
physical units in the expansion of the polyvector X in eq-(1), we can set it to unity to
simplify matters.

The component s is the Clifford scalar component of the polyvector-valued coordinate
and d¥ is the infinitesimal C-space proper “time” interval

(d%)? = (ds)* + dx, dz" + dx,, dz"™ + ... (1.3)

that is ‘nvariant under CI(1,3) transformations and which are the Clifford-algebraic
extensions of the SO(1, 3) Lorentz transformations [1]. One should emphasize that d3 is
not equal to the proper time Lorentz-invariant interval dr in ordinary spacetime (dr)? =
gudaxtdr” = dx,dz". Generalized Lorentz transformations (poly-rotations) in flat C-
spaces were discussed in [1].

Let us provide several examples of generalized Lorentz transformations in C-space. For
example, given gy the transformation involving the rotor Ry = cosh(/2) —~yo2 sinh(5/2)
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corresponds to an ordinary Lorentz boost transformation along the X? direction and
involving the ordinary temporal variable X°. The ordinary Lorentz boots generators are
given by the bivectors 7,,, and which in turn are also expressed as the commutators
(Y., 7v].  The physical significance of the latter commutators is that they represent a
“rotation” along the X* — X" directions.

However, since one may also write the bivector 7pe as the commutator [yi2,v01] =
—2%02, the transformation involving the above rotor R; also corresponds to an areal boost
along the X'? direction but involving the areal temporal coordinate X°'. Namely, it is a
"rotation” along the X2 — X directions. Whereas the ordinary boost is a “rotation”
along the X? — X directions.

After writing

(XP) Tp = (cosh(B/2) — o2 sinh(8/2) ) (X4 Ta) (cosh(B/2) + o2 sinh(53/2) )
(1.4)
straightforward algebra yields the transformation of the following bivector coordinates
(X12)Y = X' cosh + X" sinhfB (1.5a)
(XY = X% coshp + X' sinhfB (1.50)
One has a mixing of the spatial and temporal areal bivector coordinates in the new frame
of reference.

Furthermore, since [yo13, 7123] ~ 702, the transformation involving the above rotor R
also corresponds to a 3-volume boost along the X'?3 direction but involving the 3-volume
temporal coordinate X°'3. Namely, it is a "rotation” along the X'?3 — X3 directions
giving

(XY = X' coshp + X°'* sinhf (1.6a)
(XY = X" coshf + X' sinhf (1.6b)

One has a mixing of the spatial and temporal trivector coordinates in the new frame of
reference. The ordinary Lorentz boosts of the vector coordinates give

(X?) = X% coshf + X° sinhf (1.7a)

(XYY = X°coshf + X? sinhf (1.7b)

while the remaining coordinates remain invariant and such that the quadratic form
XAX 4 = (X1 (X4) remains invariant. Straightforward algebra leads to

- (X(/))2 + <X1)2 - L7 (X(/n)Q + L2 (X12)2 - L™ (X(/)13)2 + L (X123>2 =

— (X0)® + (X1)* = L7? (Xo)® 4+ L7° (X12)? — L7* (Xous)? + L% (Xu93)* (1.8)

The quadratic form is defined as



< XI'X > = Xu XA = 8%+ X, XF+ Xy XF¥2 4 X XFHE2HD(1.9)

where X' denotes the reversal operation obtained by reversing the order of the gamma
generators in the wedge products. The symbol < T'y 'y > denotes taking the scalar
part in the Clifford geometric product of I'4 I'g. It is the analog of the trace of a product
of matrices. Such scalar part can be obtained from the (anti) commutator relations of the
Clifford algebra generators as displayed in the Appendix. For example

< Y 7> = 5Za < Vpaps > = - 5M17¢12V2

< Vunpous V> = = O < Yanspsia VT > = O s e
(1.10)
One should note the presence of £ signs in the right hand side of eqs-(1.10). They are
connected to the even/odd behavior of the reversal operation (v¢)! = £v¢.
The quadratic form is invariant under the isometry transformations

X =RXL, RR=1, L'L=1 = < X'X > = < XfX > (1.11)
due to the cyclic property of the scalar part projection

<X'X > = <LXRIRXLl, >~ = < LXIXLl > =
<LLX'X > = < XI'X > (1.12)

where R, L are Clifford-valued rotors acting on the right and left respectively.

The second example corresponds to the case when there is a mixing of different grades.
It involves the commutator [yo123,73] ~ Y012 and such that the transformation involving
the rotor Ry = cosh(B'/2) — vo12 sinh(3'/2) corresponds to a boost along the spatial X
direction but involving now the temporal 4-volume polyvector-valued coordinate X123,
The reason being that vy;2 can be rewritten as the commutator of 74123 and =3, so we have
now “rotations” along the X3 — X°23 directions. Straightforward algebra yields now the
transformation of the following (poly) vector coordinates

(X = X3 cosh(B') — L7 X" sinh(p') (1.13a)
(XUBY = X912 cosn(8) — L* X*sinh(B) (1.13b)

In this case one has a mixing of polyvector-valued coordinates of di f ferent grade. In the
new frame of reference the spatial X? coordinate and the temporal 4-volume coordinate
X% are mixed.

Furthermore, since [yo3,7123] ~ 7012, the transformation involving the rotor Ry =
cosh(B'/2) — ~o12 sinh('/2) also corresponds to a boost along the spatial trivector X'
direction but involving now the temporal bivector coordinate X. These transformations
are



(XY = X' cosh(B) — L X® sinh(p') (1.14a)
(XY = X% cosh(B') — L' X' sinh(3) (1.14b)

In the above equations we have used the relations (see Appendix)

=1 Y= %=1 =00
{M12:7%2} =0, [Yo123:7012] = —273, {70123, Y012} = 0

Yo2 Y12 Yo2 = —712, [70127 ’73] = 2 o123, {’70127’73} =0,.. (1~15)

cosh?(€) — sinh*(€) = 1, cosh®(€) + sinh?*(&) = cosh(2€), sinh(2¢) = 2 sinh(&) cosh(€)
(1.16)
Given in general a transformation of the form

X'BTp = (cosh(B/2) — T sinh(B/2)) XA T4 (cosh(B/2) + T sinh(5/2))
(1.17)
one learns that

X'B(B,Te) = XP cosh?(B/2) — X sinh*(8/2) < TeT4Te P > +

X4 cosh(B/2) sinh(B/2) < [[a, T¢] T8 > (1.18)

The generator I'c: of generalized Lorentz boosts is of the form (7o, us...4,_,) With the
provision that under the reversal operation it changes sign

(70/141/»12“417171)1- = = VOpipo.fin—1 (1.19a)

so that RR' = 1. This condition will restrict the values of n to be n = 2,3,6,...and
obeying

(Yourpzoiin_s)” = 1 (1.190)
Generalized spatial rotations don’t involve the temporal directions and are generated by
Viur pigpi. ODEYING
Virpzepin)t = = Vprpizosim (1.20)
and
(Vspzoii)” = — 1 (1.21)

For instance, a generalized rotation in D > 4 and generated by 72 ¢ involving the
parameter o2 yields a rotor whose Taylor series expansion becomes



R = e 720 = cos(a'® %) + g6 sin(a'*0) (1.22)
due to the condition (y12..6)> = — 1 which is similar to having the imaginary unit
i = —1 and the expression ¢ = cos(#) +i sin(f). For an earlier discussion of generalized

rotations within C-space see [33]. Whereas a generalized Lorentz boost is like having a
“rotation” with an imaginary “angle” leading to the hyperbolic functions

ﬂ012m5

R = ¢ 1025 = cosh(BY%0) 4+ Ao1a...5 sinh(BP) (1.23)

due to the condition (yp1o..5)° = 1.
Eq-(1.18) only simplifies considerably in the very special case when the values of the
polyvector valued indices A, B, C' are such that

< ToTalel? > = —6% < D4, TP > = £2 (1.24)

and it leads to the type of transformations displayed above. In general, for a given set
of values of B,C, one must sum over all the A indices in eq-(1.18). For this reason the
most general expression for X'® given by eq-(1.18) is more complicated than that given
by the above equations. Another special case occurs when

< TeTaTe? > =68 < [Ty, TP > =0 (1.25)

leading to X’ = XB so that these particular polyvector coordinate components remain
invariant.

One should emphasize that the functional form of the most general transformations
are even more complicated than those described in eq-(1.18). Let us write the rotor
associated with a “rotation” along the X* — X7 directions in C-space with parameter
a?B | after writing the commutation relations [['4,T'5] = f,5T¢, as follows

R = " Calsl = o' fip To eﬁcrc, Y = a8 .8 (1.26)

where f,5 are the structure constants of the algebra. There is a summation over the C
indices (but not over the A, B indices) in eq-(1.26) and the reversal condition reads

T4, Tp]! = — [['4, 5] = RRI =1 (1.27)

and which is satisfied in particular when T, = —T'4; T}, = —T'p giving I'l, = —T'c. This
is a result of the relations (I'4I'g)’ = (I'g)(I'4)" = I'pl'4. In the most general case, for
arbitrary dimensions, due to the summation over the C' polyvector indices in eq-(1.26),
the rotor R cannot be expressed in the form displayed in eq-(1.17) after performing a
Taylor series expansion of the exponentials. For instance

e T P o (cosh(B™) + o1 sinh(B™)) (cosh(B) + qoas sinh(5))
(1.28)
as a result of the Baker-Campbell-Hausdorf formula. Because [yo1, Yo23] # 0 the left hand
side of eq-(1.28) does not factorize.



1.2 Relative Locality

We learnt from Special Relativity that the concept of simultaneity is relative. The typical
example arises when a moving observer inside a train sees the front and back doors of a
train opening simultaneously. Due to the spatial separation (AX? # 0) between the two
doors, an observer at rest in the platform will see the doors opening at dif ferent times

(AX®) = AX° cosh(B) + AX? sinh(B) # 0, (1.29)

despite AX? = 0 due to the fact that AX?3 # 0.

Something analogous, and more general, occurs in C-space. Let us denote by AX? =
Xy — Xy, AXO = X% — X the spatial and 4-volume separation, respectively,
between two events 1 and 2 in a given frame of reference in a flat C-space. From eqs-
(1.13) it follows that in the new frame of reference one has

(AX?) = AX? cosh(B) — L7 AX"' sinh(B) (1.30a)
(AX3Y = AX"eosh(B) — L AX sinh(3) (1.30b)

if AX923 £ 0 one has that (AX3) # 0 despite that AX3 = 0. Therefore, because
(AX?) = 0 the observer in the new frame of reference does not experience events 1,2 at
the same location.

An “extended” event in C-space described by eqs-(1.30) can be envisaged as follows.
An observer assigns to a physical event the coordinate values X4 where the index A spans
2D values corresponding to the dimension of a Clifford algebra in D-dim. In particular
X3, X012 Event 1 can be described in terms of a spherical bubble (a closed 3-brane)

moving in spacetime whose 4-volume (swept by the 3-brane at a given time X?l)) is

given by X(}**. The center of mass of such bubble is given by the X(}, coordinates, in
particular X(31) represents the z-component. Whereas event 2 is described in terms of
another spherical bubble of dif ferent size in spacetime whose 4-volume at a given time
Xy is given by X7, The center of mass of such bubble is given now by X(;) coordinates,
in particular X (32). If the centers of mass of the small and large bubble coincide one has
that AX3 = 0, while AX%23 £ ( since the bubbles are of dif ferent size. Consequently
one learns from eq-(37a) that (AX?3)" # 0 in the new frame of reference : namely, the
centers of mass of the bubbles in the new frame of reference do no longer coincide.

Concluding, the concept of spacetime locality is relative due to the mixing of 4-volume
coordinates with spacetime vector coordinates under generalized Lorentz transformations
in C-space. In the most general case, there will be mixing of all polyvector valued coordi-
nates. This was the motivation to build a unified theory of all extended objects, p-branes,
for all values of p subject to the condition p+ 1 = D. Therefore, the Extended Relativity
Theory in C-spaces (Clifford spaces) were provides a very different physical explanation of
the phenomenon of “relativity of locality” than the one described by the Doubly Special
Relativity (DSR) framework [19].



1.3 Generalized Velocities in C-space, Superluminality

We shall now discuss the concept of “photons” and generalized velocities in C-space.
Superluminal particles were studied within the framework of the Extended Relativity
theory in Clifford spaces (C-spaces) in [8]. As discussed in detailed by [1], [3] one can
have tachyonic (superluminal) behavior in ordinary spacetime while having non-tachyonic
behavior in C-space. Hence from the C-space point of view there is no violation of
causality nor the Clifford-extended Lorentz symmetry. The analog of “photons” in C-
space are tensionless strings and branes [1].

Let us take the spacetime signature to be (—,+, 4+, +,...... ,+) and factorize the C-
space interval in eq-(2) as follows by bringing the ¢?(dt)? factor outside the parenthesis

9 o, o [ L? ds., 1 dX; 1 dXij., 1 dXopi
(dX)* = c*(dt) (cQ(dt) -1+ g(dt) +L202( il ) — LQCQ( 7 )
(1.31)
where the spatial index ¢ range is 1,2, ..., D — 1. The Clifford space associated with the
Clifford algebra in 4D is 16-dimensional and has a neutral /split signature of (8, 8) [3], [1].
For example, the terms (dXo;)?, (dXo;;)?, (dX0123)* will appear with a negative sign, while
the terms (dX;;)?, (dX;;x)? will appear with a positive sign.

There are many possible combination of numerical values for the 16 terms inside the
parenthesis in eq-(1.31). As explained in [3], [1], superluminal velocities in ordinary
spacetime are possible, while retaining the null interval condition in C-space (dX)? = 0,
associated with tensionless branes. The null interval in C-space (dX)* = 0 can be
attained, for example, if each term inside the parenthesis is £1 respectively. Since there
are 8 positive ( +1) terms and 8 negative ( —1) terms one has that 8 —8 = 0 and the null
interval condition (dX)% = 0 is still satisfied despite having superluminal speeds.

A very different combination of numerical values, as compared to the previous one,
leading also to a null interval condition in C-space (d¥)? = 0, occurs when

L2102 <(d;(to1)2 (di;m)z n (d§03)2> (1.33b)
i (e R ) = R s
L61C2 (d);o;gg)g _ Z (cci;)z (1.33d)

Another description of C-space “photons” can then be given in terms of an ef fective
temporal variable T comprised of all the temporal coordinates in the interval of eq-(1.31).
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In order to simplify matters let us work with D = 3 instead of D = 4. The effective
temporal variable T is defined as

EUT? = AP + 5 (TP + 5 (SR + o (B2

c2

(1.34)

so that the C-space interval can be rewritten, after factoring out the ¢?(dT)? term, as

(dS)? = — A(dT)’ (1 - ij (5;)2 -

1 dX1 2 1 dX2 2 1 Xmg 2
2 ~ata) ~ petar)
(1.35)
The last expression has the same functional form as the ordinary spacetime interval in
MInkowski space. Namely one can write the C-space interval (dX)? in the form

(d¥)? = — FdI)? (1 — V—Q) (1.36)

c2

where the generalization of the magnitude-squared of the spatial velocity divided by ¢? is

2 dX1 2 1 dX2 2 1 Xmg 2
2 2 <dT> + c (dT) + c2 (dT) + L2c? ( dT)
Another description of C-space Photons is obtained from the null C-space interval con-
dition (dX)? = 0 which is equivalent to setting V?/c*> = 1 in eq-(1.37) and where the
velocity squared is defined with respect to the effective temporal variable T'.

To finalize let us write down the addition law of generalized velocities based on the
extended Lorentz transformations described in this work. Upon defining f = —f’ in
eqs-(1.13) and differentiating gives

V2 L? ds 1
= (1.37)

dX} = dXs3 coshf + L dXg193 sinhf3 (1.38a)
dX}193 = dXo193 coshf + L* dX3 sinhf3 (1.38b)
such that
dX. -3
dXé . dX01323 + L tanhﬁ (139)

= X
dX{i93 1+ L3 %, tanh
Using the following definitions of the generalized velocities (in ¢ = 1 units)

dXs
dXo123’

corresponding, respectively, to the generalized velocity V3 of a polyparticle with respect to
the temporal 4-volume X2 coordinate (as measured in a given frame of reference) and
the generalized velocity V3’ of a moving observer associated with the generalized boost
transformation with parameter 5. Hence, eq-(1.39) can be rewritten as

Vs = Vy = L7° tanhB, (1.40)

Vs + VY
Vi = ng@ (1.41)
1+ B
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leading to the addition law of the generalized velocities. In particular, one can see that
if the maximal generalized velocity is identified with the quantity c¢L =3, after restoring
the speed of light that was set to unity, we have that the addition/subtraction law of the
maximal generalized velocities ¢L =3 yields always the maximal generalized velocity

o Vs Ve LTc kLT 1AL (1.42)
3 1+ 5 1 £ el 1+ 1 '

so that the mazimal velocity cL™2 is never surpassed and it is a C-space relativistic
mwvariant quantity. Meaning also that if the velocities of two polyparticles in a given
reference frame is maximal c¢L =3, their relative velocity is also maximal resulting from the
subtraction law in eq-(1.42).

Following the same procedure in eqs-(1.14) as performed above one arrives at

Viss + Vi dXi23 dX1,
Viss = B Vigs = ¢ ———, Vlis = cLtanh(B), Vi = ¢ ——22 (1.43
123 L+ sz?; ‘:%233; 123 = € iXy, ' 128 c Ltanh(B), Vis = ¢ X1, (1.43)

where the maximal generalized velocity Vi3 is now cL. In general, the maximal values of
the generalized velocities are ¢ and c¢L™ where n is a positive, negative integer. The case
n = 0 corresponds to a generalized velocity associated with polyvector-valued coordinates
of the same grade !. Namely, ¢ (dX#1#2-#n /X O1v2--¥n=1) guch that the maximal velocity
is the speed of light. More research is warranted to explore many more novel consequences
of Clifford Space Relativity. Progress in the construction of generalized gravitational
theories in Clifford spaces can be found in [16]. We must remark that one has not been
trying to “squeeze” new physics out of Clifford algebras in this work. One the contrary,
it is the physics of p-branes that led us to Clifford space relativity in the first place.

1.4  Modified Dispersion Relations, Generalized Uncertainty
Principle

Next we will show how the quadratic Casimir invariant in C-space leads to modified wave
equations, dispersion laws and to the generalizations of the stringy-uncertainty principle
relations. The on-shell mass condition for a massless polyparticle in the 2*-dimensional
C-space corresponding to a Clifford algebra in D = 4, can be rewritten in terms of the
polyvector valued components of a wave polyvector K, after setting L = 1,7 =c =1 for
simplicity, as

P+ KK + K, K" + + Ko KMz = M2 = 0 (1.44)

A particular slice through the 2*-dimensional C-space can be taken by imposing the set
of algebraic conditions

'We should note that the coordinate X° = ct is chosen to have length dimensions.
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=0 K

H1p2

KM = )\ (K,K")? = A\ K* (1.45a)

K

H1ph2 3

K = N (K,K")? = X\ K®, K

11 1243 e

K Hkzasie — N, (K#K“)‘l = \ KB
(1.45b)
where the \’s are numerical parameters. Since k is the Clifford scalar part of the wave
polyvector it is invariant under C-space transformations. Hence the condition k? = 0 will
not break the C-space symmetry. However the other slice conditions in eqs-(1.45) will
break the generalized (extended) Lorentz symmetry in C-space because these conditions
are not preserved under the most general C-space transformations as described earlier.
There will be only the residual standard Lorentz symmetry (in ordinary spacetime) re-
maining which preserves these conditions/constraints in eqs-(1.45).
Inserting the conditions of eqs-(1.45) into eq-(1.44), after setting k? = 0, yields the
modified dispersion law

K (1 +MEK 40K + M K) = M*—k* =0 (1.46)
Upon writing explicitly

K* = K, K" = |K]’ - (Ko = |K]" = () (1.47)

in eq-(1.46), and solving the algebraic equation for w in terms of | K| obtained from eq-
(1.46) leads to w = w(|K]). Finally, the group velocity (after reinstating c) is given
by

— Ow(| K
(R = 2UED (1.48)

| K|
The group velocity might be greater, smaller or equal to c¢. From eq-(1.46) one can deduce
immediately that one solution is K2 = |[K|>? — (w)?=0= w = |[K| = 6“5&;” =1 (in

¢ = 1 units) and as expected massless particles move at the speed of light. However,
there are other solutions to eq-(1.46) besides the trivial one leading to energy dependent
speed of propagation. Setting K? = Z leads to a cubic equation inside the parenthesis of
eq-(1.46)

L +MZ X022 402 =0 (1.49)

that can be solved exactly in terms of the A’s parameters giving 3 roots z;(A1, A2, A3), @ =
1,2,3. The roots can be all real, or one real and a pair of complex conjugate roots. In
the former case we have (after reinstating ¢ and adjusting the proper units for z;) the
particular solutions are

K2 = C2 |I?|2 — (w)2 = Zi(/\1,>\2,>\3), = w = \/C2|[?‘2 —Z; =

_ % 7 W 2"—2’1'
Ry <KD _ el VP RE (1.50)

alk‘ \/02 |[_(’|2 — Z; w
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Therefore, from eq-(1.50) one has an energy dependent speed of propagation that can be
superluminal if z; > 0, or subluminal if z; < 0, in the case one has 3 real roots to the
cubic equation (1.49). One should add that after differentiating ¢ |[K|2 — (w)? = z in
eq-(1.50) gives

22 K| dE| = 2wdw = & = — d—“ﬂ (1.51)

K] d|K]

leading always to the standard relation vg,oup Vphase = ¢ between group and phase ve-
locities for all the possible solutions. The above results were all obtained by setting the
Clifford scalar part k of the wave polyvector to zero. The calculations in the simplest
D = 2 case when k? # 0 can be found in [8] leading also to the possibility of superluminal
propagation.

Thus the key novel results one obtains from our analysis of wave propagation in C-
space when k% = 0 are :

1. Irrespective of the solutions found in eqs-(1.49,1.50) the standard dispersion relation
K2 = A|K]? — (w)? = 0 is always a solution to eq-(1.46) giving a constant speed of
photon propagation. This is a valid solution to choose whether or not an energy-dependent
photon speed is found.

2 . Because the modified dispersion relation in eq-(1.46) is Lorentz invariant since
the proper norm K? = 2|K|*> — (w)? is Lorentz invariant, one is able to arrive at
the energy-dependent speed of propagation c(|[? |) in eqs-(1.50) while still retaining the
Lorentz symmetry. This does not occur in DSR nor in other approaches.

The on-shell mass condition for a massive polyparticle moving in the 2*-dimensional
flat C'-space, corresponding to a Clifford algebra in D = 4, can be written in terms of the
polymomentum (polyvector-valued) components, in natural units L = Lp = 1,h =c =1,
as

™ + Pu P+ Puipe P+ Dpnpops P+ DM = — M? (1.52)

Let us break the ordinary Lorentz invariance by imposing the non-Lorentz invariant
conditions on the poly-momenta in C-space

Pij pij = b ’ﬂ4, Dijk pijk = [ ’]7‘6
poi " = o1 (po)” A%, poij 1°7 = a2 (po)® 1A', poijk °7F = as (po)® |P1® (1.53)
where the a’s and (’s are numerical parameters. The mass-shell condition in C-space

PoPA = —M? becomes after inserting the conditions (1.53) and taking into account the
chosen signature (—,+, +, +)

2
[pT? (W +1 + 61 p* + B |17|4> — (po)® (1 +ay [p? 4o Pt 4 as ’ﬂfi) A

|p?
(1.54)
One may notice that the terms inside the parenthesis in eq-(1.54) behave as if one had a
rainbow metric as follows
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g7 (@ ) pipy + ¢°(P) popo = (=, |p1%) 91 — FA(P1°) B* = — M? (1.55)

A rainbow metric [20] is a one-parameter family of metrics which depends on the energy
(momentum) of the test particles moving in a given spacetime background, and forming
a rainbow of metrics (rainbow geometry). Setting 72 = 0 in eq-(1.55) one has then that
the squared rainbow functions are given by

P =0, |p1?) = 1 +6 5 + 6 A", B1,B8>0 (1.56a)
PP = 1 4o PP + a2 |* + a3 [P° a1, 00,03 >0 (1.56b)
Given
¢/ = g =0, p) 87 = (1 +8 |5 +5 |5t ) oY (1.57a)
g = = L) = = (1 +a P +a [t + as [5°) (1.57b)

the rainbow metric is then de fined as

ds® = g, dat dz¥ =

— (1l o A+ as ) (@ + (1 4B+ B ) (de)?

(1.58)

Another physical consequence is that the rainbow metric (1.58) when a3 = 0; oy =
B1; ag = [y yields modi fications of the Weyl-Heisenberg algebra

[, p"] = i h g™ (p1*) (1.59)

resulting from the momentum-dependent metric (1.58), and which in turn leads to the
following uncertainty relations

h
Act Ap” > 7| <(1 4o pP? +aalpl*)> 0| (1.60)

where < .... > denote the QM expectation values < W|......[¥ >. See [21] for rigorous
mathematical details.
From (1.60) one arrives at the minimal length stringy uncertainty relations [22]

h + (@) Ap, (1.61)

h
> — 2 > 0
Az Ap, > 5 ( 1 + oy (Apy) ) = Az > SAp 5

Minimizing the expression in (1.61) and inserting the Planck scale Lp which was set to
unity one has for the minimum position uncertainty a quantity of the order of the Planck
scale

(Ar)mm = Lp \/06_1, a; >0 (162)
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Higher order corrections to the stringy uncertainty relations in eq-(1.62) stem from the
higher grade polymomentum variables in C-space appearing in eq-(1.61) and correspond,
physically, to the membrane contributions to the modified uncertainty relations. Hence,
the stringy and membrane corrections to the uncertainty relations in D = 4 are of the
form (similar equations follow for the other spatial coordinates)

h
Az Ap, > B [1 +o1 (Ap)? + s (Ap)?*] (1.63)
leading to
ho 1
Az > 5 [ Ap. + a1 (Ape) + az (Apy)® ] (1.64)
the extremization problem of (1.64) is more complicated but there is a local minimum

when aq > 0, a5 > 0. The value of Ap, which yields the local minimum for Az is

—ar + )Pt 120 |
(Apz)o = ( : () 2) , a1 >0, a3 >0 (1.65)

N 60(2

If one sets the above value of (Ap,), and minimal length uncertainty to coincide with
the Planck momentum and Planck scale, respectively, one can fix the numerical values
of a,ag. In higher dimensions than D = 4 one will capture the p-brane contributions
beyond the membrane case due to the contributions of the higher grade polymomenta
components. The dimensions (units) of the parameters in eqs-(1.63-1.65) are [ay] =
(LIRY, [as] = (L/R)".

Related to the minimal length uncertainty in eq-(1.62) one should mention that the
theory of Scale Relativity proposed by Nottale [23] is based on a minimal observational
length-scale, the Planck scale, as there is in Special Relativity a maximum speed, the
speed of light, and deserves to be looked within the Clifford algebraic perspective. In
future work we shall address the fractal nature of quantum spacetime [23] within the
framework of quantum Clifford algebras and Scale Relativity. In the quantization program
of gravity a key role must be played by quantum Clifford-Hopf algebras since the latter
g-Clifford algebras naturally contain the k-deformed Poincare algebras [89], [90], which
are essential ingredients in the formulation of DSR within the context of Noncommutative
spaces. The Minkowski spacetime quantum Clifford algebra structure associated with the
conformal group and the Clifford-Hopf alternative x-deformed quantum Poincare algebra
was investigated [91].

1.5 Generalized Lorentz Transformations and Weyl-Heisenberg
Algebra

We shall study next another dif ferent approach to the construction of generalized
Lorentz transformations involving only polyvector components of equal grade. One may
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define a generalized Lorentz algebra in terms of anti-Hermitian operators J4% = — 784
2
as

[jAB’ jC’D] — _ GAC gBD 4 GAD gBC _ GBD gAC | GBC gAD (1.66)

where A, B,C,.... are polyvector-valued indices. One must emphasize that J48 #
[[4,T'B], except in the case JH = i[fy“, v*]. To simplify matters, the generalized metric
GAB = GPB4 shall be chosen to be GAZ = 0 when the grade A # grade B. And for the
same grade metric components gl@192-@] b1b2-be] of GAB the metric can decomposed into
its irreducible factors as antisymmetrized sums of products of 7% given by the following
determinant [16]

nalbl nmbk
GAB = det 77a2b1 77a2bk — GBA
nakbl nakbk

(1.67)
The spacetime signature is chosen to be (—,+,+, ..., +).
One can verify next that a realization of the algebra (1.66) can be obtained in terms
of polyvector-valued coordinates and momenta XA pB operators obeying the generalized
Weyl-Heisenberg algebra

where |A|, |B|, = grade of A, B, respectively.
The C-space polyvector-valued momentum is defined as

dX
PZME:PAFA:ﬂ+p“7H+p“”’yM/\'yy+ ...... (1.69)

where (d¥)? =< dX' dX >. X is the analog of “proper time” in C-space. To match
physical units, powers of a suitable mass/length parameter must be introduced in eq-
(1.69). Like the Planck mass and length. If X and P are taken to have length and
momentum dimensions, respectively, then M has mass dimensions. By inspection one
learns that the commutator of the zero grade components, the scalar parts of X4 and
pB , does not involve h but a dimensionless parameter that can be given by the ratio of
an ultraviolet Lp and infrared Hubble scale Ry as follows

5 7 = i 5
T =1 —
9 RH

G** is the scalar-scalar component of the generalized metric GAZ. The classical limit
is attained when Lp/Ryg — 0 so that the above commutator vanishes. This ratio

a* (1.70)

2We choose anti-Hermitian operators in order to avoid having to introduce i factors in the right hand
side of the commutators
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Lp/Ry is also related to the observed vacuum energy density p ~ (Lp/Rg)* (Mp)* ~
107122 (Planck Mass)?.

Hence, if J48 = 0 when the grade A # grade B, a Weyl-Heisenberg algebra allows
to find a realization of the dimensionless anti-Hermitian generators J47 in eq-(1.66) as
follows

?

AB A DB B DA BA AB .
I = g (XEP = XPPY) = gP g =0if |4 #|B] (1LT)

X4 and PP are Hermitian operators.

To sum up, when |A| = |B|, GAZ # 0, 74 # 0; and GAZ = 0, 748 = 0 for |A| # |B],
a generalization of the Poincare algebra involving polyvector-valued indices is given by
the commutators in eq-(1.66) and

[ JAB, PC] = — GA°9 PB4+ GBC pA [PA PP = 0, (X4, XP] =0, (1.72)

where P# are the polymomentum operators and J4F are the generalized Lorentz gener-
ators. The [J4B, JCP], [J4B, PC),.... commutators obey the Jacobi identities.

A generalization of the Poincare algebra permits the construction of gauge theories of
extended gravitational theories in curved C-spaces in term of the analogs of a vielbein
E4} and spin connection Q247. The generalized connection is Ay = E3y Pa + Q4P Tap.
There is a nontrivial torsion as shown in [16].

A question still remains whether or not it is possible to construct the generators of the
algebra displayed by eq-(1.66) in terms of a judicious superposition of Clifford algebra
generators like

JAB = MAB T¢ (1.73)

By inspection one learns that J4Z # [['4, T'P], nor proportional to the commutators,
except in the case J" = 1[v*,7"]. Therefore, the coefficients M4 # f4E are not given
by the structure constants. Inserting the ansatz of (1.73) into the commutators (1.66)
leads to an algebraic set of equations involving M4E, fA5 GAB as the indices A, B, C tun
from 1 to 2P. Tt is unknown (to our knowledge) if a solution for the coefficients M“Z
exists given the complexity of the (anti) commutator relations in any dimension provided
in the Appendix. A computer algebra package would be required.

2 Generalized Gravity in Curved Clifford Spaces

2.1 The Differential Geometry of Curved C-spaces

In curved C-space [1], [7] one introduces the X-dependent basis generators vy, v defined
in terms of the beins Ef;, inverse beins EA and the flat tangent space generators 74, v
as follows vy = B4 (X)ya, v = EX(X)y%. The curved C- space metric expression
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gun = EiyEEnap also agrees with taking the scalar part of the Clifford geometric product
<YM YN >= gMN-

From now one we shall denote the curved C-space basis generators s, Y™ by Eyr, EM,
and the flat tangent space generators v4,v”* by E4, E4. The indices A, B, C, ... from the
beginning of the alphabet represent the tangent space indices, while those from the middle
of the alphabet L, M, N, ... represent the base world indices. The covariant derivative of
E4,(X), EY(X) involves the generalized connection and spin connection and are defined
as

VkEy = 0xEy — Tky Ef + wip Ey (2.1a)
ViEY = 0B + T¥, B — wii EY (2.1b)
If the nonmetricity is zero then Vi Efy = 0, VxEY =0 in eqs-(2.1).
The coefficients (functions) W;,Y associated to the Clifford geometric product are
defined by
E, Ep = W5 Ec, given Ep =FE{ Ey, Eyy = By, By =

EL Ey = WY En=W,Y = Ef ES EY W, 5§ (2.2)

the Clifford algebra structure functions f; ), d; i} are defined by

[Ea, Eg] = faf Ec, [Ev, Ex] = fof Ex = frl = Ef Ey EY fuf (2.3)

{Ea, Eg} = duf Ec, {Ei, Ex} = dpy) Ex=d.j) = Ef Eyy EY dyf (24)

Due to the antisymmetry property Qxap = —xpa of the generalized spin connection
one has
Vinag) = — Qs nes — Qg mac = — (Qxap + Qxpa) = 0 (2.5)

as expected and such that
Vi(gun) = V(B ESnap) = 0 = VgEL =0 (2.6)

From
Vi(BL) = 0 = 0g(Ed) — Tyt Ef + QA F8 =0 =

8K<E]1\é[) = FK]\/? Ef - Q?}B EJ\B4 (2-7)

one obtains the relationship between the connection and the spin connection. Having

Vi(E{) = 0 = Vi(Ey) = Vi(Ei Ey) = B, ViE, =
Ed (0xkEs — QP Ep) = 0 =
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Ok Ex = Qi Ep (2.8)

Hence under parallel transport, 0k F 4, the tangent space basis E4 generators are rotated
as displayed by eq-(2.8). More details of the role of the generalized spin connection in
C-spaces can be found in [7].

The result Vg (F)) = 0 is also consistent with the zero nonmetricity condition

VKQMN = Vg < Eyy Ey > = < VK<EM)EN > + < EMVK(EN) > =0
(2.9)
therefore, the Clifford algebra basis elements Ej; in a curved C-space are covariantly
constant with respect to a metric-compatible connection V gy n = 0.
Upon taking derivatives on both sides of the equalities in eqs-(2.2-2.4) and after using
eqs-(2.7, 2.8) gives the covariantly constancy conditions of the structure functions

Vi(fiun) =0, Vi(diun) =0, Ve(Wrun) =0 (2.10)

A careful analysis reveals that eq-(2.10) does not impose any additional constraints
on the generalized connection and spin connection. This result is an improvement over
our prior findings in [10] and is consistent with the fact that performing a derivative
operation on both sides of an equality should not introduce additional constraints on the
connection.

For simplicity we shall set the nonmetricity Q% to zero. In Appendix B we show
that the torsionless Levi-Civita connection is given by

1
Tty = {iin} + 5 9" (fuxn + fyxm + fuvi ) (2.11)
where
1
{iv} = B 9" (O gxm +0u gxn — Ok gun ) (2.12)

and fyrn are the Clifford algebra structure functions (coefficients). We should notice
that the Levi-Civita connection in eq-(2.11) has a symmetric (9T" )\, and antisymmetric

(el ) Piece. The symmetric piece is given by the first three terms in (2.11), while
the antisymmetric piece is given by the last term in (2.11).
The Torsion is defined by

T =VxY — Vy X — [X,Y] (2.13)

so that by inspection one can see that the LC connection (2.11) is torsionless

(IC)TMJLV = (ZC)FLMN - (lc)FLNM—fMJLV =0 (2.14)

The last term —f,,/% in the expression for the torsion (2.14) originates from the non-
vanishing [X, Y] # 0 contribution and resulting from the fact that [Ey;, Ex| = fuy/kx Er #
0.

The Torsion can be introduced explicitly by the addition of the contorsion term KT,

e,y = ©rt,,y + Kty (2.15)
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The contorsion tensor is defined in terms of the components of the torsion tensor as

—_

K'yy = 5 (Tw"n + T + Thun), Thuy = — Thyu (2.16)

so that now the torsion is no longer zero T, = 'Y y,n — Tkar — fLun # 0.
After recurring to the result in eq-(2.7) Ok (E3y) = Uik Ef — Q45 EB and defining
TL B =T{, one can verify that

Ty = O Ey — On By + Qg EX — Q' By — fun Ef (2.17)

therefore, T4}, can be written in terms of the generalized spin connection and the gen-
eralized vielbeins . The expression (2.17) bears a resemblance with the Cartan structure
equations for the torsion 2-form T* = T}, dz* A dz” in ordinary spaces when it is written
in terms of differential forms, exterior derivatives and exterior products

T* = dO* + w*, A O, O"=¢lda”, W', = w*, , dz* (2.18)

The curvature is defined as

R(X,Y)Z = [Vx, Vy] Z — Vixy Z (2.19)

such that the explicit curvature components are given by

RMNIJ( = aM 1—\NJK - aN FMJK - 1—\MJL FNLK + FNJL FMLK - M]\% FLJK (220>

In Appendix D it is shown explicitly that the curvature (2.20) transforms homogeneously
under coordinate transformations XM — XM (XV) despite that the connection T'Y
transforms inhomogeneously.

The above curvature expression has a similarity to the nonholonomic coordinates de-
scription of the curvature tensor in ordinary spacetime, where one replaces the derivatives
Oy, Oy, ... with the derivative operators é, = e~d,, &, = ey 0, which are defined in terms of
the inverse vielbeins; one replaces I'),, with I';, and instead of using the structure func-
tions (coefficients) of the Clifford algebra one uses the nonholonomy coefficients defined
by [éq, 6] = C& é.. To sum up, because the Clifford algebra structure functions (coef-
ficients) are not zero f,,/5x # 0 one must include them into the definitions of the torsion
and curvature. In the curvature case there are terms fy,;FT'; /% as displayed in eq-(2.20).
While in the torsion case we must include the term f;,% as shown in eq-(2.17).

The same-grade C-space metric components obeying gyny = gnas are of the form

Joo, g/w? gulug vivy ottt gmuz...up ViV2...VD (221)

In the most general case the metric does not factorize into antisymmetrized sums of
products of the form

Glu1pa) [V1V2](xu) # gmm(xu) gml/z(w#) - gmm(l#) ngQ(xu)
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Ilpapz. .z [V1V2...l/k](xu> 7é det G,uiuj = €j1j2mjk g/nujl g,uzuj2 s g/AQV]'k7 k= 17 2a 37 D

(2.22)
The determinant of G, can be written as
G () o G ()
p u
O el e
g#kyl(x ) . g//'k’/k(x )

The metric component ggg involving the scalar “directions” in C'-space of the Clifford poly-
vectors must also be included. It behaves like a Clifford scalar. The other component
Il pz.pip] [ive..vp) DVolves the pseudo-scalar “directions”. The latter scalar and pseudo-
scalars might bear some connection to the dilaton and axion fields in Cosmology and
particle physics.

The Bianchi identities when the torsion is zero are given by

Runsk + Ryoux + Ryune = 0 (2.24)

ViRunsk) + VuRyrix) + VNRiomsx) = 0 (2.25)

When the torsion is not zero there are nonvanishing terms in the right hand side of eqs-
(2.24, 2.25) of the form (V + T)T, and T x R, respectively, where T is the torsion and
R is the curvature.

After multiplying the differential Bianchi identities (2.25), by g% g™’ and performing
the contractions of polyvector-valued indices, one arrives at the vacuum field equations
in C-space in the absence of torsion and nonmetricity

1
R _igMJR =0, Rpyygg = 0 (2.26)
where ] 1
Ry = §(RMJ+RJM)7 Ry = §(RMJ_RJM) (2.27)

Due to the fact that the Levi-Civita connection in eq-(2.11) has a symmetric (T* (MN)»

and antisymmetric (‘9OTF men] Piece, Rayy has a symmetric and anti-symmetric compo-
nents. For this reason one must symmetrize the indices as displayed in the first expression
of eq-(2.26). The on-shell value of the antisymmetric piece is Ry = 0.

One may include matter fields by introducing the C-space analog of the symmetric
stress energy tensor Ty into the right-hand side of the first expression of eq-(2.26).
While also introducing the antisymmetric piece of T into the right-hand side of the
second expression of eq-(2.26) Rz ~ Tz

The typical example of these sort of field equations, in ordinary spacetimes, are the
field equations associated with the Einstein-Cartan-Dirac theory [24]. The nontrivial
torsion TH? tensor is generated (sourced) by the spin density tensor S** ~ Wryltyr Py
In this case the torsion is non-propagating in the sense that it is an algebraic function
given by fermion bilinear terms.
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Up to numerical coefficients, the symmetric part of the stress energy tensor 7, is
of the form @7(MV,,)\I/ + gWSa'B”Saga + -+, where V,V is defined in terms of the spin
connection V, U = (8, + 3w (74, 1)) V. Whereas the antisymmetric part Tj,,) of the stress
energy tensor is of the form V,Sj, + SgﬁSfj,/ + - [24].

To finalize this section we shall discuss the notion of poly-differential forms. In C-space
one has now that

dz" # da* Ndx¥, dx?P # dat ANdxt AdxP, .. (2.28)
because the areal-coordinates z*” , volume-coordinates xz**?, ..... associated with the
world-sheet, world-volume, ..... evolution of a string, membrane, ..... are not related to the
vector coordinates x* associated with the evolution of a point particle. For this reason the
antisymmetry property of the poly-differential forms is given by dXM AdXY = — dXV A
dXM. In particular one has the following combinations

dptibeH2m A JpPLlP2-P2n  —  _ [JpPLP2P2n A JpH1H2-H2m (2.29&)
dptib2-Ham=1 A JpP1P2--P2n—1 —  _  ]pP1P2--P2n=1 A JpHIH2--H2m—1 (2.295)
dxtibet2m=1 A JdpP1P2P2n  —  _ JpP1P2P2n A JpHIH2H2m—1 (2.290)
dxtibe-p2m A JdpPLlP2-P2n—1 —  _ JpP1P2P2n—1 A JoH1H2--H2m (2.29d)

and which dif fers from the antisymmetry property of ordinary differential forms. Given
an ordinary p-form A, and an ordinary ¢g-form B, one has A, A B, = (—1)?? B, A A,.
The antisymmetry property displayed by the C-space poly-differential forms in eqs-(2.29)
will ensure that the generalized curvature tensor is antisymmetric under the following
exchange of polyvector-valued indices : Ry,ny#* = — Ryur.

The C-space poly-differential forms analogs of the Cartan-structure equations in or-
dinary spacetime are

T4 = dot + Q4, A 08, et=pEy, axM, oty = Qv dXV (2.30a)
R4 = dQ*® + Q. A QYF RAP = RIS axM A dxV (2.30b)

where A, B are the tangent space indices and M, N are the base (world) indices.

The above equations are the starting point to formulate a gauge theory of extended
gravity in C-spaces based on the analogs of a vielbein E4; and spin connection Q47. The
generalized connection is Ay, = Eﬁ Py+ fo Jap. Py is the translation generator and
Jap is the generalized Lorentz generator. The connection poly-differential one-form is
Ay dXM and the poly-differential curvature 2-form is R = (d + A) A A. In component
form, the curvature is Ryy dXM A dXY = (Ry,xPa + RiBiJap) dX™ A dXN. This
gauge theory approach to C-space gravity is the C-space generalization of the Poincare
gauge theory formulation of ordinary gravity [11].
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3 The Generalized Gravitational Action and the

Cosmological Constant

In this section we shall derive the field equations from a variational action principle instead
from the differential Bianchi identities. Before embarking into this final section we shall
work with the natural units h = ¢ = G = Lpjgner = 1. Upon performing contractions of
the curvature yields the analog of the Ricci tensor 6% R, n & = Rysy and the Ricci scalar
gM’Ry;; = R. One may then construct an Einstein-Hilbert-Cartan like action based on
the C-space curvature scalar R

1
52 / ds Hdm“ l_Idae’““2 coodrtrerr y (guy) RO=

55 | DX (o) R (3.1)
where f,,(gar7) is a suitable integration measure and x? is the gravitational coupling
constant in the 2”-dimensional C-space.

At this point it is important to remark that the analog of the Ricci tensor Ry # Ry
is no longer symmetric in the indices because Ry (and R) are defined now in terms
of the non-symmetric connection 'Yy # I'K,, as displayed in eq-(2.14). There is an
antisymmetric piece in the connection given explicitly by the very last term of eq-(2.14).
The curvature scalar becomes R = ¢"/Ry; = gMJR(MJ) + gMJR[MJ] = gMJR(MJ).
Hence, it is the symmetric part of the Ricci tensor analog that appears in the vacuum
field equations below. Torsion can also be added to the connection explicitly in terms of
the contorsion terms as shown in eqs-(2.18,2.19).

In a given coordinate system (a generalized Lorentz frame) the mixed-grade compo-
nents of the metric gyrn, g™, beins Ef,, inverse beins EY/, can be set to zero in order to
considerably simplify the calculations; i.e. namely due to the very large diffeomorphism
symmetry in C-space, one may choose a frame (“diagonal gauge”) such that the mized
grade components of the metric gy, beins E4;, inverse beins EA! are zero. In this case
the C-space metric components can be chosen to be given by the determinant expressions
in eq-(2.26).

The advantage of having gp;n = 0 if the grade of M is not the same as the grade of N
is that the determinant of the C'-space metric can be factorized as the product of determi-
nants of matrices which are comprised of entries given themselves by determinants (2.26)
. If an ordering prescription of indices is introduced, p1 < po < ....p, and vy < vy < ..Uy,
the bivector-bivector components of the C-space metric in D = 4 dimensions ¢, ., viv,
can be arranged into an ordered square array of entries given by a 6 x 6 matrix, since
the number of independent bivector components in D = 4 is 4 x 3/2 = 6. For instance,
the entries of the square 6 x 6 matrix g,,,, 1., are given themselves by determinants :

g12 12 = G11922 — §12921; 913 13 = 11933 — 13031, «vvee etc, and such that its determinant is
given by the ordinary determinant of an square 6 x 6 matrix.
The trivector-trivector components of the C-space metric in D = 4 dimensions

Gurpaps nevs Canl be arranged into an ordered square array of entries given by a 4 x 4 ma-
trix, since the number of independent trivector components in D = 4is 4x3x2/2x3 = 4.
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The entries of this square 4 x 4 matrix are given themselves by the determinants as shown
in eq-(2.26). Following a similar procedure with the other C-space metric components,
in this way one can write the measure of integration in D = 4 as the square root of the
product of determinants

fm(grg) = \/ 9] [det (guw)| |det (Guips viv)| 1d€t (Guipops vivavs)| A€t (G puapspa V1V2V(3§42))|
where ¢ is the scalar-scalar part of the C-space metric. The generalization to other
dimensions is straightforward.

In the most general case one can have a C-space metric with non-vanishing mixed
grade components such that the metric gy;; components can be assembled into arrays
of ordered rectangular matrices. The problem becomes that one cannot longer define a
determinant of a rectangular matrix. One can also view the g);; as a hyper-matrix but
the construction (if possible) of the hyper-determinant of the C-space metric (a hyper
matrix) is a more difficult problem [13], [14].

Despite that in the most general case the measure p,,(gars) is not given by eq-(3.2) one
can still assume that g, (gars) is a suitable measure of integration obeying the condition

Opim(gnrs) = — ;Mm(gMJ) gry 9™ (3.3)
and which is similar to the variational behavior of the square root of an ordinary deter-
minant of the spacetime metric /|det g, |.

Before continuing some important remarks are in order. It is known that the definition
of an alternative measure substantially affects the discussion of the cosmological constant
problem, as has been found in the study of Two Measures Theories [18]. For example a
metric independent measure will not satisfy eq-(3.3) [18]. In the most general case the
measure is not given by eq-(3.2) and this would modify the discussion of the cosmological
constant problem. By using two choices for the measure as in the Two Measures Theory
one improves the behavior concerning the vacuum energy density since the discussion of
the cosmological constant problem depends crucially on what vacuum one takes [18].

An alternative measure of integration in four dimensions independent of the metric
can be obtained, for example, in terms of four scalars ¢*(a = 1,2,3,4) as follows [18§]
D = P €uped(0,0")(0,0°)(9,0°)(0-p). Such measure of integration can trigger a num-
ber of remarkable physically important phenomena [18] such as: (i) a new mechanism
of dynamical generation of the cosmological constant; (ii) a new type of ”quintessential
inflation” scenario in cosmology; (iii) non-singular initial ”emergent universe” phase of cos-
mological evolution preceding the inflationary phase; (iv) a new mechanism of dynamical
spontaneous breakdown of supersymmetry in supergravity; (v) gravitational electrovac-
uum “bags”.

The C-space extension of such measure in four dimensions would involve a Clifford-
valued scalar field T4 where the Clifford-valued index A in four dimensions spans
24 = 16 components. Four of the components can be identified to the four scalars
¢"(a = 1,2,3,4). The C-space extension of the alternative measure ® is now given

by MM €A1As.... A1 (aMl 90141 ) (81\/12 @Az) """ <8M16 SOAIG)'
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Therefore, to sum up, when the torsion is set to zero and the measure obeys (3.3), a
variation of the action (3.1) leads to

/ [DX] fim(gar7) <R(MJ) — ; gmJ R) sg™’ =0 (3.4)

after discarding the total derivative terms that do not contribute to the variation of the
action when the variation of the fields vanishes at the boundaries. These total derivative
terms stem from the variation of the Ricci tensor. In Appendix C it is shown after
straightforward algebra that the variation of the Ricci tensor is given by

5 (Rars) = Vu(oTy,) — Va(oIy,) +2 Fﬁ\fu} 6(T%y) — 0( ful TRy ) (3.5a)

when the torsion is zero one has 2I'},;; = f),7 such that eq-(3.5a) becomes

0 (RMJ) = VM((SF%J) - VN((SF]]\VL]) - 5( fMLN ) Fﬁj (3~5b)

Because '}, ; does not behave like a tensor the term §( f,,/" ) Tk ; in eq-(3.5b) is spurious
unless one is forced to impose the variational condition §( f),;/¥ ) = 0 on the structure
functions, and whose physical interpretation is that one should not vary the Clifford
algebraic structure functions in C-space. Therefore, when one sets §( f,,/~ ) = 0, the
variation 0 (Rys;) in eq-(3.5b) becomes finally

0 (Rus) = Var(0TY,) — Va(0T3,) (3.5¢)

and which is the analog of the Palatini identity in C-space.

If one does not wish to impose the condition 6( f,,;/¥ ) = 0, by inspection one can see
that another way of eliminating the spurious term —d&( f,,;/" ) I'%, from the variation in
eq-(3.5b) might be attained when the variation § does not commute with the derivative
operation dy; and such that an additional term of the following form must be added to
the variation (3.5a, 3.5Db)

[0, O | TL, — [0, 0] Ty, (3.5d)

if the above commutators [d,0y],[d,0r] are defined such that eq-(3.5d) becomes
§( farY ) T, one can then eliminate the presence of the spurious term —d6( f,,;/¥ ) 'k,
in eq-(3.5b) without having to impose the variational condition 6( f;/ ) = 0 on the
Clifford algebra structure functions. For a detailed analysis of the noncommutativity of
the variation d§ operation with the derivatives 0 we refer to [17].

The variation (3.5¢) contributes to a sum of total derivatives by noticing that one can
pull the V derivatives to the left of all the terms in the integrand because V xgyr; = 0 and
Vitm(gars) = 0 when the nonmetricity is zero. This yields finally [V (gy......0T"), which
is a total derivative leading then to a boundary term that vanishes, either by imposing a
zero variation at the boundaries and/or by having the fields vanish at infinity.

Finally, the vacuum field equations in C-space are given by

1
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One must supplement the above equations with the variation of the action with respect
to the scalar-scalar component g of the C-space metric 65/dg = 0.

If there is torsion due to the presence of spinning matter in the Lagrangian one has
extra terms

1
5 [ DX] algas) 97 Ty 073, (3.7a)
in the variation of the action that are matched with the variation —d.5,,41er Of the matter
terms, if and only if, the variation 6T'}; is taken to be independent of the variation §gM*.

In this case the torsion obeys the relation

1 0.5,

— [ [DX MJjopL o ZXmatter
92 /[ | 1lgnes) g MN 5Ty,
One must also add the contribution of the symmetric part of the analog of the stress
energy tensor £°T () to the right hand side of eq-(3.6), where Ty, is defined by

TMJ = _ 2 5<M(QMJ) Lmatter) (370)
p(gars) g™’

We have arrived now at the most salient physical feature of the vacuum field equations.
By inserting the torsionless connection expression in eq-(2.14) of the form I't, v = {4, v} +

L ... terms, and after using the covariantly constancy condition on the curved C-space
Clifford algebra structure functions Vy;f;xr, = 0, one can decompose the Ricci tensor
as Rougy ~ R + 5 frrs + [ fxom, and the Ricei scalar as R ~ R+ f/5Ef ).
Ryr; = Ry, R are the Ricci tensor and Ricei scalar analogs in C-space associated with
the symmetric Christoffel connection {{;x} = {%/}-

The physical significance of this curvature decomposition is that these extra terms
involving the curved C-space Clifford algebra structure functions can be interpreted as
an ef fective stress energy tensor which can mimic the effects of “dark” matter/energy.
To see how the cosmological constant A emerges, it is straightforward to infer that the
contraction /KL f;r; involving the Clifford-algebra structure functions in curved C-
space turns out to be equal to fAB¢ fipc ~ Ay = constant, when fABC fipc are the
tangent space Clifford algebra structure constants. This finding is just a consequence of
the definitions of f/%% and f;xr in terms of the beins Ej‘ , and inverse beins EY given
by eqs-(2.2-2.4), and obeying EY E4y = 0%, ...

Therefore, when the torsion is set to zero, the measure obeys (3.3), and after writing
Ry = Ry + ARy, and R = R + Ay, the vacuum field equations in C-space can
be rewritten as

(3.7b)

1 1
Ry + ARy — 5 9m R - 5 9m A =0 (3.8)

where A; = AR ~ /KL {0 = fABC fipe = constant. The other terms

ARy ~ fulfrrs + X fxom ~ Ag karg (3.9)
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are proportional to the curved space Clifford algebra Killing metric sy ; =
B EP 3¢ fpop = E{EPkap. If the Killing metric xkap coincides with 14p then
kymg = gug and the combined effect of the two constants Aj, Ay gives the sought-after
cosmological constant term

1
5gMJ(2A2 — A1> = AgMJ, with 2A2 — A1 = 2A (310)

If the Killing metric xK4p does not coincide with 74p then one will have for the ARy
terms the following Ay ks contribution which can be interpreted as (minus) an effective
stress energy tensor —x? Ty term mimicking the effects of “dark” matter.

To conclude, one of the most salient physical feature of the extended gravitational
theory in C-spaces is that one can generate an ef fective stress energy tensor mimicking
the effects of “dark” matter/energy. In particular the cosmological constant term. One
could explicitly add a cosmological constant term, by hand, to the original action (3.1)
but the main point of our above argument is that it is not necessary, to do so. The
cosmological constant term is automatically encoded in the f/K% fpp = fABC fape (=
constant) term which naturally forms part of the C-space scalar curvature.

In ordinary Relativity, when the torsion is zero, one can construct the Einstein tensor
by performing two successive contractions of the differential Bianchi identity [12]. It also
leads to the conservation of the stress energy tensor in the right hand side. In C-space
the differential Bianchi identities are satisfied when the torsion is zero. By performing
two successive contractions of the differential Bianchi identities one arrives at the field
equations

VM (Rauyy — ; gusR) = 0 = Ry — ; gus R = & Tory, V¥ (Toun) =0
(3.11)
The advantage of recurring to the differential Bianchi identities in C-space to derive the
field equations (3.11) is that it is not necessary to invoke an action and confront the
subtleties in constructing a suitable measure of integration.
One may introduce a cosmological constant as an integration constant A’ in the right
hand side of eq-(3.11) giving the modified field equations

1
Ry — 5 gmJ R = A guy (3.12)

After decomposing the curvature terms of the left hand side of eq-(3.12) in the same form
as in eq-(3.8), and bringing the term A’ gj;; into the left hand side, one ends up with
an ef fective cosmological constant term of the form (A — A")gys;. Hence a cancellation
of the effective cosmological constant is possible when A — A’ = 0. This scenario for a
plausible explanation of the extremely small value of the observed cosmological constant
warrants further investigation.

Let us proceed with the vacuum field equations (3.6). To simplify matters we shall
only consider the action (3.1) whose measure is given by (3.2) involving the C-space metric
components and whose entries are given by the determinant expressions (E.1). Namely,
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the C-space metric is being decomposed into antisymmetrized sums of products of the
ordinary metric components of spacetime. Besides the scalar-scalar component g of the
C-space metric (not to be confused with the |det g,,|), the other independent variables
are now given by the ordinary metric components g,, = g,, , hence a variation of the
action in C-space with respect to g,, leads to the generalized vacuum field equations that
do not coincide with the Einstein vacuum field equations.

Hence, in the torsionless case, and in this simplified case, the vacuum field equations
in D = 4 are obtained from the variation of the action with respect to g*” after using the
chain rule of differentiation

1
/ [DX] pm(gnr) (R(MJ) 5 grg R) sgM! =
/ [DX] ( ) [ R _1 R M SaM
Hm\grJ (M.J) 5 amJ Sgh g

The above variation in (3.13) yields the simplified version of the vacuum field equations

=0 (3.13)

1 1 sgM7
Ry — ) 9w R + ( R(Mj) ) 9xrj R) Sghv

where the contributions of the polyvector-components of the C'-space metric are denoted
explicitly by the hatted indices. Clearly, the vacuum field equations (3.14) differ from the
Einstein field equations in ordinary spacetime due to the extra terms stemming from Clif-
ford algebraic structure and polyvector-valued contributions to the C'-space metric. These
extra terms, once again, can be interpreted as the contribution of (minus) an ef fective
stress energy tensor —/iQTZJ;f which could mimic the effects of “dark” matter/energy. As a
reminder, one must also include the equation associated with the scalar-scalar component
g of the C-space metric 65/dg = 0. Such scalar-scalar C-space metric component might
also have cosmological implications like the axion and dilaton.

There are still many challenges ahead to test the viability of the Extended Gravita-
tional Theory in C-spaces. Other physical applications of C'-space gravity were studied in
[10] in relationship to higher curvature theories of gravity, like Lanczos-Lovelock-Cartan
gravity (with torsion) [9] and to f(R) extended theories of gravity [51]. Our finding that
the presence of the cosmological constant, along with a plausible mechanism to explain its
extremely small value and/or its cancellation, can be understood from a purely Clifford
algebraic and geometric perspective, alone, is very appealing and deserves further investi-
gation. The reader might have noticed a similarity of our expressions for the torsion and
curvature to those which appear in a nonholonomic coordinate description of geometry, a
la Finsler, for example. Recent cosmological applications of this nonholonomic approach
to geometry, and related to the universe accelerated expansion, can be found in [15]. To
finalize we include the important Appendices A, B, C, D, E with the technical details of
the calculations.

— 0 (3.14)
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4  Generalized Metrics in C-spaces

4.1 (Anti) de Sitter Metrics in C-Spaces

The d-dim Anti de Sitter space AdS; can be parametrized in terms of stereographic
coordinates by embedding the d-dim hyperboloid (whose throat radius is L/2) in a d + 1-

dim pseudo-Euclidean flat space R?¥~? of signature (—, +,+,- -, +, —) as follows
Ho= o = 0,1,2 d 4
1 ... -1 1
y (1 —LL‘MZJL’N//LZ)7 /’L Y ) 7 ) ( )

ytt = ; 81_?:;2;223, raat = — (29 + (') + (@7 + ...+ (2¥7)? (4.2)

one can infer from eqs-(4.1,4.2) that

S R U N ) A O R R (L I & e

The d-dim de Sitter space dS; can be parametrized by the stereographic coordinates
by embedding the d-dim hyperboloid (whose throat radius is L/2) into a d+ 1-dim pseudo-
Euclidean flat space R%! of signature (—, -+, +,---,+, +) as follows

Il"

o = 0.1.2.---.d—1 4.4
y (1 + x'u‘x'u/L2>7 /’L ) Y Y Y ( )

L (1—z,2"/L%) _
a1 _ & p B (02 1\2 22 d-1y2 (4 5

obeying
_ L

W = W W)W+ ) = () (4.6)

The (Anti) de Sitter metric in stereographic coordinates become respectively

dz,) (dz* dz,) (dz*

(s = e W) gz, = (o) (@) (4.7

(1~ a,an/L?)

namely, the metric is conformally flat. It is well known (to the experts) that the scalar
curvature of the d-dim Lorentzian spacetime corresponding to the conformally flat metric
g = €**n,, = Q%n,,, and written in terms of inertial coordinates, is given by the expression

(1 4wy /L2)?

Rlg) = Q2 —2(d—1) (0,0"n Q) — (d—2) (d—1) D,n Q) (0"In Q)] (4.8)

hence, given the conformal factors displayed above and plugging their values into eq-(4.8)
one ends up, respectively, with
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d(d—1) d(d—1)
Raas (L2 Ras (L2 (4.9)
Given this preamble we are going to exploit the conformally flat nature of (Anti) de
Sitter spaces and show that the generalization of the d-dim Anti de Sitter space AdSy

metric to C-spaces is given

(dXar) (dX™)

dv)? = 4.1
(d2) (1 — Xy XM/L[2)? (4.10)
the C-space conformal factor is
QD (Xy) = ! (4.11)
MJT 1= Xy XM/ L2)2 ‘
the infinitesimal displacement squared is
(dXar) (dXYM) = (Lp)* (ds)* + (dz,) (da") + (Lp)~* (dzg) (d2™) +
(Lp)™* (dxpw,) (dz"™?) + ... (4.12)
The norm squared is
XyXY = (Lp)* s* + Tt + (Lp)~? Ty o + (Lp)~ Tuvp ¢+ .. (413)

The Clifford scalar s is chosen to be dimensionless. We choose Xy XM to have units
of (length)? and for this reason suitable powers of the Planck scale Lp must appear in
eqs-(4.10-4.12).

The bivectors, trivectors, ..... infinitesimal displacements containing the temporal
direction will appear with a negative sign due to the chosen Lorentzian signature

(dz,) (dz") = — (d2®)* + (do')® + (d2®)? + ... + (do*h)? (4.14a)
(dow) (da) = — (da®)? — (d2®)? — (d2®)? — ... + (dz'*)* + (d='®)* + ... (4.14b)
(drp,) (d?) = — (daz®'?)? — (da®?)? — (d2®*)? — ... + (d2'®)? + (dz'*)* + ...
(4.14c)

etc. There is an ambiguity in choosing the sign in the Clifford scalar part (ds)? of eq-
(4.10). We choose the + sign so the overall signature of the 2¢-dimensional C-space is
split into an equal number of positive/negative signs.

Because the C-space corresponding to the Clifford algebra Cl(d—1, 1) is 2¢-dimensional
one can show, after some straightforward and lengthy algebra is performed in the defining
expressions for the connection and curvature in eqs-(2.11, 2.12; 2.20), that the general-
ization of the Anti de Sitter space scalar curvature to the 2¢-dimensional C-space, and
evaluated for the symmetric Christoffel connection {} , is

R({}) = Q7 [ —2(2'-1) (0ud"In Q)| -
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Q72 [(27-2) 2= 1) (Quin Q) (9"In Q) | (4.15)

where the expression for the C-space conformal factor Q(X /) is given by eq-(4.11). Hence,
one arrives finally at

S 20201
(L/2)?

The generalization of the de Sitter space scalar curvature to the 29-dimensional C-
space is derived from the C-space metric

R = (4.16)

(dXar) (dX™)

[ = T XX

(4.17a)

leading to the (positive) value

24 (24 — 1)
(L/2)?

The generalized vacuum field equations in C-space in the presence of a cosmological
constant

R = (4.17b)

Ruw({}) = 5 gy RUD + Aguy = 0 (4.13)

are obeyed when the values for A associated with the C-space version of (Anti) de Sitter
spacetimes are respectively given by
29 — 1) (29 -2 2¢ — 1) (29 -2
2(L/2)? 2(L/2)?
These results are consistent with a throat radius p = L/2 of the underlying (Anti) de
Sitter spacetimes. The generalized Ricci tensors are respectively given by

(24— 1) (21 1)

(Ljae B R = S

The embedding of the 2¢-dimensional C-space “hyperboloid” into an abstract space
of 2¢ + 1 dimensions in the Anti de Sitter version of C-space can be attained by writing

Ry = (4.20)

XM

YyM —
(1— Xy XM/L2)

M = 1,2---,2¢ (4.21a)

L (14 Xy XM/L?)

yM+ — = 4.21b

2 (1— Xy XM/12)y ( )
whereas for the de Sitter version one has
XM

yM = M = 1,2,---,2% (4.22a)

(1+ Xy XM/L2)
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yur o L (L= XX/ L) (4.22b)
2 (1+ Xy XM/L2) '

and leading to the a generalization of eqs-(4.1-4.6). Note that 27+ 1 # 2¢*1 unless d = 0,
however the abstract space of 2¢ 4+ 1 dimensions is associated to the dimensions of the
direct sum of the Clifford algebras Cl(d — 1,1) @ CI(0).

4.2 A different family of C-space metrics

Another C-space metric associated with the generalization of the d-dim Anti de Sitter
space AdSy to C-spaces is given by a “diagonal sum” of the Clifford scalar, vector, bivector,
trivector, ... contributions

(ds)? (dz,,) (dz")
(1—s2)2 (1 —x,ar/L%)?

(d ) (dat”)

(dZ)Q = (LP)2 (1 _%wa/sz)z

+ (Lp)~?

+

_y (dzy,) (dzhP)
(1 — @pparve /L)

The above C-space metric is not the same as

(Lp)

(4.23)

(dXar) (dX*)
(1 - Xy XM/L2)2
and for this reason the metric associated with the embedding (4.21) does not obey the

field equations (2.27).
The above “diagonal sum” version in the de Sitter case is

(d2)? =

(4.24)

(ds)? (dzy) (dat) (dzyy) (dat”)

(d2)2 = (LP>2 (1+ 52)2 (1_‘_%1,#/[/2)2 (Lp) ? (1—|—xw,x“”/L4)2

6 (dzp,y) (dzP)
(Lp) (1 + 2, 2P | L)

The above C-space metric does not solve the field equations (2.26) and does not have
the form

+ o (4.25)

(dXpr) (dX™)

2 = G XXy

(4.26)
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4.3 Analog of Spherically Symmetric Metrics in C-spaces

To search for a generalization of static spherically symmetric metrics in C-spaces, let us
focus on the Clifford algebra Cl1(3,1) associated with a four-dim Lorentzian spacetime
and which is 2* = 16 dimensional. The C-space metric defining the infinitesimal interval
(d%)? has a split signature (8,8) [1]. Let us examine what would be the analog of a
“spherically” symmetric metric in C-space. The analog of the “spatial radial distance”
squared in the 16-dim C-space is

(X[? = (Lp)* 8* + (¢')" + (%) + ()" +
(LP)—Q ((x12)2 + (x13)2 + (x23)2) +(LP)_4 (x123)2 (4‘27)
from which one can infer that

dX| = [X|7" [ (Lp)? sds + a'da’ + 2’da® + 2da® | +

\X]_l “LP)—z <x12dx12 + 2Bdpt3 + x23dx23) +(LP)_4 x123dx123} (4.28)

where | X| is the square root of eq-(4.27).
The analog of the “temporal radial distance” squared in the 16-dim C-space is

IT)? = (2°)% + (Lp)? ((x01)2 + (2%)? + (xos)z) n

(LP)74 <(a:012)2 + (33013)2 + (a:023)2) +(LP)76 (1;0123)2 (4.29)

from which one can infer the expression for the infinitesimal temporal displacement

dT| = |T|™ [xodxo + (Lp)~2 (:L‘Oldmm + 2%da + x03da§03> } +

‘T’fl [(LP)74 (x012dx012 + 2018 7,013 + q:023da:023) —l—(Lp)*G x0123da:0123} (4.3())

where |T'] is the square root of eq-(4.29).
Hence, an ansatz for the analog of a spherically symmetric metric in the 16-dim C-
space of split signature (8,8) is

(dB)* = — fOXD (@T])® = [T (dx7)* + h(X]) (dX])* + [X]* (dQ)*  (4.31)

where | X |2(d€2;)? is the C-space metric analog a 7-dim sphere determined by the spatial
directions, and |T'|*(dx7)? is the C-space metric analog of a 7-dim sphere determined
by the temporal directions. €27, x7 are the respective solid angles of the 7-dim spheres.
All the other terms in (4.31) are defined by eqs-(4.27-4.30). The real-valued functions
f(X]),R(]X]) in (4.31) are determined by solving the very complicated C-space field
equations (2.26). The flat C-space limit is attained when f(|X]) = h(|X]) = 1.

One should note that due to the presence of the terms |T'|*(dx7)?, the C-space metric
(4.31) is strictly speaking not static. One could extract a static slice in (4.31) by freezing
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the temporal solid angle degrees of freedom by setting (dx7)? = 0, and leading to an
interval

(dx)* — — f(X]) (@T])* + (X)) (dX])* + |X]* (dQr)* (4.32)

which resembles more closely a static spherically symmetric metric. Rigorously speaking,
the Schwarzschild metric is only static in the region outside the horizon but it is not static
in the interior region after performing the Kruskal-Szekeres coordinate transformations
r=r(u,v);t = t(u,v). The black hole singularity r(u,v) = 0 is spacelike.

The 4D (Anti) de Sitter-Schwarzschild metric in natural units h =c=G =1

(dr)? = — (1—"—= =273 (dt)* + (1— A r)7 (dr)? +r? (d)? (4.33)
r 3 r 3
is a solution of Einstein’s field equations in 4D with a cosmological constant (A < 0 in
the AdS case). This metric is just a “slice” of the 16-dim C-space of split signature (8, 8)
given by eq-(4.31). Guided by this metric (4.33) one could attempt to find the real-valued
functions f(]X|), h(|X]) in (4.31) which solve the C-space field equations (2.26).
We finalize this section by discussing the very restricted class of C-space metrics
(gmn = gnam) that can be decomposed into products of ordinary metrics in spacetime.
Firstly, one needs to have a C-space metric whose components have the same grade like

goo, YGuvs YGuipe viver -y Ypips..up vive..vp (433)

and which can be decomposed as

g[,uluQ] [V1V2]($M) = gmm(xu) gMQVQ(xu) - g;ul/l(xu) gu1l/2(xu)

lprpz... ] [V1V2-.-Vk}(x#) = det Guil/j = Guavsy Gpavjy - - Guavsy s (4'34)

The determinant of G, can be written as

g/.l,llll (Iu) ce e gﬂll’k (SL’“)
" u

det | Gl s ) ()
G (27) G ()

The metric component ggo involving the Clifford scalar “directions” Xg = s of the Clifford
polyvectors in C-space must also be included. Xy = s must not be confused with the tem-
poral coordinate zy. ggo behaves like a Clifford scalar under coordinate transformations
in C-space. The other component g, s..up] rve..vp] iVOlVes the pseudo-scalar “direc-
tion”. The latter scalar and pseudo-scalar components of the C-space metric might bear
some connection to the dilaton and axion fields in Cosmology and particle physics. In the
most general case the C-space metric does not factorize into antisymmetrized sums of
products of ordinary metrics . We presented above examples of metrics in C-space which
cannot be decomposed into antisymmetrized sums of products of ordinary metrics.
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4.4 Areal Geometry and Strings

C-space metrics are an extension of areal metrics of the form (dr)? = 1h;j(da’ A da?) ®
(dz® A dz') which were studied long ago by Cartan. An areal metric generalization of
the usual metric to Finsler geometry was developed by [28]. Such a generalized notion
of area, and more generally the volume of m-dimensional submanifolds embedded in an
n-dimensional space, have been considered under the terminology of “areal geometry”.
In these considerations, the metric and connection in general depend not only on x but
also on the derivatives of x with respect to world-volume coordinates. Applications of
the Kawaguchi Lagrangian formulation to string theory and p-branes can be found in
[29]. The classification of area metrics and the construction of vacuum field equations
were analyzed in [27]. Another family of equations for area metrics that reduce to the
vacuum Einstein’s equations in very special cases were studied in [26]. Static spherical
symmetric solutions were found for the generalized Einstein equation in vacuum, including
the Schwarzschild solution as a special case.

The Nambu-Goto action corresponding to the bosonic string is defined in terms of
its worldsheet area. Motivated by the possibility that string theory admits backgrounds
where the notion of length is not well defined but a definition of area is, propelled the
authors [26] to study space-time geometries based on the generalization of length metrics
to area metrics. In analogy with Riemannian geometry, they defined the analogues of
connections, curvatures and Einstein tensor.

In Einstein’s theory of gravity, the Bianchi identity provides a hint on how to define
Einstein’s equation such that the conservation of energy-momentum tensor is guaranteed.
The situation is different for the gravitational theory of area metrics [26]. The conservation
of energy-momentum is a result of the invariance of the theory under general coordinate
transformations. In the theory of area metrics, the gauge symmetry is still merely general
coordinate transformations but the number of degrees of freedom of the areal metric,
connection and curvature are much larger than in the case of ordinary metrics. Therefore,
the authors [26] argued that one should not try to define the generalized Einstein equation
from the generalized Bianchi identity as one did in Einstein’s theory.

However, a key difference that gravity in C-spaces has is that one has full diffeomor-
phism invariance under the polyvector-valued coordinate changes X, — X, thus the
generalized energy-momentum polytensor in C-space is conserved and consistent with the
generalized C-space Bianchi identities, in the absence of torsion and nonmetricity, and
which in turn, allows us to write down the generalization of Einstein equations in C-spaces
[54]. A discussion of matter fields in C-spaces can be found in [1].

Another problem with the formulation of gravity of area metrics is that it does not
seem to admit an action principle due to the fact that the tensor R} does not admit
the definition of scalar curvature through the contraction of indices, if the only additional
tensor available is the area metric [26]. A possibility is that the action principle for the
area metric theory is available only in certain dimensions when the volume form can be
used to do the trick to appropriately be able to contract indices [26]. Fortunately, in
C-spaces this problem does not arise since all polyvector-valued indices are contracted
with the C-space metric gyn = gy, its inverse gV = g™ and % which in general
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have polyvector valued indices M, N of the same and different grades : g
for example.

To finalize, we should point out that when the C-space metric components are of the
same grade, and admit a decomposition as shown in eq-(4.35), it is plausible to have
in the putative quantum gravitational theory cases where the expectation values of the
areal metrics are not zero < §,,G,0 ># 0, despite that the expectation of the metric is
< guw >= 0 (Topological QFT’s are characterized by physical correlations independent of
the metric). This could be a very natural explanation as to why quantum gravitational
effects could be essentially “stringy”. If on average < g,, >= 0, one does not observe
lengths but areas instead. Quantum gravitational effects are intrinsically manifested at
the Planck-scale (there are quantum gravitational phenomena which have cosmological
signatures at larger scales due to inflation, and /or compounding effects). Since the Planck
scale Lp is an essential ingredient in the construction of the extended relativity in C-
spaces [1], and Quantum Gravity, this suggests that C-space geometry is a natural arena
to be explored. For this reason, we believe that more novel physical phenomena could be
unraveled behind C-space gravity than we previously thought.

papzspi] el

5 A Unified Description of Particles, Strings and
Branes in Clifford Spaces

We will show next how the Extended Relativity Theory in C-spaces (Clifford spaces) al-
lows a unified formulation of point particles, strings, membranes and p-branes, moving in
ordinary target spacetime backgrounds, within the description of a single polyparticle
moving in C-spaces. The degrees of freedom of the latter are provided by Clifford
polyvector-valued coordinates (antisymmetric tensorial coordinates). A correspondence
between the p-brane (p-loop) wave functional “Schrédinger-like” equations of Ansoldi-
Aurilia-Spallucci and the polyparticle wave equation in C-spaces is found via the
polyparticle/p-brane duality/correspondence. The crux of exploiting this correspondence
is that it might provide another unexplored avenue to quantize p-branes (a notoriously
difficult and unsolved problem) from the more straightforward quantization of the poly-
particle in C-spaces, even in the presence of external interactions. We conclude this
section with some comments about the compositeness nature of the polyvector-valued
coordinate operators in terms of ordinary p-brane coordinates via the evaluation of n-ary
commutators.

5.1 Branes in Clifford Spaces

An ordinary p-brane moving in a D-dim flat target background spacetime spans a p + 1-
dimensional world volume and the Nambu-Goto action written in terms of the Nambu-
Poisson bracket is given by
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S =T / d"o \/|det 0u Xt Op XY M| =

T / drtls \/( {Xm7Xu27Xu3’ o ’Xﬂp+1} )2 (5.1)

T is the p-brane tension whose units are (mass)P™'. X#(c%) are the embedding functions
of the p+ 1-dim world volume of the p-brane into the D-dim target spacetime background
(D > p+1). The world volume coordinates are o = (o', 02, -+, oPT1).

Let us generalize the action (5.1) to the C-space case when the world manifold and
target space coordinates are both Clifford-valued. Given the 2¢ polyvector-valued world
manifold variables

ot =5, 0% oM ... g0 (5.2)

and the 2” polyvector-valued target space coordinates
XM = X, XM XM L XD (5.3)

with D > d one can write the analog of the expression for a Nambu-Poisson bracket in
C-space as [1]

€A1A2...A2d aXMl 8XM2 aXMQd
doAr Qo2 T Qo
In general each polyvector-valued coordinate component X (o4) is a function of all

the 2¢ polyvector-valued world manifold variables 0. The expression (5.4) simplifies
considerably in the very special case when

(5.4)

)

X = X(s), XF = XP(g%), Xrhz = Xp(ghoz) | XMER XA (o)

)

XH1H2Hd+1 — Y HB2Hat2 — 0 = XHIH2THED — () (55)

The above conditions of eq-(7) basically describe grade-preserving maps from the Clifford-
valued world manifold to the target Clifford-valued C-space. It comprises of maps such
that points are mapped to points; areas to areas; volumes to volumes ... and where
one freezes to zero the polyvector valued target coordinates whose grade exceeds the
dimension d (of the world manifold an whose associated C-space is 29-dim).

In this case the determinant-like expression (5.4) factorizes as follows

5 ( e d X! OX™ 8Xud> ( [a1b1] [azb2] gxXm gXxmare )
Ds 6 h 6 - “ ..

0s OJov Qo = Dot Oogubr  Pgazbz

Hiv1p1 p2v2p2 H1V1P1TL u2v2p2T2
€[a1b161} [a2baca] ... 0X 0X 6[a1b101d1} [a2bacada] ... 0X 0X
ao-allncl aO-CLQbQCQ e aa—alblcldl ao—angCng

(5.6)
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It is convenient to introduce an ordering of indices to avoid having to introduce fac-
torial numerical factors. For the bivector coordinates o1, g2 ... one requires to have
a; < by;ay < by;---. For the trivector coordinates o®1¢1 g%b2¢2 ... one requires to
have a1 < by < c5a9 < by < c9;---, etc. Similar ordering prescription applies for the
XHvi o Xmrper ... target, C-space polyvector valued coordinates. The generalized version
of the epsilon symbols ensures that no polyvector-valued indices are repeated.

A remark is in order. One could also view the induced metric Hap =
Oa XM 0 XN Gy on the 2¢-dim Clifford-valued world manifold as a hyper-matrix but
the construction (if possible) of the hyper-determinant of the C-space metric (a hyper
matrix) is a more difficult problem [13], [14]. For this reason we shall not pursue this road
at the moment to build generalized p-brane actions in C-spaces based on Nambu-Goto
actions associated with the square roots of hyper-determinants.

Let us proceed. For example, when d = 2 and D > d, eq-(5.6) is given by

(5.7)

OX [ aay OXM OXM \ 9X M
s \ ¢ gou 9o D012

The term %—f corresponds ef fectively to the motion of a point particle parametrized
by the variable s and moving in one-dimension described by the coordinate X. The term

€192 %{f:f %f:; is the standard Poisson bracket {X*#*, X#?} with respect to the variables
o', 0% and associated with the motion of a string in a D-dimensional background. The
term % corresponds ef fectively to the motion of a point particle parametrized by
W—dimensional background described by

the (bivector) variable o2 and moving in a
the (bivector) coordinates X#1*1.
The analog of the Nambu-Goto action would now be

0X oXmmn
S =k / ds dotdo? do'? m \/( {Xm, Xr2} )2 o [( 912 )2 =

RNy R e R
K / dX / do'do? \/( { X Xn2} )2 / \/W (5.8)

Concluding, the action (5.8) factorizes and collectively describes a point particle mov-

ing in one-dim; a string moving in D-dim, and a point particle moving in @—dim.
Furthermore, one should notice that one has a product of terms instead of a summation
of individual actions.

The conditions of eq-(5.5) in the more general case ( D > d > 2 ) describe richer
dynamics . Taking into account that a p-brane spans a p 4+ 1 dimensional world volume
one has that the second term in eq-(5.6) describes the standard Nambu-Poisson bracket
associated to a d — 1-brane (spanning a d-dim world volume) moving in a D-dim target

background. The third term describes effectively a d(dT_l) —1-brane moving in a D(DT_I)—dim
target background. The fourth term describes effectively a W — 1-brane moving in

37



a 7D(D_?!(D_2)—dim target background; and so forth. The final term (X #1#2Hd /Jg@12 0d)

corresponds ef fectively to the motion of a point particle parametrized by the (highest
123--d D(D—1)(D—2)-+(D—d
d!

grade polyvector) variable o and moving in a )_dimensional back-
ground described by the (polyvector) coordinates X#1#2 Hd,
When the conditions of eq-(5.5) are imposed on the target C-space polyvector valued

coordinates the number of degrees of freedom N (when D > d) is given by

N=D+D+@)+ .. +@=20+O+@D+ ...+ =259

hence the number of transverse degrees of freedom is N —2¢ > 0. When D = d one
has N = 2P = 29 and the number of transverse degrees of freedom is zero as expected.
Therefore, by choosing D > d one will have non-trivial dynamics since the number of
transverse degrees of freedom are not zero.

To sum up, the action associated with the expression in eq-(5.6) is defined to be

S =& / ds dot do? ... do'® do® ... do'® do'®t .. do'P1 VA (5.10)

where A is the square of the expression given by eq-(5.6) and effectively describes a
collective ensemble of points and p-branes, for certain specific values of p, and each moving
in different target space dimensions as discussed above.

5.2  p-brane/polyparticle Duality

We will describe now how a polyparticle in C-space may have a correspondence with a
nested hierarchy of point particles, strings, membranes and p-branes in ordinary space.
Let us begin by recalling the infinitesimal interval displacement in C space

(d2) = dXpr dXM = (dX)* +L72 dX, dX* + L7 dX,,, XM 4+

L2 dX ..y, AXH1H2 1D (5.11)
X is the Clifford-scalar part of the Clifford-valued coordinate X*. The values of M range
from 1,2,---,2P. ¥ and X are both taken to be dimensionless by introducing suitable

powers of the length scale L (it can be chosen to be equal to the Planck scale) . The
polyparticle dynamics is parametrized by the C-space proper time variable ¥ such that
the polyvector valued coordinates describing the motion of the polyparticle in C-space
are determined by the 2P functions XM = XM (%)),

When n = p+1, the p-brane/polyparticle duality /correspondence is defined as follows

dX,u‘l/»LQ ~~~~~ 120 )2

L2 {Xm Xk XHe)2
{ Y ) Y }0' ( dZ

(5.12a)
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1 quLug ..... n
- )2 n M1 1% Hn 2
= /dE\/( ) e Tn/da\/{X Xk Xm)2 . (5.12D)

T,, is the n—1-brane tension and whose physical units are (mass)™ = (length)~". The val-
ues of n range from 1,2,---, D. For n = 1 one has the point particle action parametrized
by the time-like variable o! of the world line in ordinary spacetime.

s =m [ dtf (‘Zﬁ)? (5.13)

For n = 2 one has the string action

oXH gXH

0ot Qoaz’ o=12

(5.14)
where o', 0% are the temporal and spatial coordinates of the worldsheet, respectively; and
so forth. For a p-brane whose world volume is n = p+ 1-dim one writes the p-brane action
given by the right hand side of eq-(14b) in terms of the Nambu-Poisson bracket

§ = Ty [ dotdo® \[({X0, Xra} )2, X0, X0} = e

)G CE G

Jdo Qo Qow+t

DG RN (3 SRR , a=1,23,---,p+1

(5.15)

One should note that we are using the epsilon symbol in defining all the above brackets.
One could have used the epsilon symbol only in the highest grade case, corresponding to
the case when p + 1 = D, and defined the lower grade brackets in terms of an auxiliary
number of antisymmetric tensor fields w® - of different ranks if one performed the

derivatives with respect to all the o variables o', 02, --,oP. For instance

oXHM gXHe
dou Joz’
oXH gXH: gXHs
do® Qo Qo
ete, ... However this multisymplectic approach will complicate matters since one must
satisfy the (generalized) Jacobi identities (fundamental identities) which will constrain the
functional form of the auxiliary number of antisymmetric tensor fields w® . For this
reason, to simplify matters we define the brackets solely in terms of epsilon symbols as
shown above in eqs-(5.14,5.15). In this way we have a nested hierarchy of point particles,
strings, membranes and p-branes in ordinary spacetime. The sequence of variables is
nested as follows o' C (0',0?) C (¢%,0% 03%) C--- C (0!,0%--+,0P).

A realization of the duality conditions in eq-(5.12a) can be simply realized when both
sides of eq-(5.12a) are equal to a constant. Since the right hand side of eq-(5.12a) depends
on Y and the left hand side depends on ¢® an equality is possible when both sides are
equal to a constant. In particular, the simplest choice to attain this equality is when

(XM, XY = e a=1,2,3--,D (5.16a)

{X“l,X“Z,X“?’} = (010203

L a=1,2,3--,D (5.16b)
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X' =o', X2 =o® XP =cod X" =c,0" ..., XP = cpoP (517)

where ¢y, co, ..... are constants and such that {X#1, X#2 . . Xt} = 0 except for the
specific value

L XY X2, X" = (cicgennncy)? LM = ( )2 = |V]* = constant

(5.18)
On the other hand, from the equations of motion associated with the free polyparticle
. . . . M .
action in C-space [1], after taking into account that (dfz )2 =1 and that ¥ is chosen to
be dimensionless,

dXM B2 XM
— [dx = /dE\/ 2 e o T2 ) XM = X, R, Xk L XMk
S / () w2 0 o T

(5.19)
one concludes that the components X#1#2:#n () grow/decrease linearly with ¥ so that
the n-volume velocity components V#i#H2 #n — dXEVZHR a6 copstant. This is indeed
consistent with the results found in eq-(5.18) where the magnitude of the n-volume veloc-
ity V is constant. If the n-volume velocity components are constant then the magnitude
of the n-volume velocity is also constant. The converse is not true. A typical example is
ordinary circular motion. In [35] it was shown that when the areal velocities are constant
the Nambu and Schild string actions lead to equivalent equations of motion. Similar
conclusions hold for p-brane actions.

Proceeding with eqs-(5.17,5.18) one learns, if one equates both sides of eq-(5.12b) and
sets T,, = L™™, that the (dimensionless) polyparticle’s proper time in C-space obeys

1 Q
zz—/”z—" ~1.2.....D 2
T d"c T P=L2, (5.20a)
and also

VY =V, = /dna\/{Xm,Xuz,...,Xunp, n=1,2...D (5.200)

Because the magnitudes of the n-volume velocities |V| are constant, from (22b) one
learns that the scale sizes of the evolving world lines, world sheets, world volumes, .... are
linearly proportional to the polyparticle’s proper time ¥ in C-space. This is not unlike to
cosmological models where the size of the cosmos is taken as a “dilational” clock. From
eq-(22a) one may also infer directly that ¥ only remains invariant under length, area,
volume, hyper-volume preserving diffeomorphisms of the ¢ coordinates. We have chosen
a very simple case in eqs-(5.17). More complicated cases warrant further investigation.

To study further the polyparticle/p-brane correspondence let us begin by writing the
wave equation associated with a free polyparticle in C-space in natural units 7 = ¢ = 1
and when L =1

; o¥ (XM %) 02U (XM %)

= — = 7 XM = x xr XMk . X HH2e 4D 5.21
az 8XM aXM ’ ) ) ) ) ( )
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A solution of (23) consistent with the dispersion relations Py, PM = M? is

(XM YY) = Eap i (Py XM — M?Y)] (5.22a)

inserting the solution (5.22a) into (5.21) yields (Py,P™ — M?)¥ = 0, and which in turn,
after replacing Py — —id/0X™M leads to the analog of the Klein-Gordon equation in
C-space for the Clifford-scalar-field ®(X™)

2
(aXMaaX + M2> o(XM) = 0, when ¥(XY¥) = &(XM) Ezp[ —i M?> ¥ |
M
(5.22b)

It is important to emphasize that the decomposition of ¥(X* ¥) into a product of
separate wave functions

U(X,%) U(XHT) U(XH S ... =

Exp[i(PX — P*Y) ] Exp[i (P, X" — (P)*X)] Exp i (Pw X" — (PL)*Y)] ...
(5.22¢)
does not solve eq-(5.21). The reason is that the C-space invariant, and >-independent
quantity, is given by the net sum of the terms P? + (P*)?+ (P*)?+--- = M?. Hence each
Lorentz-invariant term P2, (P#)% (P#)2 ... by itsel f is not Z-independent, nor invariant
under the generalized C-space version of the Lorentz transformations.
Choosing instead an ansatz solution to eq-(5.21) given by the following “diagonal”
sum

T(XM ) = Ty(X,S) + Ty (X4, D) + Tp(XMH2 5) + ... + Up(Xre—-io 3) (5.23)
and inserting it into eq-(5.21) leads to the family of decoupled equations

QW (Xt R DU (X pz st 3

= — =-1,0,1,2,---, D—1. (5.24

' 00X OX H1p2- - fpt1 aXM1M2~~--Mp+1’ p ) T ) ( )

where p = —1 corresponds to the scalar part X of the polyvector X™. In the string,
M-theory literature p = —1 corresponds to brane-instantons [30].

We are going to compare the wave equations (5.24) with the p-brane (p-loop) wave
functional “Schrodinger-like” equation obtained by [35] and which are based on the Schild
p-brane actions that are invariant under length, area, volume, hyper-volume preserving
diffeomorphisms of the ¢® coordinates. As a result the corresponding Hamiltonian den-
sity is not zero, whereas the Hamiltonian density associated with the fully reparametriza-
tion invariant Nambu-Goto p-brane action is zero. The p-brane (p-loop) wave functional
“Schrodinger-like” equation [35] is given by

1 D 12 - D 12 62\1}[019;‘/17-%1] o
s (f, PV ) VR e =

HOMLH2.---fip
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Z' a\II [Cp7 ‘/;H’l]
Vi

where s = s',s? ..., sP are the intrinsic spatial coordinates of the spatial p-loop C,
of topology S? (a closed p-brane) that is moving in a D-dimensional target spacetime
background and sweeping a p+ 1-dimensional timelike world hypertube €2, 1 whose p+ 1-
dimensional proper volume is V1. The proper volume V,,;; acts now as a clock/temporal
variable and from eq-(5.20) one can see its relation to the polyparticle’s proper time ¥ in
C-space.

The p + 1-vectors YHorkz—t»[C (s)] are the holographic [35] coordinates associated
with the spatial C, loop located at the boundary of the time-like world hypertube af-
ter it has swept a Vp;; volume. The Cj,-loop encloses a p + 1-dim region and whose
projections onto the coordinate planes define the values of the holographic coordinates
Y HOoH1H2.-.-fip [Cp(s)].

The measure of integration of the p-dimensional loop C), of topology S? is given in
terms of the square root of

(5.25)

, oY gy oY H»
dsit dsi2  Qsiv
(5.26)
where Y#(s) are the ordinary coordinates in spacetime of the points of the p-loop C,.
The terms inside the integrand in the left-hand side of the loop wave equation (5.25)
explicitly depend on the spatial loop coordinates s at each point of the p-loop C,, whereas
the terms in the right-hand side only depend on the shape of the p-loop. For this reason

one must integrate the left-hand side along all the points of the p-loop. This integration
52\1’[Cp§vp+l}

SY HOH1H2 - Ip (s) 6YHOH1H2----HF(S).

ticular case when the non-zero modes contribution averages to zero, one is solely left with

the zero-modes contribution

(52\11[0;03 %+1] 82\1,[1/'(/6())#1#2..‘.%; ‘/;9-1-1]

< >aqverage =
OY HorLk2--2(8) Y i iy in....ap (S) ! 5%?”1#2 " OY o ppa.. i (0)

(Y)? = {ym yr . Ym)2 [ym yr Ykl = e

amounts effectively to taking the loop-average of In the par-

(5.27a)

such that the wave equation associated with the latter zero-modes denoted by Y(g;)” LH2 et

becomes

- 1 82\11[}/(5()W1u2....up; VZD—H] _ a\lj[y(l(;())muz....up; ‘/;7"!‘1] (5 27b)
2(p + 1)Imptt ay(g;muzm.up OY s piz....11p3(0) WVt -

and bears now an identical expression (up to numerical factors) to the functional form
of eq-(5.24) obtained from the wave equation of a free polyparticle in C-space. This also
requires using the explicit correspondence ¥ ~ V), derived in eq-(5.20b), when n = p+1,
so that a% ~ ava - and matching the zero modes coordinates (quenched-like degrees of
freedom) Y(’égmm""“” to the Clifford polyvectors X#1#2  Hp+1,

Instead of recurring to the p-brane (p-loop) wave functional “Schrodinger-like” equa-
tion [35] the polyparticle/p-brane duality/correspondence at the quantum level should be

given in terms of the functional (path) integrals for the partition functions
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(5.28)
the crux of exploiting the correspondence (5.28) is that it may provide another avenue to
quantize p-branes (a notoriously difficult and unsolved problem) from the more straight-
forward quantization of the polyparticle in C-space. For instance, a preliminary relation
between the quantum membrane propagator and Clifford-polyvectors was found in [36].

We conclude by adding some further comments. So far we have only discussed the
physics of a free polyparticle and free p-branes. It is warranted to introduce interactions.
The Hamiltonian density for p-branes in the presence of an external potential is now given

by

m(p+1)
Ho= gy XL X VXX X (529

where X* = X*(0%), a=1,2,---,p+ 1. Above, we simply added a potential term to
the kinetic terms of the p-brane Schild Hamiltonian density.

The polyparticle version of eq-(31) is (after reintroducing the length scale parameter
L)

(p+1) A X P2 e pt 1
H = = ( )P+ V(X (5.30)

202+ (p + 1)! dx
One may choose for potential (density) V' the polyparticle analog of the relativistic
point-particle harmonic oscillator and whose wave-functions in both configuration and
Bargmann-Fock like space were found using group-theoretical methods by [37]. These
wave-functions are provided by generalized Hermite polynomials. Similarly, one may ex-
plore the polyparticle generalization in C-space of the Born-Dirac oscillator [38] which is
now characterized by an equation of the form

ov

o (5.31)

(mMa)‘?M +i XM Xy — M) (XM YY) = g
with XM = X, X# X##rz ... X#m#2--t0 and exhibiting an X < PM Born’s reciprocity
symmetry. As usual, powers of a suitable length (inverse mass) must be inserted in
(5.31) to match physical units. The quantization of the Born-Dirac polyparticle oscillator
in C-spaces (construction of the explicit quantum states, spectrum, ....) may facilitate
the quantization program of p-branes living in ordinary spacetimes, and experiencing an
external interaction, via the p-brane/polyparticle duality /correspondence proposed in this
work. The energy-angular momentum spectrum of the Born-Dirac point-particle oscillator
behaves as J ~ E? [38] which resembles the Regge behavior J ~ a/m? of the string (/' is
the inverse string tension).

Another Schrédinger-like wave equations worth mentioning are those based on the De
Donder-Weyl quantization approach to gravity [39] where a parameter of inverse spatial
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volume dimensions, Clifford-valued wave functions and Clifford-Dirac operators are es-
sential. To finalize, and related to the quantization approach of p-branes via the quantum
polyparticle, it is worth mentioning that the n-ary commutators of the quantum opera-
tors X* can be expressed in terms of Clifford polyvector-valued coordinate operators as
follows

[X’“, Xuz] -~ Xmuz, [XMI’ Xuzj Xus] ~ Xumwa’ o
[X,U17 X“2,---, Xup+1] ~ X HR2 Bt (5.32)

when the coordinate algebra is isomorphic to the Clifford algebra [40]. The essence of
(5.32) is the compositeness nature of the polyvector-valued coordinate operators in terms
of the ordinary p-brane coordinate operators.

6 Clifford Gravity Cosmology and Dark Energy

We begin by explaining the relationship between Clifford-algebra-valued Gauge Field
Theories and Conformal Gravity. By fixing some of the gauge symmetries and imposing
some constraints one recovers ordinary gravity. Let us show how the conformal algebra in
four dimensions admits a Clifford algebra realization; i.e. the generators of the conformal
algebra can be expressed in terms of the Clifford algebra basis generators. The conformal
algebra in four dimensions so(4, 2) is isomorphic to su(2,2).

Let g = (—,+,+,+) be the Minkowski spacetime (flat) metric in D = 3 + 1-
dimenisons. The epsilon tensors are defined as eyo3 = —€”? = 1, The real Clifford
Cl1(3,1, R) algebra associated with the tangent space of a 4D spacetime M is defined by
the anticommutators

(T, Ty} = Tuly + Tyl = = 210 (6.1a)
such that
[y, Ty] =2Ta, Ts = —iTo 1Ty, (T5)* = 1; {T5T.} = 0; (6.1b)
Labed = €abea I's;  Tap = ; (Lal'p = T3l) - (6.2a)
Lape = €abea s T Tapea = €aved I's. (6.20)
FaTo = Lo+ 0w, TaIls = ;eabcd re, (6.2¢)
Loy Te = e Ta = e T + €apea T's T (6.2d)
TeTap = Nae Ty — Moe Do + €aved I's T (6.2¢)
To Ty Do = nab T+ e Ta — Naels + €apea I's T (6.2f)
[ Toy = €y Ts — 480 T — 20%. (6.29)
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6% = — (626 — 6360). (6.2.h)

1
2
the generators 'y, gpe, [apeq are defined as usual by a signed-permutation sum of the
anti-symmetrizated products of the gammas. A representation of the CI(3,1) algebra

exists where the generators
1; Fl; Fg, Fg, F4: —ZF(), and F5 (63)

are Hermitian; while the generators I',I's and 'y, for a,b = 1,2, 3,4 are anti-Hermitian.
Using eqs-(6.1-6.3) allows to write the C1(3,1) algebra-valued one-form as

1
A= (14 b Ts + €Ty + fiT Ty + Juff Tu) o' (64)

The physical significance of the field components ay, b, €., fl‘j,w,‘jb in eq-(6.4) will be ex-
plained below.

The Clifford-valued gauge field A, transforms according to A), = U LA, U4+U 10U
under Clifford-valued gauge transformations. The Clifford-valued field strength is F' =
dA + [A, A] so that F transforms covariantly F’ = U~! F U. Decomposing the field
strength in terms of the Clifford algebra generators gives

1
E, = ij 1+ Fj,, [s + Fi, Ty + F;j,i’ r,Ts + 1F;;ﬁ TCup. (6.5)

the Clifford-algebra-valued 2-form field strength is F' = % F,, dx* A dz¥ and
F, = 0,A, — 0,A, + [ A,, A)] where 0,4, = gﬁ;. The field-strength compo-
nents are given by

F,, = 0ua, — dya, (6.6a)

E, = 0uby — 0yby 4 265 fra — 265 fa (6.6b)

i, = 0.6, — Oy, + wzbe,,b — we,p + 230, — 2f7b, (6.6¢)
F2 = 0ufs = 0uft 4wl fup — wi fu, + 2€%b, — 2¢3b,, (6.6d)
Fib = 00 +wiw,, b +4 (el — fifl) — p— v, (6.6¢)

At this stage we may provide the relation among the C1(3,1) algebra generators and
the the conformal algebra so(4,2) ~ su(2,2) in 4D . It is well known to the experts that
the operators of the Conformal algebra can be written in terms of the Clifford algebra
generators as

1 1 1 1
Pa — §Fa (1 _ F5)’ Ka — ira (1 + F5>, D = — 5 F5, Lab = 5 Fab- (67)

P, (a=1,23,4) are the translation generators; K, are the conformal boosts; D is the
dilation generator and L., are the Lorentz generators. The total number of generators
is respectively 4 +4 + 1 + 6 = 15. From the above realization of the conformal algebra
generators (6.7), the explicit evaluation of the commutators yields
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[Paa D] = Pa; [Kaa D} = _Ka; [Pm Kb] = _29abD + 2Lab
P, B = 0; [Ka Ky = 0;.o... (6.8)

which is consistent with the su(2,2) ~ so(4,2) commutation relations. We should notice
that the K, P, generators in (6.7) are both comprised of Hermitian I', and anti-Hermitian
+1',I'5 generators, respectively. The dilation D operator is Hermitian, while the Lorentz
generator L, is anti-Hermitian. The fact that Hermitian and anti-Hermitian generators
are required is consistent with the fact that U(2,2) is a pseudo-unitary group as we shall
see bellow.

Having established this one can infer that the real-valued tetrad V¢ field (associated
with translations) and its real-valued partner f/lf (associated with conformal boosts) can
be defined in terms of the real-valued gauge fields e}, f; as follows

et Ty + fiT 5 = Vi P + VK, (6.9)
From eq-(6.7) one learns that eq-(2.9) leads to

er — fi=Vh o el + fi=Vl =

a 1 a Cra a 1 ra a
= S VT, Lo = -V, (6.10)

p 2 9

The components of the torsion and conformal-boost curvature of conformal gravity are
given respectively by the linear combinations of eqs-(6.6¢, 6.6d)

a ab __  1a . a ab __  pa
Fuu - F;u/ - F},U/[P]’ FMV + FMV - FMV[K] =
Fﬁy r, + FSE r,r's = FSV[P] P, + F;Z/[K] K,. (6.11a)

Inserting the expressions for e}, f in terms of the vielbein V! and f/lf given by (6.10),
yields the standard expressions for the Torsion and conformal-boost curvature, respec-
tively

ra a ab a
FLIPl = 0,V + wiy Vip — Vi by, (6.11b)
FoIK] = 0 Vi + wff Vi +2 Vi by, (6.11c)
The Lorentz curvature in eq-(6.6e) can be recast in the standard form as
ab ab ab ac , b a Y7b  7a 17b
F/“’:R#V = a[u wl,} + W[u wl,]c + 2( ‘/[,LL Vy] + [ VV ) (611d)

The components of the curvature corresponding to the Weyl dilation generator given by
F7, in eq-(6.6b) can be rewritten as

Fo,o= Opby + 5 (Ve Ve = Vi Viga ) (6.11¢)

1
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and the Maxwell curvature is given by F),, in eq-(6.6a). A re-scaling of the vielbein V¢ /I

and ‘N/M“ /U by a length scale parameter [ is necessary in order to endow the curvatures and
torsion in eqs-(6.11) with the proper dimensions of length™2, length™!, respectively.
To sum up, the real-valued tetrad gauge field V! (that gauges the translations P, )

and the real-valued conformal boosts gauge field \N/j (that gauges the conformal boosts
K,) of conformal gravity are given, respectively, by the linear combination of the gauge
fields e, F f/‘j associated with the I'y, I, I's generators of the Clifford algebra C1(3,1)
of the tangent space of spacetime M* after performing a Wick rotation —i [y = I'y.

Gauge invariant actions involving Yang-Mills terms of the form [ Tr(F A*F') and theta
terms of the form [ Tr(F A F) are straightforwardly constructed. For example, a SO(4, 2)
gauge-invariant action for conformal gravity is [45]

S = / ' epea €77 R R (6.12)

where the components of the Lorentz curvature 2-form szyda:“ A dx¥ are given by eq-

(6.11c) after re-scaling the vielbein Vi /I and \N/M“ /l by a length scale parameter [ in order
to endow the curvature with the proper dimensions of length=2.

The conformal boost symmetry can be fixed by choosing the gauge b, = 0 be-
cause under infinitesimal conformal boosts transformations the field b, transforms as
0b, = =2 &% eqy = —2 &,; i.e the parameter {, has the same number of degrees of fee-
dom as b,. After further fixing the dilational gauge symmetry, setting the torsion to
zero (which constrains the spin connection wi’(V,#) to be of the Levi-Civita form given

by a function of the vielbein V), and eliminating the f/j field algebraically via its (non-
propagating) equations of motion, the expression in eq-(6.12) leads to the de Sitter group
SO(4,1) invariant Macdowell-Mansouri-Chamseddine-West action (MMCW) [44] (sup-
pressing spacetime indices for convenience)

1

S = [ (RUw) — 5 VAV ) A (RUw) -

12
The action (6.13) is comprised of 3 terms. One term is the topological invariant Gauss-
Bonnet term [ R*(w) A R°(w)éapeq- The standard Einstein-Hilbert gravitational action
term is given by —l% [ R®(w) AVEA V%44, and the cosmological constant term %4 JVeN
VEAVEAV € peq. 1is the de Sitter space’s throat size; i.e. {2 is proportional to the square
of the Planck scale (the Newtonian coupling constant).

The familiar Einstein-Hilbert gravitational action can also be obtained from a coupling
of gravity to a scalar field like it occurs in a Brans-Dicke-Jordan theory of gravity

VEAVD) €apea- (6.13)

1
S = 5/ d'z \/§ ¢ DS DI ¢ =
1 / 4 1
2 V9 N
where the conformally covariant derivative acting on a scalar field ¢ of Weyl weight one
is

0,(vg g Do¢) + b (Do) + é R ¢> . (6.14a)
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Do = (9 — b,)o (6.140)
Fixing the conformal boosts symmetry by setting b, = 0 and the dilational symmetry by
setting ¢ = constant leads to the Einstein-Hilbert action for ordinary gravity.

We proceed next with the cosmological applications by introducing the Clifford-valued
scalar field (a hyper-complex valued scalar) defined as

1
P — q)A FA — ¢ 1 + ¢a Ya qsab Yab _|_ ¢abc Vabe E ¢abcd Yabed (615)

Now we can propose the most general action as an extension of the MMCW action
displayed in eq-(6.13 ) and given by

= [dwenm < FuF,® > = [dwen < FLFEOCT, T Te > (6.16)

The bracket operation < ..... > denotes extracting the Clifford scalar part of the geometric
product of Clifford-valued quantities. It is the analog of taking the trace of a matrix
product. The most general action can be decomposed into several pieces S = S + Sy +
S5+ S, + S5. Defining ¢@? = eabed @5 = eabed , we have

[ e < FAFE 6™ T Th Y > =
/ d*T €apea €77 ( asi Fy Fod 4 asy Fp, Fos + asg Fly F ) +
/ d'T €qpea €77 ¢ ( asaFypn, Fios® + assFp,e Foh + asgFppe; Fefed) (6.17)

One can rewrite (6.17) in differential form notation as
S5 = / €abed P <CL51 Fab/\FCd +6L52 Fa/\Fde +6L53 F/\Fade ) -+

/ €abed P (CL54 Fabe VAN F“d + ass Fae A Fede + asg Fabef N Fef0d> (618)

One can recognize that the MMCW action (6.13) is contained in one piece of S5 and
given by

Syumew C / dir €abed €7 © ( FSS Fgg ) (619)

when ¢ = 1 as described by eqs-(6.6e, 6.11). One should notice that when the scalar field
@ is not constant the expression

/ d4l‘ \/E ¥ ( R/u/pa RMV,OO’ —4 R;u/ R + R2 ) (620)

is no longer equal to the Gauss-Bonnet topological invariant due to the key ¢(x) factor
and such terms will now contribute to the equations of motion.

The term €gpeq £ A F*?in (6.18) can be rewritten as F'* A F, . while the term egpeqF A
Fabed — P A F| ete.... The components FPed = =F, bed it A dg¥ , bt = = Iy abed it A da?,
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etc. ... are all given by eqs-(6.4,6.5,6.6) after taking into account the relations among the
Clifford algebra generators (gamma matrices) in eqs-(6.1, 6.2). The other terms in the
action are

St = [ dwem < FLFEOTATp1 > =

/ diy e"vre 0 (an FMV Fpa + a9 FSV F, po T Q13 ngb Fu po ) +

/ d43§' G'LWPG ¢ ( Q14 FSBC Fabc po =+ a1y Fsng Fabcd po ) (621)

One can rewrite (6.21) in differential form notation as
81:/¢(&11F/\F—{—6L12FGAFG—|—a13Fab/\Fab) +

/ ¢ ( Q14 Fabc A Fabc + a5 Fabcd A Fabcd ) (622)

So= [ dw e < B FE 6" TaTpm > =
/%b (CL31 FOANFY 4az FOAF +a33FgAFcb) +

/ Pab ( azs B4 A FP + ags FY A FO ) (6.23)

cde

Sy = /d%e“”"” < Fﬁ, F,f; " Talpye > =

/ b (@ F'NF +am FY A F* +am FLAFY +ag Foy AF™ ) (6.24)

Sy = /d4x etrre < F}f}j FpB ¢ Talp Yope > =

o

/¢abc (Cl41 FYNE 4 ag FPANF® + aygs Fabcd/\Fd) +

/ Pabe ( asy FNF% + ags F®, N\ Fo° ) (6.25)

the way to obtain the numerical coefficients a;; is explained in the Appendix.

It is essential to introduce dynamics for the dimensionless Clifford-valued scalar field
® otherwise a variation of the action (6.16) with respect to the ® field will trivially
constraint the action to zero since in this case ® will act as a Lagrange multiplier. The
scalar field contribution to the action for the signature (—, +, 4, +) is

S[®] = [ d'z /g - Lo, e e - Lve 6.26
= [ dv s < — 55 (D) (D @) — S V(@) > (6.260)
The dagger operation @' denotes the reversal operation and is obtained by reversing the
order of the Clifford generators. For example, (VaAY5)T = %A Ya, (YTaAWAY)T = Ve AV AYa,
etc ... so that
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< (D, @) (D" @) > = (Dug) (D") + (Duda) (D"¢") + (Dudw) (D'6™) +

(Dyuave) (D*¢™) + (Duabea) (D*¢™*) (6.260)

where we have omitted combinatorial numerical factors for convenience.

The potential, for example, may be given by a polynomial V(®) = >, a, ®" or
a more complicated function. Upon taking the Clifford scalar part of the potential one
has < V(@) >= V(¢, ¢%, 2, 7%, $***?) which is a complicated (polynomial, for example)
expression given in terms of the 16 scalars. For simplicity we shall choose the analog of a
quartic Higgs-like potential given by

1

V: ZTL)\(|(I)A®A’ —V2)2

1 1 1
Ly = ¢ + 00 + o7 00w + 57 6" Gue + 7 O Pued (6:27)

the reason one must take the absolute value in |®4® 4] is because the Clifford scalar norm

PAd 4 is not positive definite since the 16-dimensional quadratic form has a split (8, 8)

signature [3] when the tangent space metric 7, is Minkowskian diag(—1,+1, 41, +1).
The gauge covariant derivative acting on the Clifford-valued scalar ® is defined as

(D @) T4 = (9,9 Ta + [AJ T, °T¢ ] =
D,®* = (0, ®*) + AP @Y < [T, T'c T > = (9, ") + AJ @ fuc' (6.280)

where we have written the commutator Clifford algebra as [['g,['c] = fz4 L4 and whose
structure constants are displayed in the Appendix. Under infinitesimal C1(3,1) gauge
transformations the Clifford-valued scalar ® field transforms as

~ 1
08¢ = fGp €1 0F, € = Ty = €1 + & + 5w +

1 1
ﬁ é&abc Yabe + 5 fade Yabed (628b)

and the gauge covariant derivative transforms as well §(D,®%) = %, ¢4 D,®P.

To sum up, the action S+ S[®] given by eqs-(6.16-6.26) is comprised of (i) ¢ times the
MMCW Lagrangian (6.13) that contains the Einstein-Hilbert and cosmological constant
terms. (ii) Extra terms quadratic in the curvature and torsion. (iii) A coupling of curva-
ture and torsion terms. (iv) kinetic and potential terms for a multiplet of 16 spacetime
scalar fields ¢, ¢%, ¢, ¢, p®°d that from the tangent space point of view behave as a
scalar, vector, antisymmetric tensors of rank two and three and a pseudo-scalar field, re-
spectively. (v) Non-minimal couplings of the scalars and curvature and torsion terms. (vi)
terms involving the field strengths associated with conformal boosts, a dilational (Weyl
gauge field) and a U(1) Maxwell-like generator as displayed by eqs-(6.6, 6.11). A review
of conformal (super) gravity can be found in [45].
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Our action displayed by eqs-(6.16-6.26) is a more complex generalization of the f(R)
modified gravity models involving powers of the curvatures [51]. It is also a more general
extension of the cosmological models based on Brans-Dicke-Jordan gravity [50] and non-
minimally coupled Einstein-Electroweak theory [48]. It contains many more terms than a
U(2,2) = SU(2,2) xU(1) gauge theory (conformal gravity and Maxwell theory) combined
with the kinetic and potential terms of a multiplet of 16 scalar fields (corresponding to a
4 x 4 matrix-valued scalar in the 16-dimensional adjoint representation of U(2, 2)).

Solving the equations of motion of the action S+S5[®| after performing a variation with
respect to all the fields is a very cumbersome project that requires a Clifford computer
algebra package and which is beyond the scope of this work. Fixing and/or breaking
some of the gauge symmetries will simplify things. Let us truncate the action given in
eqs-(6.16,6.26) by freezing all the components of ® to zero except ¢ so that the following
Higgs-like potential V

1

Y = 7 A (® = v A>0 (6.29)
is minimized to zero when ¢, = v. Focusing solely on the terms in eq-(6.19) and the Higgs
potential in eq-(6.26a), we have (i) ¢ times the { Gauss-Bonnet terms, the Einstein-Hilbert
action, and the cosmological constant }; and (ii) the ef fective potential energy density

given by the scalar potential minus the running cosmological “constant” term

1 2

Usr = g A" =V )= 3 (6.30)
Let us define the reduced Planck mass by M3 = (1/87L%) and equate the Planck energy

density 1M} to the value of Ugsy when ¢ = 0 in eq-(6.30)

1 1 1

Ue — 0 = — )\ 4 = - M4 e —

ff(SO ) 14 ( v ) 4 P (1677')2.[/113

By equating the value of the effective potential energy density at ¢ = ¢, to the
present-day observed vacuum energy density one has

(6.31)

1 Vs 1
(jv6 (QD*> —_ — )\ ( gpz — V2 )2— _— = pobs _— =
1 1 14 L3 Ry
Lp 2 1 —120 4
— ) — ~ 1 M .32

where Lp and Ry are the Planck and Hubble scale, respectively. The ratio (%)2 is chosen
to be of the order of 107'?°, Matching the present-day value of the Newtonian coupling
constant with the running coupling appearing in the Einstein-Hilbert term in eq-(2.19),
when ¢ = @, gives

Ox 1 1 1 1

— . f— —_ 2
2 160G 2 8nlL3% y Mr (6:33)
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It is interesting to note that negative values of ¢ furnish a negative coupling G that would
correspond to a repulsive gravitational regime. For the time being we shall focus in the
case where ¢ > 0.

Finally, from eqs-(6.30, 6.31, 6.33) one arrives at the following numerical results for
the [, v, A parameters of the Higgs-like potential (6.29)

1 Ry
[ ~ ~ —
RH, A" (Lp

= )27 A
167

12
—~
—_
D
N
S~—
[N}
—~
\L
Iy

(6.34)

and ¢, ~ V.

From the plot of the graph Ue.s¢/pops versus ¢ one learns that ¢, < ¢, = v but its
value is very close to v. Since the throat size of the present de Sitter accelerating universe
| = Ry agrees with the value for [ obtained in eq-(6.34) this is sign of consistency.
The value of ¢, + € is the crossover point when the effective potential energy density
(6.30) switches from positive to negative values as ¢ increases (assuming it increases with
the flow of time). Anti de Sitter spacetime has a constant negative energy density and
positive pressure (attractive force) ; whereas de Sitter spacetime has a constant positive
energy density and negative pressure (repulsive force). In our most simplified scenario,
the universe has not entered yet the phase of negative energy density where its expansion
will deccelerate, until the point ¢,, , when it will crossover again into a positive energy
density epoch of perpetual accelerated expansion.

Our results obtained above are compatible with a very rapid de Sitter inflationary
phase in the very early universe because of the very large initial value of the (positive)
energy density. An extensive and recent review (with a vast number of references) about
cosmological inflation and its realization in quantum field theory and in string theory can
be found [46]. Furthermore, our results are also consistent with the present-day de Sitter
accelerating universe with a very small value of the vacuum energy density (6.32) due to
the very large value of the Hubble scale. More recently, the authors [49] have argued that
the so-called cosmological constant fine-tuning problem (why the cosmological constant
observed today is so much smaller than the Planck scale or why the universe is accelerating
at present) can be solved with the help of Higgs inflation by simply assuming a variable
cosmological “constant” during the inflation epoch. This is compatible with our findings.

To sum up, in our simplified scenario all the parameters [, v, A of the Higgs-like scalar
potential (6.29) are given in terms of the two fundamental scales, Lp, Ry (a lower and
upper scale) by eq-(6.34) which allows us to reproduce the extremely small observed vac-
uum energy density (6.32) and the current value of the Newtonian gravitational coupling
(6.33). Nottale [23] in his development of the Scale Relativity Theory has proposed a res-
olution of the cosmological constant problem based also on these two fundamental scales
Lp,Ry.

The fact that a running Newtonian coupling in eq-(6.33) leads to G = % — 00 when
¢ — 0, at the Big Bang singularity for example, does not mean that the Einstein-Hilbert
action necessarily collapses to zero, because one may have R = oo at the singularity such
that the ratio R/16mG might still be well defined. In order to study the behavior of
the scalar ¢ as a function of z*, one has to determine the spacetime dynamics of p(z*)
which is obtained by performing a variation of the truncated action with respect to ¢,
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and yielding a very complex equation of the form

1 1 OV (yp) etrro b e
ﬁ DMDN‘SO — ﬁ agp -+ Eabed W <a51 Fl“lj Fyg 4+ ... ) —+
1
= (ACAl + A%AL ) o =0 (6.35)

12
the last terms in (6.35) stem from the contribution [A,, ®]* to the (D,®*)(D*®,) terms
in the truncated action.

One cannot solve eq-(6.35) without performing a variation of the action with respect
to the remaining gauge fields. In the most general case, one has to study the full space-
time dynamics of all the gauge fields involved in the non-truncated action, with the key
contribution of the kinetic and potential terms (D,®4)(D*®4), V() for all the scalars,
to see whether or not there is a dynamical evolution of the 16 scalar fields that is con-
sistent with the extremely small value of the vacuum energy density observed today, and
associated with a de Sitter accelerated phase of expansion. The throat size of the de Sitter
solution is [ = Ry.

Fermionic matter terms and gauge fields of the Standard and GUT Models should be
taken into account in the most general theory. A de Sitter, Anti de Sitter and Minkowski
vacuum spacetime solution is also consistent with a breaking of the SU(2,2) ~ SO(4,2)
conformal symmetry down to the de Sitter SO(4,1), Anti de Sitter SO(3,2) and
Minkowski SO(4) one. Recently, the authors [47] studied the problem of obtaining de
Sitter and inflationary vacua from dimensional reduction of double field theory (DFT) on
non-geometric string backgrounds. They also considered a new class of effective potentials
that admit Minkowski and de Sitter minima.

Before embarking into the study of the full action comprised of eqs-(6.16-6.26), one
can start instead with the simpler Clifford-gravity inspired action

s = [ dwys (w[RWpaRW ~4 R, R" + R] -5 R +;j) -

[ @ V5 (5 @) (0%9) + 35 Vie) ) (6.36)

as a testing ground for cosmological scenarios. An even simpler action was the Weyl
invariant action investigated in [52] where the source of dark energy was identified with
a dilaton-like scalar field § of dimensions length™' that is required to implement Weyl
(scale) invariance of the action

= o [ i (0 Rua — 5 (D) (D) ~ V) (637a)

under the Weyl scalings

0 =e0; g,=e"w Ruye =€ "Rwew, V()=e"V(0)
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D0 =0.0—A,0 — (D.f) =e D0, A, =A,—0.,.. (6.37b)

the Weyl symmetry naturally selects a quartic potential V' ~ #*. It was shown in [52]
how the action was related to a Brans-Dicke-Jordan model whose w parameter had its
critical value w = —3/2 and leading to the observed constant vacuum energy density
when the scalar field § was scaled to a constant such that (6,)? = 1/G. Closely related
results have been obtained recently by [53], where dark energy is due to the existence of
a Dirac scalar field in a conformal theory of gravitation. In this cosmological model, dark
energy (described by an effective cosmological constant) is a function of a Dirac scalar
field and such that there is an exponential decrease of the value of the scalar field (from
the inflation stage) down to a constant limiting value at large times.

To conclude, we believe that Clifford-gravity-based cosmology is a promising avenue
to understand the origins of the very small presently observed value of the vacuum energy
density, and the 16 scalar fields corresponding to the Clifford-valued scalar ® in four-
dimensions could be plausible dark energy /matter candidates.

7 Moyal Deformations of Clifford Gauge Theories of
Gravity

In this section, a Moyal deformation of a Clifford C1(3,1) Gauge Theory of (Conformal)
Gravity is performed for canonical noncommutativity (constant ©*" parameters). In the
very special case when one imposes certain constraints on the fields, there are no first
order contributions in the ©*” parameters to the Moyal deformations of Clifford gauge
theories of gravity. However, when one does not impose constraints on the fields, there are
first order contributions in ©*” to the Moyal deformations in variance with the previous
results obtained by other authors and based on different gauge groups. Despite that the
generators of U(2,2),50(4,2),50(2,3) can be expressed in terms of the Clifford algebra
generators this does not imply that these algebras are isomorphic to the Clifford algebra.
Therefore one should not expect identical results to those obtained by other authors. In
particular, there are Moyal deformations of the Einstein-Hilbert gravitational action with
a cosmological constant to first order in ©#” . Finally, we provide a mechanism which
furnishes a plausible cancellation of the huge vacuum energy density.

Let us begin with the associative and noncommutative Moyal star product when the
(inverse) symplectic form Q" = —Q* does not have an X-dependence. It is defined as

( A x Ay )(Z) = exp( ; " Oxu Oyv ) A1(X) AQ(Y)lX:Y:Z =

00 1\n
S (721)' Qv Quave QI (D A1) (O 1 A2) (7.1)
n=0 :

821#2 ------ Jo Al(Z) = am auz ------ aun Al(Z)- (7-2&)



O A(Z) = Oy By oo D, As(2), (7.2b)

ViV2...... 12

For simplicity we shall take the very special case of canonical noncommutativity
[(XH XY, =iO" = QM = constants, such that the star product is the standard Moyal
one. If the fields and their derivatives vanishing fast enough at infinity, one has the
cyclicity property of the integral

/A * B = /AB + total derivative = /AB = /B x A (7.3)

/A*B*C’ = /A(B x C) + total derivative = /A(B*C) =

/ (B x C)A = / (B * C) * A + total derivative = /B «C x A (74)

therefore, when the star product is associative and the fields and their derivatives vanish-
ing fast enough at infinity (or there are no boundaries) one has

/A*B*C:/B*C*A:/C*A*B. (7.5)

The relations (7.3-7.5) are essential in order to construct invariant actions under star
gauge transformations of the form §F), = i[{, F,,].. The invariance of the actions is due
to the associativity property of the star products and the cyclicity property of the integrals
and of the Clifford scalar part of the geometric product of the Clifford generators. Taking
the scalar part is the analog of the trace of a matrix product.

One should notice, for example, that when one has a Lie-algebraic type of noncom-
mutativity, the ©'s are now X-dependent [X*, X"], = i©"(X) = ifs” X? so that the
cyclicity property no longer holds since the star product is X-dependent. For a detailed
study of how to remedy this problem see [64].

Due to the noncommutativity of the spacetime coordinates, the components of the
Clifford-algebra valued field strength are now modi fied as follows

Fu = Fo, T = (0, AT — 9, AT ) Te —

5 (AT AZ — AT ALY (T, T} = 5 (A Al + AD«AL) [Tu, Tg ). (76)

The commutators [ I'4, I'g | and anti-commutators { I'4, I's } in eq-(7.6), where
A, B are polyvector-valued indices, can be obtained from all the relations provided in
the Appendix. Notice that both the standard commutators and anticommutators of
the gammas appear in eq-(7.6) and which now define the Clifford-algebra valued field
strength in noncommutative spacetimes; i.e. if the products of fields were to commute
one would have had only the Lie algebra commutator A4, A% [I" 4, 's] pieces without the
anti-commutator {I'4,I'g} contributions in the r.h.s of eq-(7.6).

We should remark that one is not deforming the Clifford algebra involving [ T4, T'p |
and { T4, T'p } in eq-(7.6) but it is the ”point” product algebra A%, x A% of the fields
which is being deformed. (Quantum) g¢-Clifford algebras have been studied extensively
by [68].
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The symmetrized star product in terms of ©*” = constants is

1
AL 5 AP = E(A;j‘*A,,BnLAVB*A;‘) = AL AP +
-2
1
g@C‘fﬁ O™ (0o O AL) (05 Ox AD) + ... (7.7)

the antisymmetrized (Moyal bracket) star product is

A v, AB = ;(AZ‘*AVB—AVB*A;‘) = 0% (9, AN) (95 AB) + .. (7.8)

Early works on Moyal deformations of gravity can be found in [60],[57],[55]. Examples
of an X-dependent O (z) occurs in x-deformed Minkowski spacetimes [19]. An extension
of the Seiberg — Witten (SW) map for X-dependent ©*(x) was provided by [64], [58],
[59], [65], [66], among others, relating the non-Abelian noncommutative gauge fields based
on noncommutative coordinates and the non-Abelian gauge fields based on commutative
coordinates. It is then when one may construct the proper expressions for the de formed
field strengths, associated with the noncommutative coordinates, in terms of the unde-
formed field strengths. Since the former involve the universal enveloping algebra that
is in finite dimensional one must find a criteria to reduce the number of the degrees of
freedom to a finite one; this is attained via the Seiberg-Witten map.

The main advantage of recurring to a Clifford algebraic formulation described in this
work, is that both the commutator and anticommutator algebra in eq-(7.6) closes and
this will simplify the laborious and cumbersome Seiberg-Witten procedure, involving the
universal enveloping algebra. One may now proceed to perform the Moyal deformations
of the field strengths and the action in a straightforward fashion.

The Moyal deformation of the terms S5 encoding the MMCW gravitational action
with a cosmological constant is given by

S(S)* = / d4l‘ e ]:/;4,/ % ]:57 % ¢abcd I'4Tp Vabed > =
d4 wvpo JT_'ab JT_-cd Fo fbcd F J—_'abcd
T €gped € o x| anify, xS Fasy S, kS tasy Fu xS, +

/ d*x €qpeq €777 p ¥ ( asaF v * Foel + assF e * Fool 4 aseF ey *f;gfcd) (7.9)

Before studying the Moyal deformations given by the action (7.9) one needs to establish
the dictionary among the different Clifford C1(3, 1) gauge field components and the fields
of conformal gravity. From eqs-(6.4-6.6) one can infer the following correspondence

ab ab a a abc a abed
AV < w?, Al eel, Ao fl AV o by, Ay a, (7.10)

Let us look at the first order ©-corrections to the components of F SS given by eq-(6.6e)
upon using eq-(7.6) and the equations in the Appendix
WFw = Fio + 07 0,40 95A,e — O 0,40 03 A, (7.11)
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Repeating this procedure with the other field strength components in eqs-(6.6a-6.6d)
yields the first order ©-corrections

(1)‘FMV = ‘F'MV + 2 @aﬁ 8(1./42 aﬁAye -

2 0% 0, A OgAyep —2 0% o A9 g A ey, +

2 0% 9, AT 95 Ay ran 7.12
i B fg
WFe, = Fi, —260% 0,A%7 954, (7.13)
1
(Uf;zlljc — fzgc +9 Qo8 aa.AZb aB-A,C, . 5 08 9 Aabef 9 Auef (7.14>

1
WFL = Fuft+2 0% 0 A7 0547 + 5 ©% 0, A1 05A7; —

i 07 0y AT 05 A, (7.15)

We have indicated in the previous equations (7.11-7.15) that one has a first order correc-
tion by attaching explicitly a superscript (! to the field strength expressions in the left
hand side. The expressions for the components of F,, 4 in the right hand side are obtained
explicitly from eqs-(6.6a-6.6e ) by replacing the commutatwe gauge fields AA for the
noncommutative ones A;‘.

Having written the above expressions (7.11-7.15) for the noncommutative field
strengths in terms of the noncommutative gauge fields AA it remains to write the lat-
ter noncommutative fields in terms of the commutative ﬁelds AZ‘ via the Seiberg-Witten
map procedure. A lengthy procedure (see [61], [62]) yields the following expression for
the noncommutative field strengths F,, in terms of the commutative fields, after ommit-
ing the Clifford-valued internal indices for simplicity since F,, = ]—" La, Fu = FMAVF As
AN = Aﬁr A,

]' « 1 «
Fur = Py + 50 {Fua, Fig} = 107{A, 9+ Dp)F}+-- (T.16)

where the covariant derivative is defined in the adjoint representation

D,F,, = 0,F,, —i[A,, F. (7.17)

Similarily, the Seiberg-Witten map allows to express the noncommutative scalar fields
components present in the Clifford-valued field ® in terms of the commutative scalar
fields components present in the Clifford-valued field ®

a 1
® = - 0% {Aa, (05 + D)@} + ... (7.18)
see [61] for the case of a SO(2, 3)-valued scalar field.
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All that rests now is to evaluate the individual components of F,, = nyF 4 in the
left hand side of (7.16) after performing the geometric products of the Clifford algebra
generators appearing in the right hand side of (7.16) due to the decomposition of F,, =
FoTa, Ay = AT 4. A similar procedure is performed in eq-(7.18).

We shall focus for now on the contribution up to first order in the ©-terms to the

Clifford bivector components fl‘fg%b

1
WFL = Fi +5 0% (Fir Fose — Fiot Fupea ) +

1
5 @aﬁ (F;wcc Flfgb - Fuoccd ngab) + . (719)

The extra terms in (7.19) are of the form O(AJF + AAF'). For example

—i 0 (AL OFye — AL OgF e ) — i O A% Ageq FY, (7.20)
A similar procedure yields the expression for the noncommutative scalar field (jBade =
€%d in terms of the commutative scalar and gauge fields.

The higher order corrections in © are obtained from the higher order terms in the
definition of the Moyal star products and in those terms generated by the Seiberg-Witten
map. Comparing our results, based on the Moyal deformations provided by eq-(7.9), with
the results of others we should emphasize that the authors [62] had for their starting
U(2,2) invariant Lagrangian only the two terms (omitting numerical factors)

L = €mea ( FPAF + FAF) (7.21)

instead of the siz terms present in eq-(6.18). Secondly, they imposed by hand several
constraints on the fields such that F,, = Fj, = F, l‘j,fc =F l‘jijd = 0. And thirdly, they set
p = constant.

Whereas the authors [61] used the Seiberg-Witten map procedure to construct a model
of noncommutative gravity based on the gauge theory of SO(2,3) defined over a noncom-
mutative spacetime characterized by ©* = constants. The starting Lagrangian in [61]
was chosen to be

L = €upeq p F** NF™ (7.22)

They found a cancellation of the ©-terms to first order and which agrees with the results
obtained by the authors [62] (for the group U(2,2)) when one has a canonical noncom-
mutativity. It appears that the cancellation of the first order terms in ©*” might be
model-independent.

Let us examine carefully the Moyal deformation of the eq-(6.16) after one inserts the
explicit expressions for the noncommutative fields inside the integral

/ d*z 7 < @ Fu * Fpe > (7.23)
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the ©-terms up to first order in the integrand will be
® (Fuw *‘Fpa)(l) + &0 (Fuw Fpo) +

% 0% 9,8 95(FLu Foy) (7.24)

The last term is a total derivative after an integration by parts due to the condition
0°%9,05(...) = 0. Hence the last term decouples (it can be dropped if the fields vanish
fast enough at infinity or there are no boundaries). This is to be expected if one does not
wish to introduce imaginary terms to the Moyal deformed action. The hats represent the
noncommuative scalars and @@ is the first order contribution in © to the noncommutative
scalar field. @® is the Clifford-valued scalar field with commutative components.

The first two terms of eq-(7.24) gives

Qo8
4

s

< {Aa, (63 —I—Dﬁ) FMV} Fpg b > M7 —

< FoF,{A,, (Os+Dg) } & > "7 +

CRK
2
The terms that one must extract the Clifford scalar part < ... > are of the form

< {Fop, Fo} Fou ® > 777 4+ (7.25)

0% < {Fou, Fu,} Foo @ > 7 (7.26)
0% < F,, {Fap Foo } & > (7.27)
0% < F,, Foo {Fup, ®} > (7.28)
0 < Fo, Fo { Ay, (05 +Ds) &} > (7.29)

0% < Fo, {Aa, (0 + D) Fpo} @ > 77
0 < {A,, (05+Dg) F,} F,, & > & (7.30)
% 0% < (0.F,,) (05F,,) & > (7.31)
To simplify the calculations let us truncate all the components of the field ® = ®4T' 4
to zero except ®™"P4 =£ (), and all the components of Aﬁf‘ 4 to zero except Azb # 0. In

this case one will have in explicit components form for the term in eq-(7.28) the following

0% < F Yoy FS2 Yea {FL5 Yrss Grunpg 77} > €7 (7.32)
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Recurring to the expressions displayed in the Appendix allow us to extract the Clifford
scalar part < ... > of the geometric products of the Clifford Cl(3,1) algebra generators
in eq-(7.32). After some straightforward but lengthy algebra it yields (up to a numerical
factor)

O Noe Fif F2 FUF Gynpg €777 = 0 (7.33)

The reason this last expression eq-(7.33) is vanishing is due to the contraction struc-
ture of the tangent space indices and the antisymmetry of all the terms of eq-(7.33) under
the exchange of indices with the exception of the (flat) tangent space metric 7, = eq-

Following the same procedure with eq-(7.27) and using the same symmetry (antisym-
metry) argument in the contraction of indices gives for the Clifford scalar part

0 Nye F& Fol F Gpnpg €777 = 0 (7.34)

identical vanishing results occur with eq-(7.29)

CRS Nac Fﬁf F;fg AY" (0p + Dp)bmnpg €77 = 0 (7.35)

and with eq-(7.26).
The explicitly gauge noncovariant eq-(7.30) yields

O e Gunpg " A" (95 + D) Fod €77 —

0% Neq Prmpg F3 AL (95 + D) FlP €7 = 0 (7.36)

A way to see why eq-(7.36) is zero can be obtained by relabeling the indices pv < po, ¢ <
m,a <> ¢ in the second line of eq-(7.36) so that it becomes identical to the first line and
leading to an exact cancellation due to the key minus sign in eq-(7.36) and antisymmetry
FPa — _fap.

po po

Finally we examine eq-(7.31) giving

% O (DuFI™) (I5F22) Grnpg €0 = 0 (7.37)

The reason eq-(7.37) is zero is due to an overall antisymmetry. Relabeling the indices
in eq-(7.37) pv > po,a < B,mn < pg and due to the antisymmetry of %% = —©5« it
leads to

i a mn vpo i a mn oLy
§ © 7 (a&F,Lw ) (85F5g> Qbmnpq T = — 5 o f (aﬂFgg) (aaF,LLI/ ) prqmn e =

5 0" (OuFL") (5F22) bunpy & (7.38)

therefore, if X = —X = X =0.

Therefore, the Clifford scalar part of the first order contributions in the ©“? terms
of the Moyal-deformed action is vanishing when one truncates all the components of
® = PAT4 to zero except ®™™4 +£ (0, and all the components of A;:‘I‘A to zero except
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Aff’ # 0. If one does not impose such truncation, one will have to consider the Moyal
deformations of all other expressions in eqs-(6.21-6.25). It is unlikely that there is a
cancellation of the ©-terms up to first order in this most general case.

For example, let us examine the first order contribution in ©%% of

1
/ < (FW*Fggcdmabcd)” > eo (7.39)

One of the terms is

Z’ « a0C Vpo
5 07 (0aFiw) (95F35™) Gabea €77 # 0 (7.40)

which is clearly nonvanishing and furnishes an imaginary contribution to the Moyal de-
formed action. The other imaginary contribution can be dropped because it yields a total
derivative term

1
/ 5 0% Oa(Fuw F3™) Opbapea 7 =

/ % @aﬁ 8a ( F,u,u F;L;)Cd ag¢abcd ) E'IWPU (741)

after an integration by parts.
One may cancel the contribution in eq-(7.40) by adding to eq-(7.39) the term

a0Ct (1) vV po
/ < (s By buea ) > € (7.42)

which amounts to a trivial symmetrization of the ordering in the products of the field
strengths. Not surprisingly, due to this trivial symmetrization, there is cancellation due
to the antisymmetry of @7,

Eq-(7.40) is gauge covariant because 0,F), = DqF),, and 0zF g(f“l = DgF gé’“l after
writing F ;ﬁc‘l = €®*@,,. Because there are a lot of gauge noncovariant terms in the
expansion in powers of O, the authors [63] used the method of composite fields which
enables to write the final results in a manifestly gauge covariant way. Therefore, the final
results are manifestly gauge covariant as they should be.

There are many other terms in eq-(7.39) whose contribution is nonvanishing and real
to first order in ©, for example

QQB Foi; Fﬂors Fgll,md Qbabcd eu,upa 7é 0 (743)

O Fl, F2 F§L Gapea €77 # 0 (7.44)

due to the fact that now F},, and F ;j,’de are no longer zero. In particular, the terms of
eq-(7.44) clearly form part of the deformed action S(s), in eq-(7.9) and encoding the Moyal
deformations of the MMCW gravitational action with a cosmological constant given by eq-
(6.13) to first order in ©". By setting @upecd = €apeap and recurring to the decomposition
of F2b, F5d provided in eqs-(6.11d, 6.13) one will have that eq-(3.44) yields the following
© corrections to the vacuum energy density (in the modified action)
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SO (0% a C vV po

11 © O Fu VIV VE VE €peq €7 (7.45)

where V! is the vielbein field. If one identifies 5 ~ é = L% and 7 = puacuum ONE can
P

cancel the enormous pyacuum €nergy density (when ¢ = 1) if the terms in eq-(3.45) are of

the same order of magnitude, which implies that

o (Ve VIV 4+ 0 By VIV VEVE) €apea €77 = 0 (7.46)
Setting the magnitude of the constant ©# parameters to be of the order of the Planck
scale squared L% will fix the values of F),, in eq-(7-46) that furnish a cancellation of the
huge vacuum energy density. Hence, the second terms in eq-(7.46) provide in general
the z-dependent corrections to the vacuum energy density (cosmological constant). This
result should be contrasted with those in [61].

One should notice that despite the generators of U(2,2),S0(4,2),SO(2,3) can be ex-
pressed in terms of the Clifford algebra generators this does not imply that these algebras
are isomorphic to the Clifford algebra. Hence one should not expect identical results as
those obtained by other authors.

To sum up, when one does not impose constraints on the fields, there are first order
contributions in the ©*” (constants) parameters in the Moyal deformations of a Clifford
gauge theory formulation of gravity in variance with the previous results obtained by other
authors and based on different gauge groups. This could provide a plausible cancellation
mechanism of the huge vacuum energy density 1/L%. The first order contributions
in the @ terms of the Moyal-deformed action is vanishing in the special case when
one truncates all the components of ® = ®4T'4 to zero except @7 +#£ 0, and all the
components of A;‘I’ A to zero except AZ” # 0.

Similarily, one obtains the Moyal deformations of the action S[®] corresponding to
the Clifford-valued scalar field ®. Firstly, there is a modification of the gauge covariant
derivative term (6.28a) due to the noncommutativity of the pointwise product of fields.
Both commutators and anticommutators will appear in the Moyal deformations of eq-
(6.28a) as they did in eq-(7.6). This will lead to corrections in powers of © of the gauge
covariant derivative terms. Secondly, one performs the Moyal star products among all
the terms present in the Clifford-valued scalar field action as it was done in eq-(7.9) after
recurring to eq-(7.18).

8 N-ary Algebras and Clifford Spaces

In this section Polyvector-valued gauge field theories in noncommutative Clifford spaces
are presented. They are based on noncommutative (but associative) star products that re-
quire the use of the Baker-Campbell-Hausdorff formula. Using these star products allows
the construction of actions for noncommutative p-branes (branes moving in noncommuta-
tive spaces). Noncommutative Clifford-space gravity as a poly-vector-valued gauge theory
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of twisted diffeomorphisms in Clifford-spaces would require quantum Hopf algebraic de-
formations of Clifford algebras. We proceed with the study of n-ary algebras and find
an important relationship among the n-ary commutators of noncommuting spacetime
coordinates [X!, X2, ......, X"] with the poly-vector valued coordinates X'?3" in noncom-
mutative Clifford spaces given by [X! X2, ......, X"] = n! X123 The large N limit of
n-ary commutators of n hyper-matrices X;, ;,. ;, leads to Eguchi-Schild p-brane actions
for p4+1 = n. Finally, a noncomutative n-ary e product of n functions is constructed which
is a generalization of the binary star product * of two functions, and is associated with
the deformation quantization of n-ary structures and deformations of the Nambu-Poisson
brackets.

The study of n-ary algebras, ternary algebras, in particular, have recently resurfaced
with great intensity in the study of M2-brane duality where M theory on AdS, x S7 is
dual to a superconformal field theory in three dimensions, with the supergroup OSp(8|4),
after Bagger-Lambert-Gustavsson (BLG) [79] constructed a Chern-Simons gauge theory
in three dimensions with maximal supersymmety N = 8. However, their construction
only works for the SO(4) gauge group and it does not provide the desired dual to M-
theory on AdS, x S7 [80]. The authors [81] later have shown that the dual gauge theory
is actually an N’ = 6 superconformal Chern-Simons theory in three-dimensions and is
associated to M-theory on AdS; x S7/Z,, with N units of flux. The M5-brane duality
is based on M theory on AdS; x S* being dual to a six dimensional superconformal field
theory whose super group is OSp(6,2[4). Recently it was shown by [82] how the M5
brane can be obtained from a mass deformed BLG theory which is realized by a Nambu
bracket and such that a maximally supersymmetric Lagrangian for the fluctuation fields
exists corresponding to a single M5 brane on RY? x S3.

N-ary algebras have been known for some time [75] since Nambu introduced his bracket
(a Jacobian) in the study of branes and the generalizations of Hamiltonian mechanics
based on Poisson brackets. In this section we shall show how poly-vector valued coordi-
nates admit a very natural interpretation in terms of n—ary commutators.

The ternary commutator for noncommuting coordinates is defined as

XLX% XY = XUIXXY) 4 XX XY+ X (XX =

1 1
5 (XY X%, X% ) + 5 [ XY [X2,X?]] + eyclic permutations (8.1)
Due to the Jacobi identities, the terms
1
5 [ X' [X?%,X?]] + eyclic permutations = 0. (8.2)

so that the ternary commutators become
1
Xh X2 X? = 5 { X' [X% X%} + cyclic permutations. (8.3)

The second step is to write down the noncommutative algebra associated with the
noncommuting poly-vector-valued coordinates in D = 4 and which can be obtained from
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the Clifford algebra displayed in Appendix A by performing the following replacements
(and relabeling indices)

F ey XH b gy XHan2 APy ML b, (8.4)

When the spacetime metric components g, are constant, from the replacements (8.4)
and the Clifford algebra (after one relabels indices), one can then construct the following
noncommutative algebra among the poly-vector-valued coordinates in D = 4, and obeying
the Jacobi identities, given by the relations

[ XM, XP2 ], = XM s XM — X XM = 2 XKz (8.5)

In most of the remaining commutators a suitable length scale parameter must be in-
troduced in order to match units. We shall set this length scale (let us say the Planck
scale) to unity. Also, by choosing the C-space coordinates to behave like anti-Hermitian
operators we avoid the need to introduce 7 factors in the right hand side.

[, XV )= 4 (g XM — g X ). (8.6)

[ Xmkzis XV = g XMkHay [ XHzesta XV ] = g gV XHebena 4 (8.7)
[ Xk X2, = 8 gl XKz 48 ghve X 4

8 ghavt XHvz _ g gheva X1 (8.8)

[ XHkehs - Xvave ] = 12 gt XHeRerz 4L (8.9)

[ XHukoms = XVIV2vs ] — 36 Gk VV2 XHBVS 4 (8.10)

[ XHakzhsua  xunivz ] o — ]G gMv1 XHeHsHa2 4 (8.11)

[ Xmukzispe - Xvive ] ]G gl XHeksiave 4 ]G ghave Xkzpsnmavt (8.12)

[ XHamansia - XVivavs ] — AQ (GHUHH VIV2Vs XTHA L AQ (MM ViVevs XH3 L (8.13)

[ Xpmansna  vvavsvs ] Q9 Gk VivaVs Xhave (8.14)

GHHZbin VIV2ln . — - gHIVL gh2v2 g’ + signed permutations (8.15)



The metric components GH#2-#n V1v2-n i (J-gpace can also be written as a deter-
minant of the n x n matrix G whose entries are gH*/

1 . . o
det Gan = E €ivig....in €j1jomin g,“zl'/n gNZQVJQ """"" guznl/]n' (816)

11,29, sty C I = 1,2,.....; D and j1, 02, cccc0sjn € J = 1,2,.....;D. One must also
include in the C-space metric GMY the (Clifford) scalar-scalar component G (that
could be related to the dilaton field) and the pseudo-scalar/pseudo-scalar component
GH#2bp e VD (that could be related to the axion field).

One must emphasize that when the spacetime metric components g,, are no longer
constant, the noncommutative algebra among the poly-vector-valued coordinates in D =
4, does not longer obey the Jacobi identities. For this reason we restrict our construction
to a flat spacetime background g,, = 7,..

The noncommutative conditions on the polyvector coordinates in condensed notation
can be written as

[ XM XNV, = XMa XV - XV XM = OMN(X) = fMN XE = fMNL X (8.17)

the structure constants fM~! are antisymmetric under the exchange of polyvector valued

indices. An immediate consequence of the noncommutativity of coordinates is

N N N 1 N
[Xm, X ] = 2 Xm0 5 AXPAXY > o] < X > = X (8.18)

Hence, the bivector area coordinates X*” in C-space can be seen as a measure of the
noncommutative nature of the ”quantized” spacetime coordinates X*.
After using the relations, from eqs-(8.5-8.15),

(X%, X% = 2Xx% {X' X®} =2X"% (8.19)
one gets finally
(X' X% X% = 2 X' + cyclic permutations = 6 X' (8.20)

since X2 = X%l = X312 = X182 =

The 4-ary commutator is defined as
X X2 X0 XY = XXX XY - X2 XX X 4
X3 [X47X17X2] - X4 [X17X27X3] =
1 1
3 (XY X5 X3 XYY + 3 [ XY (X3 X3 XY — =
S{XY XPY 4 3 XY X — =

6 X' 4+ 18 (g2 X3 + g8 X 4 g XP) — = 24 X' (8.21)
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due to the cancellations
(912 X3 4 g13 X2 4 g14 X23) _ (923 X4 4 gz4 XB 4 g21 X34) i
(934 X2 4 931 X2 4 932 X41) _ (941 X3 4 g42 X3 4 g43 X12) — 0. (8.22)

resulting from the conditions X* = — X"t gl = g"F after recurring to the (anti) com-
mutators

[X17X234] — 9 X1234, {X17X234} = 6 (g12 X34 T g13 X42 T gl4 X23 ) (823)

and the conditions X123 = — X241 — X3412 — _ X423 For example, given a Noncom-
mutative Clifford space in D = 4, one arrives at

(X1 X2 = 2 X" X1 X2 X% = 6 X' [XLX2 X? XY = 24 X4 (8.24)

where X', X2 X3 X% is a shorthand notation for X*', X*#2 X#3 X*#_  Therefore, one
finds that the poly-vector coordinates X#1#2 X#HiH2#3 X H1E2E31 can be seen, respectively,
as the binary, ternary and 4-ary commutators of the non-commuting vector coordinates
X*". In the general case, using the noncommutative algebra in Clifford spaces one arrives
by recursion at

[ XY X2 , X" = nl X12een (8.25)

This n-ary commutator interpretation of the poly-vector valued coordinates of a noncom-
mutative Clifford space warrants further investigation.

At this stage it is important to emphasize that the Noncommutative Clifford-valued
poly-vector coordinates algebra does not satisfy the Nambu-Filipov conditions which can
be written as

Dixixy [V, V2 Y] = [ X', X2 YL V2 VP =

(XL X2V, 2 VP 4 (Y XL XYY, Y 4 (Y YR X X Y] (8.25a)

[ XY X2 XL IYL YR L, Y"]] =
[[XY, X2 XML Y] YR L Y]+
(Y [ XY X% XML Y] YR, Y]+ +
(YL vE o Y LX) X X YT (8.250)

For n-ary brackets, Nambu showed that the Jacobian, the classical Nambu-Poison
bracket (NPB)

{Xl, X2, ........ , Xn}NpB = glti2in 8¢1X1 8i2X2 ........ alan (826)
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satisfies the Nambu-Filippov special conditions, [73], [75]. The NPB is antisymmetric
under the exchange of any pair of entries and satisfies the analog of the Liebnitz rule. It
is not difficult to see that

[ X' XX, XY X)) £
X X2 X X4 X0+ [ X0 (XL XX, X 4+ [ X0 XY (X, X X)L (8.27)

The main reason being that the ternary commutator
(XN X2 X% = 6 X' £ > %X (8.28)

Naturally, the Jacobi identity is satisfied Z
[ X' X2 X)) = [[XY, X7, XP) 4+ [ XX, X)) (8.29)

n-ary algebras are relevant to the large N limit of covariant Matrix Models based
on generalized n-th power matrices (hyper-matrices) [78] X 4, i, that are extensions
of square, cubic, quartic, .... matrices (hyper-matrices). These Matrix models bear a
relationship to Eguchi-Schild p-brane actions for p + 1 = n. The range of indices is
11,19, ...,0, C I =1,2,.....N. The n-ary commutator of n generalized n-th power matrices
(hyper matrices) in the large N — oo has a correspondence with the Nambu-brackets
(NB) as follows

[ X', X2 X i — { X' X% ... , X" Ing. (8.30)

by replacing the hyper matrix X;,;, ..;, in the large N — oo limit for the c-function of n-
variables X (o, 02, ....,0™). The trace operation in the large N limit has a correspondence
with the integral [ d"c so that

Trace ([ X', X2, oy X" ) = / Ao { XY, X2 o, X" Vs (8.31)

recovering in this fashion the Eguchi-Schild p-brane actions for p + 1 = n. The fermionic
version of (8.31) is

/ A0 U Tip ot { XY, X2, o, X770 WY, (8.32)

Covariant (super) brane actions based on n-ary structures and generalized matrix models
have been recently constructed by [72]. The authors [70] have shown that the light-
cone gauge-fixed action of a super p-brane belongs to a new kind of supersymmetric
gauge theory of p-volume preserving diffeomorphisms (diffs) associated with the p-spatial
dimensions of the extended object. These authors conjectured that this new kind of
supersymmetric gauge theory must be related to an infinite-dim nonabelian antisymmetric
gauge theory. It was recently shown in [71] how this new theory should be part of an
underlying antisymmetric nonabelian tensorial gauge field theory of p+ 1-dimensional diffs
(upon supersymmetrization) associated with the world volume evolution of the p-brane.
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Ternary algebraic structures appearing in various domains of theoretical and math-
ematical physics were reviewed by [69], like the notion of quark algebraic confinement
based on a Z3 -graded matrix algebra over the complex field C. A generalization of non-
commutative geometry and gauge theories based on ternary Zs-graded structures was
constructed by [69]. The usual Zj-graded structures such as Grassmann, Lie and Clif-
ford algebras are generalized to the Z3-graded case leading to hypersymmetry which is a
Z3 graded generalization of supersymmetry. The de Rham complex with the differential
operator d satisfies the condition d® = 0 instead of d> = 0. Ternary generalizations of
Clifford algebras were defined by the relations [69]

Qa Qb Qc - W Qb QC Qa + w2 Qc Qa Qb + 3 pabc 1 (833)

i27/3

where w is the cubic root of unity e and p?€ is the analog of a cubic metric (a cubic

matrix) obeying the conditions

pabc + wpbca + w2 pcab = 0. (834)

Our whole construction of C-spaces [1] based on ordinary Clifford algebras can be extended
to ternary Clifford algebras. By replacing the cubic roots of unity for the N-th roots
of unity and the cubic metric for p*?+* one can define the N-ary generalizations of
Clifford algebras. In [74] and references therein one can find a generalization of n-ary
Nambu algebras and beyond.

The canonical Moyal noncommutative (but assocciative) star product is defined as

(F * 9)aerp) = ( R ”Zﬁf) (2 9(2") s (8.35)

where the derivatives are evaluated at Z = Z’ = Z” and the phase coordinates are
defined by Z = (z,p); Z' = (2/,p"); Z" = (2", p"). By analogy one can define the ternary
e product of three functions of z,y, z in terms of a deformation parameter k as

(f o g e h)(zy2) =

TRE;
TZ!Jk 8X{ A BX(’ A BX///
e i J k

) FX) g(X") h(X™). (8.36)

where the derivatives are evaluated at X; = X! = X/ = X!”; the range of indices is
i =1,2,3. The coordinates are defined by

. ! / / /. n __ 1 " ", n n n n
Xi=uwzy,2z; X, =2y, 2 X]"=2" 4" 2" X" =" y" 2" (8.37)

The author [83] has also proposed such ternary product. The n-ary extension of (8.36)
is straightforward. It remains to be seen whether or not the ternary e product obeys the
ternary associativity condition

AeBe(CeDeFE) = Ae(Be(CeD)eE = (AeBe()eDeFL. (8.38)



The Moyal canonical star product can also be recast in integral form as [75]

1 21 o
(f * g)(x,p) = (%)2 / duy duy doy dvy €7 20 %

flx4+u,p+v1) g(x+ ug, p+ v9). (8.39)

where the integral limits are —oo, 400 and the kernel of the exponential is given by the
determinant

A(ug,v;) = det ( o ) . (8.40)

U2 V2

The analog of the integral (8.39) for the ternary case is
]. 27

(f @ g @ h)(z,y,2) = (—)° / duy dusduzdvy dvedvzdw, dwedws e v 2w x
K

flx 4+ up,y+v,z4+w) g+ us, y + ve, 2 + ws) h(x + us,y + vs, 2 + ws). (8.41)

where the kernel of the exponential is given by the determinant

Uy v W
A(ui, Uy, ’LUz) = det Ug Vg Wa . (842)
Uz V3 W3

However, the latter integral expression (8.41) for the putative ternary e product does not
appear to yield the same expression as the ternary e product provided by eq-(8.36). In
the Weyl-Wigner-Groenewold-Moyal (WWGM) deformation quantization procedure, the
operator /function in classical phase space correspondence A(d, p) <> A(q, p; h) is given by
[75]

—2imp

Algp) = WIAGDH) ] = [ dy ™ <qvyl d@p)la—y>.  (843)

such that the WWGM map of the product of two Weyl-ordered operators A(q,p) B(g, p)
into the star product of their symbols A(q,p;h) * B(q,p;h) obeys the relations

W(A@G,p) B(G.p)) = Alg,p,h) * Blg,p,h) =

WLA@), BGp)) = {Alph), Blaph) b = A« B~ B+ A (340
Given the noncommutative ternary e product of three functions of x,y, z as shown in eq-
(8.36), and which is associated with the deformation quantization of ternary structures
[83], the immediate question is how to generalize the WWGM map (8.44) in the binary
star product case to the ternary e product case. In particular, how to map the Nambu-
Heisenberg n-ary commutation relations of linear operators into the deformed Nambu-
Poisson brackets of their corresponding symbols. For instance, to find the correspondence

A

{A B, C}. = AeBeC + permutations < [A, B, C'] (8.45)
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such that the Nambu-Weyl-Heisenberg ternary commutation relations among a triad
of canonical ”conjugate” operators has a one-to-one correspondence to the deformed
Nambu-Poisson brackets of their symbols as follows

A, B, C] =ikl & {A B C}, = in (8.46)

The deformation parameter x appearing in (8.36) plays now the role of Planck’s constant
h in (8.46). To find the linear operator A(z,§j, ) +> A(z,y, z) correspondence such that
the relations (8.45,8.46) are obeyed in conjunction with the Nambu-Filippov fundamen-
tal identity [73], etc .... is a very challenging problem; i.e. to construct a Hypermatrix
formulation of QM based on a deformation quantization of Nambu-Poisson classical me-
chanics. For example, the ternary product of three Hypermatrices which preserves the
rank is

5i3j1 5j3k1 51631'1 AiliQis Bj1j2j3 Ck1k2k3 = (ABC)i2j2k2' (847)

Following Heisenberg’s formulation of ordinary QM, the large N = oo limit of a Hyperma-
trix should correspond to an operator in a Hilbert space. It is warranted to pursue these
ideas further to see whether or not one can construct a Hypermatrix formulation /extension
of QM.

To conclude this section we must emphasize that the quantization of Nambu mechanics
is notoriously difficult. The geometric interpretation of quantized Nambu-Poisson struc-
tures in terms of noncommutative geometries has been recently studied by [77] where an
extension of the usual axioms of quantization, in which classical Nambu-Poisson structures
are translated to n-Lie algebras at the quantum level, were described. It was demonstrated
that this generalized procedure matches an extension of the Berezin-Toeplitz quantiza-
tion that is a mixture of geometric quantization and deformation quantization. It was not
the aim of [77] to solve the problem of quantizing Nambu mechanics but merely to find
geometric interpretations of operator algebras in terms of quantized algebras of functions
which are endowed with an n-Lie bracket. That is, the authors [77] solved the kinematical
problem of quantizing Nambu mechanics, which consists of providing a quantization pre-
scription mapping classical observables to quantum operators, but the dynamical problem
of deriving quantum dynamics from the classical Nambu mechanics was not solved. Other
approaches to the quantization of Nambu mechanics is the Zariski quantization [76]

9 Concluding Remarks, Beyond Clifford Algebras,
Generalized Geometries

This tour through the developments of the Extended Relativity in Clifford spaces was
based entirely on orthogonal Clifford algebras. Symplectic Clifford algebras involving
commutators instead of anti-commutators are as important [85]. An extended orthogonal-
symplectic Clifford Algebraic formalism was developed in [84] which allowed the novel
construction of a graded Clifford gauge field theory of gravity. It has a direct relationship

70



to higher spin gauge fields, bimetric gravity, antisymmetric metrics and biconnections. In
one particular case it allows a plausible mechanism to cancel the cosmological constant
contribution to the action.

The possibility of embedding these orthogonal-symplectic Clifford algebras into an
in finite dimensional algebra, coined the super-Clifford algebra was also described in [84].
Some physical applications of the geometry of super-Clifford spaces to generalized super-
geometries, double field theories, U-duality, 11D supergravity, M-theory, and E-, Eg, F1;
algebras were briefly outlined.

A concise overview of the physical and mathematical structures underpinning the ap-
pearence of non-associative deformations of geometry (gravity) in non-geometric string
theory can be found in [86]. In particular the role played by L., algebras in these de-
velopments. Extended geometry (generalized diffeomorphisms) is the framework unifying
double geometry (double field theory), exceptional geometry (exceptional field theory),
non-geometric string theory, --- [87]. The L., algebras for the extended geometry has
been recently examined by [88] in terms of Borcherds superalgebras. For this reason it
is imperative to search for non-associative generalizations of orthogonal and symplectic
Clifford algebras.

Another very important topic that we did not explore is the quantum group defor-
mations of Clifford algebras which are relevant to the symmetries of noncommutative
spacetime [92], [93]. k-deformations of the Poincare algebra were introduced by [89] .
The Clifford-Hopf k-deformed quantum Poincare algebra was constructed in [91]. An im-
pending project is to furnish quantum group deformations of orthogonal-symplectic and
super-Clifford algebras. A lot of work remains ahead, mainly in incorporating the ex-
tended relativity theory in Clifford spaces within the framework of generalized geometries
and tensor hierarchy algebras.
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APPENDIX A

In this Appendix we shall write the (anti) commutator relations [30] for the Clifford
algebra generators.

1

1
5 {% ) = ga L 5 [Ya» W] = Yab = — Ya» @,0=1,2,3,---,;m (A1)
[ Yas Vbe ] = 2 Gab Ve — 2 Gac Vb, { Yas Vbe } = 2 Yabe (A2)
[ Yabs Yed ] = —2 Gac Vod +2 Gad Yoo — 2 Gbd Yac + 2 Gbe Vad (A.3)
In general one has [30]
pq = odd, hﬂumz....mp, AN M) = Wmlmizn,.gmp - 20(p — 2)I(q — 2)! [mlnfzz 7m33 ...... m ol +
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2p'Q' [n1...nq ns....nqJ
10— 1)(g — 1)1 5[m1....m4 Vi T e (A.4)

_ { ning....ng } — 9 aAmMnN2ng Qp'q' [ning ng....ng)
pq = even, 7m1m2....mp7 Y - ’ymlmg....mp 2'(]7 _ 2)'(q - 2)' [m1ma /ym3 ,,,,, mp]
2p'q' [nl....n4 n5....nq}
4‘(p _ 4)'(q _ 4)' [ml.“.m‘l rym5 ...... mp] T eeesecssccnn (A5)
_ ning...ngl __ 1 2 q _
pq = even, [W’mlmg....mp, 7y ] U(p—1)(g—1)! [m1 TYma....mp)
(_1)p712p'ql [n1nans ng...ng) + (A 6)
Sl(p — 3)'<q _ 3)‘ [m1m2m3 M. mp] ....... .
(_1>p_12p'ql [P _ma...ngl
- nINg....Ngq — q —
P =o0dd, { Ymima..m; 7™ b= T )it = 1910 Tmacam)
(_1)p712p'q‘ [n1nans3 ng...ng)
31(p — 3)1(g — 3)1 Clmimems Tmiomy] T (A7)
The generalized Kronecker delta is defined as the determinant
?Zl; o e gg};
Oprpor s = det | e (A.8)
Oy Ope

APPENDIX B

In this appendix we shall derive the expression for the analog of the torsionless Levi-
Civita connection in C-space. Given a symmetric metric gy ny = gyy and setting the
nonmetricity Q gy to zero gives

Vigun = Oxgun — Tky gin — Tkn gz = 0 (B.1)

Performing a cyclic index permutation yields

Vugng = Ougnxg — Uhn 9o — Ui gvo = 0 (B.2)

Vngrn = Ongrm — Uik gon — Ty gxr = 0 (B-3)
adding eqs-(B.2, B.3) and subtracting eq-(B1) leads to
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Ougnk + Ongxm — Oxgun = 2 F(LMJ\/) gL +2 F[LMK] grx +2 F[LNK} gk (BA4)

where
L _ 1o L
Founy = B (Tony + Ty ) (B5)

(Thx — Tky) (B.6)

N | —

1
F[LMK] = 2 (Phrx — Thar ), F[LNK] =

when the Torsion is zero one has

Thx = Tk — Tkn — fux = 0 = 2F[LMK] = fix (B.7)

such that eq-(B.4) becomes

Ougnk + Ongxm — Oxgun = 2 F{JMN) gix + fuk 9in + fk 9om (B.8)

and from eq-(B.8) one can then deduce that the symmetric part of the connection is
given by

1

F(LMN) =35 g [ (Omgnk + Ongurx — Oxgun ) + (fuxn + fyvem )] (B.9)

therefore, by adding the antisymmetric part of the connection F[LM N = % fL\ to the sym-

metric part F(LM ) one obtains finally the full expression for the analog of the torsionless
Levi-Civita connection in C-space

c 1
Ty = Thuny + Thivy = { v ) t3 9" ( furny + fvem + funk) (B.10)
where .
{fiv} = B 9" (Omgnk + Ongux — Oxgun ) (B.11)

APPENDIX C

In this Appendix we will perform the variation of Rj;;. The Ricci tensor is given by

Ryy = Ou Uy’ — On o) = Dyl Oy + T Tl — fun TN (C1)

the variation yields

5RMJ = aM 5FNJN - aN 5FMjN - 6<FMJL FNLN) + 5(FNJL FMLN> - 5( MNL F(LJN;
C.2
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Given

VM((SFJNVJ) = aM((SF%J) - F%/IJdl—‘]NVL (0-3)

V() = On(0T3;,) — TadlL; — Tryolp + Tl (C.4)
it allows to express the partial derivatives in terms of the covariant derivatives plus con-
nection terms such that

Li00N, — TRadlL, — U000, + TR0y, (C.5)

Inserting (C.5) into (C.2) and after collecting terms one arrives at

0Ras = Var(0Ty;) — V(0T ,) + T 6(T%, ) — Txa 0L — 6 farr' Ty )

(C.6)
By relabeling the dummy indices L <+ N in the term T'%,, §(T'Y;) of eq-(C.6) it becomes
'Yy 6('% ;) yielding finally

0Ryy = Vu(6TY;) — Vn(6TY,) +2 Fqu} 6(Txy) — 0 ful TRy ) (C7)
as promised.
APPENDIX D

We will show that the curvature expression (2.23) transforms homogeneously under
coordinate transformations when the connection transforms as

K OXM 9XN XK N PXP XK
N gxM gxXN OXK T gXMOXN OXP
Writing eq-(D.1) as 'l = ff@ ~ + Iy, in terms of the homogeneous fﬁ ~ and inhomo-

geneous [ K parts, respectively, leads us to show that the inhomogenous terms appearing
in RE \; must vanish. These are given by

e, =T (D.1)

Onr Iy, — O I, — fﬁw I, + fLNJ Ity — Ingy fﬁL
+ 1IN, fﬁL — Iy, 1N, + Ing Ing, — Fin I -
o 0 oXM ax7 9XK w0 OXN' ax7 oXK
FM/J/ ~N NM ~J K/ + FN/J/ ~M NN ~J K, (D-2)
0X 0X 0X7 0X 0X OXN o0Xx7 0X

where the structure functions transform homogeneously as

. . OXM HxXN HXTL
L _ L
fMN - M’ N’ aXM aX—N 8XL, (DB)
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Some of the inhomogenous terms vanish due to the contraction of indices. Let us take

the term R 3
[T S OXM oxXN 9XE  PXP  9XK (D.4)
MN B M gxM gxXN OX 9XLoX’ OXF '
In particular let us focus in the following term in (D.4) resulting from the contraction of
the L indices and after using the chain rule of differentiation

oxt o2xt  oxP PXxP
OXY 9XLoXs — OXVOXI  9XIOXV
XP
9 9 _ 9 5, =0 (D.5)

0xX7 oXt  9X/
Hence, the terms fly I in (D.4) vanish as a result of (D.5). Proceeding in a similar
fashion on can show that terms in (D.2) like Tk, IX, ~—Tk 1K, 1L 1K =~ — 1L 1K,
vanish via similar contraction procedure as that obtained in eqs-(D.4, D.5).
The other terms (D.2) that do not vanish as a result of the contraction of indices will
cancel out among each other. The following derivative terms cancel out

- - PXT OXK FPXr oXK
IN;, —On Ity = —=e—= - =0 (D.
Ou Ing — On Inay OXMOXNOXJ OXF  9XNOXMPX/ 0XFP 0 (D
after having used
2 v K 2 v K
?L = 0, (?L =0 (D.7)
OXMoXFP OXNoXF

based on the results obtained in (D.5). Finally one can verify after a relabeling of dummy
indices, using the results given by eqs-(D.5, D.7), and by having (9°X™ /oXM9X™N) =
(02XM JOXNOXM) that the remaining terms of (D.2) cancel out exactly

) + k.

!/
- Fﬁ/ JI

0 <8XM/ 0X7 9XK

0 oxN ax7 oxK
XM 9xXJ OXK

OXN 9XJ OXK

]]%L] ffu - ]]%/[J fJI\<fL =0 (D,S)

To sum up, the inhomogeneous terms (D.2) either vanish as a result of the contraction
of indices or cancel out among each other as shown above. Finally one is left with the
homogeneous terms. For example, like

ors., oxXN ox7 oxXk
OX OXN 0X7 XV
ark, ., XM XN X7 9XK
OXM XM 9XN 9X7 OXK
after using the chain rule of differentiation. Similar results follow for the other compo-

nents of the curvature. Concluding, one has that the curvature transforms covariantly
(homogeneously)

(D.9)
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o OXM axN ox/ 9xXK
M gx M 9xXN 9XT OXK
as expected where the expression for RX . is the same as eq-(2.23) by replacing all
quantities for their tilde counterparts.

RE., = R (D.10)

Appendix E : Measure in C-spaces

To finalize we shall discuss the measure issue in curved C-spaces. In a given coor-
dinate system (a generalized Lorentz frame) the mixed-grade components of the metric
gun, g™V, beins Ef;, inverse beins £}/, can be set to zero in order to considerably simplify
the calculations; i.e. namely due to the very large diffeomorphism symmetry in C-space,
one may choose a frame (“diagonal gauge”) such that the mized grade components of
the metric gyn, beins E3;, inverse beins EY are zero. In this case the C-space metric
components can be chosen to be given by the determinant expressions

Guipo....p viva....... Uk (X) =

G (X)) ... o Guun(X)
det Guovs (X) s <o Guouy, (X) (El)
G (X) - o G (X)

where g,,,(X) is now a function of the Clifford polyvector-valued coordinates X which
includes the ordinary vectorial coordinates z”.

The metric component g, involving the scalar “directions” in C-space of the Clifford
poly-vectors must also be included. It behaves like a Clifford scalar. The highest grade
component g, us...up] [ivs..wp] VOlves the pseudo-scalar “directions” in C-space. The
latter scalar and pseudo-scalars might bear some connection to the dilaton and axion
fields in Cosmology and particle physics.

The advantage of having gy n = 0 if the grade of M is not the same as the grade
of N is that the determinant of the C-space metric can be factorized as the product
of determinants of matrices which are comprised of entries (blocks) given themselves by
determinants like in eq-(E.1) . If an ordering prescription of indices is introduced, p; <
fo < ...ty and vy < 9 < ....1,, the bivector-bivector components of the C-space metric
in D = 4 dimensions g,,,, 1,1, can be arranged into an ordered square array of entries
(blocks) given by a 6 x 6 matrix, since the number of independent bivector components
in D =4is 4 x3/2=6. For instance, the entries of the square 6 x 6 matrix g,, ., viv»
are given themselves by determinants : g1z 12 = g11922 — g12921; 913 13 = 911933 — 913931,
...... etc, and such that its determinant is given by the ordinary determinant of an square
6 x 6 matrix.

The trivector-trivector components of the C-space metric in D = 4 dimensions
Guipaps v, Canl be arranged into an ordered square array of entries given by a 4 x 4 ma-
trix, since the number of independent trivector components in D = 4is4x3x2/2x3 = 4.
The entries g, uopus vivars Of this square 4 x 4 matrix are given themselves by the determi-
nants as shown in eq-(E.1). Following a similar procedure with the other C-space metric
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components, in this way one can write the measure of integration in D = 4 as the square
root of the product of determinants

Mm(gMJ) = \/ ‘g| ‘det (gw’)’ |det (gmuz 1/11/2)’ ’det (guwzua V1V2V3)| |det (guwzugm V1V2V3V4)|

(E.2)
where ¢ is the scalar-scalar part g5 of the C-space metric and which must not be confused
with |det g,,| . The generalization to other dimensions is straightforward. Therefore, the
integration measure in C-space would be

/ ds [[da* [dat#2 ... da" 2+ p,(gary) (E.3)

In the most general case one can have a C-space metric with non-vanishing mixed
grade components such that the metric g);; components can be assembled into arrays
of ordered rectangular matrices. The problem becomes that one cannot longer define a
determinant of a rectangular matrix. One can also view the g,;; as a hyper-matrix but
the construction (if possible) of the hyper-determinant of the C-space metric (a hyper
matrix) is a more difficult problem [13], [14]. To conclude we should mention the work
involving two measures of integration and which possesses a number of attractive features
[18] (and references therein). In addition to the standard measure /|det g, | d*z in D = 4,
another measure of integration ® = dg; A dpy A dps A d¢y involving the four scalar fields
b1, P2, 3, ¢4 as new dynamical variables was introduced. For details we refer to [18].
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