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The physical constants play important role in physics. It is fact that the accuracy of the physical constants
grows year by year. Special attention is paying to the dimensionless constants; the most familiars among
them are the fine structure constant, the electron/proton and electron/muon mass-ratios, the ratio of the
gravitational/electromagnetic interaction, the Weinberg angle in the electro-weak interaction theory, etc. The
one of the most important questions is for a long time: are there any physical and/or mathematical relations
between the fundamental physical constants. The paper gives a recently explored simple math relation between
them. The precise theoretical explanation of this amazing finding need more detailed investigations related to
the physical background.
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1. Introduction
The mathematical notion of the "golden section" or

"golden ratio" was first published in the works of Pythago-
ras and Euclid, but it was fashionable in the Middle Ages,
but not only in mathematics, but also in the arts (painting,
sculpture, architecture, etc.).

The gold section follows the above figure and corresponds
to the next section ratio
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= 1.618... (1.1)

whereΦ is a dimensionless figure, the ratio of the gold sec-
tion. Is there a dimensionless figure in nature, specifically
in physics, that is prominent? The subject of the present
work is the finding of this supposed universal ratio what is
playing important role in nature, exactly in the fundamen-
tals of physics. The long-term study has shown that there
is such ratio having central role in physics, but it cannot be
considered as exactly value as the mathematics golden sec-
tion is defined. In the nature, the exponential dependence
between the observable quantities frequently occurs, with-
out causing any surprise for us. Typical examples are the
radioactive decay in physics, or the bacteria propagation in
the biology. The speed distribution of molecules shows ex-
ponential function in the Maxwell-Boltzmann kinetic the-
ory of the gases. Are any exponential relation between the
fundamental physical constants, this was the first question
which initialized to publish the present paper. The elab-
orated statistic studies led to an amazing result; the fun-
damental physical constants are connecting to each-other
with a simple exponential form. For the illustration here is
an example for the dimensionless fine structure constant

α ≈ 3Q4, (1.2)

where the accentuated number is

Q = 2/9 = 0.222... (1.3)

A similar finding is

me/Mp ≈ Q5, (1.4)

where me is the electron mass, Mp is the proton mass.
The third example shows exponential relation between the
electron mass and muon mass

me/2mµ ≈ Q4. (1.5)

In this paper it will be clearly shown that the number Q
= 2 / 9 has a central significance in the mathematical con-
nection between the fundamental physical constants. The
explored demonstrative results led us to ensure, that behind
of these exponential connections of fundamental physical
constants must be an important physical background. Nev-
ertheless, the exact physical background is missing at now.

2. Exponential Forms of the Fundamental
Physical Constants
Certainly accidentally, the above introduced exponen-

tial form is valid approximately for many of dimensioned
fundamental physical constants, which are expressed in the
internationally accepted and applied SI units. Generally, a
physical constant signed with X can be written into a sim-
ple mathematical expression

λX ≈ QS; Q = 2/9, (2.1)

where S is integer number and λ is a “simple” constant.



The SI values of physical constants for the calculation
are obtained from the database of National Institute of
Standards and Technology [1]. Surprisingly, the most
important physical constants in the SI system can also
be expressed by the integer powers of the distinguished
number Q

Speed of light c = 2.997925×108 m/s≈

≈ Q−13; Q = 0.222811... (2.2)

Gravitational constant G = 6.674080×10−11 SI ≈

≈ 2Q16; Q = 0.221417... (2.3)

Planck constant h̄ = 1.0545717261×10−34 Js≈

≈ Q52; Q = 0.222125... (2.4)

Boltzmann constant kB = 1.380650×10−23 J/K ≈

≈ Q35; Q = 0.222259... (2.5)

Coulomb constant kC = 8.987552×109SI ≈

≈ Q−16/π; Q = 0.222242... (2.6)

Elementary charge e = 1.602176×10−19 C ≈

≈
√

2×Q29; Q = 0.222175... (2.7)

Rydberg constant Ry = 2.179872×10−18 J ≈

≈ Q27; Q = 0.221752... (2.8)

Bohr radius RB = 5.2917721092×10−11 m≈

≈ Q15/3; Q = 0.222185... (2.9)

Electron mass me = 9.109382×10−31 kg≈

≈ Q46; Q = 0.222303... (2.10)

Muon mass mµ = 1.883531×10−28 kg≈

≈ Q42/2; Q = 0.222303... (2.11)

Tau mass mτ = 1.883531×10−27 kg≈

≈ 2Q41; Q = 0.221990... (2.12)

Proton mass mp = 1.672621×10−27 kg≈

≈ Q41; Q = 0.222286... (2.13)

1./By the above, for the values are fulfilled{
h̄2}= {Gmemµ

}
, (2.14)

from which

{G}=
{

h̄2/memµ

}
= 6.4817221...×10−11SI; (2.15a)

G(CODATA) = 6.67408×10−11SI. (2.15b)

2./By the above, for the value is fulfilled{
h̄c4}≈ 1. (2.16)

The calculation gives an approximate result{
h̄c4}= 0.851... (2.17)

An important question arises as to whether the re-defining
of the SI system units can be used to fine-tune the above
values.

3. The Weak Mixing Angle
The weak mixing angle or Weinberg angle is a parame-

ter in the Weinberg-Salam theory of the electroweak force.
It gives a relationship between the charged W and neutral Z
boson masses [2]. The experimentally best estimated value
of the Weinberg parameter is

sin2
ΘW = 0.2223(21)≈ Q. (3.1)

4. Mass Formula of the Leptons
In the literature there are two empirical relations for the
three lepton masses. The one of them is the famous Koide
formula [3]

me +mm +mt(√
me +

√
mm +

√
mt
)2 = 0.666659(10)≈ 2

3
, (4.1)

where me = electron mass, mm= muon mass and finally
mt = tau mass. There is a more important but a less well-
known formula for the calculation of lepton masses

mk ≈C0

[
1+
√

2cos(2kπ/3+Q)
]2

, (k = 1,2,3). (4.2)

where mk = electron, muon and tau mass for k = 1, k =
2 and k = 3, respectively. This formula was published by
Gerald Rosen [4]. It can be easily proved that the formula
of Rosen can be obtained from the Koide formula with
the help of two fitting parameters. The result of the fitting
procedure is

C0 = 313.85773 MeV ; Q = 2/9. (4.3)

The accuracy of the lepton mass formula is very good

0.51099650 MeV = me(1−4.7×10−6);
105.65891 MeV = mm(1+5.09×10−6);
1776.9764 MeV = mt(1−7.63×10−6).

(4.4)

5. Exponential Interpretation of the Titius-
Bode Law
The Bode’s law, better called the Titius-Bode Rule,

was first published by Johann Daniel Titius, but did not
become well known until it was republished by Johann
Elert Bode in the 18th century. It is supposed to predict



the distances of the planets from the Sun in astronomical
units (Sun-Earth middle distance) by the formula

an = 0.4+0.3×2n (5.1)

but is usually represented by a table as shown here

Table 1. Demonstration of the Bode-Titius Rule

In the table, the second column contains the measured dis-
tances of the planets. The third column contains the cal-
culated planet’s distances from formula (5.1). Mini planet
Ceres was discovered by chance, not by application of the
Titius-Bode rule. Nevertheless, its orbit fit the rule so per-
fectly that there had been active search for a planet at that
distance and the discovery was considered to be another
vindication. The Titius-Bode rule was used in the calcu-
lations that led to the discovery of Neptune. Remarkable
that the physical background of this observed rule has re-
mained unclear until this time, which shows at least expo-
nential behavior of the planet distances from the Sun. In
the frame of present study the Titius-Bode rule has been
fitted to the recognized exponential relation involving the
‘special number’ Q. The simple expression of the Kepler’s
third law is

P2/a3 = const., (5.2)

where P is the orbital period and a is the semi major axis
of orbit for the planets of Solar System. When certain units
are chosen, namely P is measured in sidereal years and a in
astronomical units, P2a−3 has the value one for all planets
in the Solar System. From this reason Kepler’s third law
for the planets can be written into simple form

P2
n

a3
n
≡ Qn

Qn ≈ 1; (n = integer); (5.3)

where for the Earth n = 0 selection is valid. This approx-
imation defines the astronomical distance of each planet
from the Sun in exponential form

an ≈ Qn/3; (n = integer). (5.4)

Nevertheless, in this equation the number Q has not a
fixed value. The next table shows the calculated Q-values
depending on distances from the Sun for each planets

Table 2. The results of the Q-calculations

The average of the calculated Q-values is near to its ‘nom-
inal value’ 2 / 9

〈Q〉= 0.230905...≈ 2/9. (5.5)

The standard deviation of the calculated Q-values is

σ(Q)≈ 11%. (5.6)

This interesting result strengthens the supposed physical
significance of the explored special number Q.

6. A New Atomic Mass Formula
A few years ago the author of the present work has

published an atomic mass formula in the physical journal
Galilean Electrodynamics [5]. According to the generally
accepted physical model, the synthesis of the heavy ele-
ments may happen at a very high temperature in super-
nova explosions. In consequence of nuclear fusion, the su-
pernova stars emit a very strong electromagnetic (EM) ra-
diation, predominantly in the form of X-rays and gamma
rays. The intensive EM radiation drastically decreases the
masses of the exploding stars, directly causing mass de-
fects of the nuclei. The general description of black body
EM radiation is based on the famous Planck’s radiation
theory, which supposes the existence of independent quan-
tum oscillators inside the black body. In this model, it is
supposed that in exploding supernova stars, the EM radiat-
ing oscillators can be identified with the nascent heavy el-
ements losing their specific yields of their own rest masses
in the radiation process. The final binding energy of the
nuclei is additionally determined by strong neutrino radi-
ation, which also follows the Maxwell-Boltzmann distri-
bution in extremely high temperature. Extending Planck’s
radiation law for discrete radiation energies, a very simple
formula is obtained for the theoretical description of the
measured neutral atomic masses. The realized new atomic
mass formula is the next

M(Z,A) = AM0 +Mrad(A)+Mas(Z,A)+

+Mp(Z,A), (A≥ 2). (6.1.)

The first term is the initial mass before nuclear fusion

Min(A) = AM0. (6.2.)



The second term is the thermal-radiation

Mrad(A) =−Crad
f 4(A)

B f −1
=−Crad

(A−1.5)2M2
0

R(A)
, (6.3.)

where
R(A) = B

√
(A−1.5)M0 −1 (6.4)

is proportional to the nuclear radius of the atom. The third
term of the mass formula is the asymmetry energy

Mas(Z,A) =CasM2
0

(
A−2Z
A+3

)2

. (6.5)

The fourth term is the pair energy

Mp(Z,A) =−
1
2

CpM2
0
(−1)Z +(−1)A−Z

R(A)
. (6.6)

This last term connects to observation that the nuclei hav-
ing even number of protons and even number of neutrons
(even-Z, even-N), or, in short even-even nuclei, are most
abundant and more stable. The odd-odd nuclei are the least
stable, while even-odd and odd-even nuclei are intermedi-
ate in stability. Due to the Pauli exclusion principle the
nucleus would have a lower energy if the number of pro-
tons with spin up were equal to the number of protons with
spin down. This is also true for neutrons. This term firstly
appeared in the nuclear drop model of von Weizsäcker [6]
in 1935. Remarkable specialty of this new mass formula is
that the coefficients of each member depend on only one
parameter, namely by the unique Q number

Crad = Q5/2, Cas = Q, Cp = Q4/2, B = 1+Q. (6.7)

The optimal values of the two fit parameters (which were
fitted into about 2000 isotope masses [7])

M0 = 934.529... MeV ; Q = 2/9 = 0.222... (6.8)

The relative standard deviation of this neutral atom mass
formula (N is equal to about 2000 isotopes)

σ =

√
1

N−1

N

∑
n=1

(
Mcalc−Mexp

Mexp

)2

n
= 1.55...×10−4,

(6.9)
which is comparable to the accuracy of von Weizsäcker’s
liquid drop model of the atomic mass calculation. How-
ever, the presented atomic mass calculation model con-
tains only two parameters (M0 and Q) versus the liquid
drop model, which contains five fit parameters. The ob-
tained radiating nucleon mass M0 is less about 5 MeV than
the known rest mass of the neutron. Physical explanation
of this fact that at a very high fusion temperature, the aver-
age value of neutron masses decreases. The missing parts
of the neutron masses appear in the energy of the thermal
radiation field (what remains constant in the radiation cav-
ity). Taking this into account, the concept of total binding

energy, regarding to the initial A number neutrons, can be
introduced

EB(Z,A) = A(M0−MN)+Mrad(A)+Mas(Z,A)+
+Mp(Z,A), (A≥ 2); (MN = 939.565413... MeV ) .

(6.10)

The next diagram shows the binding energy components

Diagram 1. Binding energy components per nucleon

7. Conclusion
In this paper a dimensionless number Q = 2 / 9 has

been introduced, which is suitable to express many impor-
tant physical constant in similar exponential forms hav-
ing exclusively integer exponents. From the demonstra-
tive examples one can safely conclude, that all the fun-
damental physical constants very likely must be quantized
by unique exponential rule. From this statement directly
follows, that between all fundamental physical constants
must exist simple exponential relationships. The next im-
portant question is that this statement is an axiom without
any possibility for a deeper physical explanation, or must
have an unknown physical background of it. For the an-
swer of this important question needs certainly more de-
tailed research in the future.
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