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Abstract

A brief tour of the developments of the Extended Relativity Theory in Clifford
Spaces (C-space) is presented. These include : (i) Novel physical consequences
like generalized dispersion relations, energy-dependent speed of light propagation,
extended Lorentz transformations, relative locality, generalized Weyl-Heisenberg al-
gebra and uncertainty relations, tensionless branes, superluminality, generalized ve-
locities. (ii) Generalized areal, volume, · · · metrics and gravitational field equations
in C-space. (iii) A unified description of particles, strings and branes. (iv) Clifford
gravity based cosmology and dark energy. (v) Moyal deformations of Clifford gauge
theories of gravity. (vi) N-ary algebras. We conclude with a brief discussion on
symplectic Clifford algebras and generalized geometries.

Keywords : Clifford algebras; Extended Relativity Theory in Clifford Spaces; String
theory; M-theory; Generalized geometries.

1 The Extended Relativity Theory in Clifford

Spaces

1.1 Introduction

In the past years, the Extended Relativity Theory in C-spaces (Clifford spaces) and
Clifford-Phase spaces were developed in [1], [2]. The Extended Relativity theory in
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Clifford-spaces (C-spaces) is a natural extension of the ordinary Relativity theory whose
generalized coordinates are Clifford polyvector-valued quantities which incorporate the
lines, areas, volumes, and hyper-volumes degrees of freedom associated with the collec-
tive dynamics of particles, strings, membranes, p-branes (closed p-branes) moving in a
D-dimensional target spacetime background. C-space Relativity permits to study the
dynamics of all (closed) p-branes, for different values of p, on a unified footing.

The theory has 2 fundamental parameters : the speed of a light c and a length scale
which can be set equal to the Planck length. The role of “photons” in C-space is played
by tensionless branes. The polyvector valued coordinates

x, xµ, xµ1µ2 = − xµ2µ1 , xµ1µ2µ3 = − xµ2µ1µ3 , . . . (1.1)

are now linked to the basis generators 1, vectors γµ, bi-vectors generators γµ ∧ γν , tri-
vectors generators γµ1 ∧γµ2 ∧γµ3 , ... of the Clifford algebra, including the Clifford algebra
unit element (associated to a scalar coordinate).

These polyvector valued coordinates can be interpreted as the quenched-degrees of
freedom of an ensemble of p-loops associated with the dynamics of closed p-branes, for
p = 0, 1, 2, ..., D−1, embedded in a target D-dimensional spacetime background. C-space
is parametrized not only by 1-vector coordinates xµ but also by the 2-vector coordinates
xµν , 3-vector coordinates xµνα, ..., called also holographic coordinates, since they describe
the holographic projections of 1-loops, 2-loops, 3-loops,..., onto the coordinate planes .
By p-loop we mean a closed p-brane; in particular, a 1-loop is closed string.

For example, when X is the Clifford-valued coordinate corresponding to the Cl(1, 3)
algebra in four-dimensions it can be decomposed as

X = s 1 + xµ γµ + xµν γµ ∧ γν + xµνρ γµ ∧ γν ∧ γρ + xµνρτ γµ ∧ γν ∧ γρ ∧ γτ (1.2)

where we have omitted combinatorial numerical factors for convenience in the expansion
of eq-(1.1). If one imposes the lexicographic ordering of indices µ1 < µ2 < µ3 < · · ·
then it is not necessary to include combinatorial numerical factors in the (1.2). To avoid
introducing powers of a length parameter L (like the Planck scale Lp), in order to match
physical units in the expansion of the polyvector X in eq-(1), we can set it to unity to
simplify matters.

The component s is the Clifford scalar component of the polyvector-valued coordinate
and dΣ is the infinitesimal C-space proper “time” interval

(dΣ)2 = (ds)2 + dxµ dx
µ + dxµν dx

µν + . . . (1.3)

that is invariant under Cl(1, 3) transformations and which are the Clifford-algebraic
extensions of the SO(1, 3) Lorentz transformations [1]. One should emphasize that dΣ is
not equal to the proper time Lorentz-invariant interval dτ in ordinary spacetime (dτ)2 =
gµνdx

µdxν = dxµdx
µ. Generalized Lorentz transformations (poly-rotations) in flat C-

spaces were discussed in [1].
Let us provide several examples of generalized Lorentz transformations in C-space. For

example, given γ02 the transformation involving the rotor R1 = cosh(β/2)−γ02 sinh(β/2)
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corresponds to an ordinary Lorentz boost transformation along the X2 direction and
involving the ordinary temporal variable X0. The ordinary Lorentz boots generators are
given by the bivectors γµν , and which in turn are also expressed as the commutators
[γµ, γν ]. The physical significance of the latter commutators is that they represent a
“rotation” along the Xµ −Xν directions.

However, since one may also write the bivector γ02 as the commutator [γ12, γ01] =
−2γ02, the transformation involving the above rotor R1 also corresponds to an areal boost
along the X12 direction but involving the areal temporal coordinate X01. Namely, it is a
”rotation” along the X12 − X01 directions. Whereas the ordinary boost is a “rotation”
along the X2 −X0 directions.

After writing

(XB)′ ΓB = ( cosh(β/2) − γ02 sinh(β/2) ) ( XA ΓA ) ( cosh(β/2) + γ02 sinh(β/2) )
(1.4)

straightforward algebra yields the transformation of the following bivector coordinates

(X12)′ = X12 coshβ + X01 sinhβ (1.5a)

(X01)′ = X01 coshβ + X12 sinhβ (1.5b)

One has a mixing of the spatial and temporal areal bivector coordinates in the new frame
of reference.

Furthermore, since [γ013, γ123] ∼ γ02, the transformation involving the above rotor R1

also corresponds to a 3-volume boost along the X123 direction but involving the 3-volume
temporal coordinate X013. Namely, it is a ”rotation” along the X123 − X013 directions
giving

(X123)′ = X123 coshβ + X013 sinhβ (1.6a)

(X013)′ = X013 coshβ + X123 sinhβ (1.6b)

One has a mixing of the spatial and temporal trivector coordinates in the new frame of
reference. The ordinary Lorentz boosts of the vector coordinates give

(X2)′ = X2 coshβ + X0 sinhβ (1.7a)

(X0)′ = X0 coshβ + X2 sinhβ (1.7b)

while the remaining coordinates remain invariant and such that the quadratic form
XAXA = (XA)′(XA)′ remains invariant. Straightforward algebra leads to

− (X ′0)2 + (X ′1)2 − L−2 (X ′01)2 + L−2 (X ′12)2 − L−4 (X ′013)2 + L−4 (X ′123)2 =

− (X0)2 + (X1)2 − L−2 (X01)2 + L−2 (X12)2 − L−4 (X013)2 + L−4 (X123)2 (1.8)

The quadratic form is defined as
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< X† X > = XA X
A = s2 + Xµ X

µ + Xµ1µ2 X
µ1µ2 + ...... Xµ1µ2.....µD X

µ1µ2....µD (1.9)

where X† denotes the reversal operation obtained by reversing the order of the gamma
generators in the wedge products. The symbol < ΓA ΓB > denotes taking the scalar
part in the Clifford geometric product of ΓA ΓB. It is the analog of the trace of a product
of matrices. Such scalar part can be obtained from the (anti) commutator relations of the
Clifford algebra generators as displayed in the Appendix. For example

< γµ γ
ν > = δνµ, < γµ1µ2 γ

ν1ν2 > = − δ ν1ν2
µ1µ2

< γµ1µ2µ3 γ
ν1ν2ν3 > = − δ ν1ν2ν3

µ1µ2µ3
, < γµ1µ2µ3µ4 γ

ν1ν2ν3ν4 > = δ ν1ν2ν3ν4
µ1µ2µ3µ4

, ......
(1.10)

One should note the presence of ± signs in the right hand side of eqs-(1.10). They are
connected to the even/odd behavior of the reversal operation (γC)† = ±γC .

The quadratic form is invariant under the isometry transformations

X′ = R X L†, R† R = 1, L† L = 1 ⇒ < X′
†

X′ > = < X† X > (1.11)

due to the cyclic property of the scalar part projection

< X′
†

X′ > = < L X† R† R X L†, > = < L X† X L† > =

< L† L X† X > = < X† X > (1.12)

where R,L are Clifford-valued rotors acting on the right and left respectively.
The second example corresponds to the case when there is a mixing of different grades.

It involves the commutator [γ0123, γ3] ∼ γ012 and such that the transformation involving
the rotor R2 = cosh(β′/2)− γ012 sinh(β′/2) corresponds to a boost along the spatial X3

direction but involving now the temporal 4-volume polyvector-valued coordinate X0123.
The reason being that γ012 can be rewritten as the commutator of γ0123 and γ3, so we have
now “rotations” along the X3 −X0123 directions. Straightforward algebra yields now the
transformation of the following (poly) vector coordinates

(X3)′ = X3 cosh(β′) − L−3 X0123 sinh(β′) (1.13a)

(X0123)′ = X0123 cosh(β′) − L3 X3sinh(β′) (1.13b)

In this case one has a mixing of polyvector-valued coordinates of different grade. In the
new frame of reference the spatial X3 coordinate and the temporal 4-volume coordinate
X0123 are mixed.

Furthermore, since [γ03, γ123] ∼ γ012, the transformation involving the rotor R2 =
cosh(β′/2)− γ012 sinh(β′/2) also corresponds to a boost along the spatial trivector X123

direction but involving now the temporal bivector coordinate X03. These transformations
are

4



(X123)′ = X123 cosh(β′) − L X03 sinh(β′) (1.14a)

(X03)′ = X03 cosh(β′) − L−1 X123 sinh(β′) (1.14b)

In the above equations we have used the relations (see Appendix)

γ2
01 = 1, γ†02 = −γ02, γ2

012 = 1, γ†012 = −γ012

{γ12, γ02} = 0, [γ0123, γ012] = − 2 γ3, {γ0123, γ012} = 0

γ02 γ12 γ02 = −γ12, [γ012, γ3] = 2 γ0123, {γ012, γ3} = 0, .... (1.15)

cosh2(ξ)− sinh2(ξ) = 1, cosh2(ξ) + sinh2(ξ) = cosh(2ξ), sinh(2ξ) = 2 sinh(ξ) cosh(ξ)
(1.16)

Given in general a transformation of the form

X ′B ΓB = ( cosh(β/2) − ΓC sinh(β/2)) XA ΓA ( cosh(β/2) + ΓC sinh(β/2))
(1.17)

one learns that

X ′B(β,ΓC) = XB cosh2(β/2) − XA sinh2(β/2) < ΓC ΓA ΓC ΓB > +

XA cosh(β/2) sinh(β/2) < [ΓA, ΓC ] ΓB > (1.18)

The generator ΓC of generalized Lorentz boosts is of the form (γ0µ1µ2...µn−1) with the
provision that under the reversal operation it changes sign

(γ0µ1µ2...µn−1)† = − γ0µ1µ2...µn−1 (1.19a)

so that RR† = 1. This condition will restrict the values of n to be n = 2, 3, 6, ...and
obeying

(γ0µ1µ2...µn−1)2 = 1 (1.19b)

Generalized spatial rotations don’t involve the temporal directions and are generated by
γµ1µ2...µm obeying

(γµ1µ2...µm)† = − γµ1µ2...µm (1.20)

and
(γµ1µ2...µm)2 = − 1 (1.21)

For instance, a generalized rotation in D > 4 and generated by γ12...6 involving the
parameter α12....6 yields a rotor whose Taylor series expansion becomes

5



R = eα
12...6 γ12.....6 = cos(α12....6) + γ012.....6 sin(α12...6) (1.22)

due to the condition (γ12.....6)2 = − 1 which is similar to having the imaginary unit
i2 = −1 and the expression eiθ = cos(θ)+ i sin(θ). For an earlier discussion of generalized
rotations within C-space see [33]. Whereas a generalized Lorentz boost is like having a
“rotation” with an imaginary “angle” leading to the hyperbolic functions

R = eβ
012...5 γ02.....5 = cosh(β012....5) + γ012.....5 sinh(β12...5) (1.23)

due to the condition (γ012.....5)2 = 1.
Eq-(1.18) only simplifies considerably in the very special case when the values of the

polyvector valued indices A,B,C are such that

< ΓC ΓA ΓC ΓB > = − δBA , < [ΓA, ΓC ] ΓB > = ± 2 (1.24)

and it leads to the type of transformations displayed above. In general, for a given set
of values of B,C, one must sum over all the A indices in eq-(1.18). For this reason the
most general expression for X ′B given by eq-(1.18) is more complicated than that given
by the above equations. Another special case occurs when

< ΓC ΓA ΓC ΓB > = δBA , < [ΓA, ΓC ] ΓB > = 0 (1.25)

leading to X ′B = XB so that these particular polyvector coordinate components remain
invariant.

One should emphasize that the functional form of the most general transformations
are even more complicated than those described in eq-(1.18). Let us write the rotor
associated with a “rotation” along the XA − XB directions in C-space with parameter
αAB, after writing the commutation relations [ΓA,ΓB] = f C

AB ΓC , as follows

R = eα
AB [ΓA,ΓB ] = eα

AB fCAB ΓC = eβ
CΓC , βC = αAB f C

AB (1.26)

where f C
AB are the structure constants of the algebra. There is a summation over the C

indices (but not over the A,B indices) in eq-(1.26) and the reversal condition reads

[ΓA, ΓB]† = − [ΓA, ΓB] ⇒ R R† = 1 (1.27)

and which is satisfied in particular when Γ†A = −ΓA; Γ†B = −ΓB giving Γ†C = −ΓC . This
is a result of the relations (ΓAΓB)† = (ΓB)†(ΓA)† = ΓBΓA. In the most general case, for
arbitrary dimensions, due to the summation over the C polyvector indices in eq-(1.26),
the rotor R cannot be expressed in the form displayed in eq-(1.17) after performing a
Taylor series expansion of the exponentials. For instance

eβ
01γ01 + β023γ023 6=

(
cosh(β01) + γ01 sinh(β01)

) (
cosh(β023) + γ023 sinh(β023)

)
(1.28)

as a result of the Baker-Campbell-Hausdorf formula. Because [γ01, γ023] 6= 0 the left hand
side of eq-(1.28) does not factorize.
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1.2 Relative Locality

We learnt from Special Relativity that the concept of simultaneity is relative. The typical
example arises when a moving observer inside a train sees the front and back doors of a
train opening simultaneously. Due to the spatial separation (∆X3 6= 0) between the two
doors, an observer at rest in the platform will see the doors opening at different times

(∆X0)′ = ∆X0 cosh(β) + ∆X3 sinh(β) 6= 0, (1.29)

despite ∆X0 = 0 due to the fact that ∆X3 6= 0.
Something analogous, and more general, occurs in C-space. Let us denote by ∆X3 =

X3
(2) − X3

(1), ∆X0123 = X0123
(2) − X0123

(1) the spatial and 4-volume separation, respectively,
between two events 1 and 2 in a given frame of reference in a flat C-space. From eqs-
(1.13) it follows that in the new frame of reference one has

(∆X3)′ = ∆X3 cosh(β′) − L−3 ∆X0123 sinh(β′) (1.30a)

(∆X0123)′ = ∆X0123cosh(β′) − L3 ∆X3sinh(β′) (1.30b)

if ∆X0123 6= 0 one has that (∆X3)′ 6= 0 despite that ∆X3 = 0. Therefore, because
(∆X3)′ 6= 0 the observer in the new frame of reference does not experience events 1,2 at
the same location.

An “extended” event in C-space described by eqs-(1.30) can be envisaged as follows.
An observer assigns to a physical event the coordinate values XA where the index A spans
2D values corresponding to the dimension of a Clifford algebra in D-dim. In particular
X3, X0123. Event 1 can be described in terms of a spherical bubble (a closed 3-brane)
moving in spacetime whose 4-volume (swept by the 3-brane at a given time X0

(1)) is

given by X0123
(1) . The center of mass of such bubble is given by the Xµ

(1) coordinates, in

particular X3
(1) represents the z-component. Whereas event 2 is described in terms of

another spherical bubble of different size in spacetime whose 4-volume at a given time
X0

(2) is given by X0123
(2) . The center of mass of such bubble is given now by Xµ

(2) coordinates,

in particular X3
(2). If the centers of mass of the small and large bubble coincide one has

that ∆X3 = 0, while ∆X0123 6= 0 since the bubbles are of different size. Consequently
one learns from eq-(37a) that (∆X3)′ 6= 0 in the new frame of reference : namely, the
centers of mass of the bubbles in the new frame of reference do no longer coincide.

Concluding, the concept of spacetime locality is relative due to the mixing of 4-volume
coordinates with spacetime vector coordinates under generalized Lorentz transformations
in C-space. In the most general case, there will be mixing of all polyvector valued coordi-
nates. This was the motivation to build a unified theory of all extended objects, p-branes,
for all values of p subject to the condition p+ 1 = D. Therefore, the Extended Relativity
Theory in C-spaces (Clifford spaces) were provides a very different physical explanation of
the phenomenon of “relativity of locality” than the one described by the Doubly Special
Relativity (DSR) framework [19].
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1.3 Generalized Velocities in C-space, Superluminality

We shall now discuss the concept of “photons” and generalized velocities in C-space.
Superluminal particles were studied within the framework of the Extended Relativity
theory in Clifford spaces (C-spaces) in [8]. As discussed in detailed by [1], [3] one can
have tachyonic (superluminal) behavior in ordinary spacetime while having non-tachyonic
behavior in C-space. Hence from the C-space point of view there is no violation of
causality nor the Clifford-extended Lorentz symmetry. The analog of “photons” in C-
space are tensionless strings and branes [1].

Let us take the spacetime signature to be (−,+,+,+, ......,+) and factorize the C-
space interval in eq-(2) as follows by bringing the c2(dt)2 factor outside the parenthesis

(dΣ)2 = c2(dt)2

(
L2

c2
(
ds

dt
)2 − 1 +

1

c2
(
dXi

dt
)2 +

1

L2c2
(
dXij

dt
)2 − 1

L2c2
(
dX0i

dt
)2 ........

)
(1.31)

where the spatial index i range is 1, 2, ..., D − 1. The Clifford space associated with the
Clifford algebra in 4D is 16-dimensional and has a neutral/split signature of (8, 8) [3], [1].
For example, the terms (dX0i)

2, (dX0ij)
2, (dX0123)2 will appear with a negative sign, while

the terms (dXij)
2, (dXijk)

2 will appear with a positive sign.
There are many possible combination of numerical values for the 16 terms inside the

parenthesis in eq-(1.31). As explained in [3], [1], superluminal velocities in ordinary
spacetime are possible, while retaining the null interval condition in C-space (dΣ)2 = 0,
associated with tensionless branes. The null interval in C-space (dΣ)2 = 0 can be
attained, for example, if each term inside the parenthesis is ±1 respectively. Since there
are 8 positive ( +1) terms and 8 negative ( −1) terms one has that 8− 8 = 0 and the null
interval condition (dΣ)2 = 0 is still satisfied despite having superluminal speeds.

A very different combination of numerical values, as compared to the previous one,
leading also to a null interval condition in C-space (dΣ)2 = 0, occurs when

1

c2

(
(
dX1

dt
)2 + (

dX2

dt
)2 + (

dX3

dt
)2

)
= 1 (1.32a)

1

L2c2

(
(
dX12

dt
)2 + (

dX13

dt
)2 + (

dX23

dt
)2

)
=

1

L2c2

(
(
dX01

dt
)2 + (

dX02

dt
)2 + (

dX03

dt
)2

)
(1.33b)

1

L4c2

(
(
dX012

dt
)2 + (

dX013

dt
)2 + (

dX023

dt
)2

)
=

1

L4c2
(
dX123

dt
)2 (1.33c)

1

L6c2
(
dX0123

dt
)2 =

L2

c2
(
ds

dt
)2 (1.33d)

Another description of C-space “photons” can then be given in terms of an effective
temporal variable T comprised of all the temporal coordinates in the interval of eq-(1.31).
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In order to simplify matters let us work with D = 3 instead of D = 4. The effective
temporal variable T is defined as

c2(dT )2 ≡ c2(dt)2 +
1

c2
(
dX01

dt
)2 +

1

c2
(
dX02

dt
)2 +

1

L2c2
(
dX012

dt
)2 (1.34)

so that the C-space interval can be rewritten, after factoring out the c2(dT )2 term, as

(dΣ)2 = − c2(dT )2

(
1 − L2

c2
(
ds

dT
)2 − 1

c2
(
dX1

dT
)2 − 1

c2
(
dX2

dT
)2 − 1

L2c2
(
dX12

dT
)2

)
(1.35)

The last expression has the same functional form as the ordinary spacetime interval in
MInkowski space. Namely one can write the C-space interval (dΣ)2 in the form

(dΣ)2 = − c2(dT )2 ( 1 − V 2

c2
) (1.36)

where the generalization of the magnitude-squared of the spatial velocity divided by c2 is

V 2

c2
≡ L2

c2
(
ds

dT
)2 +

1

c2
(
dX1

dT
)2 +

1

c2
(
dX2

dT
)2 +

1

L2c2
(
dX12

dT
)2 (1.37)

Another description of C-space Photons is obtained from the null C-space interval con-
dition (dΣ)2 = 0 which is equivalent to setting V 2/c2 = 1 in eq-(1.37) and where the
velocity squared is defined with respect to the effective temporal variable T .

To finalize let us write down the addition law of generalized velocities based on the
extended Lorentz transformations described in this work. Upon defining β = −β′ in
eqs-(1.13) and differentiating gives

dX ′3 = dX3 coshβ + L−3 dX0123 sinhβ (1.38a)

dX ′0123 = dX0123 coshβ + L3 dX3 sinhβ (1.38b)

such that

dX ′3
dX ′0123

=
dX3

dX0123
+ L−3 tanhβ

1 + L3 dX3

dX0123
tanhβ

(1.39)

Using the following definitions of the generalized velocities (in c = 1 units)

V3 ≡
dX3

dX0123

, V ′′3 ≡ L−3 tanhβ, (1.40)

corresponding, respectively, to the generalized velocity V3 of a polyparticle with respect to
the temporal 4-volume X0123 coordinate (as measured in a given frame of reference) and
the generalized velocity V ′′3 of a moving observer associated with the generalized boost
transformation with parameter β. Hence, eq-(1.39) can be rewritten as

V ′3 =
V3 + V ′′3

1 +
V3 V ′3
L−6

(1.41)
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leading to the addition law of the generalized velocities. In particular, one can see that
if the maximal generalized velocity is identified with the quantity cL−3, after restoring
the speed of light that was set to unity, we have that the addition/subtraction law of the
maximal generalized velocities cL−3 yields always the maximal generalized velocity

V ′3 =
V3 ± V ′′3

1 ± V3 V ′′3
L−6c2

=
L−3c ± L−3c

1 ± L−3c L−3c
L−6c2

= L−3c
1 ± 1

1 ± 1
= L−3 c (1.42)

so that the maximal velocity cL−3 is never surpassed and it is a C-space relativistic
invariant quantity. Meaning also that if the velocities of two polyparticles in a given
reference frame is maximal cL−3, their relative velocity is also maximal resulting from the
subtraction law in eq-(1.42).

Following the same procedure in eqs-(1.14) as performed above one arrives at

V ′123 =
V123 + V ′′123

1 +
V1233 V ′1233

L2 c2

, V123 = c
dX123

dX03

, V ′′123 = c L tanh(β), V ′123 = c
dX ′123

dX ′03

(1.43)

where the maximal generalized velocity V123 is now cL. In general, the maximal values of
the generalized velocities are c and cLn where n is a positive, negative integer. The case
n = 0 corresponds to a generalized velocity associated with polyvector-valued coordinates
of the same grade 1. Namely, c (dXµ1µ2....µn/dX0ν1ν2....νn−1) such that the maximal velocity
is the speed of light. More research is warranted to explore many more novel consequences
of Clifford Space Relativity. Progress in the construction of generalized gravitational
theories in Clifford spaces can be found in [16]. We must remark that one has not been
trying to “squeeze” new physics out of Clifford algebras in this work. One the contrary,
it is the physics of p-branes that led us to Clifford space relativity in the first place.

1.4 Modified Dispersion Relations, Generalized Uncertainty
Principle

Next we will show how the quadratic Casimir invariant in C-space leads to modified wave
equations, dispersion laws and to the generalizations of the stringy-uncertainty principle
relations. The on-shell mass condition for a massless polyparticle in the 24-dimensional
C-space corresponding to a Clifford algebra in D = 4, can be rewritten in terms of the
polyvector valued components of a wave polyvector K, after setting L = 1, h̄ = c = 1 for
simplicity, as

k2 + KµK
µ + Kµ1µ2K

µ1µ2 + ...... + Kµ1µ2....µ4K
µ1µ2...µ4 = M2 = 0 (1.44)

A particular slice through the 24-dimensional C-space can be taken by imposing the set
of algebraic conditions

1We should note that the coordinate X0 ≡ ct is chosen to have length dimensions.
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k2 = 0, Kµ1µ2K
µ1µ2 = λ1 (KµK

µ)2 = λ1 K
4 (1.45a)

Kµ1µ2µ3 K
µ1µ2µ3 = λ2 (KµK

µ)3 = λ2 K
6, Kµ1µ2µ3µ4 K

µ1µ2µ3µ4 = λ3 (KµK
µ)4 = λ3 K

8

(1.45b)
where the λ’s are numerical parameters. Since k is the Clifford scalar part of the wave
polyvector it is invariant under C-space transformations. Hence the condition k2 = 0 will
not break the C-space symmetry. However the other slice conditions in eqs-(1.45) will
break the generalized (extended) Lorentz symmetry in C-space because these conditions
are not preserved under the most general C-space transformations as described earlier.
There will be only the residual standard Lorentz symmetry (in ordinary spacetime) re-
maining which preserves these conditions/constraints in eqs-(1.45).

Inserting the conditions of eqs-(1.45) into eq-(1.44), after setting k2 = 0, yields the
modified dispersion law

K2 ( 1 + λ1 K
2 + λ2 K

4 + λ3 K
6 ) = M2 − k2 = 0 (1.46)

Upon writing explicitly

K2 = Kµ K
µ = | ~K|2 − (K0)2 = | ~K|2 − (ω)2 (1.47)

in eq-(1.46), and solving the algebraic equation for ω in terms of | ~K| obtained from eq-

(1.46) leads to ω = ω(| ~K|). Finally, the group velocity (after reinstating c) is given
by

c(| ~K|) =
∂ω(| ~K|)
∂| ~K|

= c + ... (1.48)

The group velocity might be greater, smaller or equal to c. From eq-(1.46) one can deduce

immediately that one solution is K2 = | ~K|2 − (ω)2 = 0 ⇒ ω = | ~K| ⇒ ∂ω(| ~K|)
∂| ~K| = 1 (in

c = 1 units) and as expected massless particles move at the speed of light. However,
there are other solutions to eq-(1.46) besides the trivial one leading to energy dependent
speed of propagation. Setting K2 = Z leads to a cubic equation inside the parenthesis of
eq-(1.46)

1 + λ1 Z + λ2 Z
2 + λ3 Z

3 = 0 (1.49)

that can be solved exactly in terms of the λ’s parameters giving 3 roots zi(λ1, λ2, λ3), i =
1, 2, 3. The roots can be all real, or one real and a pair of complex conjugate roots. In
the former case we have (after reinstating c and adjusting the proper units for zi) the
particular solutions are

K2 = c2 | ~K|2 − (ω)2 = zi(λ1, λ2, λ3), ⇒ ω =
√
c2| ~K|2 − zi ⇒

c(| ~K|) =
∂ω(| ~K|)
∂| ~K|

= c
c | ~K|√

c2 | ~K|2 − zi
= c

√
(ω)2 + zi

ω
i = 1, 2, 3 (1.50)
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Therefore, from eq-(1.50) one has an energy dependent speed of propagation that can be
superluminal if zi > 0, or subluminal if zi < 0, in the case one has 3 real roots to the
cubic equation (1.49). One should add that after differentiating c2 | ~K|2 − (ω)2 = zi in
eq-(1.50) gives

2 c2 | ~K| d| ~K| = 2 ω dω ⇒ c2 =
ω

| ~K|
dω

d| ~K|
(1.51)

leading always to the standard relation vgroup vphase = c2 between group and phase ve-
locities for all the possible solutions. The above results were all obtained by setting the
Clifford scalar part k of the wave polyvector to zero. The calculations in the simplest
D = 2 case when k2 6= 0 can be found in [8] leading also to the possibility of superluminal
propagation.

Thus the key novel results one obtains from our analysis of wave propagation in C-
space when k2 = 0 are :

1. Irrespective of the solutions found in eqs-(1.49,1.50) the standard dispersion relation

K2 = c2| ~K|2 − (ω)2 = 0 is always a solution to eq-(1.46) giving a constant speed of
photon propagation. This is a valid solution to choose whether or not an energy-dependent
photon speed is found.

2 . Because the modified dispersion relation in eq-(1.46) is Lorentz invariant since

the proper norm K2 = c2| ~K|2 − (ω)2 is Lorentz invariant, one is able to arrive at

the energy-dependent speed of propagation c(| ~K|) in eqs-(1.50) while still retaining the
Lorentz symmetry. This does not occur in DSR nor in other approaches.

The on-shell mass condition for a massive polyparticle moving in the 24-dimensional
flat C-space, corresponding to a Clifford algebra in D = 4, can be written in terms of the
polymomentum (polyvector-valued) components, in natural units L = LP = 1, h̄ = c = 1,
as

π2 + pµ p
µ + pµ1µ2 p

µ1µ2 + pµ1µ2µ3 p
µ1µ2µ3 + pµ1µ2....µ4p

µ1µ2...µ4 = − M2 (1.52)

Let us break the ordinary Lorentz invariance by imposing the non-Lorentz invariant
conditions on the poly-momenta in C-space

pij p
ij = β1 |~p|4, pijk p

ijk = β2 |~p|6

p0i p
0i = α1 (p0)2 |~p|2, p0ij p

0ij = α2 (p0)2 |~p|4, p0ijk p
0ijk = α3 (p0)2 |~p|6 (1.53)

where the α’s and β’s are numerical parameters. The mass-shell condition in C-space
PAP

A = −M2 becomes after inserting the conditions (1.53) and taking into account the
chosen signature (−,+,+,+)

|~p|2
(

π2

|~p|2
+ 1 + β1 |~p|2 + β2 |~p|4

)
− (p0)2

(
1 + α1 |~p|2 + α2 |~p|4 + α3 |~p|6

)
= −M2

(1.54)
One may notice that the terms inside the parenthesis in eq-(1.54) behave as if one had a
rainbow metric as follows
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gij(π2, |~p|2) pi pj + g00(|~p|2) p0 p0 = g2(π2, |~p|2) |~p|2 − f 2(|~p|2) E2 = − M2 (1.55)

A rainbow metric [20] is a one-parameter family of metrics which depends on the energy
(momentum) of the test particles moving in a given spacetime background, and forming
a rainbow of metrics (rainbow geometry). Setting π2 = 0 in eq-(1.55) one has then that
the squared rainbow functions are given by

g2(π2 = 0, |~p|2) ≡ 1 + β1 |~p|2 + β2 |~p|4, β1, β2 > 0 (1.56a)

f 2(|~p|2) ≡ 1 + α1 |~p|2 + α2 |~p|4 + α3 |~p|6, α1, α2, α3 > 0 (1.56b)

Given

gij = g2(π2 = 0, |~p|2) δij =
(

1 + β1 |~p|2 + β2 |~p|4
)
δij (1.57a)

g00 = − f 2(|~p|2) δ00 = −
(

1 + α1 |~p|2 + α2 |~p|4 + α3 |~p|6
)

(1.57b)

the rainbow metric is then defined as

ds2 = gµν dx
µ dxν =

−
(

1 + α1 |~p|2 + α2 |~p|4 + α3 |~p|6
)−1

(dt)2 +
(

1 + β1 |~p|2 + β2 |~p|4
)−1

(dxi)2

(1.58)
Another physical consequence is that the rainbow metric (1.58) when α3 = 0; α1 =
β1;α2 = β2 yields modifications of the Weyl-Heisenberg algebra

[xµ, pν ] = i h̄ gµν(|~p|2) (1.59)

resulting from the momentum-dependent metric (1.58), and which in turn leads to the
following uncertainty relations

∆xµ ∆pν ≥ h̄

2
| <

(
1 + α1 |~p|2 + α2 |~p|4

)
> ηµν | (1.60)

where < .... > denote the QM expectation values < Ψ|......|Ψ >. See [21] for rigorous
mathematical details.

From (1.60) one arrives at the minimal length stringy uncertainty relations [22]

∆x ∆px ≥
h̄

2

(
1 + α1 (∆px)

2
)
⇒ ∆x ≥ h̄

2∆px
+ (

h̄α1

2
) ∆px (1.61)

Minimizing the expression in (1.61) and inserting the Planck scale LP which was set to
unity one has for the minimum position uncertainty a quantity of the order of the Planck
scale

(∆x)min = LP
√
α1, α1 > 0 (1.62)
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Higher order corrections to the stringy uncertainty relations in eq-(1.62) stem from the
higher grade polymomentum variables in C-space appearing in eq-(1.61) and correspond,
physically, to the membrane contributions to the modified uncertainty relations. Hence,
the stringy and membrane corrections to the uncertainty relations in D = 4 are of the
form (similar equations follow for the other spatial coordinates)

∆x ∆px ≥
h̄

2
[ 1 + α1 (∆px)

2 + α2 (∆px)
4 ] (1.63)

leading to

∆x ≥ h̄

2
[

1

∆px
+ α1 (∆px) + α2 (∆px)

3 ] (1.64)

the extremization problem of (1.64) is more complicated but there is a local minimum
when α1 > 0, α2 > 0. The value of ∆px which yields the local minimum for ∆x is

(∆px)o =

 − α1 +
√

(α1)2 + 12α2

6α2


1
2

, α1 > 0, α2 > 0 (1.65)

If one sets the above value of (∆px)o and minimal length uncertainty to coincide with
the Planck momentum and Planck scale, respectively, one can fix the numerical values
of α1, α2. In higher dimensions than D = 4 one will capture the p-brane contributions
beyond the membrane case due to the contributions of the higher grade polymomenta
components. The dimensions (units) of the parameters in eqs-(1.63-1.65) are [α1] =
(L/h̄)2, [α2] = (L/h̄)4.

Related to the minimal length uncertainty in eq-(1.62) one should mention that the
theory of Scale Relativity proposed by Nottale [23] is based on a minimal observational
length-scale, the Planck scale, as there is in Special Relativity a maximum speed, the
speed of light, and deserves to be looked within the Clifford algebraic perspective. In
future work we shall address the fractal nature of quantum spacetime [23] within the
framework of quantum Clifford algebras and Scale Relativity. In the quantization program
of gravity a key role must be played by quantum Clifford-Hopf algebras since the latter
q-Clifford algebras naturally contain the κ-deformed Poincare algebras [89], [90], which
are essential ingredients in the formulation of DSR within the context of Noncommutative
spaces. The Minkowski spacetime quantum Clifford algebra structure associated with the
conformal group and the Clifford-Hopf alternative κ-deformed quantum Poincare algebra
was investigated [91].

1.5 Generalized Lorentz Transformations and Weyl-Heisenberg
Algebra

We shall study next another different approach to the construction of generalized
Lorentz transformations involving only polyvector components of equal grade. One may
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define a generalized Lorentz algebra in terms of anti-Hermitian operators J AB = −J BA

as 2

[ J AB, J CD ] = − GAC J BD + GAD J BC − GBD J AC + GBC J AD (1.66)

where A,B,C, .... are polyvector-valued indices. One must emphasize that J AB 6=
[ΓA,ΓB], except in the case J µν = 1

4
[γµ, γν ]. To simplify matters, the generalized metric

GAB = GBA shall be chosen to be GAB = 0 when the grade A 6= grade B. And for the
same grade metric components g[a1a2...ak] [b1b2...bk] of GAB, the metric can decomposed into
its irreducible factors as antisymmetrized sums of products of ηab given by the following
determinant [16]

GAB ≡ det


ηa1b1 . . . . . . ηa1bk

ηa2b1 . . . . . . ηa2bk

−−−−−−−−−−− −−−−−−−−−−−−−−
ηakb1 . . . . . . ηakbk

 = GBA

(1.67)
The spacetime signature is chosen to be (−,+,+, ....,+).

One can verify next that a realization of the algebra (1.66) can be obtained in terms
of polyvector-valued coordinates and momenta X̂A, P̂B operators obeying the generalized
Weyl-Heisenberg algebra

[X̂A, P̂B] = i (h̄)(|A|+|B|)/2 GAB, GAB = GBA (1.68)

where |A|, |B|, = grade of A,B, respectively.
The C-space polyvector-valued momentum is defined as

P = M dX

dΣ
= PA ΓA = π + pµ γµ + pµν γµ ∧ γν + ...... (1.69)

where (dΣ)2 =< dX† dX >. Σ is the analog of “proper time” in C-space. To match
physical units, powers of a suitable mass/length parameter must be introduced in eq-
(1.69). Like the Planck mass and length. If X and P are taken to have length and
momentum dimensions, respectively, then M has mass dimensions. By inspection one
learns that the commutator of the zero grade components, the scalar parts of X̂A and
P̂B, does not involve h̄ but a dimensionless parameter that can be given by the ratio of
an ultraviolet LP and infrared Hubble scale RH as follows

[ŝ, π̂] = i
LP
RH

G∗∗ (1.70)

G∗∗ is the scalar-scalar component of the generalized metric GAB. The classical limit
is attained when LP/RH → 0 so that the above commutator vanishes. This ratio

2We choose anti-Hermitian operators in order to avoid having to introduce i factors in the right hand
side of the commutators
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LP/RH is also related to the observed vacuum energy density ρ ∼ (LP/RH)2 (MP )4 ∼
10−122 (Planck Mass)4.

Hence, if J AB = 0 when the grade A 6= grade B, a Weyl-Heisenberg algebra allows
to find a realization of the dimensionless anti-Hermitian generators J AB in eq-(1.66) as
follows

J AB =
i

h̄(|A|+|B|)/2

(
X̂A P̂B − X̂B P̂A

)
= − J BA, J AB = 0 if |A| 6= |B| (1.71)

X̂A and P̂B are Hermitian operators.
To sum up, when |A| = |B|, GAB 6= 0,J AB 6= 0; and GAB = 0,J AB = 0 for |A| 6= |B|,

a generalization of the Poincare algebra involving polyvector-valued indices is given by
the commutators in eq-(1.66) and

[ J AB, P̂C ] = − GAC P̂B + GBC P̂A, [P̂A, P̂B] = 0, [X̂A, X̂B] = 0, (1.72)

where P̂A are the polymomentum operators and J AB are the generalized Lorentz gener-
ators. The [J AB,J CD], [J AB, P̂C ], .... commutators obey the Jacobi identities.

A generalization of the Poincare algebra permits the construction of gauge theories of
extended gravitational theories in curved C-spaces in term of the analogs of a vielbein
EA
M and spin connection ΩAB

M . The generalized connection is AM = EA
M PA + ΩAB

M JAB.
There is a nontrivial torsion as shown in [16].

A question still remains whether or not it is possible to construct the generators of the
algebra displayed by eq-(1.66) in terms of a judicious superposition of Clifford algebra
generators like

J AB = MAB
C ΓC (1.73)

By inspection one learns that J AB 6= [ΓA,ΓB], nor proportional to the commutators,
except in the case J µν = 1

4
[γµ, γν ]. Therefore, the coefficients MAB

C 6= fABC are not given
by the structure constants. Inserting the ansatz of (1.73) into the commutators (1.66)
leads to an algebraic set of equations involving MAB

C , f
AB
C , G

AB as the indices A,B,C run
from 1 to 2D. It is unknown (to our knowledge) if a solution for the coefficients MAB

C

exists given the complexity of the (anti) commutator relations in any dimension provided
in the Appendix. A computer algebra package would be required.

2 Generalized Gravity in Curved Clifford Spaces

2.1 The Differential Geometry of Curved C-spaces

In curved C-space [1], [7] one introduces the X-dependent basis generators γM , γ
M defined

in terms of the beins EA
M , inverse beins EM

A and the flat tangent space generators γA, γ
A

as follows γM = EA
M(X)γA, γ

M = EM
A (X)γA. The curved C- space metric expression
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gMN = EA
ME

B
NηAB also agrees with taking the scalar part of the Clifford geometric product

< γM γN >= gMN .
From now one we shall denote the curved C-space basis generators γM , γ

M by EM , E
M ,

and the flat tangent space generators γA, γ
A by EA, E

A. The indices A,B,C, ... from the
beginning of the alphabet represent the tangent space indices, while those from the middle
of the alphabet L,M,N, ... represent the base world indices. The covariant derivative of
EA
M(X), EM

A (X) involves the generalized connection and spin connection and are defined
as

∇KE
A
M = ∂KE

A
M − ΓLKM EA

L + ωAKB EB
M (2.1a)

∇KE
M
A = ∂KE

M
A + ΓMKL E

L
A − ω B

KA EM
B (2.1b)

If the nonmetricity is zero then ∇KE
A
M = 0, ∇KE

M
A = 0 in eqs-(2.1).

The coefficients (functions) W N
LM associated to the Clifford geometric product are

defined by

EA EB = W C
AB EC , given EL = EA

L EA, EM = EA
M EA ⇒

EL EM = W N
LM EN ⇒ W N

LM = EA
L EB

M EN
C W C

AB (2.2)

the Clifford algebra structure functions f N
LM , d N

LM are defined by

[EA, EB] = f C
AB EC , [EL, EM ] = f N

LM EN ⇒ f N
LM = EA

L EB
M EN

C f C
AB (2.3)

{EA, EB} = d C
AB EC , {EL, EM} = d N

LM EN ⇒ d N
LM = EA

L EB
M EN

C d C
AB (2.4)

Due to the antisymmetry property ΩKAB = −ΩKBA of the generalized spin connection
one has

∇K(ηAB) = − Ω C
KA ηCB − Ω C

KB ηAC = − (ΩKAB + ΩKBA ) = 0 (2.5)

as expected and such that

∇K(gMN) = ∇K(EA
M EB

N ηAB) = 0 ⇒ ∇KE
A
M = 0 (2.6)

From
∇K(EA

M) = 0 ⇒ ∂K(EA
M) − Γ L

KM EA
L + ΩA

KB EB
M = 0 ⇒

∂K(EA
M) = Γ L

KM EA
L − ΩA

KB EB
M (2.7)

one obtains the relationship between the connection and the spin connection. Having

∇K(EA
M) = 0 ⇒ ∇K(EM) = ∇K(EA

M EA) = EA
M ∇KEA =

EA
M ( ∂KEA − Ω B

KA EB ) = 0 ⇒
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∂K EA = Ω B
KA EB (2.8)

Hence under parallel transport, ∂KEA, the tangent space basis EA generators are rotated
as displayed by eq-(2.8). More details of the role of the generalized spin connection in
C-spaces can be found in [7].

The result ∇K(EM) = 0 is also consistent with the zero nonmetricity condition

∇K gMN = ∇K < EM EN > = < ∇K(EM) EN > + < EM ∇K(EN) > = 0
(2.9)

therefore, the Clifford algebra basis elements EM in a curved C-space are covariantly
constant with respect to a metric-compatible connection ∇KgMN = 0.

Upon taking derivatives on both sides of the equalities in eqs-(2.2-2.4) and after using
eqs-(2.7, 2.8) gives the covariantly constancy conditions of the structure functions

∇K(fLMN) = 0, ∇K(dLMN) = 0, ∇K(WLMN) = 0 (2.10)

A careful analysis reveals that eq-(2.10) does not impose any additional constraints
on the generalized connection and spin connection. This result is an improvement over
our prior findings in [10] and is consistent with the fact that performing a derivative
operation on both sides of an equality should not introduce additional constraints on the
connection.

For simplicity we shall set the nonmetricity QL
MN to zero. In Appendix B we show

that the torsionless Levi-Civita connection is given by

(lc)ΓLMN = {LMN} +
1

2
gLK ( fMKN + fNKM + fMNK ) (2.11)

where

{LMN} =
1

2
gLK ( ∂N gKM + ∂M gKN − ∂K gMN ) (2.12)

and fMKN are the Clifford algebra structure functions (coefficients). We should notice
that the Levi-Civita connection in eq-(2.11) has a symmetric (lc)ΓL (MN) and antisymmetric
(lc)ΓL [MN ] piece. The symmetric piece is given by the first three terms in (2.11), while
the antisymmetric piece is given by the last term in (2.11).

The Torsion is defined by

T = ∇X Y − ∇Y X − [X,Y] (2.13)

so that by inspection one can see that the LC connection (2.11) is torsionless

(lc)T L
MN ≡ (lc)ΓLMN − (lc)ΓL NM − f L

MN = 0 (2.14)

The last term −f L
MN in the expression for the torsion (2.14) originates from the non-

vanishing [X,Y] 6= 0 contribution and resulting from the fact that [EM , EN ] = f L
MN EL 6=

0.
The Torsion can be introduced explicitly by the addition of the contorsion term KL

MN

ΓLMN = (lc)ΓLMN + KL
MN (2.15)
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The contorsion tensor is defined in terms of the components of the torsion tensor as

KL
MN =

1

2
(T L

M N + T L
N M + TLMN), TLMN = − TLNM (2.16)

so that now the torsion is no longer zero TLMN = ΓLMN − ΓLNM − fLMN 6= 0.
After recurring to the result in eq-(2.7) ∂K(EA

M) = Γ L
KM EA

L − ΩA
KB EB

M and defining
TLMN EA

L = TAMN , one can verify that

TAMN = ∂M EA
N − ∂N EA

M + ΩA
MB EB

N − ΩA
NB EB

M − f L
MN EA

L (2.17)

therefore, TAMN can be written in terms of the generalized spin connection and the gen-
eralized vielbeins . The expression (2.17) bears a resemblance with the Cartan structure
equations for the torsion 2-form Ta = T aµν dx

µ ∧ dxν in ordinary spaces when it is written
in terms of differential forms, exterior derivatives and exterior products

Ta = dΘa + ωa b ∧ Θb, Θa ≡ eaν dx
ν , ωa b = ωa b µ dx

µ (2.18)

The curvature is defined as

R(X,Y) Z = [∇X, ∇Y] Z − ∇[X,Y] Z (2.19)

such that the explicit curvature components are given by

R K
MNJ = ∂M Γ K

NJ − ∂N Γ K
MJ − Γ L

MJ Γ K
NL + Γ L

NJ Γ K
ML − f L

MN Γ K
LJ (2.20)

In Appendix D it is shown explicitly that the curvature (2.20) transforms homogeneously
under coordinate transformations XM → X̃M(XN) despite that the connection ΓKMJ

transforms inhomogeneously.
The above curvature expression has a similarity to the nonholonomic coordinates de-

scription of the curvature tensor in ordinary spacetime, where one replaces the derivatives
∂µ, ∂ν , ... with the derivative operators êa = eµa∂µ, êb = eνb∂ν which are defined in terms of
the inverse vielbeins; one replaces Γρµν with Γcab and instead of using the structure func-
tions (coefficients) of the Clifford algebra one uses the nonholonomy coefficients defined
by [êa, êb] = Cc

ab êc. To sum up, because the Clifford algebra structure functions (coef-
ficients) are not zero f L

MN 6= 0 one must include them into the definitions of the torsion
and curvature. In the curvature case there are terms f L

MN Γ K
LJ as displayed in eq-(2.20).

While in the torsion case we must include the term f L
MN as shown in eq-(2.17).

The same-grade C-space metric components obeying gMN = gNM are of the form

g00, gµν , gµ1µ2 ν1ν2 , . . . , gµ1µ2...µD ν1ν2...νD (2.21)

In the most general case the metric does not factorize into antisymmetrized sums of
products of the form

g[µ1µ2] [ν1ν2](x
µ) 6= gµ1ν1(xµ) gµ2ν2(xµ) − gµ2ν1(xµ) gµ1ν2(xµ)
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g[µ1µ2...µk] [ν1ν2...νk](x
µ) 6= det Gµiνj = εj1j2...jk gµ1νj1

gµ2νj2
. . . gµ2νjk

, k = 1, 2, 3, . . . D
(2.22)

The determinant of Gµiνj can be written as

det


gµ1ν1(xµ) . . . . . . gµ1νk(x

µ)
gµ2ν1(xµ) . . . . . . gµ2νk(x

µ)
−−−−−−−−−−− −−−−−−−−−−−−−−

gµkν1(xµ) . . . . . . gµkνk(x
µ)

 , (2.23)

The metric component g00 involving the scalar “directions” in C-space of the Clifford poly-
vectors must also be included. It behaves like a Clifford scalar. The other component
g[µ1µ2...µD] [ν1ν2...νD] involves the pseudo-scalar “directions”. The latter scalar and pseudo-
scalars might bear some connection to the dilaton and axion fields in Cosmology and
particle physics.

The Bianchi identities when the torsion is zero are given by

RMNJK + RNJMK + RJMNK = 0 (2.24)

∇L(RMNJK) + ∇M(RNLJK) + ∇N(RLMJK) = 0 (2.25)

When the torsion is not zero there are nonvanishing terms in the right hand side of eqs-
(2.24, 2.25) of the form (∇ + T)T, and T ×R, respectively, where T is the torsion and
R is the curvature.

After multiplying the differential Bianchi identities (2.25), by gMKgNJ , and performing
the contractions of polyvector-valued indices, one arrives at the vacuum field equations
in C-space in the absence of torsion and nonmetricity

R(MJ) −
1

2
gMJ R = 0, R[MJ ] = 0 (2.26)

where

R(MJ) ≡
1

2
(RMJ + RJM), R[MJ ] ≡

1

2
(RMJ −RJM) (2.27)

Due to the fact that the Levi-Civita connection in eq-(2.11) has a symmetric (lc)ΓL (MN),

and antisymmetric (lc)ΓL [MN ] piece, RMJ has a symmetric and anti-symmetric compo-
nents. For this reason one must symmetrize the indices as displayed in the first expression
of eq-(2.26). The on-shell value of the antisymmetric piece is R[MJ ] = 0.

One may include matter fields by introducing the C-space analog of the symmetric
stress energy tensor T(MJ) into the right-hand side of the first expression of eq-(2.26).
While also introducing the antisymmetric piece of TMJ into the right-hand side of the
second expression of eq-(2.26) R[MJ ] ∼ T[MJ ].

The typical example of these sort of field equations, in ordinary spacetimes, are the
field equations associated with the Einstein-Cartan-Dirac theory [24]. The nontrivial
torsion T µνρ tensor is generated (sourced) by the spin density tensor Sµνρ ∼ Ψ̄γ[µγνγρ]Ψ.
In this case the torsion is non-propagating in the sense that it is an algebraic function
given by fermion bilinear terms.
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Up to numerical coefficients, the symmetric part of the stress energy tensor T(µν) is
of the form Ψ̄γ(µ∇ν)Ψ + gµνS

αβσSαβσ + · · ·, where ∇νΨ is defined in terms of the spin
connection ∇νΨ = (∂ν+ 1

2
ωabν [γa, γb])Ψ. Whereas the antisymmetric part T[µν] of the stress

energy tensor is of the form ∇αS
α
µν + SβαβS

α
µν + · · · [24].

To finalize this section we shall discuss the notion of poly-differential forms. In C-space
one has now that

dxµν 6= dxµ ∧ dxν , dxµνρ 6= dxµ ∧ dxν ∧ dxρ, ..... (2.28)

because the areal-coordinates xµν , volume-coordinates xµνρ, ..... associated with the
world-sheet, world-volume, ..... evolution of a string, membrane, ..... are not related to the
vector coordinates xµ associated with the evolution of a point particle. For this reason the
antisymmetry property of the poly-differential forms is given by dXM∧dXN = − dXN∧
dXM . In particular one has the following combinations

dxµ1µ2...µ2m ∧ dxρ1ρ2...ρ2n = − dxρ1ρ2...ρ2n ∧ dxµ1µ2...µ2m (2.29a)

dxµ1µ2...µ2m−1 ∧ dxρ1ρ2...ρ2n−1 = − dxρ1ρ2...ρ2n−1 ∧ dxµ1µ2...µ2m−1 (2.29b)

dxµ1µ2...µ2m−1 ∧ dxρ1ρ2...ρ2n = − dxρ1ρ2...ρ2n ∧ dxµ1µ2...µ2m−1 (2.29c)

dxµ1µ2...µ2m ∧ dxρ1ρ2...ρ2n−1 = − dxρ1ρ2...ρ2n−1 ∧ dxµ1µ2...µ2m (2.29d)

and which differs from the antisymmetry property of ordinary differential forms. Given
an ordinary p-form Ap and an ordinary q-form Bq one has Ap ∧ Bq = (−1)pq Bq ∧Ap.
The antisymmetry property displayed by the C-space poly-differential forms in eqs-(2.29)
will ensure that the generalized curvature tensor is antisymmetric under the following
exchange of polyvector-valued indices : R K

MNJ = − R K
NMJ .

The C-space poly-differential forms analogs of the Cartan-structure equations in or-
dinary spacetime are

TA = dΘA + ΩA
B ∧ ΘB, ΘA ≡ EA

M dXM , ΩA
B = ΩA

B N dXN (2.30a)

RAB = dΩAB + ΩA
C ∧ ΩCB, RAB = RAB

MN dXM ∧ dXN (2.30b)

where A,B are the tangent space indices and M,N are the base (world) indices.
The above equations are the starting point to formulate a gauge theory of extended

gravity in C-spaces based on the analogs of a vielbein EA
M and spin connection ΩAB

M . The
generalized connection is AM = EA

M PA + ΩAB
M JAB. PA is the translation generator and

JAB is the generalized Lorentz generator. The connection poly-differential one-form is
AM dXM and the poly-differential curvature 2-form is R = (d + A) ∧A. In component
form, the curvature is RMN dXM ∧ dXN = (RA

MNPA + RAB
MNJAB) dXM ∧ dXN . This

gauge theory approach to C-space gravity is the C-space generalization of the Poincare
gauge theory formulation of ordinary gravity [11].
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3 The Generalized Gravitational Action and the

Cosmological Constant

In this section we shall derive the field equations from a variational action principle instead
from the differential Bianchi identities. Before embarking into this final section we shall
work with the natural units h̄ = c = G = LPlanck = 1. Upon performing contractions of
the curvature yields the analog of the Ricci tensor δNK R K

MNJ = RMJ and the Ricci scalar
gMJRMJ = R. One may then construct an Einstein-Hilbert-Cartan like action based on
the C-space curvature scalar R

1

2κ2

∫
ds

∏
dxµ

∏
dxµ1µ2 . . . dxµ1µ2...µD µm(gMJ) R ≡

1

2κ2

∫
[DX] µm(gMJ) R (3.1)

where µm(gMJ) is a suitable integration measure and κ2 is the gravitational coupling
constant in the 2D-dimensional C-space.

At this point it is important to remark that the analog of the Ricci tensor RMJ 6= RJM

is no longer symmetric in the indices because RMJ (and R) are defined now in terms
of the non-symmetric connection ΓKMN 6= ΓKNM as displayed in eq-(2.14). There is an
antisymmetric piece in the connection given explicitly by the very last term of eq-(2.14).
The curvature scalar becomes R = gMJRMJ = gMJR(MJ) + gMJR[MJ ] = gMJR(MJ).
Hence, it is the symmetric part of the Ricci tensor analog that appears in the vacuum
field equations below. Torsion can also be added to the connection explicitly in terms of
the contorsion terms as shown in eqs-(2.18,2.19).

In a given coordinate system (a generalized Lorentz frame) the mixed-grade compo-
nents of the metric gMN , g

MN , beins EA
M , inverse beins EM

A , can be set to zero in order to
considerably simplify the calculations; i.e. namely due to the very large diffeomorphism
symmetry in C-space, one may choose a frame (“diagonal gauge”) such that the mixed
grade components of the metric gMN , beins EA

M , inverse beins EM
A are zero. In this case

the C-space metric components can be chosen to be given by the determinant expressions
in eq-(2.26).

The advantage of having gMN = 0 if the grade of M is not the same as the grade of N
is that the determinant of the C-space metric can be factorized as the product of determi-
nants of matrices which are comprised of entries given themselves by determinants (2.26)
. If an ordering prescription of indices is introduced, µ1 < µ2 < ....µn and ν1 < ν2 < ....νn,
the bivector-bivector components of the C-space metric in D = 4 dimensions gµ1µ2 ν1ν2

can be arranged into an ordered square array of entries given by a 6 × 6 matrix, since
the number of independent bivector components in D = 4 is 4 × 3/2 = 6. For instance,
the entries of the square 6 × 6 matrix gµ1µ2 ν1ν2 are given themselves by determinants :
g12 12 = g11g22− g12g21; g13 13 = g11g33− g13g31, ...... etc, and such that its determinant is
given by the ordinary determinant of an square 6× 6 matrix.

The trivector-trivector components of the C-space metric in D = 4 dimensions
gµ1µ2µ3 ν1ν2ν3 can be arranged into an ordered square array of entries given by a 4× 4 ma-
trix, since the number of independent trivector components in D = 4 is 4×3×2/2×3 = 4.
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The entries of this square 4×4 matrix are given themselves by the determinants as shown
in eq-(2.26). Following a similar procedure with the other C-space metric components,
in this way one can write the measure of integration in D = 4 as the square root of the
product of determinants

µm(gMJ) =
√
|g| |det (gµν)| |det (gµ1µ2 ν1ν2)| |det (gµ1µ2µ3 ν1ν2ν3)| |det (gµ1µ2µ3µ4 ν1ν2ν3ν4)|

(3.2)
where g is the scalar-scalar part of the C-space metric. The generalization to other
dimensions is straightforward.

In the most general case one can have a C-space metric with non-vanishing mixed
grade components such that the metric gMJ components can be assembled into arrays
of ordered rectangular matrices. The problem becomes that one cannot longer define a
determinant of a rectangular matrix. One can also view the gMJ as a hyper-matrix but
the construction (if possible) of the hyper-determinant of the C-space metric (a hyper
matrix) is a more difficult problem [13], [14].

Despite that in the most general case the measure µm(gMJ) is not given by eq-(3.2) one
can still assume that µm(gMJ) is a suitable measure of integration obeying the condition

δµm(gMJ) = − 1

2
µm(gMJ) gMJ δg

MJ (3.3)

and which is similar to the variational behavior of the square root of an ordinary deter-

minant of the spacetime metric
√
|det gµν |.

Before continuing some important remarks are in order. It is known that the definition
of an alternative measure substantially affects the discussion of the cosmological constant
problem, as has been found in the study of Two Measures Theories [18]. For example a
metric independent measure will not satisfy eq-(3.3) [18]. In the most general case the
measure is not given by eq-(3.2) and this would modify the discussion of the cosmological
constant problem. By using two choices for the measure as in the Two Measures Theory
one improves the behavior concerning the vacuum energy density since the discussion of
the cosmological constant problem depends crucially on what vacuum one takes [18].

An alternative measure of integration in four dimensions independent of the metric
can be obtained, for example, in terms of four scalars ϕa(a = 1, 2, 3, 4) as follows [18]
Φ = εµνρτ εabcd(∂µϕ

a)(∂νϕ
b)(∂ρϕ

c)(∂τϕ
d). Such measure of integration can trigger a num-

ber of remarkable physically important phenomena [18] such as: (i) a new mechanism
of dynamical generation of the cosmological constant; (ii) a new type of ”quintessential
inflation” scenario in cosmology; (iii) non-singular initial ”emergent universe” phase of cos-
mological evolution preceding the inflationary phase; (iv) a new mechanism of dynamical
spontaneous breakdown of supersymmetry in supergravity; (v) gravitational electrovac-
uum ”bags”.

The C-space extension of such measure in four dimensions would involve a Clifford-
valued scalar field ϕAΓA where the Clifford-valued index A in four dimensions spans
24 = 16 components. Four of the components can be identified to the four scalars
ϕa(a = 1, 2, 3, 4). The C-space extension of the alternative measure Φ is now given
by εM1M2....M16εA1A2....A16(∂M1ϕ

A1)(∂M2ϕ
A2).....(∂M16ϕ

A16).
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Therefore, to sum up, when the torsion is set to zero and the measure obeys (3.3), a
variation of the action (3.1) leads to∫

[DX] µm(gMJ)
(

R(MJ) −
1

2
gMJ R

)
δgMJ = 0 (3.4)

after discarding the total derivative terms that do not contribute to the variation of the
action when the variation of the fields vanishes at the boundaries. These total derivative
terms stem from the variation of the Ricci tensor. In Appendix C it is shown after
straightforward algebra that the variation of the Ricci tensor is given by

δ (RMJ) = ∇M(δΓNNJ) − ∇N(δΓNMJ) + 2 ΓN[ML] δ( ΓLNJ ) − δ( f N
ML ΓLNJ ) (3.5a)

when the torsion is zero one has 2ΓN[ML] = f N
ML such that eq-(3.5a) becomes

δ (RMJ) = ∇M(δΓNNJ) − ∇N(δΓNMJ) − δ( f N
ML ) ΓLNJ (3.5b)

Because ΓLNJ does not behave like a tensor the term δ( f N
ML ) ΓLNJ in eq-(3.5b) is spurious

unless one is forced to impose the variational condition δ( f N
ML ) = 0 on the structure

functions, and whose physical interpretation is that one should not vary the Clifford
algebraic structure functions in C-space. Therefore, when one sets δ( f N

ML ) = 0, the
variation δ (RMJ) in eq-(3.5b) becomes finally

δ (RMJ) = ∇M(δΓNNJ) − ∇N(δΓNMJ) (3.5c)

and which is the analog of the Palatini identity in C-space.
If one does not wish to impose the condition δ( f N

ML ) = 0, by inspection one can see
that another way of eliminating the spurious term −δ( f N

ML ) ΓLNJ from the variation in
eq-(3.5b) might be attained when the variation δ does not commute with the derivative
operation ∂M and such that an additional term of the following form must be added to
the variation (3.5a, 3.5b)

[ δ, ∂M ] ΓLLJ − [ δ, ∂L ] ΓLMJ (3.5d)

if the above commutators [δ, ∂M ], [δ, ∂L] are defined such that eq-(3.5d) becomes
δ( f N

ML ) ΓLNJ one can then eliminate the presence of the spurious term −δ( f N
ML ) ΓLNJ

in eq-(3.5b) without having to impose the variational condition δ( f N
ML ) = 0 on the

Clifford algebra structure functions. For a detailed analysis of the noncommutativity of
the variation δ operation with the derivatives ∂ we refer to [17].

The variation (3.5c) contributes to a sum of total derivatives by noticing that one can
pull the ∇ derivatives to the left of all the terms in the integrand because ∇KgMJ = 0 and
∇µm(gMJ) = 0 when the nonmetricity is zero. This yields finally

∫
∇(µm......δΓ), which

is a total derivative leading then to a boundary term that vanishes, either by imposing a
zero variation at the boundaries and/or by having the fields vanish at infinity.

Finally, the vacuum field equations in C-space are given by

R(MJ) −
1

2
gMJ R = 0 (3.6)
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One must supplement the above equations with the variation of the action with respect
to the scalar-scalar component g of the C-space metric δS/δg = 0.

If there is torsion due to the presence of spinning matter in the Lagrangian one has
extra terms

1

2κ2

∫
[DX] µ(gMJ) gMJ TLMN δΓNLJ (3.7a)

in the variation of the action that are matched with the variation −δSmatter of the matter
terms, if and only if, the variation δΓNLJ is taken to be independent of the variation δgMN .
In this case the torsion obeys the relation

1

2κ2

∫
[DX] µ(gMJ) gMJ TLMN = − δSmatter

δΓNLJ
(3.7b)

One must also add the contribution of the symmetric part of the analog of the stress
energy tensor κ2T(MJ) to the right hand side of eq-(3.6), where TMJ is defined by

TMJ ≡ − 2

µ(gMJ)

δ(µ(gMJ) Lmatter)
δgMJ

(3.7c)

We have arrived now at the most salient physical feature of the vacuum field equations.
By inserting the torsionless connection expression in eq-(2.14) of the form ΓLMN = {LMN}+
fLMN ..... terms, and after using the covariantly constancy condition on the curved C-space
Clifford algebra structure functions ∇MfJKL = 0, one can decompose the Ricci tensor
as R(MJ) ∼ RMJ + fKLM fKLJ + fKLJ fKLM , and the Ricci scalar as R ∼ R + fJKLfJKL.
RMJ = RJM , R are the Ricci tensor and Ricci scalar analogs in C-space associated with
the symmetric Christoffel connection {LMN} = {LNM}.

The physical significance of this curvature decomposition is that these extra terms
involving the curved C-space Clifford algebra structure functions can be interpreted as
an effective stress energy tensor which can mimic the effects of “dark” matter/energy.
To see how the cosmological constant Λ emerges, it is straightforward to infer that the
contraction fJKL fJKL involving the Clifford-algebra structure functions in curved C-
space turns out to be equal to fABC fABC ∼ Λ1 = constant, when fABC , fABC are the
tangent space Clifford algebra structure constants. This finding is just a consequence of
the definitions of fJKL and fJKL in terms of the beins EA

J , and inverse beins EJ
A given

by eqs-(2.2-2.4), and obeying EJ
A E

A
M = δJM , ....

Therefore, when the torsion is set to zero, the measure obeys (3.3), and after writing
R(MJ) = R(MJ) + ∆R(MJ), and R = R + Λ1, the vacuum field equations in C-space can
be rewritten as

R(MJ) + ∆R(MJ) −
1

2
gMJ R −

1

2
gMJ Λ1 = 0 (3.8)

where Λ1 ≡ ∆R ∼ fJKL fJKL = fABC fABC = constant. The other terms

∆R(MJ) ∼ fKLM fKLJ + fKLJ fKLM ∼ Λ2 κMJ (3.9)
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are proportional to the curved space Clifford algebra Killing metric κMJ =
EA
ME

D
J f

BC
A fBCD = EA

ME
D
J κAD. If the Killing metric κAD coincides with ηAD then

κMJ = gMJ and the combined effect of the two constants Λ1,Λ2 gives the sought-after
cosmological constant term

1

2
gMJ ( 2Λ2 − Λ1 ) ≡ Λ gMJ , with 2Λ2 − Λ1 ≡ 2 Λ (3.10)

If the Killing metric κAD does not coincide with ηAD then one will have for the ∆R(MJ)

terms the following Λ2 κMJ contribution which can be interpreted as (minus) an effective
stress energy tensor −κ2 TMJ term mimicking the effects of “dark” matter.

To conclude, one of the most salient physical feature of the extended gravitational
theory in C-spaces is that one can generate an effective stress energy tensor mimicking
the effects of “dark” matter/energy. In particular the cosmological constant term. One
could explicitly add a cosmological constant term, by hand, to the original action (3.1)
but the main point of our above argument is that it is not necessary, to do so. The
cosmological constant term is automatically encoded in the fJKL fJKL = fABC fABC ( =
constant) term which naturally forms part of the C-space scalar curvature.

In ordinary Relativity, when the torsion is zero, one can construct the Einstein tensor
by performing two successive contractions of the differential Bianchi identity [12]. It also
leads to the conservation of the stress energy tensor in the right hand side. In C-space
the differential Bianchi identities are satisfied when the torsion is zero. By performing
two successive contractions of the differential Bianchi identities one arrives at the field
equations

∇M ( R(MJ) −
1

2
gMJ R ) = 0 ⇒ R(MJ) −

1

2
gMJ R = κ2 T(MJ), ∇M(T(MJ)) = 0

(3.11)
The advantage of recurring to the differential Bianchi identities in C-space to derive the
field equations (3.11) is that it is not necessary to invoke an action and confront the
subtleties in constructing a suitable measure of integration.

One may introduce a cosmological constant as an integration constant Λ′ in the right
hand side of eq-(3.11) giving the modified field equations

R(MJ) −
1

2
gMJ R = Λ′ gMJ (3.12)

After decomposing the curvature terms of the left hand side of eq-(3.12) in the same form
as in eq-(3.8), and bringing the term Λ′ gMJ into the left hand side, one ends up with
an effective cosmological constant term of the form (Λ− Λ′)gMJ . Hence a cancellation
of the effective cosmological constant is possible when Λ − Λ′ = 0. This scenario for a
plausible explanation of the extremely small value of the observed cosmological constant
warrants further investigation.

Let us proceed with the vacuum field equations (3.6). To simplify matters we shall
only consider the action (3.1) whose measure is given by (3.2) involving the C-space metric
components and whose entries are given by the determinant expressions (E.1). Namely,
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the C-space metric is being decomposed into antisymmetrized sums of products of the
ordinary metric components of spacetime. Besides the scalar-scalar component g of the
C-space metric (not to be confused with the |det gµν |), the other independent variables
are now given by the ordinary metric components gµν = gνµ , hence a variation of the
action in C-space with respect to gµν leads to the generalized vacuum field equations that
do not coincide with the Einstein vacuum field equations.

Hence, in the torsionless case, and in this simplified case, the vacuum field equations
in D = 4 are obtained from the variation of the action with respect to gµν after using the
chain rule of differentiation∫

[DX] µm(gMJ)
(

R(MJ) −
1

2
gMJ R

)
δgMJ =

∫
[DX] µm(gMJ)

(
R(MJ) −

1

2
gMJ R

)
δgMJ

δgµν
δgµν = 0 (3.13)

The above variation in (3.13) yields the simplified version of the vacuum field equations

R(µν) −
1

2
gµν R +

(
R(M̂Ĵ) −

1

2
gM̂Ĵ R

)
δgM̂Ĵ

δgµν
= 0 (3.14)

where the contributions of the polyvector-components of the C-space metric are denoted
explicitly by the hatted indices. Clearly, the vacuum field equations (3.14) differ from the
Einstein field equations in ordinary spacetime due to the extra terms stemming from Clif-
ford algebraic structure and polyvector-valued contributions to the C-space metric. These
extra terms, once again, can be interpreted as the contribution of (minus) an effective
stress energy tensor −κ2Teff

µν which could mimic the effects of “dark” matter/energy. As a
reminder, one must also include the equation associated with the scalar-scalar component
g of the C-space metric δS/δg = 0. Such scalar-scalar C-space metric component might
also have cosmological implications like the axion and dilaton.

There are still many challenges ahead to test the viability of the Extended Gravita-
tional Theory in C-spaces. Other physical applications of C-space gravity were studied in
[10] in relationship to higher curvature theories of gravity, like Lanczos-Lovelock-Cartan
gravity (with torsion) [9] and to f(R) extended theories of gravity [51]. Our finding that
the presence of the cosmological constant, along with a plausible mechanism to explain its
extremely small value and/or its cancellation, can be understood from a purely Clifford
algebraic and geometric perspective, alone, is very appealing and deserves further investi-
gation. The reader might have noticed a similarity of our expressions for the torsion and
curvature to those which appear in a nonholonomic coordinate description of geometry, a
la Finsler, for example. Recent cosmological applications of this nonholonomic approach
to geometry, and related to the universe accelerated expansion, can be found in [15]. To
finalize we include the important Appendices A,B,C,D,E with the technical details of
the calculations.
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4 Generalized Metrics in C-spaces

4.1 (Anti) de Sitter Metrics in C-Spaces

The d-dim Anti de Sitter space AdSd can be parametrized in terms of stereographic
coordinates by embedding the d-dim hyperboloid (whose throat radius is L/2) in a d+ 1-
dim pseudo-Euclidean flat space Rd−1,2 of signature (−,+,+, · · · ,+,−) as follows

yµ =
xµ

(1− xµxµ/L2)
, µ = 0, 1, 2, · · · , d− 1 (4.1)

yd+1 =
L

2

(1 + xµx
µ/L2)

(1− xµxµ/L2)
, xµx

µ = − (x0)2 + (x1)2 + (x2)2 + . . . + (xd−1)2 (4.2)

one can infer from eqs-(4.1,4.2) that

− (yd+1)2 − (y0)2 + (y1)2 + (y2)2 + . . . + (yd−1)2 = − (
L

2
)2 (4.3)

The d-dim de Sitter space dSd can be parametrized by the stereographic coordinates
by embedding the d-dim hyperboloid (whose throat radius is L/2) into a d+1-dim pseudo-
Euclidean flat space Rd,1 of signature (−,+,+, · · · ,+,+) as follows

yµ =
xµ

(1 + xµxµ/L2)
, µ = 0, 1, 2, · · · , d− 1 (4.4)

yd+1 =
L

2

(1− xµxµ/L2)

(1 + xµxµ/L2)
, xµx

µ = − (x0)2 + (x1)2 + (x2)2 + . . . + (xd−1)2 (4.5)

obeying

(yd+1)2 − (y0)2 + (y1)2 + (y2)2 + . . . + (yd−1)2 = (
L

2
)2 (4.6)

The (Anti) de Sitter metric in stereographic coordinates become respectively

(dτ)2
AdS =

(dxµ) (dxµ)

(1− xµxµ/L2)2
, (dτ)2

dS =
(dxµ) (dxµ)

(1 + xµxµ/L2)2
(4.7)

namely, the metric is conformally flat. It is well known (to the experts) that the scalar
curvature of the d-dim Lorentzian spacetime corresponding to the conformally flat metric
g = e2φηµν = Ω2ηµν , and written in terms of inertial coordinates, is given by the expression

R(g) = Ω−2 [ − 2 (d− 1) (∂µ∂
µln Ω) − (d− 2) (d− 1) (∂µln Ω) (∂µln Ω) ] (4.8)

hence, given the conformal factors displayed above and plugging their values into eq-(4.8)
one ends up, respectively, with
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RAdS = − d (d− 1)

(L/2)2
, RdS =

d (d− 1)

(L/2)2
(4.9)

Given this preamble we are going to exploit the conformally flat nature of (Anti) de
Sitter spaces and show that the generalization of the d-dim Anti de Sitter space AdSd
metric to C-spaces is given

(dΣ)2 =
(dXM) (dXM)

(1−XMXM/L2)2
(4.10)

the C-space conformal factor is

Ω2(XM) =
1

(1−XMXM/L2)2
(4.11)

the infinitesimal displacement squared is

(dXM) (dXM) = (LP )2 (ds)2 + (dxµ) (dxµ) + (LP )−2 (dxµν) (dxµν) +

(LP )−4 (dxµνρ) (dxµνρ) + . . . (4.12)

The norm squared is

XMX
M = (LP )2 s2 + xµx

µ + (LP )−2 xµν x
µν + (LP )−4 xµνρ x

µνρ + . . . (4.13)

The Clifford scalar s is chosen to be dimensionless. We choose XMX
M to have units

of (length)2 and for this reason suitable powers of the Planck scale LP must appear in
eqs-(4.10-4.12).

The bivectors, trivectors, ..... infinitesimal displacements containing the temporal
direction will appear with a negative sign due to the chosen Lorentzian signature

(dxµ) (dxµ) = − (dx0)2 + (dx1)2 + (dx2)2 + . . . + (dxd−1)2 (4.14a)

(dxµν) (dxµν) = − (dx01)2 − (dx02)2 − (dx03)2 − . . . + (dx12)2 + (dx13)2 + . . . (4.14b)

(dxµνρ) (dxµνρ) = − (dx012)2 − (dx013)2 − (dx014)2 − . . . + (dx123)2 + (dx124)2 + . . .
(4.14c)

etc. There is an ambiguity in choosing the sign in the Clifford scalar part (ds)2 of eq-
(4.10). We choose the + sign so the overall signature of the 2d-dimensional C-space is
split into an equal number of positive/negative signs.

Because the C-space corresponding to the Clifford algebra Cl(d−1, 1) is 2d-dimensional
one can show, after some straightforward and lengthy algebra is performed in the defining
expressions for the connection and curvature in eqs-(2.11, 2.12, 2.20), that the general-
ization of the Anti de Sitter space scalar curvature to the 2d-dimensional C-space, and
evaluated for the symmetric Christoffel connection {} , is

R({}) = Ω−2
[
− 2 (2d − 1) (∂M∂

M ln Ω)
]
−
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Ω−2
[

(2d − 2) (2d − 1) (∂M ln Ω) (∂M ln Ω)
]

(4.15)

where the expression for the C-space conformal factor Ω(XM) is given by eq-(4.11). Hence,
one arrives finally at

R = − 2d (2d − 1)

(L/2)2
(4.16)

The generalization of the de Sitter space scalar curvature to the 2d-dimensional C-
space is derived from the C-space metric

(dΣ)2 =
(dXM) (dXM)

(1 +XMXM/L2)2
(4.17a)

leading to the (positive) value

R =
2d (2d − 1)

(L/2)2
(4.17b)

The generalized vacuum field equations in C-space in the presence of a cosmological
constant

RMN({}) − 1

2
gMN R({}) + Λ gMN = 0 (4.18)

are obeyed when the values for Λ associated with the C-space version of (Anti) de Sitter
spacetimes are respectively given by

Λ = − (2d − 1) (2d − 2)

2(L/2)2
, Λ =

(2d − 1) (2d − 2)

2(L/2)2
(4.19)

These results are consistent with a throat radius ρ = L/2 of the underlying (Anti) de
Sitter spacetimes. The generalized Ricci tensors are respectively given by

RMN = − (2d − 1)

(L/2)2
gMN , RMN =

(2d − 1)

(L/2)2
gMN (4.20)

The embedding of the 2d-dimensional C-space “hyperboloid” into an abstract space
of 2d + 1 dimensions in the Anti de Sitter version of C-space can be attained by writing

Y M =
XM

(1−XMXM/L2)
, M = 1, 2, · · · , 2d (4.21a)

Y M+1 =
L

2

(1 +XMX
M/L2)

(1−XMXM/L2)
, (4.21b)

whereas for the de Sitter version one has

Y M =
XM

(1 +XMXM/L2)
, M = 1, 2, · · · , 2d (4.22a)
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Y M+1 =
L

2

(1−XMX
M/L2)

(1 +XMXM/L2)
(4.22b)

and leading to the a generalization of eqs-(4.1-4.6). Note that 2d+1 6= 2d+1, unless d = 0,
however the abstract space of 2d + 1 dimensions is associated to the dimensions of the
direct sum of the Clifford algebras Cl(d− 1, 1)⊕ Cl(0).

4.2 A different family of C-space metrics

Another C-space metric associated with the generalization of the d-dim Anti de Sitter
spaceAdSd to C-spaces is given by a “diagonal sum” of the Clifford scalar, vector, bivector,
trivector, . . . contributions

(dΣ)2 = (LP )2 (ds)2

(1− s2)2
+

(dxµ) (dxµ)

(1− xµxµ/L2)2
+ (LP )−2 (dxµν) (dxµν)

(1− xµνxµν/L4)2
+

(LP )−4 (dxµνρ) (dxµνρ)

(1− xµνρxµνρ/L6)2
+ . . . (4.23)

The above C-space metric is not the same as

(dΣ)2 =
(dXM) (dXM)

(1−XMXM/L2)2
(4.24)

and for this reason the metric associated with the embedding (4.21) does not obey the
field equations (2.27).

The above “diagonal sum” version in the de Sitter case is

(dΣ)2 = (LP )2 (ds)2

(1 + s2)2
+

(dxµ) (dxµ)

(1 + xµxµ/L2)2
+ (LP )−2 (dxµν) (dxµν)

(1 + xµνxµν/L4)2
+

(LP )−6 (dxµνρ) (dxµνρ)

(1 + xµνρxµνρ/L6)2
+ . . . (4.25)

The above C-space metric does not solve the field equations (2.26) and does not have
the form

(dΣ)2 =
(dXM) (dXM)

(1 +XMXM/L2)2
(4.26)
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4.3 Analog of Spherically Symmetric Metrics in C-spaces

To search for a generalization of static spherically symmetric metrics in C-spaces, let us
focus on the Clifford algebra Cl(3, 1) associated with a four-dim Lorentzian spacetime
and which is 24 = 16 dimensional. The C-space metric defining the infinitesimal interval
(dΣ)2 has a split signature (8, 8) [1]. Let us examine what would be the analog of a
“spherically” symmetric metric in C-space. The analog of the “spatial radial distance”
squared in the 16-dim C-space is

|X|2 = (LP )2 s2 + (x1)2 + (x2)2 + (x3)2 +

(LP )−2
(

(x12)2 + (x13)2 + (x23)2
)

+ (LP )−4 (x123)2 (4.27)

from which one can infer that

d|X| = |X|−1
[

(LP )2 sds + x1dx1 + x2dx2 + x3dx3
]

+

|X|−1
[

(LP )−2
(
x12dx12 + x13dx13 + x23dx23

)
+ (LP )−4 x123dx123

]
(4.28)

where |X| is the square root of eq-(4.27).
The analog of the “temporal radial distance” squared in the 16-dim C-space is

|T |2 = (x0)2 + (LP )−2
(

(x01)2 + (x02)2 + (x03)2
)

+

(LP )−4
(

(x012)2 + (x013)2 + (x023)2
)

+ (LP )−6 (x0123)2 (4.29)

from which one can infer the expression for the infinitesimal temporal displacement

d|T | = |T |−1
[
x0dx0 + (LP )−2

(
x01dx01 + x02dx02 + x03dx03

) ]
+

|T |−1
[
(LP )−4

(
x012dx012 + x013dx013 + x023dx023

)
+ (LP )−6 x0123dx0123

]
(4.30)

where |T | is the square root of eq-(4.29).
Hence, an ansatz for the analog of a spherically symmetric metric in the 16-dim C-

space of split signature (8, 8) is

(dΣ)2 = − f(|X|) (d|T |)2 − |T |2 (dχ7)2 + h(|X|) (d|X|)2 + |X|2 (dΩ7)2 (4.31)

where |X|2(dΩ7)2 is the C-space metric analog a 7-dim sphere determined by the spatial
directions, and |T |2(dχ7)2 is the C-space metric analog of a 7-dim sphere determined
by the temporal directions. Ω7, χ7 are the respective solid angles of the 7-dim spheres.
All the other terms in (4.31) are defined by eqs-(4.27-4.30). The real-valued functions
f(|X|), h(|X|) in (4.31) are determined by solving the very complicated C-space field
equations (2.26). The flat C-space limit is attained when f(|X|) = h(|X|) = 1.

One should note that due to the presence of the terms |T |2(dχ7)2, the C-space metric
(4.31) is strictly speaking not static. One could extract a static slice in (4.31) by freezing
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the temporal solid angle degrees of freedom by setting (dχ7)2 = 0, and leading to an
interval

(dΣ)2 → − f(|X|) (d|T |)2 + h(|X|) (d|X|)2 + |X|2 (dΩ7)2 (4.32)

which resembles more closely a static spherically symmetric metric. Rigorously speaking,
the Schwarzschild metric is only static in the region outside the horizon but it is not static
in the interior region after performing the Kruskal-Szekeres coordinate transformations
r = r(u, v); t = t(u, v). The black hole singularity r(u, v) = 0 is spacelike.

The 4D (Anti) de Sitter-Schwarzschild metric in natural units h̄ = c = G = 1

(dτ)2 = − (1− 2M

r
− λ

3
r2) (dt)2 + (1− 2M

r
− λ

3
r2)−1 (dr)2 + r2 (dΩ2)2 (4.33)

is a solution of Einstein’s field equations in 4D with a cosmological constant (λ < 0 in
the AdS case). This metric is just a “slice” of the 16-dim C-space of split signature (8, 8)
given by eq-(4.31). Guided by this metric (4.33) one could attempt to find the real-valued
functions f(|X|), h(|X|) in (4.31) which solve the C-space field equations (2.26).

We finalize this section by discussing the very restricted class of C-space metrics
(gMN = gNM) that can be decomposed into products of ordinary metrics in spacetime.
Firstly, one needs to have a C-space metric whose components have the same grade like

g00, gµν , gµ1µ2 ν1ν2 , . . . , gµ1µ2...µD ν1ν2...νD (4.33)

and which can be decomposed as

g[µ1µ2] [ν1ν2](x
µ) = gµ1ν1(xµ) gµ2ν2(xµ) − gµ2ν1(xµ) gµ1ν2(xµ)

g[µ1µ2...µk] [ν1ν2...νk](x
µ) = det Gµiνj = εj1j2...jk gµ1νj1

gµ2νj2
. . . gµ2νjk

, (4.34)

The determinant of Gµiνj can be written as

det


gµ1ν1(xµ) . . . . . . gµ1νk(x

µ)
gµ2ν1(xµ) . . . . . . gµ2νk(x

µ)
−−−−−−−−−−− −−−−−−−−−−−−−−

gµkν1(xµ) . . . . . . gµkνk(x
µ)

 , (4.35)

The metric component g00 involving the Clifford scalar “directions” X0 = s of the Clifford
polyvectors in C-space must also be included. X0 = s must not be confused with the tem-
poral coordinate x0. g00 behaves like a Clifford scalar under coordinate transformations
in C-space. The other component g[µ1µ2...µD] [ν1ν2...νD] involves the pseudo-scalar “direc-
tion”. The latter scalar and pseudo-scalar components of the C-space metric might bear
some connection to the dilaton and axion fields in Cosmology and particle physics. In the
most general case the C-space metric does not factorize into antisymmetrized sums of
products of ordinary metrics . We presented above examples of metrics in C-space which
cannot be decomposed into antisymmetrized sums of products of ordinary metrics.
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4.4 Areal Geometry and Strings

C-space metrics are an extension of areal metrics of the form (dτ)2 = 1
4
hijkl(dx

i ∧ dxj)⊗
(dxk ∧ dxl) which were studied long ago by Cartan. An areal metric generalization of
the usual metric to Finsler geometry was developed by [28]. Such a generalized notion
of area, and more generally the volume of m-dimensional submanifolds embedded in an
n-dimensional space, have been considered under the terminology of “areal geometry”.
In these considerations, the metric and connection in general depend not only on x but
also on the derivatives of x with respect to world-volume coordinates. Applications of
the Kawaguchi Lagrangian formulation to string theory and p-branes can be found in
[29]. The classification of area metrics and the construction of vacuum field equations
were analyzed in [27]. Another family of equations for area metrics that reduce to the
vacuum Einstein’s equations in very special cases were studied in [26]. Static spherical
symmetric solutions were found for the generalized Einstein equation in vacuum, including
the Schwarzschild solution as a special case.

The Nambu-Goto action corresponding to the bosonic string is defined in terms of
its worldsheet area. Motivated by the possibility that string theory admits backgrounds
where the notion of length is not well defined but a definition of area is, propelled the
authors [26] to study space-time geometries based on the generalization of length metrics
to area metrics. In analogy with Riemannian geometry, they defined the analogues of
connections, curvatures and Einstein tensor.

In Einstein’s theory of gravity, the Bianchi identity provides a hint on how to define
Einstein’s equation such that the conservation of energy-momentum tensor is guaranteed.
The situation is different for the gravitational theory of area metrics [26]. The conservation
of energy-momentum is a result of the invariance of the theory under general coordinate
transformations. In the theory of area metrics, the gauge symmetry is still merely general
coordinate transformations but the number of degrees of freedom of the areal metric,
connection and curvature are much larger than in the case of ordinary metrics. Therefore,
the authors [26] argued that one should not try to define the generalized Einstein equation
from the generalized Bianchi identity as one did in Einstein’s theory.

However, a key difference that gravity in C-spaces has is that one has full diffeomor-
phism invariance under the polyvector-valued coordinate changes XM → X ′M , thus the
generalized energy-momentum polytensor in C-space is conserved and consistent with the
generalized C-space Bianchi identities, in the absence of torsion and nonmetricity, and
which in turn, allows us to write down the generalization of Einstein equations in C-spaces
[54]. A discussion of matter fields in C-spaces can be found in [1].

Another problem with the formulation of gravity of area metrics is that it does not
seem to admit an action principle due to the fact that the tensor Rkl

ij mn does not admit
the definition of scalar curvature through the contraction of indices, if the only additional
tensor available is the area metric [26]. A possibility is that the action principle for the
area metric theory is available only in certain dimensions when the volume form can be
used to do the trick to appropriately be able to contract indices [26]. Fortunately, in
C-spaces this problem does not arise since all polyvector-valued indices are contracted
with the C-space metric gMN = gNM , its inverse gMN = gNM , and δMN which in general
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have polyvector valued indices M,N of the same and different grades : g[µ1µ2···µi] [ν1ν2···νj ],
for example.

To finalize, we should point out that when the C-space metric components are of the
same grade, and admit a decomposition as shown in eq-(4.35), it is plausible to have
in the putative quantum gravitational theory cases where the expectation values of the
areal metrics are not zero < ĝµν ĝρσ >6= 0, despite that the expectation of the metric is
< ĝµν >= 0 (Topological QFT’s are characterized by physical correlations independent of
the metric). This could be a very natural explanation as to why quantum gravitational
effects could be essentially “stringy”. If on average < ĝµν >= 0, one does not observe
lengths but areas instead. Quantum gravitational effects are intrinsically manifested at
the Planck-scale (there are quantum gravitational phenomena which have cosmological
signatures at larger scales due to inflation, and/or compounding effects). Since the Planck
scale LP is an essential ingredient in the construction of the extended relativity in C-
spaces [1], and Quantum Gravity, this suggests that C-space geometry is a natural arena
to be explored. For this reason, we believe that more novel physical phenomena could be
unraveled behind C-space gravity than we previously thought.

5 A Unified Description of Particles, Strings and

Branes in Clifford Spaces

We will show next how the Extended Relativity Theory in C-spaces (Clifford spaces) al-
lows a unified formulation of point particles, strings, membranes and p-branes, moving in
ordinary target spacetime backgrounds, within the description of a single polyparticle
moving in C-spaces. The degrees of freedom of the latter are provided by Clifford
polyvector-valued coordinates (antisymmetric tensorial coordinates). A correspondence
between the p-brane (p-loop) wave functional “Schrödinger-like” equations of Ansoldi-
Aurilia-Spallucci and the polyparticle wave equation in C-spaces is found via the
polyparticle/p-brane duality/correspondence. The crux of exploiting this correspondence
is that it might provide another unexplored avenue to quantize p-branes (a notoriously
difficult and unsolved problem) from the more straightforward quantization of the poly-
particle in C-spaces, even in the presence of external interactions. We conclude this
section with some comments about the compositeness nature of the polyvector-valued
coordinate operators in terms of ordinary p-brane coordinates via the evaluation of n-ary
commutators.

5.1 Branes in Clifford Spaces

An ordinary p-brane moving in a D-dim flat target background spacetime spans a p+ 1-
dimensional world volume and the Nambu-Goto action written in terms of the Nambu-
Poisson bracket is given by
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S = T
∫

dp+1σ
√
|det ∂aXµ ∂bXν ηµν | =

T
∫

dp+1σ
√

( {Xµ1 , Xµ2 , Xµ3 , . . . , Xµp+1} )2 (5.1)

T is the p-brane tension whose units are (mass)p+1. Xµ(σa) are the embedding functions
of the p+1-dim world volume of the p-brane into the D-dim target spacetime background
(D ≥ p+ 1). The world volume coordinates are σ = (σ1, σ2, · · · , σp+1).

Let us generalize the action (5.1) to the C-space case when the world manifold and
target space coordinates are both Clifford-valued. Given the 2d polyvector-valued world
manifold variables

σA = s, σa, σa1a2 , · · · , σa1a2...ad (5.2)

and the 2D polyvector-valued target space coordinates

XM = X,Xµ, Xµ1µ2 , · · · , Xµ1µ2...µD (5.3)

with D ≥ d one can write the analog of the expression for a Nambu-Poisson bracket in
C-space as [1]

εA1A2...A2d
∂XM1

∂σA1

∂XM2

∂σA2
. . .

∂XM
2d

∂σA2d
(5.4)

In general each polyvector-valued coordinate component XM(σA) is a function of all
the 2d polyvector-valued world manifold variables σA. The expression (5.4) simplifies
considerably in the very special case when

X = X(s), Xµ = Xµ(σa), Xµ1µ2 = Xµ1µ2(σa1a2), . . . , Xµ1µ2···µd = Xµ1µ2···µd(σa1a2···ad),

Xµ1µ2···µd+1 = Xµ1µ2···µd+2 = . . . = Xµ1µ2···µD = 0 (5.5)

The above conditions of eq-(7) basically describe grade-preserving maps from the Clifford-
valued world manifold to the target Clifford-valued C-space. It comprises of maps such
that points are mapped to points; areas to areas; volumes to volumes ... and where
one freezes to zero the polyvector valued target coordinates whose grade exceeds the
dimension d (of the world manifold an whose associated C-space is 2d-dim).

In this case the determinant-like expression (5.4) factorizes as follows

∂X

∂s

(
εa1a2 ... ad

∂Xµ1

∂σa1

∂Xµ2

∂σa2
. . .

∂Xµd

∂σad

) (
ε[a1b1] [a2b2] ... ∂Xµ1ν1

∂σa1b1

∂Xµ2ν2

∂σa2b2
. . .

)
(
ε[a1b1c1] [a2b2c2] ... ∂Xµ1ν1ρ1

∂σa1b1c1

∂Xµ2ν2ρ2

∂σa2b2c2
. . .

) (
ε[a1b1c1d1] [a2b2c2d2] ... ∂Xµ1ν1ρ1τ1

∂σa1b1c1d1

∂Xµ2ν2ρ2τ2

∂σa2b2c2d2
. . .

)
. . .

(5.6)

36



It is convenient to introduce an ordering of indices to avoid having to introduce fac-
torial numerical factors. For the bivector coordinates σa1b1 , σa2b2 , · · · one requires to have
a1 < b1; a2 < b2; · · ·. For the trivector coordinates σa1b1c1 , σa2b2c2 , · · · one requires to
have a1 < b1 < c1; a2 < b2 < c2; · · ·, etc. Similar ordering prescription applies for the
Xµ1ν1 , Xµ1ν1ρ1 , · · · target C-space polyvector valued coordinates. The generalized version
of the epsilon symbols ensures that no polyvector-valued indices are repeated.

A remark is in order. One could also view the induced metric HAB =
∂AX

M ∂BX
N GMN on the 2d-dim Clifford-valued world manifold as a hyper-matrix but

the construction (if possible) of the hyper-determinant of the C-space metric (a hyper
matrix) is a more difficult problem [13], [14]. For this reason we shall not pursue this road
at the moment to build generalized p-brane actions in C-spaces based on Nambu-Goto
actions associated with the square roots of hyper-determinants.

Let us proceed. For example, when d = 2 and D ≥ d, eq-(5.6) is given by

∂X

∂s

(
εa1a2

∂Xµ1

∂σa1

∂Xµ2

∂σa2

)
∂Xµ1ν1

∂σ12
(5.7)

The term ∂X
∂s

corresponds effectively to the motion of a point particle parametrized
by the variable s and moving in one-dimension described by the coordinate X. The term
εa1a2 ∂Xµ1

∂σa1

∂Xµ2

∂σa2
is the standard Poisson bracket {Xµ1 , Xµ2} with respect to the variables

σ1, σ2 and associated with the motion of a string in a D-dimensional background. The
term ∂Xµ1ν1

∂σ12 corresponds effectively to the motion of a point particle parametrized by

the (bivector) variable σ12 and moving in a D(D−1)
2

-dimensional background described by
the (bivector) coordinates Xµ1ν1 .

The analog of the Nambu-Goto action would now be

S = κ
∫

ds dσ1dσ2 dσ12

√
(
∂X

∂s
)2

√
( {Xµ1 , Xµ2} )2

√
(
∂Xµ1ν1

∂σ12
)2 =

κ
∫

ds

√
(
∂X

∂s
)2

∫
dσ1dσ2

√
( {Xµ1 , Xµ2} )2

∫
dσ12

√
(
∂Xµ1ν1

∂σ12
)2 =

κ
∫

dX
∫

dσ1dσ2
√

( {Xµ1 , Xµ2} )2

∫ √
( dXµ1ν1 )2 (5.8)

Concluding, the action (5.8) factorizes and collectively describes a point particle mov-

ing in one-dim; a string moving in D-dim, and a point particle moving in D(D−1)
2

-dim.
Furthermore, one should notice that one has a product of terms instead of a summation
of individual actions.

The conditions of eq-(5.5) in the more general case ( D ≥ d > 2 ) describe richer
dynamics . Taking into account that a p-brane spans a p + 1 dimensional world volume
one has that the second term in eq-(5.6) describes the standard Nambu-Poisson bracket
associated to a d − 1-brane (spanning a d-dim world volume) moving in a D-dim target

background. The third term describes effectively a d(d−1)
2
−1-brane moving in a D(D−1)

2
-dim

target background. The fourth term describes effectively a d(d−1)(d−2)
3!

−1-brane moving in
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a D(D−1)(D−2)
3!

-dim target background; and so forth. The final term (∂Xµ1µ2···µd/∂σa1a2···ad)
corresponds effectively to the motion of a point particle parametrized by the (highest

grade polyvector) variable σ123···d and moving in a D(D−1)(D−2)···(D−d)
d!

-dimensional back-
ground described by the (polyvector) coordinates Xµ1µ2···µd .

When the conditions of eq-(5.5) are imposed on the target C-space polyvector valued
coordinates the number of degrees of freedom N (when D ≥ d) is given by

N = (D0 ) + (D1 ) + (D2 ) + . . . + (Dd ) ≥ (d0) + (d1) + (d2) + . . . + (dd) = 2d (5.9)

hence the number of transverse degrees of freedom is N − 2d ≥ 0. When D = d one
has N = 2D = 2d and the number of transverse degrees of freedom is zero as expected.
Therefore, by choosing D > d one will have non-trivial dynamics since the number of
transverse degrees of freedom are not zero.

To sum up, the action associated with the expression in eq-(5.6) is defined to be

S = κ
∫

ds dσ1 dσ2 . . . dσ12 dσ13 . . . dσ123 dσ124 . . . dσ123....d
√

∆ (5.10)

where ∆ is the square of the expression given by eq-(5.6) and effectively describes a
collective ensemble of points and p-branes, for certain specific values of p, and each moving
in different target space dimensions as discussed above.

5.2 p-brane/polyparticle Duality

We will describe now how a polyparticle in C-space may have a correspondence with a
nested hierarchy of point particles, strings, membranes and p-branes in ordinary space.
Let us begin by recalling the infinitesimal interval displacement in C space

(dΣ)2 = dXM dXM = (dX)2 + L−2 dXµ dX
µ + L−4 dXµ1µ2 dX

µ1µ2 + . . . +

L−2D dXµ1µ2.....µD dXµ1µ2.....µD (5.11)

X is the Clifford-scalar part of the Clifford-valued coordinate XM . The values of M range
from 1, 2, · · · , 2D. Σ and X are both taken to be dimensionless by introducing suitable
powers of the length scale L (it can be chosen to be equal to the Planck scale) . The
polyparticle dynamics is parametrized by the C-space proper time variable Σ such that
the polyvector valued coordinates describing the motion of the polyparticle in C-space
are determined by the 2D functions XM = XM(Σ).

When n = p+1, the p-brane/polyparticle duality/correspondence is defined as follows

L2n {Xµ1 , Xµ2 , . . . , Xµn}2
σa ↔ (

dXµ1µ2.....µn

dΣ
)2 (5.12a)
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1

Ln

∫
dΣ

√
(
dXµ1µ2.....µn

dΣ
)2 ↔ Tn

∫
dnσ

√
{Xµ1 , Xµ2 , . . . , Xµn}2 , (5.12b)

Tn is the n−1-brane tension and whose physical units are (mass)n = (length)−n. The val-
ues of n range from 1, 2, · · · , D. For n = 1 one has the point particle action parametrized
by the time-like variable σ1 of the world line in ordinary spacetime.

S = m
∫

dσ1

√
(
dXµ

dσ1
)2 (5.13)

For n = 2 one has the string action

S = T2

∫
dσ1dσ2

√
( {Xµ1 , Xµ2} )2, {Xµ1 , Xµ2} = εa1a2

∂Xµ1

∂σa1

∂Xµ2

∂σa2
, a = 1, 2

(5.14)
where σ1, σ2 are the temporal and spatial coordinates of the worldsheet, respectively; and
so forth. For a p-brane whose world volume is n = p+1-dim one writes the p-brane action
given by the right hand side of eq-(14b) in terms of the Nambu-Poisson bracket

{Xµ1 , Xµ2 , . . . , Xµn} = εa1a2 ... ap+1
∂Xµ1

∂σa1

∂Xµ2

∂σa2
. . .

∂Xµp+1

∂σap+1
, a = 1, 2, 3, · · · , p+ 1

(5.15)
One should note that we are using the epsilon symbol in defining all the above brackets.

One could have used the epsilon symbol only in the highest grade case, corresponding to
the case when p + 1 = D, and defined the lower grade brackets in terms of an auxiliary
number of antisymmetric tensor fields ωa1a2..... of different ranks if one performed the
derivatives with respect to all the σa variables σ1, σ2, · · · , σD. For instance

{Xµ1 , Xµ2} = ωa1a2
∂Xµ1

∂σa1

∂Xµ2

∂σa2
, a = 1, 2, 3, · · · , D (5.16a)

{Xµ1 , Xµ2 , Xµ3} = ωa1a2a3
∂Xµ1

∂σa1

∂Xµ2

∂σa2

∂Xµ3

∂σa3
, a = 1, 2, 3, · · · , D (5.16b)

etc, ..... However this multisymplectic approach will complicate matters since one must
satisfy the (generalized) Jacobi identities (fundamental identities) which will constrain the
functional form of the auxiliary number of antisymmetric tensor fields ωa1a2...... For this
reason, to simplify matters we define the brackets solely in terms of epsilon symbols as
shown above in eqs-(5.14,5.15). In this way we have a nested hierarchy of point particles,
strings, membranes and p-branes in ordinary spacetime. The sequence of variables is
nested as follows σ1 ⊂ (σ1, σ2) ⊂ (σ1, σ2, σ3) ⊂ · · · ⊂ (σ1, σ2, · · · , σD).

A realization of the duality conditions in eq-(5.12a) can be simply realized when both
sides of eq-(5.12a) are equal to a constant. Since the right hand side of eq-(5.12a) depends
on Σ and the left hand side depends on σa an equality is possible when both sides are
equal to a constant. In particular, the simplest choice to attain this equality is when
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X1 = c1 σ
1, X2 = c2 σ

2, X3 = c3 σ
3, Xn = cn σ

n, . . . , XD = cD σD (5.17)

where c1, c2, ..... are constants and such that {Xµ1 , Xµ2 , . . . , Xµn} = 0 except for the
specific value

L2n {X1, X2, . . . , Xn}2 = (c1c2......cn)2 L2n = (
dXµ1µ2.....µn

dΣ
)2 = |V|2 = constant

(5.18)
On the other hand, from the equations of motion associated with the free polyparticle
action in C-space [1], after taking into account that (dX

M

dΣ
)2 = 1 and that Σ is chosen to

be dimensionless,

S =
∫
dΣ =

∫
dΣ

√
(
dXM

dΣ
)2 ⇒ d2XM

dΣ2
= 0, XM ≡ X,Xµ, Xµ1µ2 , · · · , Xµ1µ2....µD

(5.19)
one concludes that the components Xµ1µ2.....µn(Σ) grow/decrease linearly with Σ so that
the n-volume velocity components V µ1µ2....µn = dXµ1µ2.....µn

dΣ
are constant. This is indeed

consistent with the results found in eq-(5.18) where the magnitude of the n-volume veloc-
ity V is constant. If the n-volume velocity components are constant then the magnitude
of the n-volume velocity is also constant. The converse is not true. A typical example is
ordinary circular motion. In [35] it was shown that when the areal velocities are constant
the Nambu and Schild string actions lead to equivalent equations of motion. Similar
conclusions hold for p-brane actions.

Proceeding with eqs-(5.17,5.18) one learns, if one equates both sides of eq-(5.12b) and
sets Tn = L−n, that the (dimensionless) polyparticle’s proper time in C-space obeys

Σ =
1

Ln

∫
dnσ =

Ωn

Ln
, n = 1, 2, . . . , D (5.20a)

and also

|V| Σ = Vn =
∫

dnσ
√
{Xµ1 , Xµ2 , . . . , Xµn}2 , n = 1, 2, . . . , D (5.20b)

Because the magnitudes of the n-volume velocities |V| are constant, from (22b) one
learns that the scale sizes of the evolving world lines, world sheets, world volumes, .... are
linearly proportional to the polyparticle’s proper time Σ in C-space. This is not unlike to
cosmological models where the size of the cosmos is taken as a “dilational” clock. From
eq-(22a) one may also infer directly that Σ only remains invariant under length, area,
volume, hyper-volume preserving diffeomorphisms of the σa coordinates. We have chosen
a very simple case in eqs-(5.17). More complicated cases warrant further investigation.

To study further the polyparticle/p-brane correspondence let us begin by writing the
wave equation associated with a free polyparticle in C-space in natural units h̄ = c = 1
and when L = 1

i
∂Ψ(XM ,Σ)

∂Σ
= − ∂2Ψ(XM ,Σ)

∂XM ∂XM

, XM ≡ X,Xµ, Xµ1µ2 , · · · , Xµ1µ2....µD (5.21)
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A solution of (23) consistent with the dispersion relations PMP
M = M2 is

Ψ(XM ,Σ) = Exp [ i (PM XM − M2 Σ) ] (5.22a)

inserting the solution (5.22a) into (5.21) yields (PMP
M −M2)Ψ = 0, and which in turn,

after replacing PM → −i∂/∂XM leads to the analog of the Klein-Gordon equation in
C-space for the Clifford-scalar-field Φ(XM)

(
∂2

∂XM ∂XM

+ M2

)
Φ(XM) = 0, when Ψ(XM ,Σ) = Φ(XM) Exp [ − i M2 Σ ]

(5.22b)
It is important to emphasize that the decomposition of Ψ(XM ,Σ) into a product of

separate wave functions

Ψ(X,Σ) Ψ(Xµ,Σ) Ψ(Xµν ,Σ) . . . =

Exp [ i (P X − P 2 Σ) ] Exp [ i (Pµ X
µ − (Pµ)2 Σ) ] Exp [ i (Pµν X

µν − (Pµν)
2 Σ) ] . . .

(5.22c)
does not solve eq-(5.21). The reason is that the C-space invariant, and Σ-independent
quantity, is given by the net sum of the terms P 2 +(P µ)2 +(P µν)2 + · · · = M2. Hence each
Lorentz-invariant term P 2, (P µ)2, (P µν)2, · · · by itself is not Σ-independent, nor invariant
under the generalized C-space version of the Lorentz transformations.

Choosing instead an ansatz solution to eq-(5.21) given by the following “diagonal”
sum

Ψ(XM ,Σ) = Ψ0(X,Σ) + Ψ1(Xµ,Σ) + Ψ2(Xµ1µ2 ,Σ) + . . . + ΨD(Xµ1µ2....µD ,Σ) (5.23)

and inserting it into eq-(5.21) leads to the family of decoupled equations

i
∂Ψ(Xµ1µ2.....µp+1 ,Σ)

∂Σ
= − ∂2Ψ(Xµ1µ2....µp+1 ,Σ)

∂Xµ1µ2....µp+1 ∂Xµ1µ2....µp+1

, p = −1, 0, 1, 2, · · · , D−1. (5.24)

where p = −1 corresponds to the scalar part X of the polyvector XM . In the string,
M -theory literature p = −1 corresponds to brane-instantons [30].

We are going to compare the wave equations (5.24) with the p-brane (p-loop) wave
functional “Schrödinger-like” equation obtained by [35] and which are based on the Schild
p-brane actions that are invariant under length, area, volume, hyper-volume preserving
diffeomorphisms of the σa coordinates. As a result the corresponding Hamiltonian den-
sity is not zero, whereas the Hamiltonian density associated with the fully reparametriza-
tion invariant Nambu-Goto p-brane action is zero. The p-brane (p-loop) wave functional
“Schrödinger-like” equation [35] is given by

− 1

2(p+ 1)!mp+1

( ∮
Cp

dps
√

(Y′)2

)−1 ∮
Cp

dps
√

(Y′)2
δ2Ψ[Cp;Vp+1]

δY µ0µ1µ2....µp(s) δYµ0µ1µ2....µp(s)
=
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i
∂Ψ[Cp;Vp+1]

∂Vp+1

(5.25)

where s ≡ s1, s2, . . . , sp are the intrinsic spatial coordinates of the spatial p-loop Cp
of topology Sp (a closed p-brane) that is moving in a D-dimensional target spacetime
background and sweeping a p+1-dimensional timelike world hypertube Ωp+1 whose p+1-
dimensional proper volume is Vp+1. The proper volume Vp+1 acts now as a clock/temporal
variable and from eq-(5.20) one can see its relation to the polyparticle’s proper time Σ in
C-space.

The p + 1-vectors Y µ0µ1µ2....µp [Cp(s)] are the holographic [35] coordinates associated
with the spatial Cp loop located at the boundary of the time-like world hypertube af-
ter it has swept a Vp+1 volume. The Cp-loop encloses a p + 1-dim region and whose
projections onto the coordinate planes define the values of the holographic coordinates
Y µ0µ1µ2....µp [Cp(s)].

The measure of integration of the p-dimensional loop Cp of topology Sp is given in
terms of the square root of

(Y′)2 ≡ {Y µ1 , Y µ2 , . . . , Y µp}2, {Y µ1 , Y µ2 , . . . , Y µp} ≡ εi1i2.....ip
∂Y µ1

∂si1
∂Y µ2

∂si2
· · · ∂Y

µp

∂sip
(5.26)

where Y µ(s) are the ordinary coordinates in spacetime of the points of the p-loop Cp.
The terms inside the integrand in the left-hand side of the loop wave equation (5.25)

explicitly depend on the spatial loop coordinates s at each point of the p-loop Cp, whereas
the terms in the right-hand side only depend on the shape of the p-loop. For this reason
one must integrate the left-hand side along all the points of the p-loop. This integration

amounts effectively to taking the loop-average of δ2Ψ[Cp;Vp+1]

δY µ0µ1µ2....µp (s) δYµ0µ1µ2....µp (s)
. In the par-

ticular case when the non-zero modes contribution averages to zero, one is solely left with
the zero-modes contribution

<
δ2Ψ[Cp;Vp+1]

δY µ0µ1µ2....µp(s) δYµ0µ1µ2....µp(s)
>average =

∂2Ψ[Y
µ0µ1µ2....µp

(0) ;Vp+1]

∂Y
µ0µ1µ2....µp

(0) ∂Yµ0µ1µ2....µp;(0)

(5.27a)

such that the wave equation associated with the latter zero-modes denoted by Y
µ0µ1µ2....µp

(0)

becomes

− 1

2(p+ 1)!mp+1

∂2Ψ[Y
µ0µ1µ2....µp

(0) ;Vp+1]

∂Y
µ0µ1µ2....µp

(0) ∂Yµ0µ1µ2....µp;(0)

= i
∂Ψ[Y

µ0µ1µ2....µp
(0) ;Vp+1]

∂Vp+1

(5.27b)

and bears now an identical expression (up to numerical factors) to the functional form
of eq-(5.24) obtained from the wave equation of a free polyparticle in C-space. This also
requires using the explicit correspondence Σ ∼ Vp+1 derived in eq-(5.20b), when n = p+1,
so that ∂

∂Σ
↔ ∂

∂Vp+1
and matching the zero modes coordinates (quenched-like degrees of

freedom) Y
µ0µ1µ2....µp

(0) to the Clifford polyvectors Xµ1µ2···µp+1 .
Instead of recurring to the p-brane (p-loop) wave functional “Schrödinger-like” equa-

tion [35] the polyparticle/p-brane duality/correspondence at the quantum level should be
given in terms of the functional (path) integrals for the partition functions
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∫
[DXµ1µ2.....µn(Σ)] eiS[Xµ1µ2.....µn (Σ)] ↔

∫
[DXµ(σa)] eiS[Xµ(σa)], a = 1, 2, 3, · · · , n = p+1

(5.28)
the crux of exploiting the correspondence (5.28) is that it may provide another avenue to
quantize p-branes (a notoriously difficult and unsolved problem) from the more straight-
forward quantization of the polyparticle in C-space. For instance, a preliminary relation
between the quantum membrane propagator and Clifford-polyvectors was found in [36].

We conclude by adding some further comments. So far we have only discussed the
physics of a free polyparticle and free p-branes. It is warranted to introduce interactions.
The Hamiltonian density for p-branes in the presence of an external potential is now given
by

H =
m(p+1)

2(p+ 1)!
{Xµ1 , Xµ2 , . . . , Xµp+1}2 + V (Xµ1 , Xµ2 , · · · , Xµp+1) (5.29)

where Xµ = Xµ(σa), a = 1, 2, · · · , p + 1. Above, we simply added a potential term to
the kinetic terms of the p-brane Schild Hamiltonian density.

The polyparticle version of eq-(31) is (after reintroducing the length scale parameter
L)

H =
m(p+1)

2L2(p+1)(p+ 1)!
(
dXµ1µ2.....µp+1

dΣ
)2 + V (Xµ1µ2···µp+1) (5.30)

One may choose for potential (density) V the polyparticle analog of the relativistic
point-particle harmonic oscillator and whose wave-functions in both configuration and
Bargmann-Fock like space were found using group-theoretical methods by [37]. These
wave-functions are provided by generalized Hermite polynomials. Similarly, one may ex-
plore the polyparticle generalization in C-space of the Born-Dirac oscillator [38] which is
now characterized by an equation of the form(

i γM
∂

∂XM
+ i λ γM XM − M

)
Ψ(XM ,Σ) = i

∂Ψ

∂Σ
, (5.31)

with XM ≡ X,Xµ, Xµ1µ2 , · · · , Xµ1µ2....µD and exhibiting an XM ↔ PM Born’s reciprocity
symmetry. As usual, powers of a suitable length (inverse mass) must be inserted in
(5.31) to match physical units. The quantization of the Born-Dirac polyparticle oscillator
in C-spaces (construction of the explicit quantum states, spectrum, ....) may facilitate
the quantization program of p-branes living in ordinary spacetimes, and experiencing an
external interaction, via the p-brane/polyparticle duality/correspondence proposed in this
work. The energy-angular momentum spectrum of the Born-Dirac point-particle oscillator
behaves as J ∼ E2 [38] which resembles the Regge behavior J ∼ α′m2 of the string (α′ is
the inverse string tension).

Another Schrödinger-like wave equations worth mentioning are those based on the De
Donder-Weyl quantization approach to gravity [39] where a parameter of inverse spatial
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volume dimensions, Clifford-valued wave functions and Clifford-Dirac operators are es-
sential. To finalize, and related to the quantization approach of p-branes via the quantum
polyparticle, it is worth mentioning that the n-ary commutators of the quantum opera-
tors X̂µ can be expressed in terms of Clifford polyvector-valued coordinate operators as
follows

[ X̂µ1 , X̂µ2 ] ∼ X̂µ1µ2 , [ X̂µ1 , X̂µ2 , X̂µ3 ] ∼ X̂µ1µ2µ3 , . . . ,

[ X̂µ1 , X̂µ2 , · · · , X̂µp+1 ] ∼ X̂µ1µ2···µp+1 (5.32)

when the coordinate algebra is isomorphic to the Clifford algebra [40]. The essence of
(5.32) is the compositeness nature of the polyvector-valued coordinate operators in terms
of the ordinary p-brane coordinate operators.

6 Clifford Gravity Cosmology and Dark Energy

We begin by explaining the relationship between Clifford-algebra-valued Gauge Field
Theories and Conformal Gravity. By fixing some of the gauge symmetries and imposing
some constraints one recovers ordinary gravity. Let us show how the conformal algebra in
four dimensions admits a Clifford algebra realization; i.e. the generators of the conformal
algebra can be expressed in terms of the Clifford algebra basis generators. The conformal
algebra in four dimensions so(4, 2) is isomorphic to su(2, 2).

Let ηab = (−,+,+,+) be the Minkowski spacetime (flat) metric in D = 3 + 1-
dimenisons. The epsilon tensors are defined as ε0123 = −ε0123 = 1, The real Clifford
Cl(3, 1, R) algebra associated with the tangent space of a 4D spacetime M is defined by
the anticommutators

{ Γa, Γb } ≡ Γa Γb + Γb Γa = = 2 ηab (6.1a)

such that

[Γa,Γb] = 2Γab, Γ5 = − i Γ0 Γ1 Γ2 Γ3, (Γ5)2 = 1; {Γ5,Γa} = 0; (6.1b)

Γabcd = εabcd Γ5; Γab =
1

2
(ΓaΓb − ΓbΓa) . (6.2a)

Γabc = εabcd Γ5 Γd; Γabcd = εabcd Γ5. (6.2b)

Γa Γb = Γab + ηab, Γab Γ5 =
1

2
εabcd Γcd, (6.2c)

Γab Γc = ηbc Γa − ηac Γb + εabcd Γ5 Γd (6.2d)

Γc Γab = ηac Γb − ηbc Γa + εabcd Γ5 Γd (6.2e)

Γa Γb Γc = ηab Γc + ηbc Γa − ηacΓb + εabcd Γ5 Γd (6.2f)

Γab Γcd = εabcd Γ5 − 4δ
[a
[c Γ

b]
d] − 2δabcd . (6.2g)
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δabcd =
1

2
(δac δ

b
d − δad δ

b
c ). (6.2.h)

the generators Γab,Γabc,Γabcd are defined as usual by a signed-permutation sum of the
anti-symmetrizated products of the gammas. A representation of the Cl(3, 1) algebra
exists where the generators

1; Γ1, Γ2, Γ3, Γ4 = −iΓ0; and Γ5 (6.3)

are Hermitian; while the generators ΓaΓ5 and Γab for a, b = 1, 2, 3, 4 are anti-Hermitian.
Using eqs-(6.1-6.3) allows to write the Cl(3, 1) algebra-valued one-form as

A =
(
aµ 1 + bµ Γ5 + eaµ Γa + faµ Γa Γ5 +

1

4
ωabµ Γab

)
dxµ. (6.4)

The physical significance of the field components aµ, bµ, e
a
µ, f

a
µ , ω

ab
µ in eq-(6.4) will be ex-

plained below.
The Clifford-valued gauge field Aµ transforms according to A′µ = U−1 Aµ U+U−1∂µU

under Clifford-valued gauge transformations. The Clifford-valued field strength is F =
dA + [A,A] so that F transforms covariantly F ′ = U−1 F U . Decomposing the field
strength in terms of the Clifford algebra generators gives

Fµν = F 1
µν 1 + F 5

µν Γ5 + F a
µν Γa + F a5

µν Γa Γ5 +
1

4
F ab
µν Γab. (6.5)

the Clifford-algebra-valued 2-form field strength is F = 1
2
Fµν dxµ ∧ dxν and

Fµν = ∂µAν − ∂νAµ + [ Aµ, Aν ] where ∂µAν = ∂Aν
∂xµ

. The field-strength compo-
nents are given by

F 1
µν = ∂µaν − ∂νaµ (6.6a)

F 5
µν = ∂µbν − ∂νbµ + 2eaµfνa − 2eaνfµa (6.6b)

F a
µν = ∂µe

a
ν − ∂νeaµ + ωabµ eνb − ωabν eµb + 2faµbν − 2faν bµ (6.6c)

F a5
µν = ∂µf

a
ν − ∂νfaµ + ωabµ fνb − ωabν fµb + 2eaµbν − 2eaνbµ (6.6d)

F ab
µν = ∂µω

ab
ν + ωacµ ω

b
νc + 4

(
eaµe

b
ν − faµf bν

)
− µ←→ ν. (6.6e)

At this stage we may provide the relation among the Cl(3, 1) algebra generators and
the the conformal algebra so(4, 2) ∼ su(2, 2) in 4D . It is well known to the experts that
the operators of the Conformal algebra can be written in terms of the Clifford algebra
generators as

Pa =
1

2
Γa (1 − Γ5); Ka =

1

2
Γa (1 + Γ5); D = − 1

2
Γ5, Lab =

1

2
Γab. (6.7)

Pa ( a = 1, 2, 3, 4) are the translation generators; Ka are the conformal boosts; D is the
dilation generator and Lab are the Lorentz generators. The total number of generators
is respectively 4 + 4 + 1 + 6 = 15. From the above realization of the conformal algebra
generators (6.7), the explicit evaluation of the commutators yields
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[Pa, D] = Pa; [Ka, D] = −Ka; [Pa, Kb] = − 2gab D + 2 Lab

[Pa, Pb] = 0; [Ka, Kb] = 0; ....... (6.8)

which is consistent with the su(2, 2) ∼ so(4, 2) commutation relations. We should notice
that the Ka, Pa generators in (6.7) are both comprised of Hermitian Γa and anti-Hermitian
±ΓaΓ5 generators, respectively. The dilation D operator is Hermitian, while the Lorentz
generator Lab is anti-Hermitian. The fact that Hermitian and anti-Hermitian generators
are required is consistent with the fact that U(2, 2) is a pseudo-unitary group as we shall
see bellow.

Having established this one can infer that the real-valued tetrad V a
µ field (associated

with translations) and its real-valued partner Ṽ a
µ (associated with conformal boosts) can

be defined in terms of the real-valued gauge fields eaµ, f
a
µ as follows

eaµ Γa + faµ ΓaΓ5 = V a
µ Pa + Ṽ a

µ Ka (6.9)

From eq-(6.7) one learns that eq-(2.9) leads to

eaµ − faµ = V a
µ ; eaµ + faµ = Ṽ a

µ ⇒

eaµ =
1

2
(V a

µ + Ṽ a
µ ), faµ =

1

2
(Ṽ a

µ − V a
µ ). (6.10)

The components of the torsion and conformal-boost curvature of conformal gravity are
given respectively by the linear combinations of eqs-(6.6c, 6.6d)

F a
µν − F a5

µν = F̃ a
µν [P ]; F a

µν + F a5
µν = F̃ a

µν [K] ⇒

F a
µν Γa + F a5

µν Γa Γ5 = F̃ a
µν [P ] Pa + F̃ a

µν [K] Ka. (6.11a)

Inserting the expressions for eaµ, f
a
µ in terms of the vielbein V a

µ and Ṽ a
µ given by (6.10),

yields the standard expressions for the Torsion and conformal-boost curvature, respec-
tively

F̃ a
µν [P ] = ∂[µ V

a
ν] + ωab[µ Vν]b − V a

[µ bν], (6.11b)

F̃ a
µν [K] = ∂[µ Ṽ

a
ν] + ωab[µ Ṽν]b + 2 Ṽ a

[µ bν], (6.11c)

The Lorentz curvature in eq-(6.6e) can be recast in the standard form as

F ab
µν = Rab

µν = ∂[µ ω
ab
ν] + ωac[µ ω

b
ν]c + 2( V a

[µ Ṽ
b
ν] + Ṽ a

[µ V
b
ν] ). (6.11d)

The components of the curvature corresponding to the Weyl dilation generator given by
F 5
µν in eq-(6.6b) can be rewritten as

F 5
µν = ∂[µ bν] +

1

2
( V a

[µ Ṽν]a − Ṽ a
[µ Vν]a ). (6.11e)
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and the Maxwell curvature is given by F 1
µν in eq-(6.6a). A re-scaling of the vielbein V a

µ /l

and Ṽ a
µ /l by a length scale parameter l is necessary in order to endow the curvatures and

torsion in eqs-(6.11) with the proper dimensions of length−2, length−1, respectively.
To sum up, the real-valued tetrad gauge field V a

µ (that gauges the translations Pa )

and the real-valued conformal boosts gauge field Ṽ a
µ (that gauges the conformal boosts

Ka) of conformal gravity are given, respectively, by the linear combination of the gauge
fields eaµ ∓ faµ associated with the Γa, Γa Γ5 generators of the Clifford algebra Cl(3, 1)
of the tangent space of spacetime M4 after performing a Wick rotation −i Γ0 = Γ4.

Gauge invariant actions involving Yang-Mills terms of the form
∫
Tr(F ∧∗F ) and theta

terms of the form
∫
Tr(F ∧F ) are straightforwardly constructed. For example, a SO(4, 2)

gauge-invariant action for conformal gravity is [45]

S =
∫

d4x εabcd ε
µνρσ Rab

µν Rcd
ρσ (6.12)

where the components of the Lorentz curvature 2-form Rab
µνdx

µ ∧ dxν are given by eq-

(6.11c) after re-scaling the vielbein V a
µ /l and Ṽ a

µ /l by a length scale parameter l in order
to endow the curvature with the proper dimensions of length−2.

The conformal boost symmetry can be fixed by choosing the gauge bµ = 0 be-
cause under infinitesimal conformal boosts transformations the field bµ transforms as
δbµ = −2 ξa eaµ = −2 ξµ; i.e the parameter ξµ has the same number of degrees of fee-
dom as bµ. After further fixing the dilational gauge symmetry, setting the torsion to
zero (which constrains the spin connection ωabµ (V a

µ ) to be of the Levi-Civita form given

by a function of the vielbein V a
µ ), and eliminating the Ṽ a

µ field algebraically via its (non-
propagating) equations of motion, the expression in eq-(6.12) leads to the de Sitter group
SO(4, 1) invariant Macdowell-Mansouri-Chamseddine-West action (MMCW) [44] (sup-
pressing spacetime indices for convenience)

S =
∫

( Rab(ω) − 1

l2
V a ∧ V b ) ∧ ( Rcd(ω) − 1

l2
V c ∧ V d ) εabcd. (6.13)

The action (6.13) is comprised of 3 terms. One term is the topological invariant Gauss-
Bonnet term

∫
Rab(ω) ∧ Rcd(ω)εabcd. The standard Einstein-Hilbert gravitational action

term is given by − 1
l2

∫
Rab(ω)∧V c∧V dεabcd, and the cosmological constant term 1

l4

∫
V a∧

V b∧V c∧V dεabcd. l is the de Sitter space’s throat size; i.e. l2 is proportional to the square
of the Planck scale (the Newtonian coupling constant).

The familiar Einstein-Hilbert gravitational action can also be obtained from a coupling
of gravity to a scalar field like it occurs in a Brans-Dicke-Jordan theory of gravity

S =
1

2

∫
d4x
√
g φ Dc

µ D
µ
c φ =

1

2

∫
d4x
√
g φ

(
1
√
g
∂ν(
√
g gµν Dc

µφ) + bµ (Dc
µφ) +

1

6
R φ

)
. (6.14a)

where the conformally covariant derivative acting on a scalar field φ of Weyl weight one
is
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Dc
µφ = ( ∂µ − bµ )φ (6.14b)

Fixing the conformal boosts symmetry by setting bµ = 0 and the dilational symmetry by
setting φ = constant leads to the Einstein-Hilbert action for ordinary gravity.

We proceed next with the cosmological applications by introducing the Clifford-valued
scalar field (a hyper-complex valued scalar) defined as

Φ = ΦA ΓA = φ 1 + φa γa +
1

2!
φab γab +

1

3!
φabc γabc +

1

4!
φabcd γabcd (6.15)

Now we can propose the most general action as an extension of the MMCW action
displayed in eq-(6.13 ) and given by

S =
∫
d4x εµνρσ < Fµν Fρσ Φ > =

∫
d4x εµνρσ < FA

µν F
B
ρσ ΦC ΓA ΓB ΓC > (6.16)

The bracket operation < ..... > denotes extracting the Clifford scalar part of the geometric
product of Clifford-valued quantities. It is the analog of taking the trace of a matrix
product. The most general action can be decomposed into several pieces S = S1 + S2 +
S3 + S4 + S5. Defining φabcd = εabcd φ5 = εabcd ϕ we have

S5 =
∫

d4x εµνρσ < FA
µν F

B
ρσ φ

abcd ΓA ΓB γabcd > =∫
d4x εabcd ε

µνρσ ϕ
(
a51F

ab
µν F

cd
ρσ + a52 F

a
µν F

bcd
ρσ + a53 Fµν F

abcd
ρσ

)
+∫

d4x εabcd ε
µνρσ ϕ

(
a54F

ab
µνe F

ecd
ρσ + a55F

a
µνe F

ebcd
ρσ + a56F

ab
µνef F

efcd
ρσ

)
(6.17)

One can rewrite (6.17) in differential form notation as

S5 =
∫

εabcd ϕ
(
a51 F

ab ∧ F cd + a52 F
a ∧ F bcd + a53 F ∧ F abcd

)
+∫

εabcd ϕ
(
a54 F

ab
e ∧ F ecd + a55 F

a
e ∧ F ebcd + a56 F

ab
ef ∧ F efcd

)
(6.18)

One can recognize that the MMCW action (6.13) is contained in one piece of S5 and
given by

SMMCW ⊂
∫

d4x εabcd ε
µνρσ ϕ

(
F ab
µν F

cd
ρσ

)
(6.19)

when ϕ = 1 as described by eqs-(6.6e, 6.11). One should notice that when the scalar field
ϕ is not constant the expression∫

d4x
√
g ϕ ( Rµνρσ Rµνρσ − 4 Rµν R

µν + R2 ) (6.20)

is no longer equal to the Gauss-Bonnet topological invariant due to the key ϕ(x) factor
and such terms will now contribute to the equations of motion.

The term εabcdF
a∧F bcd in (6.18) can be rewritten as F a∧ F̃a , while the term εabcdF ∧

F abcd = F ∧ F̃ , etc.... The components F bcd = F bcd
µν dx

µ ∧ dxν , F abcd = F abcd
µν dxµ ∧ dxν ,
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etc. ... are all given by eqs-(6.4,6.5,6.6) after taking into account the relations among the
Clifford algebra generators (gamma matrices) in eqs-(6.1, 6.2). The other terms in the
action are

S1 =
∫

d4x εµνρσ < FA
µν F

B
ρσ φ ΓA ΓB 1 > =∫

d4x εµνρσ φ
(
a11 Fµν Fρσ + a12 F

a
µν Fa ρσ + a13 F

ab
µν Fab ρσ

)
+∫

d4x εµνρσ φ
(
a14 F

abc
µν Fabc ρσ + a15 F

abcd
µν Fabcd ρσ

)
(6.21)

One can rewrite (6.21) in differential form notation as

S1 =
∫

φ
(
a11 F ∧ F + a12 F

a ∧ Fa + a13 F
ab ∧ Fab

)
+∫

φ
(
a14 F

abc ∧ Fabc + a15 F
abcd ∧ Fabcd

)
(6.22)

S3 =
∫

d4x εµνρσ < FA
µν F

B
ρσ φ

ab ΓA ΓB γab > =∫
φab

(
a31 F

a ∧ F b + a32 F
ab ∧ F + a33 F

a
c ∧ F cb

)
+∫

φab
(
a34 F

a
cd ∧ F cdb + a35 F

a
cde ∧ F cdeb

)
(6.23)

S2 =
∫

d4x εµνρσ < FA
µν F

B
ρσ φ

a ΓA ΓB γa > =∫
φa

(
a21 F

a ∧ F + a22 F
a
b ∧ F b + a23 F

a
bc ∧ F bc + a24 F

a
bcd ∧ F bcd

)
(6.24)

S4 =
∫

d4x εµνρσ < FA
µν F

B
ρσ φ

abc ΓA ΓB γabc > =∫
φabc

(
a41 F

abc ∧ F + a42 F
ab ∧ F c + a43 F

abc
d ∧ F d

)
+∫

φabc
(
a44 F

ab
d ∧ F dc + a45 F

ab
de ∧ F dec

)
(6.25)

the way to obtain the numerical coefficients aij is explained in the Appendix.
It is essential to introduce dynamics for the dimensionless Clifford-valued scalar field

Φ otherwise a variation of the action (6.16) with respect to the Φ field will trivially
constraint the action to zero since in this case Φ will act as a Lagrange multiplier. The
scalar field contribution to the action for the signature (−,+,+,+) is

S[Φ] =
∫

d4x
√
g < − 1

2l2
(Dµ Φ†) (Dµ Φ) − 1

l4
V (Φ) > (6.26a)

The dagger operation Φ† denotes the reversal operation and is obtained by reversing the
order of the Clifford generators. For example, (γa∧γb)† = γb∧γa, (γa∧γb∧γc)† = γc∧γb∧γa,
etc ..... so that
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< (Dµ Φ†) (Dµ Φ) > = (Dµφ) (Dµφ) + (Dµφa) (Dµφa) + (Dµφab) (Dµφab) +

(Dµφabc) (Dµφabc) + (Dµφabcd) (Dµφabcd) (6.26b)

where we have omitted combinatorial numerical factors for convenience.
The potential, for example, may be given by a polynomial V (Φ) =

∑
n=0 an Φn or

a more complicated function. Upon taking the Clifford scalar part of the potential one
has < V (Φ) >= V(φ, φa, φab, φabc, φabcd) which is a complicated (polynomial, for example)
expression given in terms of the 16 scalars. For simplicity we shall choose the analog of a
quartic Higgs-like potential given by

V =
1

l4
λ ( |ΦA ΦA| − v2)2

ΦA ΦA = φ2 + φaφa +
1

2!
φabφab +

1

3!
φabcφabc +

1

4!
φabcdφabcd (6.27)

the reason one must take the absolute value in |ΦAΦA| is because the Clifford scalar norm
ΦAΦA is not positive definite since the 16-dimensional quadratic form has a split (8, 8)
signature [3] when the tangent space metric ηab is Minkowskian diag(−1,+1,+1,+1).

The gauge covariant derivative acting on the Clifford-valued scalar Φ is defined as

(DµΦA) ΓA = (∂µ ΦA) ΓA + [ ABµ ΓB, ΦC ΓC ] ⇒

DµΦA = (∂µ ΦA) + ABµ ΦC < [ ΓB, ΓC ] ΓA > = (∂µ ΦA) + ABµ ΦC f A
BC (6.28a)

where we have written the commutator Clifford algebra as [ΓB,ΓC ] = f A
BC ΓA and whose

structure constants are displayed in the Appendix. Under infinitesimal Cl(3, 1) gauge
transformations the Clifford-valued scalar Φ field transforms as

δΦC = fCAB ξA ΦB, ξ = ξA ΓA = ξ̃ 1 + ξa γa +
1

2
ξab γab +

1

3!
ξabc γabc +

1

4!
ξabcd γabcd (6.28b)

and the gauge covariant derivative transforms as well δ(DµΦC) = fCAB ξA DµΦB.
To sum up, the action S+S[Φ] given by eqs-(6.16-6.26) is comprised of (i) ϕ times the

MMCW Lagrangian (6.13) that contains the Einstein-Hilbert and cosmological constant
terms. (ii) Extra terms quadratic in the curvature and torsion. (iii) A coupling of curva-
ture and torsion terms. (iv) kinetic and potential terms for a multiplet of 16 spacetime
scalar fields φ, φa, φab, φabc, φabcd that from the tangent space point of view behave as a
scalar, vector, antisymmetric tensors of rank two and three and a pseudo-scalar field, re-
spectively. (v) Non-minimal couplings of the scalars and curvature and torsion terms. (vi)
terms involving the field strengths associated with conformal boosts, a dilational (Weyl
gauge field) and a U(1) Maxwell-like generator as displayed by eqs-(6.6, 6.11). A review
of conformal (super) gravity can be found in [45].
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Our action displayed by eqs-(6.16-6.26) is a more complex generalization of the f(R)
modified gravity models involving powers of the curvatures [51]. It is also a more general
extension of the cosmological models based on Brans-Dicke-Jordan gravity [50] and non-
minimally coupled Einstein-Electroweak theory [48]. It contains many more terms than a
U(2, 2) = SU(2, 2)×U(1) gauge theory (conformal gravity and Maxwell theory) combined
with the kinetic and potential terms of a multiplet of 16 scalar fields (corresponding to a
4× 4 matrix-valued scalar in the 16-dimensional adjoint representation of U(2, 2)).

Solving the equations of motion of the action S+S[Φ] after performing a variation with
respect to all the fields is a very cumbersome project that requires a Clifford computer
algebra package and which is beyond the scope of this work. Fixing and/or breaking
some of the gauge symmetries will simplify things. Let us truncate the action given in
eqs-(6.16,6.26) by freezing all the components of Φ to zero except ϕ so that the following
Higgs-like potential V

V =
1

l4
λ (ϕ2 − v2)2, λ > 0 (6.29)

is minimized to zero when ϕo = v. Focusing solely on the terms in eq-(6.19) and the Higgs
potential in eq-(6.26a), we have (i) ϕ times the {Gauss-Bonnet terms, the Einstein-Hilbert
action, and the cosmological constant }; and (ii) the effective potential energy density
given by the scalar potential minus the running cosmological “constant” term

Ueff =
1

l4
λ ( ϕ2 − v2 )2 − ϕ

l4
(6.30)

Let us define the reduced Planck mass by M2
P = (1/8πL2

P ) and equate the Planck energy
density 1

4
M4

P to the value of Ueff when ϕ = 0 in eq-(6.30)

Ueff (ϕ = 0) =
1

l4
( λ v4) =

1

4
M4

P =
1

(16π)2L4
P

(6.31)

By equating the value of the effective potential energy density at ϕ = ϕ∗ to the
present-day observed vacuum energy density one has

Ueff (ϕ∗) =
1

l4
λ ( ϕ2

∗ − v2 )2 − ϕ∗
l4

= ρobs ∼
1

L2
P R2

H

=

(
LP
RH

)2 1

L4
P

∼ 10−120 M4
P (6.32)

where LP and RH are the Planck and Hubble scale, respectively. The ratio ( LP
RH

)2 is chosen

to be of the order of 10−120. Matching the present-day value of the Newtonian coupling
constant with the running coupling appearing in the Einstein-Hilbert term in eq-(2.19),
when ϕ = ϕ∗, gives

ϕ∗
l2

=
1

16πG
=

1

2

1

8πL2
P

=
1

2
M2

P (6.33)
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It is interesting to note that negative values of ϕ furnish a negative coupling G that would
correspond to a repulsive gravitational regime. For the time being we shall focus in the
case where ϕ ≥ 0.

Finally, from eqs-(6.30, 6.31, 6.33) one arrives at the following numerical results for
the l,v, λ parameters of the Higgs-like potential (6.29)

l ' RH , v ' 1

16π
(
RH

LP
)2, λ ' (16π)2 (

LP
RH

)4 (6.34)

and ϕ∗ ' v.
From the plot of the graph Ueff/ρobs versus ϕ one learns that ϕ∗ < ϕo = v but its

value is very close to v. Since the throat size of the present de Sitter accelerating universe
l = RH agrees with the value for l obtained in eq-(6.34) this is sign of consistency.
The value of ϕ∗ + ε is the crossover point when the effective potential energy density
(6.30) switches from positive to negative values as ϕ increases (assuming it increases with
the flow of time). Anti de Sitter spacetime has a constant negative energy density and
positive pressure (attractive force) ; whereas de Sitter spacetime has a constant positive
energy density and negative pressure (repulsive force). In our most simplified scenario,
the universe has not entered yet the phase of negative energy density where its expansion
will deccelerate, until the point ϕ∗∗ , when it will crossover again into a positive energy
density epoch of perpetual accelerated expansion.

Our results obtained above are compatible with a very rapid de Sitter inflationary
phase in the very early universe because of the very large initial value of the (positive)
energy density. An extensive and recent review (with a vast number of references) about
cosmological inflation and its realization in quantum field theory and in string theory can
be found [46]. Furthermore, our results are also consistent with the present-day de Sitter
accelerating universe with a very small value of the vacuum energy density (6.32) due to
the very large value of the Hubble scale. More recently, the authors [49] have argued that
the so-called cosmological constant fine-tuning problem (why the cosmological constant
observed today is so much smaller than the Planck scale or why the universe is accelerating
at present) can be solved with the help of Higgs inflation by simply assuming a variable
cosmological “constant” during the inflation epoch. This is compatible with our findings.

To sum up, in our simplified scenario all the parameters l,v, λ of the Higgs-like scalar
potential (6.29) are given in terms of the two fundamental scales, LP , RH (a lower and
upper scale) by eq-(6.34) which allows us to reproduce the extremely small observed vac-
uum energy density (6.32) and the current value of the Newtonian gravitational coupling
(6.33). Nottale [23] in his development of the Scale Relativity Theory has proposed a res-
olution of the cosmological constant problem based also on these two fundamental scales
LP , RH .

The fact that a running Newtonian coupling in eq-(6.33) leads to G = l2

16πϕ
→∞ when

ϕ→ 0, at the Big Bang singularity for example, does not mean that the Einstein-Hilbert
action necessarily collapses to zero, because one may have R =∞ at the singularity such
that the ratio R/16πG might still be well defined. In order to study the behavior of
the scalar ϕ as a function of xµ, one has to determine the spacetime dynamics of ϕ(xµ)
which is obtained by performing a variation of the truncated action with respect to ϕ,
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and yielding a very complex equation of the form

1

l2
DµD

µϕ − 1

l4
∂V (ϕ)

∂ϕ
+ εabcd

εµνρσ
√
g

(a51 F
ab
µν F

cd
νσ + ......) +

1

l2
(AaµA

µ
a + Aabcµ Aµabc) ϕ = 0 (6.35)

the last terms in (6.35) stem from the contribution [Aµ,Φ]2 to the (DµΦA)(DµΦA) terms
in the truncated action.

One cannot solve eq-(6.35) without performing a variation of the action with respect
to the remaining gauge fields. In the most general case, one has to study the full space-
time dynamics of all the gauge fields involved in the non-truncated action, with the key
contribution of the kinetic and potential terms (DµΦA)(DµΦA), V(ΦA) for all the scalars,
to see whether or not there is a dynamical evolution of the 16 scalar fields that is con-
sistent with the extremely small value of the vacuum energy density observed today, and
associated with a de Sitter accelerated phase of expansion. The throat size of the de Sitter
solution is l = RH .

Fermionic matter terms and gauge fields of the Standard and GUT Models should be
taken into account in the most general theory. A de Sitter, Anti de Sitter and Minkowski
vacuum spacetime solution is also consistent with a breaking of the SU(2, 2) ∼ SO(4, 2)
conformal symmetry down to the de Sitter SO(4, 1), Anti de Sitter SO(3, 2) and
Minkowski SO(4) one. Recently, the authors [47] studied the problem of obtaining de
Sitter and inflationary vacua from dimensional reduction of double field theory (DFT) on
non-geometric string backgrounds. They also considered a new class of effective potentials
that admit Minkowski and de Sitter minima.

Before embarking into the study of the full action comprised of eqs-(6.16-6.26), one
can start instead with the simpler Clifford-gravity inspired action

S =
∫

d4x
√
g
(
ϕ [ Rµνρσ Rµνρσ − 4 Rµν R

µν + R2 ] − ϕ

l2
R +

ϕ

l4

)
−

∫
d4x
√
g (

1

2l2
(∂µϕ) (∂µϕ) +

1

l4
V (ϕ) ) (6.36)

as a testing ground for cosmological scenarios. An even simpler action was the Weyl
invariant action investigated in [52] where the source of dark energy was identified with
a dilaton-like scalar field θ of dimensions length−1 that is required to implement Weyl
(scale) invariance of the action

S =
1

16π

∫
d4x
√
g
(
− θ2 RWeyl −

1

2
gµν (Dµθ) (Dνθ) − V (θ)

)
(6.37a)

under the Weyl scalings

θ′ = e−Ω θ; g′µν = e2Ωgµν , R′Weyl = e−2ΩRWeyl, V (θ′) = e−4ΩV (θ)
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Dµθ = ∂µθ − Aµθ → (Dµθ)
′ = e−ΩDµθ, A′µ = Aµ − ∂µΩ, .... (6.37b)

the Weyl symmetry naturally selects a quartic potential V ∼ θ4. It was shown in [52]
how the action was related to a Brans-Dicke-Jordan model whose ω parameter had its
critical value ω = −3/2 and leading to the observed constant vacuum energy density
when the scalar field θ was scaled to a constant such that (θo)

2 = 1/G. Closely related
results have been obtained recently by [53], where dark energy is due to the existence of
a Dirac scalar field in a conformal theory of gravitation. In this cosmological model, dark
energy (described by an effective cosmological constant) is a function of a Dirac scalar
field and such that there is an exponential decrease of the value of the scalar field (from
the inflation stage) down to a constant limiting value at large times.

To conclude, we believe that Clifford-gravity-based cosmology is a promising avenue
to understand the origins of the very small presently observed value of the vacuum energy
density, and the 16 scalar fields corresponding to the Clifford-valued scalar Φ in four-
dimensions could be plausible dark energy/matter candidates.

7 Moyal Deformations of Clifford Gauge Theories of

Gravity

In this section, a Moyal deformation of a Clifford Cl(3, 1) Gauge Theory of (Conformal)
Gravity is performed for canonical noncommutativity (constant Θµν parameters). In the
very special case when one imposes certain constraints on the fields, there are no first
order contributions in the Θµν parameters to the Moyal deformations of Clifford gauge
theories of gravity. However, when one does not impose constraints on the fields, there are
first order contributions in Θµν to the Moyal deformations in variance with the previous
results obtained by other authors and based on different gauge groups. Despite that the
generators of U(2, 2), SO(4, 2), SO(2, 3) can be expressed in terms of the Clifford algebra
generators this does not imply that these algebras are isomorphic to the Clifford algebra.
Therefore one should not expect identical results to those obtained by other authors. In
particular, there are Moyal deformations of the Einstein-Hilbert gravitational action with
a cosmological constant to first order in Θµν . Finally, we provide a mechanism which
furnishes a plausible cancellation of the huge vacuum energy density.

Let us begin with the associative and noncommutative Moyal star product when the
(inverse) symplectic form Ωµν = −Ωµν does not have an X-dependence. It is defined as

( A1 ∗ A2 )(Z) = exp
(

1

2
Ωµν ∂Xµ ∂Y ν

)
A1(X) A2(Y )|X=Y=Z =

∞∑
n=0

(1
2
)n

n!
Ωµ1ν1 Ωµ2ν2 .......... Ωµnνn (∂nµ1µ2......µn

A1) (∂nν1ν2......νn
A2) (7.1)

∂nµ1µ2......µn
A1(Z) ≡ ∂µ1 ∂µ2 ...... ∂µn A1(Z). (7.2a)

54



∂nν1ν2......νn
A2(Z) ≡ ∂ν1 ∂ν2 ...... ∂νn A2(Z). (7.2b)

For simplicity we shall take the very special case of canonical noncommutativity
[Xµ, Xν ]∗ = iΘµν = Ωµν = constants, such that the star product is the standard Moyal
one. If the fields and their derivatives vanishing fast enough at infinity, one has the
cyclicity property of the integral

∫
A ∗B =

∫
A B + total derivative =

∫
A B =

∫
B ∗ A (7.3)

∫
A ∗ B ∗ C =

∫
A (B ∗ C) + total derivative =

∫
A (B ∗ C) =∫

(B ∗ C) A =
∫

(B ∗ C) ∗ A + total derivative =
∫

B ∗ C ∗ A (7.4)

therefore, when the star product is associative and the fields and their derivatives vanish-
ing fast enough at infinity (or there are no boundaries) one has∫

A ∗ B ∗ C =
∫

B ∗ C ∗ A =
∫

C ∗ A ∗ B . (7.5)

The relations (7.3-7.5) are essential in order to construct invariant actions under star
gauge transformations of the form δFµν = i[ξ, Fµν ]∗. The invariance of the actions is due
to the associativity property of the star products and the cyclicity property of the integrals
and of the Clifford scalar part of the geometric product of the Clifford generators. Taking
the scalar part is the analog of the trace of a matrix product.

One should notice, for example, that when one has a Lie-algebraic type of noncom-
mutativity, the Θ′s are now X-dependent [Xµ, Xν ]∗ = iΘµν(X) = ifµνρ Xρ so that the
cyclicity property no longer holds since the star product is X-dependent. For a detailed
study of how to remedy this problem see [64].

Due to the noncommutativity of the spacetime coordinates, the components of the
Clifford-algebra valued field strength are now modified as follows

Fµν = FCµν ΓC = ( ∂µ ACν − ∂ν ACµ ) ΓC −
i

2
( AAµ ∗ ABν − ABν ∗ AAµ ) { ΓA, ΓB } −

i

2
( AAµ ∗ ABν + ABν ∗ AAµ ) [ ΓA, ΓB ]. (7.6)

The commutators [ ΓA, ΓB ] and anti-commutators { ΓA, ΓB } in eq-(7.6), where
A,B are polyvector-valued indices, can be obtained from all the relations provided in
the Appendix. Notice that both the standard commutators and anticommutators of
the gammas appear in eq-(7.6) and which now define the Clifford-algebra valued field
strength in noncommutative spacetimes; i.e. if the products of fields were to commute
one would have had only the Lie algebra commutator AAMAJB [ΓA,ΓB] pieces without the
anti-commutator {ΓA,ΓB} contributions in the r.h.s of eq-(7.6).

We should remark that one is not deforming the Clifford algebra involving [ ΓA, ΓB ]
and { ΓA, ΓB } in eq-(7.6) but it is the ”point” product algebra AAM ∗ ABN of the fields
which is being deformed. (Quantum) q-Clifford algebras have been studied extensively
by [68].
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The symmetrized star product in terms of Θµν = constants is

AAµ ∗s ABν ≡
1

2

(
AAµ ∗ ABν +ABν ∗ AAµ

)
= AAµ ABν +

i2

2!
Θαβ Θκλ (∂α ∂κ AAµ ) (∂β ∂λ ABν ) + ...... (7.7)

the antisymmetrized (Moyal bracket) star product is

AAµ ∗a ABν ≡
1

2

(
AAµ ∗ ABν −ABν ∗ AAµ

)
= i Θαβ (∂α AAµ ) (∂β ABν ) + ..... (7.8)

Early works on Moyal deformations of gravity can be found in [60],[57],[55]. Examples
of an X-dependent Θµν(x) occurs in κ-deformed Minkowski spacetimes [19]. An extension
of the Seiberg – Witten (SW) map for X-dependent Θµν(x) was provided by [64], [58],
[59], [65], [66], among others, relating the non-Abelian noncommutative gauge fields based
on noncommutative coordinates and the non-Abelian gauge fields based on commutative
coordinates. It is then when one may construct the proper expressions for the deformed
field strengths, associated with the noncommutative coordinates, in terms of the unde-
formed field strengths. Since the former involve the universal enveloping algebra that
is infinite dimensional one must find a criteria to reduce the number of the degrees of
freedom to a finite one; this is attained via the Seiberg-Witten map.

The main advantage of recurring to a Clifford algebraic formulation described in this
work, is that both the commutator and anticommutator algebra in eq-(7.6) closes and
this will simplify the laborious and cumbersome Seiberg-Witten procedure, involving the
universal enveloping algebra. One may now proceed to perform the Moyal deformations
of the field strengths and the action in a straightforward fashion.

The Moyal deformation of the terms S5 encoding the MMCW gravitational action
with a cosmological constant is given by

S(5)∗ =
∫

d4x εµνρσ < FAµν ∗ FBρσ ∗ φabcd ΓA ΓB γabcd > =∫
d4x εabcd ε

µνρσ ϕ ∗
(
a51Fabµν ∗ F cdρσ + a52 Faµν ∗ F bcdρσ + a53 Fµν ∗ Fabcdρσ

)
+∫

d4x εabcd ε
µνρσ ϕ ∗

(
a54Fabµνe ∗ F ecdρσ + a55Faµνe ∗ F ebcdρσ + a56Fabµνef ∗ F efcdρσ

)
(7.9)

Before studying the Moyal deformations given by the action (7.9) one needs to establish
the dictionary among the different Clifford Cl(3, 1) gauge field components and the fields
of conformal gravity. From eqs-(6.4-6.6) one can infer the following correspondence

Aabµ ↔ ωabµ , Aaµ ↔ eaµ, Aabcµ ↔ faµ , Aabcdµ ↔ bµ, Aµ ↔ aµ (7.10)

Let us look at the first order Θ-corrections to the components of F ab
µν given by eq-(6.6e)

upon using eq-(7.6) and the equations in the Appendix

(1)Fabµν = Fabµν + Θαβ ∂αAabeµ ∂βAνe − Θαβ ∂αAabefµ ∂βAνef (7.11)
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Repeating this procedure with the other field strength components in eqs-(6.6a-6.6d)
yields the first order Θ-corrections

(1)Fµν = Fµν + 2 Θαβ ∂αAeµ ∂βAνe −

2 Θαβ ∂αAefµ ∂βAνef − 2 Θαβ ∂αAefgµ ∂βAνefg +

2 Θαβ ∂αAefghµ ∂βAνefgh (7.12)

(1)Faµν = Faµν − 2 Θαβ ∂αAaefµ ∂βAνef (7.13)

(1)Fabcµν = Fabcµν + 2 Θαβ ∂αAabµ ∂βAcν −
1

2
Θαβ ∂αAabefµ ∂βAcνef (7.14)

(1)Fabcdµν = Fabcdµν + 2 Θαβ ∂αAabµ ∂βAcdν +
1

2
Θαβ ∂αAabeµ ∂βAcdνe −

1

4
Θαβ ∂αAabefµ ∂βAcdνef (7.15)

We have indicated in the previous equations (7.11-7.15) that one has a first order correc-
tion by attaching explicitly a superscript (1) to the field strength expressions in the left
hand side. The expressions for the components of FAµν in the right hand side are obtained
explicitly from eqs-(6.6a-6.6e ) by replacing the commutative gauge fields AAµ for the
noncommutative ones AAµ .

Having written the above expressions (7.11-7.15) for the noncommutative field
strengths in terms of the noncommutative gauge fields AAµ it remains to write the lat-
ter noncommutative fields in terms of the commutative fields AAµ via the Seiberg-Witten
map procedure. A lengthy procedure (see [61], [62]) yields the following expression for
the noncommutative field strengths Fµν in terms of the commutative fields, after ommit-
ing the Clifford-valued internal indices for simplicity since Fµν ≡ FAµνΓA, Fµν ≡ FA

µνΓA,
Aµ ≡ AAµΓA,

Fµν = Fµν +
1

2
Θαβ{Fµα, Fνβ} −

1

4
Θαβ{Aα, (∂β +Dβ)Fµν}+ · · · (7.16)

where the covariant derivative is defined in the adjoint representation

DσFµν = ∂σFµν − i [Aσ, Fµν ]. (7.17)

Similarily, the Seiberg-Witten map allows to express the noncommutative scalar fields
components present in the Clifford-valued field Φ̂ in terms of the commutative scalar
fields components present in the Clifford-valued field Φ

Φ̂ = Φ − 1

4
Θαβ {Aα, (∂β +Dβ)Φ} + . . . (7.18)

see [61] for the case of a SO(2, 3)-valued scalar field.
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All that rests now is to evaluate the individual components of Fµν ≡ FAµνΓA in the
left hand side of (7.16) after performing the geometric products of the Clifford algebra
generators appearing in the right hand side of (7.16) due to the decomposition of Fµν ≡
FA
µνΓA, Aµ ≡ AAµΓA. A similar procedure is performed in eq-(7.18).

We shall focus for now on the contribution up to first order in the Θ-terms to the
Clifford bivector components Fabµνγab

(1)Fabµν = F ab
µν +

1

2
Θαβ

(
F abc
µα Fνβc − F abcd

µα Fνβcd
)

+

1

2
Θαβ

(
Fµαc F

cab
νβ − Fµαcd F

cdab
νβ

)
+ . . . (7.19)

The extra terms in (7.19) are of the form Θ(A∂F + AAF ). For example

−1

4
Θαβ

(
Aabcα ∂βFµνc − Aabcdα ∂βFµνcd

)
− 1

4
Θαβ Aabcα Aβcd F

d
µν (7.20)

A similar procedure yields the expression for the noncommutative scalar field φ̂abcd =
εabcdϕ̂ in terms of the commutative scalar and gauge fields.

The higher order corrections in Θ are obtained from the higher order terms in the
definition of the Moyal star products and in those terms generated by the Seiberg-Witten
map. Comparing our results, based on the Moyal deformations provided by eq-(7.9), with
the results of others we should emphasize that the authors [62] had for their starting
U(2, 2) invariant Lagrangian only the two terms (omitting numerical factors)

L = εabcd
(
F ab ∧ F cd + F ∧ F abcd

)
(7.21)

instead of the six terms present in eq-(6.18). Secondly, they imposed by hand several
constraints on the fields such that Fµν = F a

µν = F abc
µν = F abcd

µν = 0. And thirdly, they set
ϕ = constant.

Whereas the authors [61] used the Seiberg-Witten map procedure to construct a model
of noncommutative gravity based on the gauge theory of SO(2, 3) defined over a noncom-
mutative spacetime characterized by Θµν = constants. The starting Lagrangian in [61]
was chosen to be

L = εabcd ϕ F ab ∧ F cd (7.22)

They found a cancellation of the Θ-terms to first order and which agrees with the results
obtained by the authors [62] (for the group U(2, 2)) when one has a canonical noncom-
mutativity. It appears that the cancellation of the first order terms in Θµν might be
model-independent.

Let us examine carefully the Moyal deformation of the eq-(6.16) after one inserts the
explicit expressions for the noncommutative fields inside the integral∫

d4x εµνρσ < Φ̂ ∗ Fµν ∗ Fρσ > (7.23)
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the Θ-terms up to first order in the integrand will be

Φ (Fµν ∗ Fρσ)(1) + Φ̂(1) (Fµν Fρσ) +

i

2
Θαβ ∂αΦ ∂β(Fµν Fρσ) (7.24)

The last term is a total derivative after an integration by parts due to the condition
Θαβ∂α∂β(...) = 0. Hence the last term decouples (it can be dropped if the fields vanish
fast enough at infinity or there are no boundaries). This is to be expected if one does not
wish to introduce imaginary terms to the Moyal deformed action. The hats represent the
noncommuative scalars and Φ̂(1) is the first order contribution in Θ to the noncommutative
scalar field. Φ is the Clifford-valued scalar field with commutative components.

The first two terms of eq-(7.24) gives

−Θαβ

4
< {Aα, (∂β +Dβ) Fµν} Fρσ Φ > εµνρσ −

−Θαβ

4
< Fµν Fρσ {Aα, (∂β +Dβ) } Φ > εµνρσ +

Θαβ

2
< {Fαµ, Fβν} Fρσ Φ > εµνρσ + . . . (7.25)

The terms that one must extract the Clifford scalar part < ... > are of the form

Θαβ < {Fαµ, Fβν} Fρσ Φ > εµνρσ (7.26)

Θαβ < Fµν { Fαρ, Fβσ } Φ > εµνρσ (7.27)

Θαβ < Fµν Fρσ { Fαβ, Φ } > εµνρσ (7.28)

Θαβ < Fµν Fρσ { Aα, (∂β +Dβ) Φ } > εµνρσ (7.29)

Θαβ < Fµν {Aα, (∂β +Dβ) Fρσ} Φ > εµνρσ +

Θαβ < {Aα, (∂β +Dβ) Fµν} Fρσ Φ > εµνρσ (7.30)

i

2
Θαβ < (∂αFµν) (∂βFρσ) Φ > (7.31)

To simplify the calculations let us truncate all the components of the field Φ = ΦAΓA
to zero except Φmnpq 6= 0, and all the components of AAµΓA to zero except Aabµ 6= 0. In
this case one will have in explicit components form for the term in eq-(7.28) the following

Θαβ < F ab
µν γab F

cd
ρσ γcd {F rs

αβ γrs, φmnpq γ
mnpq} > εµνρσ (7.32)
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Recurring to the expressions displayed in the Appendix allow us to extract the Clifford
scalar part < ... > of the geometric products of the Clifford Cl(3, 1) algebra generators
in eq-(7.32). After some straightforward but lengthy algebra it yields (up to a numerical
factor)

Θαβ ηac F
ap
µν F

cq
ρσ F

mn
αβ φmnpq ε

µνρσ = 0 (7.33)

The reason this last expression eq-(7.33) is vanishing is due to the contraction struc-
ture of the tangent space indices and the antisymmetry of all the terms of eq-(7.33) under
the exchange of indices with the exception of the (flat) tangent space metric ηac = ηca.

Following the same procedure with eq-(7.27) and using the same symmetry (antisym-
metry) argument in the contraction of indices gives for the Clifford scalar part

Θαβ ηac F
ap
αρ F

cq
βσ F

mn
µν φmnpq ε

µνρσ = 0 (7.34)

identical vanishing results occur with eq-(7.29)

Θαβ ηac F
ap
µν F

cq
ρσ A

mn
α (∂β +Dβ)φmnpq ε

µνρσ = 0 (7.35)

and with eq-(7.26).
The explicitly gauge noncovariant eq-(7.30) yields

Θαβ ηac φmnpq F
am
µν Acnα (∂β +Dβ)F pq

ρσ ε
µνρσ −

Θαβ ηca φmnpq F
cq
ρσ A

an
α (∂β +Dβ)Fmp

µν εµνρσ = 0 (7.36)

A way to see why eq-(7.36) is zero can be obtained by relabeling the indices µν ↔ ρσ, q ↔
m, a ↔ c in the second line of eq-(7.36) so that it becomes identical to the first line and
leading to an exact cancellation due to the key minus sign in eq-(7.36) and antisymmetry
F pq
ρσ = −F qp

ρσ .
Finally we examine eq-(7.31) giving

i

2
Θαβ (∂αF

mn
µν ) (∂βF

pq
ρσ) φmnpq ε

µνρσ = 0 (7.37)

The reason eq-(7.37) is zero is due to an overall antisymmetry. Relabeling the indices
in eq-(7.37) µν ↔ ρσ, α ↔ β,mn ↔ pq and due to the antisymmetry of Θαβ = −Θβα it
leads to

i

2
Θαβ (∂αF

mn
µν ) (∂βF

pq
ρσ) φmnpq ε

µνρσ = − i

2
Θαβ (∂βF

pq
ρσ) (∂αF

mn
µν ) φpqmn ε

ρσµν =

− i

2
Θαβ (∂αF

mn
µν ) (∂βF

pq
ρσ) φmnpq ε

µνρσ (7.38)

therefore, if X = −X ⇒ X = 0.
Therefore, the Clifford scalar part of the first order contributions in the Θαβ terms

of the Moyal-deformed action is vanishing when one truncates all the components of
Φ = ΦAΓA to zero except Φmnpq 6= 0, and all the components of AAµΓA to zero except
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Aabµ 6= 0. If one does not impose such truncation, one will have to consider the Moyal
deformations of all other expressions in eqs-(6.21-6.25). It is unlikely that there is a
cancellation of the Θ-terms up to first order in this most general case.

For example, let us examine the first order contribution in Θαβ of∫
<

(
Fµν ∗ F abcd

ρσ ∗ φabcd
)(1)

> εµνρσ (7.39)

One of the terms is

i

2
Θαβ (∂αFµν) (∂βF

abcd
ρσ ) φabcd ε

µνρσ 6= 0 (7.40)

which is clearly nonvanishing and furnishes an imaginary contribution to the Moyal de-
formed action. The other imaginary contribution can be dropped because it yields a total
derivative term ∫ i

2
Θαβ ∂α(Fµν F

abcd
ρσ ) ∂βφabcd ε

µνρσ =∫ i

2
Θαβ ∂α

(
Fµν F

abcd
ρσ ∂βφabcd

)
εµνρσ (7.41)

after an integration by parts.
One may cancel the contribution in eq-(7.40) by adding to eq-(7.39) the term∫

<
(
F abcd
ρσ ∗ Fµν ∗ φabcd

)(1)
> εµνρσ (7.42)

which amounts to a trivial symmetrization of the ordering in the products of the field
strengths. Not surprisingly, due to this trivial symmetrization, there is cancellation due
to the antisymmetry of Θαβ.

Eq-(7.40) is gauge covariant because ∂αFµν = DαFµν and ∂βF
abcd
ρσ = DβF

abcd
ρσ after

writing F abcd
ρσ = εabcdGρσ. Because there are a lot of gauge noncovariant terms in the

expansion in powers of Θ, the authors [63] used the method of composite fields which
enables to write the final results in a manifestly gauge covariant way. Therefore, the final
results are manifestly gauge covariant as they should be.

There are many other terms in eq-(7.39) whose contribution is nonvanishing and real
to first order in Θ, for example

Θαβ F rs
αρ Fβσrs F

abcd
µν φabcd ε

µνρσ 6= 0 (7.43)

Θαβ Fµν F
ab
αρ F

cd
βσ φabcd ε

µνρσ 6= 0 (7.44)

due to the fact that now Fµν and F abcd
µν are no longer zero. In particular, the terms of

eq-(7.44) clearly form part of the deformed action S(5)∗ in eq-(7.9) and encoding the Moyal
deformations of the MMCW gravitational action with a cosmological constant given by eq-
(6.13) to first order in Θµν . By setting φabcd = εabcdϕ and recurring to the decomposition
of F ab

αρ, F
cd
βσ provided in eqs-(6.11d, 6.13) one will have that eq-(3.44) yields the following

Θ corrections to the vacuum energy density (in the modified action)
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ϕ

l4
Θαβ Fµν V

a
α V b

ρ V
c
β V

d
σ εabcd ε

µνρσ (7.45)

where V a
α is the vielbein field. If one identifies ϕ

l2
∼ 1

G
= 1

L2
P

and ϕ
l4

= ρvacuum one can

cancel the enormous ρvacuum energy density (when ϕ = 1) if the terms in eq-(3.45) are of
the same order of magnitude, which implies that

ϕ

l4

(
V a
µ V b

ν V
c
ρ V

d
σ + Θαβ Fµν V

a
α V b

ρ V
c
β V

d
σ

)
εabcd ε

µνρσ = 0 (7.46)

Setting the magnitude of the constant Θαβ parameters to be of the order of the Planck
scale squared L2

P will fix the values of Fµν in eq-(7-46) that furnish a cancellation of the
huge vacuum energy density. Hence, the second terms in eq-(7.46) provide in general
the x-dependent corrections to the vacuum energy density (cosmological constant). This
result should be contrasted with those in [61].

One should notice that despite the generators of U(2, 2), SO(4, 2), SO(2, 3) can be ex-
pressed in terms of the Clifford algebra generators this does not imply that these algebras
are isomorphic to the Clifford algebra. Hence one should not expect identical results as
those obtained by other authors.

To sum up, when one does not impose constraints on the fields, there are first order
contributions in the Θµν (constants) parameters in the Moyal deformations of a Clifford
gauge theory formulation of gravity in variance with the previous results obtained by other
authors and based on different gauge groups. This could provide a plausible cancellation
mechanism of the huge vacuum energy density 1/L4

P . The first order contributions
in the Θαβ terms of the Moyal-deformed action is vanishing in the special case when
one truncates all the components of Φ = ΦAΓA to zero except Φmnpq 6= 0, and all the
components of AAµΓA to zero except Aabµ 6= 0.

Similarily, one obtains the Moyal deformations of the action S[Φ] corresponding to
the Clifford-valued scalar field Φ. Firstly, there is a modification of the gauge covariant
derivative term (6.28a) due to the noncommutativity of the pointwise product of fields.
Both commutators and anticommutators will appear in the Moyal deformations of eq-
(6.28a) as they did in eq-(7.6). This will lead to corrections in powers of Θ of the gauge
covariant derivative terms. Secondly, one performs the Moyal star products among all
the terms present in the Clifford-valued scalar field action as it was done in eq-(7.9) after
recurring to eq-(7.18).

8 N-ary Algebras and Clifford Spaces

In this section Polyvector-valued gauge field theories in noncommutative Clifford spaces
are presented. They are based on noncommutative (but associative) star products that re-
quire the use of the Baker-Campbell-Hausdorff formula. Using these star products allows
the construction of actions for noncommutative p-branes (branes moving in noncommuta-
tive spaces). Noncommutative Clifford-space gravity as a poly-vector-valued gauge theory
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of twisted diffeomorphisms in Clifford-spaces would require quantum Hopf algebraic de-
formations of Clifford algebras. We proceed with the study of n-ary algebras and find
an important relationship among the n-ary commutators of noncommuting spacetime
coordinates [X1, X2, ......, Xn] with the poly-vector valued coordinates X123...n in noncom-
mutative Clifford spaces given by [X1, X2, ......, Xn] = n! X123...n. The large N limit of
n-ary commutators of n hyper-matrices Xi1i2....in leads to Eguchi-Schild p-brane actions
for p+1 = n. Finally, a noncomutative n-ary • product of n functions is constructed which
is a generalization of the binary star product ∗ of two functions, and is associated with
the deformation quantization of n-ary structures and deformations of the Nambu-Poisson
brackets.

The study of n-ary algebras, ternary algebras, in particular, have recently resurfaced
with great intensity in the study of M2-brane duality where M theory on AdS4 × S7 is
dual to a superconformal field theory in three dimensions, with the supergroup OSp(8|4),
after Bagger-Lambert-Gustavsson (BLG) [79] constructed a Chern-Simons gauge theory
in three dimensions with maximal supersymmety N = 8. However, their construction
only works for the SO(4) gauge group and it does not provide the desired dual to M -
theory on AdS4 × S7 [80]. The authors [81] later have shown that the dual gauge theory
is actually an N = 6 superconformal Chern-Simons theory in three-dimensions and is
associated to M -theory on AdS4 × S7/Zk, with N units of flux. The M5-brane duality
is based on M theory on AdS7 × S4 being dual to a six dimensional superconformal field
theory whose super group is OSp(6, 2|4). Recently it was shown by [82] how the M5
brane can be obtained from a mass deformed BLG theory which is realized by a Nambu
bracket and such that a maximally supersymmetric Lagrangian for the fluctuation fields
exists corresponding to a single M5 brane on R1,2 × S3.

N -ary algebras have been known for some time [75] since Nambu introduced his bracket
(a Jacobian) in the study of branes and the generalizations of Hamiltonian mechanics
based on Poisson brackets. In this section we shall show how poly-vector valued coordi-
nates admit a very natural interpretation in terms of n−ary commutators.

The ternary commutator for noncommuting coordinates is defined as

[X1, X2, X3] = X1 [X2, X3] + X2 [X3, X1] + X3 [X1, X2] =

1

2
{ X1, [X2, X3] } +

1

2
[ X1, [X2, X3] ] + cyclic permutations (8.1)

Due to the Jacobi identities, the terms

1

2
[ X1, [X2, X3] ] + cyclic permutations = 0. (8.2)

so that the ternary commutators become

[X1, X2, X3] =
1

2
{ X1, [X2, X3] } + cyclic permutations. (8.3)

The second step is to write down the noncommutative algebra associated with the
noncommuting poly-vector-valued coordinates in D = 4 and which can be obtained from
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the Clifford algebra displayed in Appendix A by performing the following replacements
(and relabeling indices)

γµ ↔ Xµ, γµ1µ2 ↔ Xµ1µ2 , ........ γµ1µ2.....µn ↔ Xµ1µ2....µn . (8.4)

When the spacetime metric components gµν are constant, from the replacements (8.4)
and the Clifford algebra (after one relabels indices), one can then construct the following
noncommutative algebra among the poly-vector-valued coordinates inD = 4, and obeying
the Jacobi identities, given by the relations

[ Xµ1 , Xµ2 ]∗ = Xµ1 ∗ Xµ2 − Xµ2 ∗ Xµ1 = 2 Xµ1µ2 . (8.5)

In most of the remaining commutators a suitable length scale parameter must be in-
troduced in order to match units. We shall set this length scale (let us say the Planck
scale) to unity. Also, by choosing the C-space coordinates to behave like anti-Hermitian
operators we avoid the need to introduce i factors in the right hand side.

[ Xµ1µ2 , Xν ]∗ = 4 ( gµ2ν Xµ1 − gµ1ν Xµ2 ) . (8.6)

[ Xµ1µ2µ3 , Xν ]∗ = 2 Xµ1µ2µ3ν , [ Xµ1µ2µ3µ4 , Xν ]∗ = − 8 gµ1ν Xµ2µ3µ4 ± ...... (8.7)

[ Xµ1µ2 , Xν1ν2 ]∗ = − 8 gµ1ν1 Xµ2ν2 + 8 gµ1ν2 Xµ2ν1 +

8 gµ2ν1 Xµ1ν2 − 8 gµ2ν2 Xµ1ν1 . (8.8)

[ Xµ1µ2µ3 , Xν1ν2 ]∗ = 12 gµ1ν1 Xµ2µ3ν2 ± ......... (8.9)

[ Xµ1µ2µ3 , Xν1ν2ν3 ]∗ = − 36 Gµ1µ2 ν1ν2 Xµ3ν3 ± ...... (8.10)

[ Xµ1µ2µ3µ4 , Xν1ν2 ]∗ = − 16 gµ1ν1 Xµ2µ3µ4ν2 ± ...... (8.11)

[ Xµ1µ2µ3µ4 , Xν1ν2 ]∗ = − 16 gµ1ν1 Xµ2µ3µ4ν2 + 16 gµ1ν2 Xµ2µ3µ4ν1 − ......... (8.12)

[ Xµ1µ2µ3µ4 , Xν1ν2ν3 ]∗ = 48 Gµ1µ2µ3 ν1ν2ν3 Xµ4 − 48 Gµ1µ2µ4 ν1ν2ν3 Xµ3 + ..... (8.13)

[ Xµ1µ2µ3µ4 , Xν1ν2ν3ν4 ]∗ = 192 Gµ1µ2µ3 ν1ν2ν3 Xµ4ν4 − .......... (8.14)

etc...... where

Gµ1µ2......µn ν1ν2......νn = gµ1ν1 gµ2ν2 ....... gµnνn + signed permutations (8.15)
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The metric components Gµ1µ2......µn ν1ν2......νn in C-space can also be written as a deter-
minant of the n× n matrix G whose entries are gµIνJ

det Gn×n =
1

n!
εi1i2.....in εj1j2....jn g

µi1νj1 gµi2νj2 ....... gµinνjn . (8.16)

i1, i2, ....., in ⊂ I = 1, 2, ....., D and j1, j2, ....., jn ⊂ J = 1, 2, ....., D. One must also
include in the C-space metric GMN the (Clifford) scalar-scalar component G00 (that
could be related to the dilaton field) and the pseudo-scalar/pseudo-scalar component
Gµ1µ2.....µD ν1ν2......νD (that could be related to the axion field).

One must emphasize that when the spacetime metric components gµν are no longer
constant, the noncommutative algebra among the poly-vector-valued coordinates in D =
4, does not longer obey the Jacobi identities. For this reason we restrict our construction
to a flat spacetime background gµν = ηµν .

The noncommutative conditions on the polyvector coordinates in condensed notation
can be written as

[ XM , XN ]∗ = XM ∗XN − XN ∗XM = ΩMN(X) = fMN
L X

L = fMNL XL (8.17)

the structure constants fMNL are antisymmetric under the exchange of polyvector valued
indices. An immediate consequence of the noncommutativity of coordinates is

[ X̂µ1 , X̂µ2 ] = 2 X̂µ1µ2 ⇒ ∆Xµ ∆Xν ≥ 1

2
| < X̂µν > | = Xµν (8.18)

Hence, the bivector area coordinates Xµν in C-space can be seen as a measure of the
noncommutative nature of the ”quantized” spacetime coordinates X̂µ.

After using the relations, from eqs-(8.5-8.15),

[X2, X3] = 2 X23, { X1, X23 } = 2 X123. (8.19)

one gets finally

[X1, X2, X3] = 2 X123 + cyclic permutations = 6 X123. (8.20)

since X123 = X231 = X312 = −X132 = ......
The 4-ary commutator is defined as

[X1, X2, X3, X4] = X1 [X2, X3, X4] − X2 [X3, X4, X1] +

X3 [X4, X1, X2] − X4 [X1, X2, X3] =

1

2
{ X1, [X2, X3, X4] } +

1

2
[ X1, [X2, X3, X4] ] − .......... =

3 { X1, X234 } + 3 [ X1, X234 ] − .......... =

6 X1234 + 18 ( g12 X34 + g13 X42 + g14 X23 ) − ....... = 24 X1234 (8.21)
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due to the cancellations

( g12 X34 + g13 X42 + g14 X23 ) − ( g23 X41 + g24 X13 + g21 X34 ) +

( g34 X12 + g31 X24 + g32 X41 ) − ( g41 X23 + g42 X31 + g43 X12 ) = 0. (8.22)

resulting from the conditions Xµν = −Xνµ, gµν = gνµ after recurring to the (anti) com-
mutators

[X1, X234] = 2 X1234, {X1, X234} = 6 (g12 X34 + g13 X42 + g14 X23 ). (8.23)

and the conditions X1234 = −X2341 = X3412 = −X4123. For example, given a Noncom-
mutative Clifford space in D = 4, one arrives at

[X1, X2] = 2 X12, [X1, X2, X3] = 6 X123, [X1, X2, X3, X4] = 24 X1234. (8.24)

where X1, X2, X3, X4 is a shorthand notation for Xµ1 , Xµ2 , Xµ3 , Xµ4 . Therefore, one
finds that the poly-vector coordinates Xµ1µ2 , Xµ1µ2µ3 , Xµ1µ2µ3µ4 can be seen, respectively,
as the binary, ternary and 4-ary commutators of the non-commuting vector coordinates
Xµ. In the general case, using the noncommutative algebra in Clifford spaces one arrives
by recursion at

[ X1, X2, ......., Xn ] = n! X123.....n. (8.25)

This n-ary commutator interpretation of the poly-vector valued coordinates of a noncom-
mutative Clifford space warrants further investigation.

At this stage it is important to emphasize that the Noncommutative Clifford-valued
poly-vector coordinates algebra does not satisfy the Nambu-Filipov conditions which can
be written as

D[X1,X2] [Y 1, Y 2, Y 3] = [ X1, X2, [Y 1, Y 2, Y 3] ] =

[ [X1, X2, Y 1], Y 2, Y 3 ] + [ Y 1, [X1, X2, Y 2], Y 3 ] + [ Y 1, Y 2, [X1, X2, Y 3] ]. (8.25a)

[ X1, X2, ........., Xn−1, [ Y 1, Y 2, .........., Y n ] ] =

[ [ X1, X2, ........., Xn−1, Y 1 ], Y 2, .........., Y n ] +

[ Y 1, [ X1, X2, ........., Xn−1, Y 2 ], Y 3, .........., Y n ] + ........ +

[ Y 1, Y 2, ........., Y n−1, [ X1, X2, ........., Xn−1, Y n ] ]. (8.25b)

For n-ary brackets, Nambu showed that the Jacobian, the classical Nambu-Poison
bracket (NPB)

{X1, X2, ........, Xn}NPB = εi1i2.....in ∂i1X
1 ∂i2X

2 ........ ∂inX
n. (8.26)
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satisfies the Nambu-Filippov special conditions, [73], [75]. The NPB is antisymmetric
under the exchange of any pair of entries and satisfies the analog of the Liebnitz rule. It
is not difficult to see that

[ X1, X2, [X3, X4, X5] ] 6=

[ [X1, X2, X3], X4, X5 ] + [ X3, [X1, X2, X4], X5 ] + [ X3, X4, [X1, X2, X5] ]. (8.27)

The main reason being that the ternary commutator

[X1, X2, X3] = 6 X123 6=
∑
i

f 123
i X

i. (8.28)

Naturally, the Jacobi identity is satisfied

[ X1, [X2, X3] ] = [ [X1, X2], X3 ] + [ X2, [X1, X3] ]. (8.29)

n-ary algebras are relevant to the large N limit of covariant Matrix Models based
on generalized n-th power matrices (hyper-matrices) [78] Xi1i2......in , that are extensions
of square, cubic, quartic, .... matrices (hyper-matrices). These Matrix models bear a
relationship to Eguchi-Schild p-brane actions for p + 1 = n. The range of indices is
i1, i2, ..., in ⊂ I = 1, 2, .....N . The n-ary commutator of n generalized n-th power matrices
(hyper matrices) in the large N → ∞ has a correspondence with the Nambu-brackets
(NB) as follows

[ X1, X2, ......., Xn ]i1i2......in → { X1, X2, ......., Xn }NB. (8.30)

by replacing the hyper matrix Xi1i2......in in the large N →∞ limit for the c-function of n-
variables X(σ1, σ2, ...., σn). The trace operation in the large N limit has a correspondence
with the integral

∫
dnσ so that

Trace
(

[ X1, X2, ......., Xn ]2
)
→

∫
dnσ { X1, X2, ......., Xn }2

NB. (8.31)

recovering in this fashion the Eguchi-Schild p-brane actions for p+ 1 = n. The fermionic
version of (8.31) is ∫

dnσ Ψ̄ Γ12....n−1 { X1, X2, ......., Xn−1 ,Ψ}. (8.32)

Covariant (super) brane actions based on n-ary structures and generalized matrix models
have been recently constructed by [72]. The authors [70] have shown that the light-
cone gauge-fixed action of a super p-brane belongs to a new kind of supersymmetric
gauge theory of p-volume preserving diffeomorphisms (diffs) associated with the p-spatial
dimensions of the extended object. These authors conjectured that this new kind of
supersymmetric gauge theory must be related to an infinite-dim nonabelian antisymmetric
gauge theory. It was recently shown in [71] how this new theory should be part of an
underlying antisymmetric nonabelian tensorial gauge field theory of p+1-dimensional diffs
(upon supersymmetrization) associated with the world volume evolution of the p-brane.

67



Ternary algebraic structures appearing in various domains of theoretical and math-
ematical physics were reviewed by [69], like the notion of quark algebraic confinement
based on a Z3 -graded matrix algebra over the complex field C. A generalization of non-
commutative geometry and gauge theories based on ternary Z3-graded structures was
constructed by [69]. The usual Z2-graded structures such as Grassmann, Lie and Clif-
ford algebras are generalized to the Z3-graded case leading to hypersymmetry which is a
Z3 graded generalization of supersymmetry. The de Rham complex with the differential
operator d satisfies the condition d3 = 0 instead of d2 = 0. Ternary generalizations of
Clifford algebras were defined by the relations [69]

Qa Qb Qc = ω Qb Qc Qa + ω2 Qc Qa Qb + 3 ρabc 1 (8.33)

where ω is the cubic root of unity ei2π/3 and ρabc is the analog of a cubic metric (a cubic
matrix) obeying the conditions

ρabc + ω ρbca + ω2 ρcab = 0. (8.34)

Our whole construction of C-spaces [1] based on ordinary Clifford algebras can be extended
to ternary Clifford algebras. By replacing the cubic roots of unity for the N -th roots
of unity and the cubic metric for ρa1a2.....an one can define the N -ary generalizations of
Clifford algebras. In [74] and references therein one can find a generalization of n-ary
Nambu algebras and beyond.

The canonical Moyal noncommutative (but assocciative) star product is defined as

(f ∗ g)(x, p) =

(
e

ihωij
2!

∂Z′
i
∧ ∂Z′′

j

)
f(Z ′) g(Z ′′)|Z=Z′=Z′′ . (8.35)

where the derivatives are evaluated at Z = Z ′ = Z ′′ and the phase coordinates are
defined by Z = (x, p); Z ′ = (x′, p′′); Z ′′ = (x′′, p′′). By analogy one can define the ternary
• product of three functions of x, y, z in terms of a deformation parameter κ as

(f • g • h)(x, y, z) =

(
e

iκεijk
3!

∂X′
i
∧ ∂X′′

j
∧ ∂X′′′

k

)
f(X ′) g(X ′′) h(X ′′′). (8.36)

where the derivatives are evaluated at Xi = X ′i = X ′′i = X ′′′i ; the range of indices is
i = 1, 2, 3. The coordinates are defined by

Xi = x, y, z; X ′i = x′, y′, z′; X ′′i = x′′, y′′, z′′; X ′′′i = x′′′, y′′′, z′′′. (8.37)

The author [83] has also proposed such ternary product. The n-ary extension of (8.36)
is straightforward. It remains to be seen whether or not the ternary • product obeys the
ternary associativity condition

A •B • (C •D • E) = A • (B • C •D) • E = (A •B • C) •D • E. (8.38)
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The Moyal canonical star product can also be recast in integral form as [75]

(f ∗ g)(x, p) = (
1

πh̄
)2
∫

du1 du2 dv1 dv2 e
2i
h̄

∆(ui,vi) ×

f(x+ u1, p+ v1) g(x+ u2, p+ v2). (8.39)

where the integral limits are −∞,+∞ and the kernel of the exponential is given by the
determinant

∆(ui, vi) = det

(
u1 v1

u2 v2

)
. (8.40)

The analog of the integral (8.39) for the ternary case is

(f • g • h)(x, y, z) = (
1

κ
)3
∫

du1du2du3dv1dv2dv3dw1dw2dw3 e
2πi
κ

∆(ui,vi,wi) ×

f(x+ u1, y + v1, z + w1) g(x+ u2, y + v2, z + w2) h(x+ u3, y + v3, z + w3). (8.41)

where the kernel of the exponential is given by the determinant

∆(ui, vi, wi) = det

 u1 v1 w1

u2 v2 w2

u3 v3 w3

 . (8.42)

However, the latter integral expression (8.41) for the putative ternary • product does not
appear to yield the same expression as the ternary • product provided by eq-(8.36). In
the Weyl-Wigner-Groenewold-Moyal (WWGM) deformation quantization procedure, the
operator/function in classical phase space correspondence Â(q̂, p̂)↔ A(q, p; h̄) is given by
[75]

A(q, p) = W[ Â(q̂, p̂) ] =
∫

dy e
−2iπpy

h̄ < q + y| Â(q̂, p̂) |q − y > . (8.43)

such that the WWGM map of the product of two Weyl-ordered operators Â(q̂, p̂) B̂(q̂, p̂)
into the star product of their symbols A(q, p; h̄) ∗B(q, p; h̄) obeys the relations

W( Â(q̂, p̂) B̂(q̂, p̂) ) = A(q, p, h̄) ∗ B(q, p, h̄) ⇒

W( [ Â(q̂, p̂), B̂(q̂, p̂ ] ) = { A(q, p, h̄), B(q, p, h̄) }∗ = A ∗ B − B ∗ A. (8.44)

Given the noncommutative ternary • product of three functions of x, y, z as shown in eq-
(8.36), and which is associated with the deformation quantization of ternary structures
[83], the immediate question is how to generalize the WWGM map (8.44) in the binary
star product case to the ternary • product case. In particular, how to map the Nambu-
Heisenberg n-ary commutation relations of linear operators into the deformed Nambu-
Poisson brackets of their corresponding symbols. For instance, to find the correspondence

{ A, B, C }• = A •B • C ± permutations ↔ [ Â, B̂, Ĉ ] (8.45)
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such that the Nambu-Weyl-Heisenberg ternary commutation relations among a triad
of canonical ”conjugate” operators has a one-to-one correspondence to the deformed
Nambu-Poisson brackets of their symbols as follows

[ Â, B̂, Ĉ ] = i κ I ↔ { A, B, C }• = i κ. (8.46)

The deformation parameter κ appearing in (8.36) plays now the role of Planck’s constant
h in (8.46). To find the linear operator Â(x̂, ŷ, ẑ) ↔ A(x, y, z) correspondence such that
the relations (8.45,8.46) are obeyed in conjunction with the Nambu-Filippov fundamen-
tal identity [73], etc .... is a very challenging problem; i.e. to construct a Hypermatrix
formulation of QM based on a deformation quantization of Nambu-Poisson classical me-
chanics. For example, the ternary product of three Hypermatrices which preserves the
rank is

δi3j1 δj3k1 δk3i1 Ai1i2i3 Bj1j2j3 Ck1k2k3 = (ABC)i2j2k2 . (8.47)

Following Heisenberg’s formulation of ordinary QM, the large N =∞ limit of a Hyperma-
trix should correspond to an operator in a Hilbert space. It is warranted to pursue these
ideas further to see whether or not one can construct a Hypermatrix formulation/extension
of QM.

To conclude this section we must emphasize that the quantization of Nambu mechanics
is notoriously difficult. The geometric interpretation of quantized Nambu-Poisson struc-
tures in terms of noncommutative geometries has been recently studied by [77] where an
extension of the usual axioms of quantization, in which classical Nambu-Poisson structures
are translated to n-Lie algebras at the quantum level, were described. It was demonstrated
that this generalized procedure matches an extension of the Berezin-Toeplitz quantiza-
tion that is a mixture of geometric quantization and deformation quantization. It was not
the aim of [77] to solve the problem of quantizing Nambu mechanics but merely to find
geometric interpretations of operator algebras in terms of quantized algebras of functions
which are endowed with an n-Lie bracket. That is, the authors [77] solved the kinematical
problem of quantizing Nambu mechanics, which consists of providing a quantization pre-
scription mapping classical observables to quantum operators, but the dynamical problem
of deriving quantum dynamics from the classical Nambu mechanics was not solved. Other
approaches to the quantization of Nambu mechanics is the Zariski quantization [76]

9 Concluding Remarks, Beyond Clifford Algebras,

Generalized Geometries

This tour through the developments of the Extended Relativity in Clifford spaces was
based entirely on orthogonal Clifford algebras. Symplectic Clifford algebras involving
commutators instead of anti-commutators are as important [85]. An extended orthogonal-
symplectic Clifford Algebraic formalism was developed in [84] which allowed the novel
construction of a graded Clifford gauge field theory of gravity. It has a direct relationship
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to higher spin gauge fields, bimetric gravity, antisymmetric metrics and biconnections. In
one particular case it allows a plausible mechanism to cancel the cosmological constant
contribution to the action.

The possibility of embedding these orthogonal-symplectic Clifford algebras into an
infinite dimensional algebra, coined the super-Clifford algebra was also described in [84].
Some physical applications of the geometry of super-Clifford spaces to generalized super-
geometries, double field theories, U -duality, 11D supergravity, M -theory, and E7, E8, E11

algebras were briefly outlined.
A concise overview of the physical and mathematical structures underpinning the ap-

pearence of non-associative deformations of geometry (gravity) in non-geometric string
theory can be found in [86]. In particular the role played by L∞ algebras in these de-
velopments. Extended geometry (generalized diffeomorphisms) is the framework unifying
double geometry (double field theory), exceptional geometry (exceptional field theory),
non-geometric string theory, · · · [87]. The L∞ algebras for the extended geometry has
been recently examined by [88] in terms of Borcherds superalgebras. For this reason it
is imperative to search for non-associative generalizations of orthogonal and symplectic
Clifford algebras.

Another very important topic that we did not explore is the quantum group defor-
mations of Clifford algebras which are relevant to the symmetries of noncommutative
spacetime [92], [93]. κ-deformations of the Poincare algebra were introduced by [89] .
The Clifford-Hopf κ-deformed quantum Poincare algebra was constructed in [91]. An im-
pending project is to furnish quantum group deformations of orthogonal-symplectic and
super-Clifford algebras. A lot of work remains ahead, mainly in incorporating the ex-
tended relativity theory in Clifford spaces within the framework of generalized geometries
and tensor hierarchy algebras.
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APPENDIX A

In this Appendix we shall write the (anti) commutator relations [30] for the Clifford
algebra generators.

1

2
{ γa, γb } = gab 1;

1

2
[ γa, γb ] = γab = − γba, a, b = 1, 2, 3, · · · ,m (A.1)

[ γa, γbc ] = 2 gab γc − 2 gac γb, { γa, γbc } = 2 γabc (A.2)

[ γab, γcd ] = − 2 gac γbd + 2 gad γbc − 2 gbd γac + 2 gbc γad (A.3)

In general one has [30]

pq = odd, [γm1m2....mp , γ
n1n2....nq ] = 2 γn1n2....nq

m1m2....mp
− 2p!q!

2!(p− 2)!(q − 2)!
δ

[n1n2

[m1m2
γ
n3....nq ]
m3......mp] +
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2p!q!

4!(p− 4)!(q − 4)!
δ

[n1....n4

[m1....m4
γ
n5....nq ]
m5......mp] − ............ (A.4)

pq = even, { γm1m2....mp , γ
n1n2....nq } = 2 γn1n2....nq

m1m2....mp
− 2p!q!

2!(p− 2)!(q − 2)!
δ

[n1n2

[m1m2
γ
n3....nq ]
m3......mp] +

2p!q!

4!(p− 4)!(q − 4)!
δ

[n1....n4

[m1....m4
γ
n5....nq ]
m5......mp] − ............ (A.5)

pq = even, [γm1m2....mp , γ
n1n2....nq ] =

(−1)p−12p!q!

1!(p− 1)!(q − 1)!
δ

[n1

[m1
γ
n2....nq ]
m2....mp] −

(−1)p−12p!q!

3!(p− 3)!(q − 3)!
δ

[n1n2n3

[m1m2m3
γ
n4....nq ]
m4......mp] + ....... (A.6)

pq = odd, { γm1m2....mp , γ
n1n2....nq } =

(−1)p−12p!q!

1!(p− 1)!(q − 1)!
δ

[n1

[m1
γ
n2....nq ]
m2....mp] −

(−1)p−12p!q!

3!(p− 3)!(q − 3)!
δ

[n1n2n3

[m1m2m3
γ
n4....nq ]
m4......mp] + ....... (A.7)

The generalized Kronecker delta is defined as the determinant

δa1a2.....ak
b1b2.....bk

≡ det


δa1
b1

. . . . . . δa1
bk

δa2
b1

. . . . . . δa2
bk

−−−−−−−−−−− −−−−−−−−−−−−−−
δakb1 . . . . . . δakbk

 (A.8)

APPENDIX B

In this appendix we shall derive the expression for the analog of the torsionless Levi-
Civita connection in C-space. Given a symmetric metric gMN = gNM and setting the
nonmetricity QKMN to zero gives

∇KgMN = ∂KgMN − ΓLKM gLN − ΓLKN gML = 0 (B.1)

Performing a cyclic index permutation yields

∇MgNK = ∂MgNK − ΓLMN gLK − ΓLMK gNL = 0 (B.2)

∇NgKM = ∂NgKM − ΓLNK gLM − ΓLNM gKL = 0 (B.3)

adding eqs-(B.2, B.3) and subtracting eq-(B1) leads to
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∂MgNK + ∂NgKM − ∂KgMN = 2 ΓL(MN) gLK + 2 ΓL[MK] gLK + 2 ΓL[NK] gLK (B.4)

where

ΓL(MN) ≡
1

2
( ΓLMN + ΓLNM ) (B5)

ΓL[MK] ≡
1

2
( ΓLMK − ΓLKM ), ΓL[NK] ≡

1

2
( ΓLNK − ΓLKN ) (B.6)

when the Torsion is zero one has

TLMK = ΓLMK − ΓLKM − fLMK = 0 ⇒ 2 ΓL[MK] = fLMK (B.7)

such that eq-(B.4) becomes

∂MgNK + ∂NgKM − ∂KgMN = 2 ΓL(MN) gLK + fLMK gLN + fLNK gLM (B.8)

and from eq-(B.8) one can then deduce that the symmetric part of the connection is
given by

ΓL(MN) =
1

2
gLK [ ( ∂MgNK + ∂NgMK − ∂KgMN ) + (fMKN + fNKM ) ] (B.9)

therefore, by adding the antisymmetric part of the connection ΓL[MN ] = 1
2
fLMN to the sym-

metric part ΓL(MN) one obtains finally the full expression for the analog of the torsionless
Levi-Civita connection in C-space

(lc)ΓLMN = ΓL(MN) + ΓL[MN ] = { LMN } +
1

2
gLK ( fMKN + fNKM + fMNK) (B.10)

where

{ LMN } ≡
1

2
gLK ( ∂MgNK + ∂NgMK − ∂KgMN ) (B.11)

APPENDIX C

In this Appendix we will perform the variation of RMJ . The Ricci tensor is given by

RMJ = ∂M Γ N
NJ − ∂N Γ N

MJ − Γ L
MJ Γ N

NL + Γ L
NJ Γ N

ML − f L
MN Γ N

LJ (C.1)

the variation yields

δRMJ = ∂M δΓ N
NJ − ∂N δΓ N

MJ − δ(Γ L
MJ Γ N

NL ) + δ(Γ L
NJ Γ N

ML ) − δ(f L
MN Γ N

LJ )
(C.2)
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Given

∇M(δΓNNJ) = ∂M(δΓNNJ) − ΓLMJδΓ
N
NL (C.3)

∇N(δΓNMJ) = ∂N(δΓNMJ) − ΓLNMδΓ
N
LJ − ΓLNJδΓ

N
ML + ΓNNLδΓ

L
MJ (C.4)

it allows to express the partial derivatives in terms of the covariant derivatives plus con-
nection terms such that

∂M δΓ N
NJ − ∂N δΓ N

MJ = ∇M(δΓNNJ) − ∇N(δΓNMJ) +

ΓLMJδΓ
N
NL − ΓLNMδΓ

N
LJ − ΓLNJδΓ

N
ML + ΓNNLδΓ

L
MJ (C.5)

Inserting (C.5) into (C.2) and after collecting terms one arrives at

δRMJ = ∇M(δΓNNJ) − ∇N(δΓNMJ) + ΓNML δ( ΓLNJ ) − ΓLNM δ(ΓNLJ) − δ( f N
ML ΓLNJ )

(C.6)
By relabeling the dummy indices L↔ N in the term ΓLNM δ(ΓNLJ) of eq-(C.6) it becomes
ΓNLM δ(ΓLNJ) yielding finally

δRMJ = ∇M(δΓNNJ) − ∇N(δΓNMJ) + 2 ΓN[ML] δ( ΓLNJ ) − δ( f N
ML ΓLNJ ) (C.7)

as promised.

APPENDIX D

We will show that the curvature expression (2.23) transforms homogeneously under
coordinate transformations when the connection transforms as

Γ̃KMN = ΓK
′

M ′N ′
∂XM ′

∂X̃M

∂XN ′

∂X̃N

∂X̃K

∂XK′
+

∂2XP

∂X̃M∂X̃N

∂X̃K

∂XP
(D.1)

Writing eq-(D.1) as Γ̃KMN = Γ̂KMN + IKMN , in terms of the homogeneous Γ̂KMN and inhomo-
geneous IKMN parts, respectively, leads us to show that the inhomogenous terms appearing
in R̃K

MNJ must vanish. These are given by

∂̃M IKNJ − ∂̃N IKMJ − Γ̂LMJ I
K
NL + Γ̂LNJ I

K
ML − ILMJ Γ̂KNL

+ ILNJ Γ̂KML − ILMJ I
K
NL + ILNJ I

K
ML − f̃LMN IKLJ −

ΓK
′

M ′J ′
∂

∂X̃N

(
∂XM ′

∂X̃M

∂XJ ′

∂X̃J

∂X̃K

∂XK′

)
+ ΓK

′

N ′J ′
∂

∂X̃M

(
∂XN ′

∂X̃N

∂XJ ′

∂X̃J

∂X̃K

∂XK′

)
(D.2)

where the structure functions transform homogeneously as

f̃LMN = fL
′

M ′N ′
∂XM ′

∂X̃M

∂XN ′

∂X̃N

∂X̃L

∂XL′
(D.3)
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Some of the inhomogenous terms vanish due to the contraction of indices. Let us take
the term

f̃LMN IKLJ = fL
′

M ′N ′
∂XM ′

∂X̃M

∂XN ′

∂X̃N

∂X̃L

∂XL′

∂2XP

∂X̃L∂X̃J

∂X̃K

∂XP
(D.4)

In particular let us focus in the following term in (D.4) resulting from the contraction of
the L indices and after using the chain rule of differentiation

∂X̃L

∂XL′

∂2XP

∂X̃L∂X̃J
=

∂2XP

∂XL′∂X̃J
=

∂2XP

∂X̃J∂XL′
=

∂

∂X̃J

∂XP

∂XL′
=

∂

∂X̃J
δPL′ = 0 (D.5)

Hence, the terms f̃LMN IKLJ in (D.4) vanish as a result of (D.5). Proceeding in a similar
fashion on can show that terms in (D.2) like Γ̂LNJI

K
ML, − Γ̂LMJI

K
NL, I

L
NJI

K
ML, − ILMJ I

K
NL

vanish via similar contraction procedure as that obtained in eqs-(D.4, D.5).
The other terms (D.2) that do not vanish as a result of the contraction of indices will

cancel out among each other. The following derivative terms cancel out

∂̃M IKNJ − ∂̃N IKMJ =
∂3XP

∂X̃M∂X̃N∂X̃J

∂X̃K

∂XP
− ∂3XP

∂X̃N∂X̃M∂X̃J

∂X̃K

∂XP
= 0 (D.6)

after having used

∂2X̃K

∂X̃M∂XP
= 0,

∂2X̃K

∂X̃N∂XP
= 0 (D.7)

based on the results obtained in (D.5). Finally one can verify after a relabeling of dummy
indices, using the results given by eqs-(D.5, D.7), and by having (∂2XM ′/∂X̃M∂X̃N) =
(∂2XM ′/∂X̃N∂X̃M) that the remaining terms of (D.2) cancel out exactly

− ΓK
′

M ′J ′
∂

∂X̃N

(
∂XM ′

∂X̃M

∂XJ ′

∂X̃J

∂X̃K

∂XK′

)
+ ΓK

′

N ′J ′
∂

∂X̃M

(
∂XN ′

∂X̃N

∂XJ ′

∂X̃J

∂X̃K

∂XK′

)
+

ILNJ Γ̂KML − ILMJ Γ̂KNL = 0 (D.8)

To sum up, the inhomogeneous terms (D.2) either vanish as a result of the contraction
of indices or cancel out among each other as shown above. Finally one is left with the
homogeneous terms. For example, like

∂ΓK
′

N ′J ′

∂X̃M

∂XN ′

∂X̃N

∂XJ ′

∂X̃J

∂X̃K

∂XK′
=

∂ΓK
′

N ′J ′

∂XM ′

∂XM ′

∂X̃M

∂XN ′

∂X̃N

∂XJ ′

∂X̃J

∂X̃K

∂XK′
(D.9)

after using the chain rule of differentiation. Similar results follow for the other compo-
nents of the curvature. Concluding, one has that the curvature transforms covariantly
(homogeneously)
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R̃K
MNJ = RK′

M ′N ′J ′
∂XM ′

∂X̃M

∂XN ′

∂X̃N

∂XJ ′

∂X̃J

∂X̃K

∂XK′
(D.10)

as expected where the expression for R̃K
MNJ is the same as eq-(2.23) by replacing all

quantities for their tilde counterparts.

Appendix E : Measure in C-spaces

To finalize we shall discuss the measure issue in curved C-spaces. In a given coor-
dinate system (a generalized Lorentz frame) the mixed-grade components of the metric
gMN , g

MN , beins EA
M , inverse beins EM

A , can be set to zero in order to considerably simplify
the calculations; i.e. namely due to the very large diffeomorphism symmetry in C-space,
one may choose a frame (“diagonal gauge”) such that the mixed grade components of
the metric gMN , beins EA

M , inverse beins EM
A are zero. In this case the C-space metric

components can be chosen to be given by the determinant expressions

gµ1µ2.....µk ν1ν2.......νk (X) =

det


gµ1ν1(X)) . . . . . . gµ1νk(X)
gµ2ν1(X) . . . . . . gµ2νk(X)

−−−−−−−−−−− −−−−−−−−−−−−−−
gµkν1(X) . . . . . . gµkνk(X)

 (E.1)

where gµν(X) is now a function of the Clifford polyvector-valued coordinates X which
includes the ordinary vectorial coordinates xρ.

The metric component gss involving the scalar “directions” in C-space of the Clifford
poly-vectors must also be included. It behaves like a Clifford scalar. The highest grade
component g[µ1µ2...µD] [ν1ν2...νD] involves the pseudo-scalar “directions” in C-space. The
latter scalar and pseudo-scalars might bear some connection to the dilaton and axion
fields in Cosmology and particle physics.

The advantage of having gMN = 0 if the grade of M is not the same as the grade
of N is that the determinant of the C-space metric can be factorized as the product
of determinants of matrices which are comprised of entries (blocks) given themselves by
determinants like in eq-(E.1) . If an ordering prescription of indices is introduced, µ1 <
µ2 < ....µn and ν1 < ν2 < ....νn, the bivector-bivector components of the C-space metric
in D = 4 dimensions gµ1µ2 ν1ν2 can be arranged into an ordered square array of entries
(blocks) given by a 6 × 6 matrix, since the number of independent bivector components
in D = 4 is 4 × 3/2 = 6. For instance, the entries of the square 6 × 6 matrix gµ1µ2 ν1ν2

are given themselves by determinants : g12 12 = g11g22 − g12g21; g13 13 = g11g33 − g13g31,
...... etc, and such that its determinant is given by the ordinary determinant of an square
6× 6 matrix.

The trivector-trivector components of the C-space metric in D = 4 dimensions
gµ1µ2µ3 ν1ν2ν3 can be arranged into an ordered square array of entries given by a 4× 4 ma-
trix, since the number of independent trivector components in D = 4 is 4×3×2/2×3 = 4.
The entries gµ1µ2µ3 ν1ν2ν3 of this square 4× 4 matrix are given themselves by the determi-
nants as shown in eq-(E.1). Following a similar procedure with the other C-space metric
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components, in this way one can write the measure of integration in D = 4 as the square
root of the product of determinants

µm(gMJ) =
√
|g| |det (gµν)| |det (gµ1µ2 ν1ν2)| |det (gµ1µ2µ3 ν1ν2ν3)| |det (gµ1µ2µ3µ4 ν1ν2ν3ν4)|

(E.2)
where g is the scalar-scalar part gss of the C-space metric and which must not be confused
with |det gµν | . The generalization to other dimensions is straightforward. Therefore, the
integration measure in C-space would be∫

ds
∏
dxµ

∏
dxµ1µ2 . . . dxµ1µ2...µD µm(gMJ) (E.3)

In the most general case one can have a C-space metric with non-vanishing mixed
grade components such that the metric gMJ components can be assembled into arrays
of ordered rectangular matrices. The problem becomes that one cannot longer define a
determinant of a rectangular matrix. One can also view the gMJ as a hyper-matrix but
the construction (if possible) of the hyper-determinant of the C-space metric (a hyper
matrix) is a more difficult problem [13], [14]. To conclude we should mention the work
involving two measures of integration and which possesses a number of attractive features

[18] (and references therein). In addition to the standard measure
√
|det gµν | d4x in D = 4,

another measure of integration Φ = dφ1 ∧ dφ2 ∧ dφ3 ∧ dφ4 involving the four scalar fields
φ1, φ2, φ3, φ4 as new dynamical variables was introduced. For details we refer to [18].
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