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Abstract: In this work we discuss the possibility to identify physical interactions with 

geometric processes whose revolutions can be described by the Ricci flow. In particular, we 

show that it is possible to suggest that the charge of an elementary particle does not exist as a 

physical quantity possessed by the elementary particle itself but rather a collective dynamical 

effect that is associated with the intermediate particles, which are the force carriers. These 

force carrying particles have the geometric structures of two-dimensional spheres or  -tori. 

Furthermore, since the Ricci flow on two-dimensional manifolds does not give rise to 

neckpinches and if such geometric flows can be shown to not exist then it can be stated that 

the force carrying particles are the only particles that are truly fundamental. 

 

According to Einstein theory of general relativity, dynamical interactions are the results of 

the changes of the intrinsic geometric structures of spacetime which are governed by matter 

and energy that are supposed to be contained in the spacetime continuum. It is seen from such 

formulation that there is a clear distinction between the concept of geometric structures and 

physical entities [1]. On the other hand, it has been shown in recent developments in 

differential geometry that there are geometric processes that can also be used to describe the 

revolutions of the intrinsic geometric structures of differentiable manifolds, in particular the 

intrinsic geometric processes such as the Ricci flow [2,3]. Even though these two descriptions 

of the changes of the intrinsic geometric structures of spacetime continuum seem to be 

different, one from the physical point of view and one from the mathematical point of view, it 

is reasonable to suggest that physical interactions are in fact geometric processes. If this is the 

case then both of them should be derived from the same mathematical formulation, and as 

shown in our previous work that this mathematical formulation can be based on the Bianchi 

identities in differential geometry [4,5]. It should be emphasised here that the conception of 

formulation of physical phenomena put forward in general relativity is hold true not only for 

gravitation but also for all types of physical interactions [6]. 

It is shown in differential geometry that the Ricci curvature tensor     satisfies the Bianchi 

identities [7] 

   
   

 

 
                                                                                                                                          

If the quantity 
 

 
       can be identified as a physical entity, such as a four-current of 

gravitational matter, then Equation (1) has the status of a dynamical law of a physical theory 
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which can be postulated as the field equations of the gravitational field. In this case, as in the 

case of the electromagnetic field, the energy-momentum tensor     for the gravitational field 

can be established in terms of the Ricci curvature tensor     and the metric tensor     as 

          
 

 
                                                                                                                             

Equation (2) is Einstein field equations of general relativity. For a purely gravitational field in 

which 
 

 
        , Equation (1) reduces to the equation 

   
                                                                                                                                                       

In the following we will show that solutions that are found from the original Einstein field 

equations given in Equation (2), such as the Schwarzschild solution, and the Ricci flow that is 

used to describe geometric processes of three-dimensional differentiable manifolds can be 

obtained from Equation (3). Since    
    , from Equation (3) we obtain 

                                                                                                                                                         

where   is an undetermined constant. If we consider a centrally symmetric gravitational field 

with the metric 

                                                                                                              

then the Schwarzschild solution can be found as [8] 

       
   

 
 
   

 
          

   

 
 
   

 
 

  

                               

On the other hand, as has also been shown in our previous works on the Ricci flow that 

within the group of coordinate transformations that are time-independent, from Equation (4) 

we can derive the Ricci flow [5,9] 

    

  
                                                                                                                                                   

where   is a scaling factor.  

The above results show that physical interactions and geometric processes are two different 

perceptions, which result in two different formulations of the dynamics of revolution, of the 

same intrinsic geometric structures of spacetime. With this view, we can identify quantum 

particles as three-dimensional differentiable manifolds, which may be subjected to intrinsic 

geometric flows described by the Ricci flow or physical interactions described by physical 

laws in order to smooth out irregularities of their geometric structures. If physical interactions 

are in fact geometric processes then the formulation of a composite physical system is 

equivalent to either the composition of a three-dimensional differentiable manifold from 

Thurston geometries or the decomposition into those geometries [10]. However, there is still 



a profound difference between the formulation of a physical law and the description of a 

geometric process. The mathematical descriptions of the geometric revolution of a 

differentiable manifold have been involved only with the possibility of composition and 

decomposition rather than a formulation that can be used to quantify a geometric process. For 

example, in Perelman works [11,12,13], all mathematical works out were for the purpose of 

proving the existence of a geometric structure rather than the quantity of work that is needed 

to be done to obtain the final geometric structure. This is the same as proving the existence of 

the gravitational field by showing the fall of an apple without the need to devise Newton’s 

law of gravitation. In order to quantify the geometric processes we would need to formulate 

geometric laws in the form of physical laws. The starting point of formulating these 

geometric laws is to consider the composition and decomposition of three-dimensional 

differentiable manifolds, such as the formalism of the construction of composite spacetimes 

as described in the works of Yasuno et al [14]. They showed that a composite spacetime can 

be constructed from spatially compact locally homogeneous spacetimes (SCLHS) by gluing 

two different SCLHSs along two timelike shells. If each of the two SCLHSs admits at least 

one pair of two commuting local Killing vectors then each has a homogeneous torus section. 

Timelike hypersurface that can be cut from each SCLHS and then glued along the resulting 

boundaries is differomorphic to a homogeneous torus. In general, a compact three-

dimensional manifold is composite if it can be decomposed along the embedded two-spheres. 

The decomposition of a three-dimensional manifold will produce three types of prime 

manifolds, which are the spherical types,       and       . Of these three prime 

manifolds, only the prime manifold        can be decomposed along embedded tori. We 

may speculate further from these geometric revolutions that the intermediate particles, which 

are the force carriers of physical fields and radiated from a physical system, may possess the 

geometric structures of the two-spheres and the  -tori. This speculation leads to a more 

profound speculation that physical properties assigned to an elementary particle, such as 

charge, are in fact manifestations due to the force carriers rather than physical quantities that 

are contained inside the elementary particle. If this is the case then the analysis of physical 

interactions will be reduced to the analysis of the geometric processes that are related to the 

geometric structures of the force carriers, which are the two-spheres and the  -tori for the 

above investigation. Therefore, for observable physical phenomena, the study of physical 

dynamics reduces to the study of the change of two-dimensional Riemannian surfaces. 

It has been shown in differential geometry that all two-dimensional Riemannian manifolds 

admit a geometric structure which can be modelled on one of the two-sphere   , the 

Euclidean two-space    or the hyperbolic two-space   . Therefore, in two dimensions there 

are only three geometries. Two-dimensional compact surfaces can also be classified 

according to their topological properties in which they are diffeomorphic to the two-sphere, 

the connected sum of   torus or the connected sum of   projective planes. Furthermore, the 

uniformisation theorem classifies closed orientable Riemannian two-dimensional manifolds 

of constant curvatures of values of   ,   and   . On the other hand, in classical 

electrodynamics, as shown by experiments, the electric charge is a conserved property of 

elementary particles that can take integral values of   ,   and   . Is this just a mere 

coincidence or the charge of an elementary particle is in fact a manifestation of the curvature 



of the geometric structure of the force carrying particles? It is worth mentioning here that the 

Ricci flow on two-dimensional differentiable manifolds can be represented as the Gauss 

Bonnet theorem as follows [15]. If   is a compact two-dimensional Riemannian manifold 

with boundary    then we have 

                                                                                                                                   

where   is the Gaussian curvature of  ,    is the geodesic curvature of   ,    is the area 

element of the surface,    is the line element along the boundary    and       is the Euler 

characteristic of  . If   is a compact manifold without boundary then        . It states 

that the total Gaussian curvature of such a closed surface is equal to 2π times the Euler 

characteristic of the surface. For compact surfaces without boundary, the Euler characteristic 

equals     , where   is the genus which counts the number of holes the surface has. Since 

any compact surface without boundary is topologically equivalent to a sphere with attached 

handles and in this case g counts the number of handles. For a two-dimensional sphere   

 , a torus     and a double torus    . Therefore, besides the conventional signs, the 

force carrying particles of an electron could be associated with a sphere, those of a neutron 

with a torus and those of a proton with a double torus.  

 

  

                                 

As shown in our previous works [16], the above associations can be formulated in terms of 

the Feynman integral method in quantum mechanics [17]. The Feynman’s method of sum 

over random paths can be extended to higher-dimensional spaces to formulate physical 

theories in which the transition amplitude between states of a quantum mechanical system is 

the sum over random hypersurfaces. This generalisation of the path integral method in 

quantum mechanics has been developed and applied to other areas of physics, such as 

condensed matter physics, quantum field theories and quantum gravity theories, mainly for 

the purpose of field quantisation. In the following, however, we focus attention on the general 

idea of a sum over random surfaces. This formulation is based on surface integral methods by 

generalising the differential formulation as discussed for the Bohr’s model of a hydrogen-like 

atom. Consider a surface defined by the relation            . The Gaussian curvature is 

given by                
       

    
    , where           and     

           [18]. Let   be a 3-dimensional physical quantity which plays the role of the 

momentum   in the 2-dimensional space action integral. The quantity   can be identified 

with the surface density of a physical quantity, such as charge. Since the momentum   is 

proportional to the curvature  , which determines the planar path of a particle, it is seen that 



in the 3-dimensional space the quantity   should be proportional to the Gaussian curvature  , 

which is used to characterise a surface. If we consider a surface action integral of the form 

                 , where   is a universal constant, which plays the role of 

Planck’s constant, then we have 

  
 

  
 

            
 

     
    

     
                                                                                                           

According to the calculus of variations, similar to the case of path integral, to extremise the 

action integral                
        , the functional             

   must satisfy the 

differential equations 

  

  
 

 

   
  

   
 

  

      
  

    
                                                                                                         

However, it is straightforward to verify that with the functional of the form   

                   
       

    
       the differential equations given by Equation 

(10) are satisfied by any surface. Hence, we can generalise Feynman’s postulate to formulate 

a quantum theory in which  the transition amplitude between states of a quantum mechanical 

system is a sum over random surfaces, provided the functional   in the action integral 

       is taken to be proportional to the Gaussian curvature   of a surface. Consider a 

closed surface and assume that we have many such different surfaces which are described by 

the higher dimensional homotopy groups. As in the case of the fundamental homotopy group 

of paths, we choose from among the homotopy class a representative spherical surface, in 

which case we can write 

     
 

  
                                                                                                                                      

where    is an element of solid angle. Since     depends on the homotopy class of the 

sphere that it represents, we have        , where   is the topological winding number of 

the homotopy group. From this result we obtain a generalised Bohr quantum condition 

                                                                                                                                                      

From the result obtained in Equation (12), as in the case of Bohr’s theory of quantum 

mechanics, we may consider a quantum process in which a physical entity transits from one 

surface to another with some radiation-like quantum created in the process. Since this kind of 

physical process can be considered as a transition from one homotopy class to another, the 

radiation-like quantum may be the result of a change of the topological structure of the 

physical system, and so it can be regarded as a topological effect. Furthermore, it is 

interesting to note that the action integral            is identical to Gauss’s law in 

electrodynamics. In this case the constant   can be identified with the charge of a particle. In 

particular, the charge   represents the topological structure of a physical system must exist in 

multiples of  . Hence, the charge of a physical system, such as an elementary particle, may 



depend on the topological structure of the system and is classified by the homotopy group of 

closed surfaces. This result may shed some light on why charge is quantised even in classical 

physics. 
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