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ABSTRACT

Using single valued neutrosophic set we introduced the notion of single valued neutrosophic finite state
machine, single valued neutrosophic successor, single valued neutrosophic subsystem and single valued
submachine, single valued neutrosophic switchboard state machine, homomorphism and strong
homomorphism between single valued neutrosophic switchboard state machine and discussed some related
results and properties.

KEYWORDS: Single valued neutrosophic set, single valued neutrosophic state machine, single valued
neutrosophic switchboard state machine, homomorphism and strong homomorphism.

1. INTRODUCTION

Fuzzy set was introduced by Zadeh (1965) which is the generalization of mathematical logic. Fuzzy set is a
new mathematical tool to describe the uncertainty. There was so many generalizations of fuzzy set namely
interval valued fuzzy set (Turksen, 1986), intuitionistic fuzzy set (Atanassov, 1986, 1989), vague set (Gau,
& Buehrer, 1993) etc. Interval valued fuzzy was introduced by Turksons in 1986. Intuitionistic fuzzy set
was introduced by Attanasov in 1986. Intuitionistic fuzzy set was the generalization of Zadeh fuzzy set and
is provably equivalent to interval valued fuzzy where the lower bound of the interval is called membership
degree and upper bound of the interval is non-membership degree. The concept of vague set was given by
Gua and Buehrer. Butillo and Bustince show that vague set are intuitionistic fuzzy set (Bustince, & Burillo,
1996). Bipolar fuzzy set was introduced by W. R. Zhang (1998). Jun et al. (2012) introduced the concept of
cubic set. Cubic set is an ordered pair of interval-valued fuzzy set and fuzzy set. These all are mathematical
modeling to solve the problems in our daily life. These tools have its own inherent problems to solve these
types of uncertainty while the cubic set is more informative tool to solve this uncertainty. After the
introduction of all fuzzy set extensions Florentin Smarandache (Smarandache, 1998, 1999) introduced the
concept of neutrosophy and neutrosophic sets which was the generalization of fuzzy sets, intuitionistic
fuzzy sets, interval valued fuzzy set and all extensions of fuzzy sets defined above. The words
"neutrosophy” Etymologically, "neutro-sophy" (noun) comes from French neuter Latin neuter, neutral, and
Greek sophia, skill/wisdom means knowledge of neutral thought. Neutrosophy is a branch of philosophy
introduced by which studies the origin and scope of neutralities, as well as thier interaction with ideational
spectra. This theory considers every notion or idea <A> together with its opposite or negation <anti A> and
with their spectrum of neutralities <neut A> in between them (i.e. notions or ideas supporting neither < A>
nor <anti A>). The <neutA> and <anti A> ideas together are referred to as <nonA>. Neutrosophy is a
generalization of Hegel's dialectics (the last one is based on <A> and <antiA> only). While a
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"neutrosophic” (adjective), means having the nature of, or having the characteristic of Neutrosophy. A
neutrosophic set A is characterized by a truth membership functionTA, Indeterminacy membership

function |A and Falsity membership function FA. Where TA,| A and F, are real standard and nonstandard

subsets of ]_0,1+[. The neutrosophic sets is suitable for real life problem, but it is difficult to apply in

scientific problems. The difference between neutrosophic sets and intuitionistic fuzzy sets is that in
neutrosophic sets the degree of indeterminacy is defined independently. To apply neutrosophic set in real
life and in scientific problems Wang et al. introduced the concept of single valued neutrosophic set and
interval neutrosophic set (Wang et al., 2005, 2010) which are subclasses of neutrosophic set. In which
membership function, indeterminacy membership function, falsity membership was taken in the closed
interval [0, 1] rather than the nonstandard unit interval. Malik et al. (1994a. 1994b, 1994c, 1997) given the
concept and notion of fuzzy finite state machine, submachine of fuzzy finite state machine, subsystem of
fuzzy finite state machine, product of fuzzy finite state machine and discussed some related properties.
Kumbhojkar & Chaudhari (2002) introduced covering of fuzzy finite state machine. Sato & Kuroki (2002)
introduced fuzzy finite switchboard state machine. Jun (2005) generalized the concept of malik et al.
(1994a, 1994b, 1994c, 1997) and introduced the concept of intuitionistic fuzzy finite state machine,
submachines of intuitionistic fuzzy finite state machine (2006), intuitionistic successor and discussed some
related properties (Jun, 2005). Jun (2006) introduced the concept of intuitionistic fuzzy finite switchboard
state machine, commutative intuitionistic fuzzy finite state machine and strong homomorphism (Jun,
2006). Jun & Kavikumar (2011) also introduced the concept of bipolar fuzzy finite state machine.

The paper is arranged as follows, section 2 contains preliminaries, section 3 contains the main result single
valued neutrosophic finite state machine and related results, section 4 contained Single valued finite
switchboard state machine homomorphism, strong homomorphism and related properties. At the end
conclusion and references are given.

Section 2. PRELIMINARIES
For basic definition and results the reader should refer to study [10-13, 18].
Definition 1: (Malik et al., 1994a)
A fuzzy finite state machine isa triple F =(M,U,1) . Where M and U are finite non-empty sets

called the set of states and the set of input symbols respectively, 4 is a fuzzy functionin M xU xM into
[0, 1].
Definition 2: (Jun, 2005)

An intuitionistic fuzzy finite state machine is a triple F =(M,U,C) . Where M and U are finite non-

empty sets called the set of states and the set of input symbols respectively, C= (TC ’ Uc) isan
intuitionistic fuzzy setin M xU x M into [0, 1].

Definition 3: (Malik et al., 1994b)

Let F=(M,U, ) be afuzzy finite state machine and r,s M . Then ris called an immediate
successor of S M if there exists xeU suchthat A(s,x,r) >0 .Wesaythat r is called fuzzy

successor of s , if there exists /1*(3,)(, >0

Definition 4: (Wang et al., 2010)
A single valued neutrosophic set N in x is an object of the form

N ={(xy (%), (X), 0 (X)) ¥X € X}.
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Where Y\ (X),V/N (X),G)N (X) are functions from X into [0,1].
3. SINGLE VALUED NEUTROSOPHIC FINITE STATE MACHINE
Definition 5. Atriple F =(M,U,N) is called single valued neutrosophic finite state machine

(SVNFSM) for short), where M and U are finite sets. The elements of M is called states and the
elements of U is called input symbols. Where is N is a single valued neutrosophic setin M xU xM.

Let the set of all words of finite length of the elements of U is denoted by U”. The empty word in U” is
donated by A and |a| denote the length of a forevery acU”.

Definition 6. Let F = (M,U,N) bea SVNFSM. DefineaSVNS N~ = (X Wy @) in
MxU"xM by

A B 1 if u=v
Xy (U, 'V)_{O if u=v
0 if u=v
WN*(U'A'V):JLl if u=v
0 if u=v
o . (UAv)=
v ) {1 if  u=zv

Xy (Uabv)=v . | 2, (Ua,w) Az (wb,v) |
vy (U,ab, V) = A | 2y (U3, W) v 2 (W,b,V) |

@ (U,ab,V) = Ay | 2y (U, W)V 2 (W,b,V) |
forall uuveM and acU” and beU.
Lemmal. Let F=(M,U,N) be SVNFSM. Then

Z (uab,v)=v,, L;(N a,W)A 7, (W,b,v)J
v (UabVv) = 2, u,a,w)v;(N* (w,b,v) |
o (u,ab,v) = Ay L;gN aw) vz, (w,b,v)J

forall uveM and abeU’.

Proof. Let u,veM and a,b el Suppose | b |= n. We prove the result by induction. If n=0, then
b=A andso ab=aA=a.

VM L;(N* W)z (W,b,V)J
NweM LZ (uaw)ay (W’A'V)J

2, (U, av) - (u,ab,v)
and

Awera | W (U2, W) v (W b,v) |

Awen | Wy (U2, W) vy (W, ALV) |
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v (u,aVv)=w,.(uabyv)
and
AveM La)N* (u,a, W) Vo, (W,b,V)J
Avemt \_a)N* (uaw) ve,. (w,A,v)_‘
o, (u,av)= o, (u,ab,v)

Hence the result is true for n=0. Let us assume that the result is true forall ¢ U~ such that
[cl=n-1,n>0. Then b=cd, where ceU” and d eU,|c|=n—-1,n>0. Then

7, (u,ab,v) =z . (u,acd,v)=v,,, L;(N* (u,ac,w) A xy (w,d,v)J
=V Ve (2 (:22) A2 (2,6.W)) 2 (W)
| (422) Az (26W) Az (W)
=V | 2y (22) A Vo (2 (2,6:W) A 20 (W,d,V)) |
=V, LZN* (ua,z)A g, (z,cd,v)J

=V | 2y (W Z) A 2 (2,0,V) |
and

v (uab,v) =y, . (uacd,v) =, | v, (uac,w) vy, (wdyv)]
= Apem LAMM (‘//N* (u,a,z)vy,. (z,c,w)) vy (w,d V)J
= Auom | W (U R, Z) Vi (2,6,W) vipy (W, d, V) |
= A |V (U Z)V (V¥ (2.6, W) v iy (W, V) |
= Ao | Wy (U Z) vy (z,cd,V) |
= Ao | Wy (U Z) Vi (2,0,) |
and
@ (u,ab,v) =, (u,acd,v) = Ay | @ (U,aC,W) v (w,d,v) |
= Aot | Az (@ (U12,2) v @ (2,6,W)) v @ (W,d,V) |
= Awzom | @ (U,8,2) V. (2,6,W) v o (w,d,V) |
= Aoem | O (U Z) v (Ao (@ (2,6,W) v @ (W,d,V)) |
= Am | O (U,2) V. (z,0d,V) |
el 0 (02) v (2.0)|
Therefore, the result is true for |b|=n,n > 0.

Definition 7. Let F =(M,U,N) beaSVNFSM and u,ve M. Then V iscalled single valued
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neutrosophic immediate successor of U if there exists XxeU such that y, (u, X,V) >0, /8 (u, X,V) <1
and @, (U, X,V) <1. We say that Vv is called single valued neutrosophic successor of U if there exists

xeU suchthat 7. (u,xV) >0,y (u,x,v)<1 and @ .(u,x,v)<1. The setof all single valued

neutrosophic successor of U is denoted by SVNS (u) . The set of all single valued neutrosophic

successor of N is denote by
SVNS(N) = U{SNS(u) |u e N}
where N isany subset of M.

Proposition 1. Let F =(M,U,N) be a SVNFSM. For any u,ve M, the following hold:

(i) ueSVNS(u)

(i) if ueSVNS(v) and we SVNS(u), then r e SVNS(v).

Proof. (i) Since %,.(u,A,u)=1>0 , . (u,Au)=0<1 and & (u,A,u)=0<1

(if) Let ve SVNS(u) and we SVNS(v). Then there exists a,b <uU? such that

2 (Uav)>0p . (uav)<l and o.(u,av)<lyz.(v,.b,w)>0y, . (v.b,w)<1 and

o, (V,b,w) <1. Using lemma (1), we have

X (uabw)=v,. | 7, (Ua,2) A 7, (2,0,w) |
> 7 (u,a,v)/\;(N* (v.b,w)>0
And
v (Uabw)=n,u| ¥, (uaz)vy,.(zbw)|
SV’N*(”’a'V)V'/’N* (v,b,w)<1
and
o (u,ab,w) =,y | @ (u,8,2) vao.(z,bw)|
_a)N*(u,a,v) va)N*(v,b,w)<1
Hence we SVNS(v).

Proposition 2. Let F =(M,U,N) be SVNFSM. For any subsets C and D the following assertions
hold.

(i) If CcD, then SVYNS(C) < SVNS(D).

(i) C < SVNS(C).

(iii)  SVNS(SVNS(C)) = SVNS(C).

(iv) SVNS(C U D) =SVNS(C)uU SVNS(D).

(V) SVNS(C nD) <= SVNS(C) ~SVNS(D)

Proof. The proofs of (i),(ii),(iv), and (v) are simple and straightforward.

(iif) Obviously SVNS(C) < SVNS(SVNS(C)). If ue SVYNS(SVNS(C)), then ue SVNS(v) for

388



New Trends in Neutrosophic Theory and Applications. Volume II

some ve SVNS(C). From v e SVNS(C), thereexists weC suchthat ve SVNS(w). it follows
from proposition (1) that u € SVNS(w) = SVNS(C) sothat SVNS(SVNS(C)) = SVNS(C). Hence
(i) is valid.

Definition 8. Let F =(M,U,N) be SVNFSM. We say that 2 satisfies the single valued neutrosophic
exchange property if , forall u,ve M and G <= M, whenever ve SVYNS(Gu{u}) and

v & SUNS(G) then ue SVNS(GuU{V}).

Theorem 1. Let F =(M,U,N) beaSVNFSM. Then the following assertions are equivalent.
(i) F satisfies the single valued neutrosophic exchange property.
(ii) (for all u,veM)(veSVNS()) <> uecVNS(V).
Proof. Suppose that 2 satisfies the Single valued neutrosophic exchange property. Let u,ve M be
such that v e SVNS(u) = SVNS (¢ u{u}). Note that v & SVNS(p) and so
u e SVNS (@ u{v}) = SYNS(v). Similarly if ue SVNS(v) then ve SVNS(u). Conversely assume
that (ii) is valid. Let u,veM and G < M. If ve SVNS(Gu{u}), then ve SVNS(u). It follows
from (ii) that
U e SVNS (V) = SVNS(G U{\}).
Therefore 72 satisfies the single valued exchange property.
Definition 9. Let F =(M,U,N) beaSVNFSM.Let M~ = (2, ¥, @,-) beasingle valued

neutrosophic setin M. Then (M, M~,uU,N) is called single valued neutrosophic submachine of F if
forall uveM and xeU,

Xy (U) 2 7, (V) A 2y (v, X,U),
v, (U) <y, (V) vy (v, XU),
o U)o . (V)vayv,xu)

Example 1. Let M ={u,v}, U ={x}, x,(u,x,v)=0.75y,(u,x,v) and o, (u,x,v)=0.5 forall
uveM. Let M= (X, ¥, @) begivenby x .(U)=05=y, .(u),
a)M?(u):O.l5. Then
X (U A xyUxv)=05A0.75=0.5= X (v)
- W) Ay (U, X V) =05v0.75=0.75>y, .(v)
@, - (U) v, (uxv)=015v05=05>a .(v)
Therefore M ™ is a single valued neutrosophic subsystem.

Theorem 2. Let F = (M,U,N) beaSVNFSMandlet M~ = ()(M* ,l//M*,a)M*) be a single valued
neutrosophic setin M. Then M~ is asingle valued neutrosophic subsystem of M iff

A (u) 2 YAV (V) A Xy (v, x,u)
Vi W) <y (V) vy, (V. X,U)
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@, (u)< O, (V)v O, (v, X,U)

forall uveM and xeM’.

Proof. Let usassume that m? is a single valued neutrosophic subsystem of F .Let u,veM and
x e M”. We prove the result by inductionon | x | =M. If n=0, we have x=A. Now if V=U, then

L WAz U AU) =7, . (U)
v, Wvy .U Au) =y .()
and
o Uve.uAu)=a .(U)
If u= Vv, then
Xy WA 2, (v xu)=0< 7 .(u)

v, vy (vxu)=12y .(u)
and
o U)ve.uAu)=12a .()

Hence for n=0 the result is true. Now let us assume that the result is true forall be M~ with
|[bl=n—-1,n>0. Let X=DbCc with ce M. Then

Xy Az (X)) =z, - (V) A g, (v, be,u)
= Zor ) A (Vo [ 2 (D) A (wic,u) ])
=V (Zyr ) A 2, (VWDW) A 7 (Wic,u))
<V L2 (W) A 2 (WiC U< - (V)

and
v, vy (vxu) =y, . (V) v,.(v.bcu)
=¥ )V (Auora [¥- (VD W) vy (wic,u) )
= Aue (W ) V- (VD W) v i (wic,u))
> Ao [V, (W) vy (Wic,u) 2w, (V)
and

o, -V)va.(v,xu)=a.(V)vae.(bcu)
=, (V)v (/\WEM [a)N* (v.b,w) v, (W,C,u)])
= Auem (a)M* V) vao,. (V,b,W) v @y (W,C,u))

2 Ayem [0, (W) v @ (W, C,u)] >0, . (V)

the converse of the above theorem is trivial.
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Definition 10. Let F =(M,U,N) beaSVNFSM.Let G M. Let C = (y.,w..m.) beasingle

valued neutrosophic setin GxU xG andlet 0 =(G,U,C) beaSVNFSM. Then [I is called single
valued neutrosophic submachine of F, if

) Nowe=C thatis 2y, =7, Wy, =Vc and &y =0

(ii) SVNS(G)c=G

We assume that ¢ = (¢,U,C) is asingle valued neutrosophic submachine of F. Obviously, if ¢ isa
single valued neutrosophic submachine of [ and [ is single valued submachine of F, Then * isa
single valued submachine of F.

Definition 11. Let F =(M,U,N) be a SYNFSM. Then it is said to be strongly single valued
neutrosophic connected if ve SVNS(u) forevery u,ve M. Asingle valued neutrosophic submachine

0 =(G,U,C) ofa SVNfsm issaid to be properif 0 =¢ and [] = M.

Theorem 3. Let F=(M,U,N) beaSVNFSMandlet (. = (G,,U,C,),i < I, be a family of single
valued neutrosophic submachine of F. Then we have the following,

Q) QU = QGi U, nC) is a single valued neutrosophic submachine of F.

iel

(i) -U|D = _uIGi,U, D) is a single valued neutrosophic submachine of F , where
D=(xp.¥p.@,) IS0givenby

= = and = O
Xo ZNMQ ouigs' Yo l//NME, GxUxUjc| G @p NiUie) GxUxuie) G

Proof (i) Let (u,a,v)e _mIGi xU x G, . Then,

iel

(i/e\l ;(Ci)(u,a,v) =4O (ua,v) = A AN (u,a,v) = 7y (u,a,v)

(Ve )Uav) = v (Uav) = v, (u,av)=y,(aV)
and
(i\E/I @, )(u,a,v) = v @ (u,a,v) = v @y (u,a,v) =y (u,a,v)

Therefore N =nC,. Now

iel

SVNS(0G,) = NSVNS(G) = G,

[Vier GixUxUig G;

Hence _mID . is asingle valued neutrosophic submachine of F.
(if) Since SVNS(_L{Gi) = _L{SVNS(Gi) c _uIGi, _uID . is asubmachine of F.

Theorem 4. A SVNFSM  F = (M ,U,N) is strongly single valved neutrosophic connected iff F
has no proper single valued neutrosophic submachine.

Proof. Assumethat F =(M,U,N) isstrongly single valued neutrosophic connected. Let

[0 =(G,U,C) be asingle valued neutrosophic submachine of F suchthat G = ¢. Then there exists
ueG .If veSVNS(u) since F isstrongly single valued neutrosophic connected. It follows that

v e SVNS(u) = SVNS(G) =G sothat G=M. Hence 0 =F, thatis F has no proper single
valued neutrosophic submachine. Conveersely assume that F has no poper single valued neutrosophic

391



Florentin Smarandache, Surapati Pramanik (Editors)

submachines. Let u,ve M nadlet 0 =(SVNS(u),U,C) ,where C = (y.,w.,m.) ISgivenby

ZC ZN|SVNS(u)><UxS\/NS(u) ! l//C ‘//N|SVNS(U)><U><SVNS(U) ! and C N\SVNS(u)xeSVNS(u)

Then [ isasingle valued neutrosophic submachine of F and SVNS(u) # ¢, andso
SVNS(u) =M. Thus ve SVNS(u), andtherefore F isstrongly single valued neutrosophic
connected.

4. SINGLE VALUED NEUTROSOPHIC FINITE SWITCHBOARD STATE MACHINE
Definition 12. An SYVNFSM M = (N,U, S) issaid to be switching if it satisfies:

xs(r,a,s) = xs(s,a,r), ws(r,a,s) =ws(s,ar)
and
s (r,a,s) =wg(s,a,r)
forall r,seN and aeU.
AnSVNFSM M =(N,U,S) issaid to be commutative if it satisfies:
xs(r,ab,s) = y.(r,ba,s), y,(r,ab,s) = w4(r,ba,s)

and

s (r,ab,s) = ws(r,ba,s)
forall r,seN and a,beU.

Ifan SVNFSM M = (N,U,S) is both switching and commutative, then it is called single valued
neutrosophic finite switchboard state machine (SVNFSSM for short).
Proposition 3. If M =(N,U,S) isacommutative SVNFSM, then

X (rba,s)=z.(r,ab,s), w.(r,ba,s)=y..(r,ab,s)
and
,.(r,ba,s)=aw..(r,ab,s).
forall r,seN and acU,becU".

Proof. Let r,se N and a,beuU* . We prove the result by inductionon |b|=k. If k=0, then
b=¢, hence

2. (rba,s)=x.(r,¢a,s) = y.(r.as) = z.(r.ag,s) = z.(r,ab,s),

y.(rbas)=y.(r.das)=y.(ras)=y.(r,al,s)=y.(rab,s)
and

o,.(r,ba,s)=w.(r,¢as)=w.(r.as)=w.(ras,s) =w.(r,abs)

Therefore the result is true for k=0. Suppose that the result is true for |c|=k —1. That is for all
ceU” with |c|=k—-1,k>0. Let deU besuchthat b=cd. Then
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X5 (r,ba,s) = y.(r,cda,s) =v, | 7. (r.C,V) A g..(v,da,s) |
=Vyu | Zs- (GV) A 7. (v,ad,5) |
= %,.(r,cad,s)
= Vo[ Z¢ (1 CaV) A 25 (v,d,5) |
=Vien [Zs* (r,ac,v) A ys(v,d, S)]
= x,.(r,acd,s) = y..(r,ab,s),

.. (r,ba,s) =y (r,cda,s)=n,, [Ws* (r.c,v)vy..(v,da, s)]
= Ayen ['/’s* (r,c,v)vx//s*(v,ad,s)]
=y..(r,cad,s)
= Ay [‘Vs* (r,ca,v) v, (v,d, s)]
= Auen [ws* (r,ac,v) v, (v,d, s)]
=y..(r,acd,s)=y_.(r,ab,s)

and
. (r,ba,s) = o (r,cda,s) = A, | 0. (r,C,V) v (v,da,s) |

= Aven | @, (1,CV) v o (v,ad, 5) |

veN

= .. (r,cad,s)

:(os* (r,ca,v)va(v,d, s)]

:a)s* (r,ac,v) v o (v, d,s)]
=w,.(r,acd,s) = o, (r,ab,s)

Hence the result is true for | b |= k. Thus completes the proof.
Proposition 4. If M =(N,U,S) isan SVNFSSM, then

X (1a,s)=z.(s,a1)w.(ras)=y.(s,ar)
and
@,.(r,,8) = . (s,ar).
forall r,seN and acU".

Proof. Let r,se N and a<U" . We prove the result by inductionon |al|=k. If k=0, then
b=¢, hence

Xe (1a,8) = 2.(r,¢,8) = 1. (s,.£,1) = 7. (5,,T),
v (ras)=y.(rds)=y.(s,¢,rnN=y.(sar)

and
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. (r,a,8)=0.(r,¢,s)=a.(s,¢,r=a.(sar)
Therefore the result is true for k=0. Assume that the result is true for |b|=k —1. That s for all
beU" with |b|=k -1,k >0, we have

X (r,0,8) = 7. (8,0,1), . (r,b,8) =y . (s,b,r)
and
o..(r,b,s)=w.(s,b,r).
Let xeU and beU" besuchthat a=bx. Then
Xo- (ra,8) = x. (r,bx,8) = v, | 7, (LB V) A 25 (v, %,9) |
=V,n [;{S* (v,b,r) A xs (s, X, r)]
= Vien [ZS* (v,b,r) Az, (%, r)}
=Vyen [ 2 (5:X,1) A 7. (1,0,V)]
= o (8, xb,r) = 7. (s,bx,r) = 7. (s,a,T),
y..(ra,s)=y.(r,bx,s)=n,, [V’s* (r,b,v) v (v, X, s)]
= Ayen [l//s* (v,b,r) v (s, X, r)]
= AveN [VIS* (v,b,r)v V.. (s, X, r)]
= An [V (8,61 v (r,b,V) |
=y (s, xb,r) =y (s,bx,1) =y (sa,r)
and

.. (r,a,s) =, (r,bx,s) = L“’s* (r,b,v) v e (v, X, s)J

veN

= Aven [a)s* (v,b,r)vax(s,x, r)]

= Ay [a)s* (v.b,r)va,.(sx r)]

= Awn | @g. (8 X 1) Vo (1 b,V) ]

=0, (S, X0, 1) = o (s,bx,r) = 0. (s,a,r)
This shows that the result is true for |b| =K.
Proposition 5.If M =(N,U,S) isan SVNFSSM, then

a.(r,ab,s)=a.(r,bas), f.(r.abs)= S.(r,bas)
and
Ve (r,ab,s)= y.(r,ba,s).

forall c and a,bcuU™.
Proof. Let r,se N and a,b U~ .We prove the result by inductionon |b|=k. If k=0, then

394



New Trends in Neutrosophic Theory and Applications. Volume II

b=¢, hence

2. (r.ab,s)=y.(r,ad,s) = y.(r,a,s) = x.(r.¢a,s) = z.(r,ba,s),

7. (r,ab,s)= 7. (r,ag,s)= V.. (r,a,s)= V. (r,{a,s)= Ve (r,ba,s)
and

o, (r,ab,s)=a.(r.af,s)=a.(r,as)=w.(r,¢as)=w,.(r,bas)

Therefore the result is true for k=0. Suppose that the result is true for |c|=k —1. That is for all
ceU” with |c|=k—1,k>0. Let deU besuchthat b=cd. Then

Zs-(r,ab,s) = y..(r,acd,s) = v, | s (r,ac,v) A x5 (v.d,s) |
= Vien [ZS* (r,ca,v) A xs (v, d,s)]
=Vyien [}(s* (v,ca,r) A ys (s,d,v)]
=Vyon | 25 (8,d,V) A 7. (v,ca,T) |
= X (s,dca,r) =v, [;{S* (s,de,V) A x.. (v, 8, r)]

= Vyen [7(5* (s,cd,V) A g, (v, 2, r)] = % (s,cda,r)
= x..(r,cda,s) = y..(r,ba,s),

v (r.ab,s) =y (r,acd,s) = A, [y (r,ac,v) vipg(v.d,s) |
= Ayen [z//s* (r,ca,v) v (v,d, s)]
= Aven [ Vs (V,R,1) Vg (5,d,V) |
= Ayen [l//s (s,d,v)v 7 (v,ca, r)]
=y (s,dca,r) = A, [y (s.dc,V) vy (v.a,r) |
= Aven [l//s* (s,cd,v)vy..(v,a, r)] =y..(s,cda,r)

=y..(r,cda,s) =y..(r,ba,s)
and
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. (r,ab,s) =, (r,acd,s) = A \_a)s* (r,ac,v)v e, (v,d, s)J

veN
= Ay [a)s* (r,ca,v) v w(v,d, s)}
= Aven | @ (v, €3, 1) v 05 (5, V) |
= Ay [a)s (s,d,v) v o, (v,ca, r)]
=o,.(s,dca,r) = A,y [a)s* (s,dc,v) v .. (v,a, r)]
= Ayen [“)s* (s,cd,v) v (v,a, r)] =o,.(s,cda,r)
= o,.(r,cda,s) = o,.(r,ba, s)
This shows that the result is true for |b |= k.
Definition 13. Let M, =(N,,U,,S) and M, =(N,,U,,T) betwo SVNFSMs. A pair («, g) of
mappings « : N, » N, and g : U, —»u, iscalled homomorphism, written as («, 8): My — M,
if it satisfies:
X5 (1, a,8) < yr (a(r), f(a), a(s)), ys (1, a,8) =y (a(r), S(@), a(s))
and
@5 (r,8a,8) = o (a(r), £(a), «(s))
forall r,seN, and aecuU,.
Definition 14. Let m, =(N,,U,,S) and M, =(N,,U,,T) betwo SVNFSMs. A pair («, p) of
mappings « : N, - N, and g : u, »uU, iscalled astrong homomorphism, written as
(ar, B): Mg — M., ifitsatisfies:
X (a(r), f(a),a(s)) = vAxs (rav) [ve Ny, a(v) = a(s)}
v (a(r), B(a), a(s)) = Ay (r.av) [ve Ny, a(v) = a(s)}
and
r (a(r), f(@), a(s)) = M (r,a,V) | Ve Ny, a(v) = a(s)}
forall r,seN, and acu,. If U, =uU, and # isthe identity map, then we simply write
a : Mg — M, andsay that & is a homomorphism or strong homomorphism accordingly. If («, £)
is a strong homorphism with & is one-one, then
xr (@(r), f(8), a(8)) = x5 (1, &, ),y (a(r), f(a), a(s)) =y (r,a,s)
and
ar (a(r), 5(a), a(s)) = o (r,a,s)
forall r,seN, and acuU,.
Theorem 5. Let M, =(N,,U,,S) and M, =(N,,U,,T) betwo SVNFSMs. Let
(ar, B): Mg — M, be an onto strong homomorphism. If Ms is a commutative, then so is Mr.
Proof. Let r,,s, eN,. Thenthereare r,s N, suchthat o(r,)=r, and o(s))=s,. Let
X,,y, €U,. Thenthereexists x,y, eu, suchthat g(x)=x, and (y,)=vy,. Since Ms is
commutative , we have
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-~ (. %,Y,,8,) = o (a(n), B(x) (Y1), a(s,))
= 17 (a(n), B(xy, y1), a(sy))
=V{Z (%Y1 V) [V € N (V) = a(s,)}
=V, (0, VX, W) [V € Ny a(v) = a(s)}
= 1, (a(r), B(Y:%), a(sy))
= 27 (1, ¥2%,,8,),

Vo (0, %,Y,,8,) =y, (a(r), B(x) B(Y.), a(s,))
=y (a(n), (%, 1), a(s)))
=My (XY V) [V € N a(v) = a(s)}
=My (1Y) [V € Ny a(v) = a(s)}
=y (a(n), yX). a(s)))
=y (a(n), B(Y)B(x) als,))
zt//T*(rz, Y,X,,S,)

and

@ (1, %,Y,,8,) = o (a(n), B(x)B(Y1), a(s,))
= . (a(n), B(X, Y1) a(s))
= Mo, (n, %Y, V) [V, € Ny, a(vy) = als)}
= Mg (1, Y X, Vi) [V € Ny, v(v) = a(s)}
= o (a(n), f(y:%) a(s,))
= . (a(n), (y) (%), a(s))
= .. (I, Y,%,,S,)

Hence Mt isacommutative SVNFSM. This completes the proof.

Proposition 6. Let M, =(N,,U,,S) and M, =(N,,U,,T) betwo SVNFSMs. Let
(a, B): Mg — M, be astrong homomorphism. Then

(Vu,ve N)(VaeU,)(x (a(u), Sa), a(v)) >0
= (@we N))(xs(u,a,v) >0, a(w) =v(v)),
(Vu,v e N,)(Va eU,)(y: (au), @), a(v)) <1
= (3we N))(ws(u,a,v) <1 a(w) =v(v)),
and
(Vu,ve N))(VaeU,) (e (a(u),a(a), a(v)) <1
= (Awe N,)(w (u,a,v) <L v(w) = a(v)).
Moreover,
(Vze N )(a(z) =v(u) = zs(u,a,w) > x5(z,a,r),
ws(u,a,w) <y (z,a,r)and o, (u,a,w) < (z,a,r).
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Proof. Let u,v,ze N, and acuU,. Assumethat 4. (a(u), B(a), a(v)) >0,
(¥ (a(u), B(@),a(v)) <1 and (@ (a(u), B(a),a(v)) <1. Then
Vs (U, a,v) [V € Np,er(v) =v(v)} >0
My (u,a,v) v, € Ny a(v) =v(v)} <1

and
s (u,a,v,) |v; € N, a(v,) = a(v)}<1

Since Ni is finite, it follows that there exists w e N, suchthat a(w)=a(v),
Xs(U,a,w) ={xs(u,a,v,) v, € N, a(v,) = a(w)} >0,
ws(U,a,v)=rMys(u,av)|v, eN,a(v)=a(w)}<l

and
w5 (U, a,Vv) ={aog(u,a,v,) |V, e N, a(v)) =a(W)}<1

Now suppose that «(z) = a(u) forevery ze N,. Then
Zs (U, a,W) =y (a(u), B(a), a(v)) = 1 (a(2), f(@), a(V))

=z (2av) Y, e Ny a(y) = a(W}z 7 (z.a,)

s (U,a,w) =y (a(u), 5(@),a(v)) =y (a(2), f(@), a(V)
=Mys(z,av) v, € N a(v) =a(v)} <y, (z,a,v)
and
o, (u,a,W) = o (a(u), A(a), a(V)) = o (v(2), (@), a(v))
=Moo (z,a,v)) |v, e N, a(v) =a(V)}< o (z,a,V)
Which is the required proof.
Lemma2. Let M, =(N,,U,,S) and M, =(N,,U,,T) betwo SVNFSMs. Let («, B8): My — M,
be a homomorphism. Define amapping S : U] =U, by g (cy=¢ and g*(xy) = 8 (05" (¥)
forall XeU; and yeu,. Then g*(ab)= g (a)s (b) forall a,beU;.
Proof Let a,be Uf. We prove the result by inductionon |b|=k. If k=0, then b=¢. Therefore
ab=ad =a . Hence
p(ab) =p"(a)=p"(a)d =g ()57 (&) = B (a) 57 (b)
Which shows that the result is true for k=0. Let us assume that the result is true for each C € Ul* such
that |c|=k—1. Thatis
B (ab) = p"(a) 5 (b)
Let b=cd, where Ce Ul* and d eu, besuchthat [c|=k—-1,k>0. Then
B (ab) = p"(acd) = g7 (ac) B(d) = B () 7 (c)y (d) = 57 () 57 (cd) = " (a) 57 (b).
Therefore, the result is true for | b |= k.
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Theorem 6. Let M, =(N,,U,,S) and M, =(N,,U,,T) betwo SVNFSMs. Let
(. B): My — M, be a homomorphism. Then

Ze (1,3,8) <z (a(r), B7(a), a(9)), v, (r,a,8) 2y . (a(r), B°(d), a(s))
and

.. (r,as) 2y (a(r), B (@), a(s))
forall r,seN, and aeU,.

Proof. Let r,se N, and HEUf. We prove the result by inductionon |a|=k. If k=0, then
a=¢ andso gy (@) =y (&)=c¢. If I'=S, then

2128 = 7. (1,£.9) =1= 7,.(a(f).¢,a(s)) = 7,.(a(r), ' (@).a(s)),
v (1a,9) =y, (1,.¢,8) =0=y.. (a(r).£,a(s) = y,. (a(r). (@), a(s))

and
o, (r,8,8)=a.(r,¢,8)=0=a.(a(r),d,a(s)) = a.(a(r), B (a), a(s))
If r=s, then
2o (1,2,8) = 7,.(r,.£,8) =0< .. (a(r), 5 (a), a(s)),
Ve (r,a,8) =y (r.¢,) =12y (a(r), # (a),a(s))
and
o, (ra,s)=a.(r,d,s)=12a.(a(r), #°(),a(s))

Therefore the result is true for k =0. Let us assume that the result is true for all beu; such that
|Ibl=k—-1,k>0. Let a=bc where beU;,ceU, and |b|=k-1. Then

2 (1,8,8) = 7. (1,0e,8) = v, [7 (1D, V) A 7. (v,C,9)]
SVyen, Lp- (a(r), B7(0), a (V) Az (a(V), B(c), a(s))]
Vo L2 @(1), B7(0), V) A 2. (V7 B(C), x(5))]
= X, (a(r), B (b) B(c), a(s))
= 1,-(a(r), B (be), a(s))
= 1,-(a(r), B7(a),a(9)),
y..(r.a,s)=y.(r,be,s) = [y (r.bv)vy.(v,c,s)]
2 Aven, ;- (@(r), B7(b), a(V)) v ... (a(v), B(c), ()]
> Ao 07 (@(0), B 0) V)V (v, BE), V()]
=y, (a(r), B (0) B(c), a(s))
=y (a(r), 5" (bc), a(s))
=y (a(r), (), a(s))
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and
o..(r,a,s) = . (r,bc,s) = A, [o.(r,b,Vv)vae.(v,cs)]

2 Ay, [0 (a(1), 57 (D), a(V)) v @, (a(v), B(C), a(s))]

> A, [0 (@(0), B0V )V @, (v, BE), ()]

=o.(a(r), 5 (0) 4(c), a(s))

=o..(a(r), 5 (bc),a(s))

=o.(a(r),f (a),a(s))
Which is the required proof.
Theorem 7. Let M, =(N,,U,,S) and M, =(N,,U,,T) betwo SVNFSMs. Let («,): My — M,
be a strong homomorphism. If ¢ is one-one, then

Zs-(r.a,8) = x..(a(r), 7(a), a(s)), y..(r.a,s) =y .(a(r), 5 (a), a(s))
and
w,.(r,a,s)=a. (a(r), B (a), a(s))

forall r,seN, and acu;.

Proof. Letusassumethat « isl-landfor r,seN, and acU;. Let |a]=k. We prove the result
by inductionon |a|=k. If k=0, then a=¢ and p*(&)=¢. Since «a(r)=«a(s) ifandonly if
r=s, weget

X (ra,s)=yx.(r.¢,s)=1

if and only if
X (a(r), B (@), a(s)) = x,. (a(r), B7($). a(s)) =1,
y..(r.as)=y.(rg,s)=0
if and only if
v, (a(r), B (@), a(s)) =y.. (a(r), B (£), a(s)) =0,
and
o.(r,as)=a.(r,¢,s)=0
if and only if

@ (a(r), B (@), a(s)) = o (a(r), B7(£).a(s)) =0
Let us assume that the result is true forall b eu; suchthat |b|=k -1,k >0. Let a=bc , where
|bl=k-1,k >0 and beU;,ceU,. Then
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Zp-(a(r), B7(a),a(s)) = x,. (a(r), B (bc), a(s)) = x,. (a(r), B~ (b) B(c), a(s))
=Vyen L2 (a(r), B7(b), (V) A z7 ((V), B(C), (s))]
= Vyen, [ (1D V) A 75 (v, C,8)]
= .. (r,bc,s) = z..(r,a,s),
.. (a(r), B (a),a(s)) =y..(a(r), B~ (bc),a(s)) =y, (a(r), B (b) B(c), a(s))
= N Y- (a(r), 7 (D), a(V)) v w1 (a(v), B(C), a(9))]
= Aven, [ (1D, V) vipg (v,C, 5)]
=Y. (r,bc,s) = Ve (r,a,s)
and
w..(a(r), B (a),a(s)) = o (a(r), p(bc), a(s)) = w.. (a(r), B~ (b) B(c), a(s))
= Aven, [0 (@ (1), B7 (D), (V) v & (a(v), B(C), a(s))]
= Aven, L@ (1, b,V) v 5 (v, C, 5)]
=w,.(r,bc,s)=w_.(r,a,s)
Which is the required proof.

CONCLUSION

Using the notion of single valued neutrosophic set we introduced the notion of single valued neutrosophic
finite state machine, single valued neutrosophic successors, single valued neutrosophic subsystem, and
single valued neutrosophic submachines. which are the generalization of fuzzy finite state machine and
intuitionistic fuzzy finite state machine. We also defined single valued neutrosophic switchboard state
machine, homomorphism and strong homomorphism between single valued neutrosophic switchboard state
machine and discussed some related results and properties.

In future we shall apply the concept of neutrosophic set to automata theory.
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