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“Our first step in developing an expression for the orientation of

“our” gnomon: Diagramming its location at the instant of the 2016

December solstice.”

Abstract

Because the shortage of worked-out examples at introductory levels is

an obstacle to widespread adoption of Geometric Algebra (GA), we use

GA to calculate Solar azimuths and altitudes as a function of time via the

heliocentric model. We begin by representing the Earth’s motions in GA

terms. Our representation incorporates an estimate of the time at which the

Earth would have reached perihelion in 2017 if not affected by the Moon’s

gravity. Using the geometry of the December 2016 solstice as a starting
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point, we then employ GA’s capacities for handling rotations to determine

the orientation of a gnomon at any given latitude and longitude during the

period between the December solstices of 2016 and 2017. Subsequently,

we derive equations for two angles: that between the Sun’s rays and the

gnomon’s shaft, and that between the gnomon’s shadow and the direction

“north” as traced on the ground at the gnomon’s location. To validate our

equations, we convert those angles to Solar azimuths and altitudes for

comparison with simulations made by the program Stellarium. As further

validation, we analyze our equations algebraically to predict (for example)

the precise timings and locations of sunrises, sunsets, and Solar zeniths on

the solstices and equinoxes. We emphasize that the accuracy of the results

is only to be expected, given the high accuracy of the heliocentric model

itself, and that the relevance of this work is the efficiency with which that

model can be implemented via GA for teaching at the introductory level.

On that point, comments and debate are encouraged and welcome.
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of Our Gnomon as a Function of Time . . . . . . . . . . . . . . . 26

3.1.1 Finding an Idea . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.2 Expressing the Necessary Rotations via GA . . . . . . . . 28

3.1.3 Formulating the Bivectors Needed for the Rotations . . . 30

3.1.4 Celestial North: n̂c . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Our Model, in Words and in GA Terms . . . . . . . . . . . . . . 32

4 Derivations of Formulas 34

4.1 r̂ (t), r̂s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 M̂s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



4.3 n̂c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
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(
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)

.

The arrow next to the square representing Ĉ shows Ĉ’s positive
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r̂ (t) = âeĈθ(t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

21 Definition of the vector ĉ that we will use in formulating M̂s. The

set of vectors
{
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1 Introduction

Geometric Algebra (GA) holds promise as a means for formulating and solving

problems in many different branches of mathematics and science. This document

contributes to addressing one of the obstacles to GA’s wider adoption: the

shortage of instructional materials that use GA to solve non-trivial problems

that are accessible to students who are in high school or the first year of university.

In this document, we’ll use GA for calculations that are related to gnomons

(Fig. 1) —astronomical instruments of a type that dates to antiquity. Many

simple, interesting experiments that use it are described in detail on line (e.g.

[2]), and can be performed by students to check predictions such as those which

we will make here. We will see, too, that through use of simple geometric and

trigonometric relations, inferences drawn from our gnomon equations can be

transformed into predictions that we can check via free planetarium software

such as Stellarium ([3]).

A key goal of this document is to make clear the relationship between

the skill of modeling physical systems, and the nature and capabilities of the

mathematical tools that are available to the modeler. The gnomon is a good

example for teaching that relationship because it shows the benefits of “seeing”

a system in terms of rotations—an operation to which GA is especially suited.

Toward that end, our specific goals will be

1. To use GA to predict the following for any location on Earth, at any time

between the December 2016 solstice and the December 2017 solstice:

(a) the angle between the Sun’s rays and the gnomon; and

(b) the angle between local north and the gnomon’s shadow.

2. To validate our model by comparing our predictions to results of simple

gnomon observations, and to simulations made by the planetarium program

Stellarium ([3]).

The same calculations may be done for other years using data available at [4].

This document begins by reviewing relevant information on Kepler orbits,

the geometry of the Earth’s orientation with respect to the plane of its orbit

about the Sun, and GA. Based upon that review, we’ll develop a model, then

derive the necessary equations. We’ll find that they are surprisingly amenable

to analyses that let us test key predictions without needing to do numerical

calculations. (Although we will of course do such calculations as well.)
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Figure 1: Students using a gnomon at a school in India ([1]).
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2 Review of Relevant Information about Kepler

Orbits, Earth’s orientation, and GA

“Our” gnomon. To get the most out of this review, we’ll want to keep the document’s goals

in mind. Let’s state them again, but this time we’ll refer to the gnomon for

which we want to calculate angles, etc. as simply “our gnomon”:

1. To use Geometric algebra to predict the following, at any time between

the December 2016 solstice and the December 2017 solstice:

(a) the angle between the Sun’s rays and our gnomon; and

(b) the angle between local north and our gnomon’s shadow.

2. To validate our model by comparing our predictions to results of simple

gnomon observations, and to simulations made by the planetarium program

Stellarium ([3]).

Given our goals, a reasonable thing to look for during our review is some

specific moment at which we can identify both of the following: the direction of

the Sun’s rays, and the direction in which our gnomon is pointing. Our goal

would then be to find a way to use that information to calculate, via GA, those

same directions for any other instant in time that might interest us.

2.1 The Gnomon and Its Uses

A gnomon is nothing more than a vertical stick, pole, or (in some cases) structure

surrounded by a flat, horizontal surface of appropriate size (Fig. 2). Over the

course of a year, the trajectory followed by the end of the gnomon’s shadow

changes systematically from one day to the next. Most notably, that trajectory

is an almost-perfect east-west line on the days of the equinoxes ([2]). Typical

experiments done with gnomons include tracing that trajectory for subsequent

mathematical analysis. Younger students enjoy measuring the angle β between

local north and the gnomon’s shadow, and the angle α between the gnomon and

a string stretched from the tip of the gnomon to the end of the shadow (Figs. 3

and 4).

Figs. 3 –5 and Table 1 show how to determine the Sun’s azimuth and

altitude from the angles α and β.

The shaft of the gnomon can be

regarded as an extension of the

line segment that runs from the

center of the Earth to the

gnomon’s base.

Please note something that will be important in our development of a model:

because the Earth’s deviation from perfect sphericity is less than 0.3% ([5]), the

shaft of the gnomon can be regraded as an extension of the line segment that

runs from the center of the Earth to the gnomon’s base.
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Figure 2: Schematic diagram of the Sun, the gnomon, and the gnomon’s shadow

on the flat, horizontal surface surrounding the gnomon.

Figure 3: Showing the angle α between the Sun’s rays and the shaft of the

gnomon. The angle of the Sun’s altitude (also called the angle of elevation) is

the complement of α.

Table 1: Formulas for calculating azimuths according to the algebraic signs

of sinβ and cosβ. For example, if sinβ < 0 and cosβ ≥ 0, then Azimuth =

180◦ + arcsin | sinβ| .

sinβ < 0 sinβ ≥ 0

cosβ < 0 360◦ − arcsin | sinβ| arcsin | sinβ|

cosβ ≥ 0 180◦ + arcsin | sinβ| 180◦ − arcsin | sinβ|
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Figure 4: β is the angle of rotation from “Local North” (i.e., the direction

“geographic north” as traced on the ground at the observer’s location) and the

gnomon’s shadow. Later in this document, we will define the counterclockwise

sense of β as positive.

Figure 5: Geometrical bases for the formulas presented in Table 1 for determining

the Sun’s azimuth from sinβ and cosβ. Diagram is a schematic of an aerial

view of a plaza in which our gnomon is set. The Sun is in the part of the sky

opposite the shadow. Angle β is positive counter-clockwise from local north,

and the Sun’s azimuth is positive clockwise from local north.
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2.2 The Earth’s Kepler Orbit, and the Geometry of Sol-

stices and Equinoxes

2.2.1 The Earth’s Kepler Orbit

Fig. 6 shows key elements that we will use later: the vector r̂ from the center

of the Sun to the center of the Earth; the angles θ and φ; and the vector a,

from the center of the orbit through the center of the Sun, to the position of the

Earth’s center at perihelion.

Hestenes ([6], pp. 204-219) used GA to arrive at the well-known Kepler

equation for planetary motion:

2πt

T
= φ− ε sinφ. (2.1)

where T is the planet’s orbital period, t is the time elapsed since the planet was

at its perihelion, and ε is the orbit’s eccentricity. The angle φ is in radians.

For any given time t, the corresponding angle θ (t) is determined by first

solving Eq. (2.1) for φ (t), after which the corresponding value of θ is found ([6],

p. 219) via the relationship

tan
θ

2
=

(
1 + ε

1− ε

)1/2

tan
φ

2
, (2.2)

from which

θ = 2 tan−1

[(
1 + ε

1− ε

)1/2

tan
φ

2

]
. (2.3)

Ref. [7] notes that for works like the present, we must estimate what the

timing and position of the Earth’s perihelion would be if the Earth’s orbit were

a perfect Keplerian ellipse that is unperturbed by the gravity of other bodies,

especially the Moon. Using a best-fit method, [7] estimated that the perihelion

of 2017 occurred 12.93 days after the instant of the December 2016 solstice, and

that that solstice therefore occurred at angle θ of 0.2301 rad before perihelion

(Fig. 7).

Note that Fig. 7 shows the line connecting the positions of the Earth

at the equinoxes as being perpendicular the line connecting the positions at

the solstices. Actually, there is a very slight non-perpendicularity because the

Earth’s axis precesses by about 1/70
◦ per year. That precession also causes a

twenty-minute difference between the lengths of the Tropical year (the time

between successive December solstices) and the Sidereal year (the time needed

for the Earth to complete one revolution of its orbit, as measured against a fixed

frame of reference such as the stars). The effects of precession will require us to

be careful to use the Tropical year of 365.242 days in our calculations instead

of the Sidereal year of 365.256 days, but will otherwise be negligible for our

purposes. Differences between various types of year are discussed further in [8]

and [9].
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Figure 6: Schematic of the Earth’s Kepler orbit, defining the elements φ, θ,

ε, and r̂ used in this analysis. The plane of the Earth’s orbit is known as the

ecliptic. (Reproduced from [7].)

Figure 7: The position of the 2017 perihelion with respect to the December 2016

solstice. Red arrows show the direction in which the north end of the Earth’s

rotational axis points. The line connecting the positions of the Earth at the

equinoxes is not perfectly perpendicular to the line connecting the positions

at the solstices because the Earth’s axis precesses by about 1/70
◦ per year.

(Reproduced from [7].)
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Figure 8: The relationship between the Sun, Earth, ecliptic, and the Earth’s

rotational axis. For our purposes, the orientation of the rotational axis is constant

during a given year, and the line connecting the positions of the Earth at the

equinoxes can be taken as perfectly perpendicular to the line connecting the

positions at the solstices. (Reproduced from [7].)

2.2.2 Geometry of Solstices and Equinoxes

During a given year, we can treat

the orientation of the Earth’s

equatorial plane as invariant.

As shown in Fig. 8, the Earth’s rotational axis is inclined with respect to

the plane of the Earth’s orbit, or ecliptic. For our purposes the orientation of

the rotational axis is constant during a given year (Section 2.2.1). Therefore, we

can treat the orientation of the Earth’s equatorial plane as invariant.

In the common language, the terms “equinox and “solstice” refer to days,

but astronomers also use those terms to refer to precise instants as well. At the

instant of an equinox, the Earth’s axis of rotation lies within the plane that is

perpendicular to the ecliptic and to the line connecting the centers of the Earth

and Sun (Fig. 9). In contrast, at the instant of a solstice the axis lies within the

plane that is perpendicular to the ecliptic, and which also contains the line that

connects the centers of the Earth and Sun (Fig. 10).

Using ideas similar to those given in [10], we can identify the meridian of

longitude that faces the Sun directly at any given instant. The specific instant

that interests us is that of the December 2016 solstice.

2.2.3 Summary of our Review of the Earth’s Orbit and the Geome-

try of Equinoxes and Solstices

Before we began to review this material, we had decided that as we went through

each topic, we would look for some specific instant at which we could identify

both of the following: (a) the direction of the Sun’s rays, and (b) the direction

in which our gnomon would be pointing.
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Figure 9: Geometry of the equinoxes: the Earth’s axis of rotation lies within

the plane that is perpendicular to the ecliptic and to the line connecting the

centers of the Earth and Sun. (Reproduced from [7].)

Figure 10: Geometry of the solstices: the Earth’s axis of rotation lies within the

plane that is perpendicular to the ecliptic, and which also contains the line that

connects the centers of the Earth and Sun. (Reproduced from [7].)
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Figure 11: One of the goals of our review: finding a convenient instant at which

a gnomon with a known location points in an identifiable direction. At the

instant of the December 2016 solstice, a gnomon along the meridian that faces

the Sun directly, and whose south latitude is equal to the angle of inclination of

the Earth’s rotational axis with respect to the ecliptic plane, will point in the

direction −r̂.

The 2016 December solstice would seem to be a good choice. Although we

don’t know the orientation of our own gnomon at that instant, we can identify

the location of a gnomon that points directly at the Sun at that instant: its

latitude is equal to that of the Earth’s inclination with respect to the ecliptic

(Fig. 11), and its longitude is that of the meridian that faces the Sun directly.

From that information, and the latitude and longitude of our own location, we

should be able to determine the orientation of our gnomon at the instant of the

2016 December solstice.

For our purposes, the Sun’s rays

that reach the Earth are parallel

to r̂.

We should also note that for our purposes, the Sun’s rays that reach the

Earth are parallel to r̂.

2.3 Review of GA

At the end of the previous section (2.2.3), we identified a combination of specific

gnomon location and instant in time with respect to which we should be able to

express the orientation of our own gnomon at any other instant t that might

interest us. Of course, we will also be able to calculate the vector r̂ for any

instant t via Eqs. (2.1) and (2.3). Now, we’ll review what we’ve learned about

GA so that we may learn how do the above via rotations, if practical.
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2.3.1 Some General Comments on GA

As both a math tutor and a self-taught student, I am all too aware of the

confusion that students experience when trying to form an accurate mental

model of that which a classroom teacher or the author of a textbook is striving

to communicate through a combination of words, symbols, and diagrams. I hope

that the following observations might help, although they are not intended to

be either rigorous or complete.

A sometimes-helpful recognition is that GA, as it applies to problems like

the gnomon, is an attempt to capture geometric aspects of 3-D reality. The

mathematicians who developed GA found that they could express that reality

through concepts—of their own invention—which came to be known as vectors,

bivectors, and trivectors, and through carefully-defined mathematical operations

that are termed “products” of various sorts.

Of course this characterization of GA is vague, but the important points

are that GA is a human invention, and that the choices of which concepts and

operations were to be used in the attempt to formulate and solve geometrical

problems was made by human beings. Those same human beings defined the

properties of the concepts; for example, they decided that any two vectors of

identical length, direction, and orientation are equal, regardless of where they

are located in space. (Or perhaps to be more correct, “regardless of where their

endpoints are located in space”.) The originators of the concept of vectors did

not include “position” among the characteristics of vectors for a very simple

reason: there was no need to do so, and they saw no benefit in doing so.

Similar comments apply to bivectors: their only characteristics are magni-

tude (“area”, in 3-D geometry), orientation, and sense (algebraic sign). Devel-

opers of GA were able to accomplish their goals without including shape and

location among bivectors’ characteristics.

To accomplish our own, gnomon-related goals via GA, we need to express

the ecliptic plane in terms of a specific GA bivector (one to which the plane

is parallel). We also need to express the relation between that bivector and

the one that is used for the equatorial plane, and we need to express each of

these bivectors in terms of the basis bivectors of whatever reference system we

might find convenient. Rather than go into those important skills in detail here,

we’ll see how to put them into practice when we develop our gnomon model,

and when we derive formulas for calculating the angles α and β. Additional

examples can be found in [11] and [12].

One final note before we review the relevant GA information: in this

document, there are times when we will use the symbol for a given bivector (e.g.,

Q) to represent both the bivector itself (which is a GA object) and the plane to

which that bivector is parallel. Where the meaning of the symbol is not made

clear by context, we’ll state, explicitly, which meaning is intended.
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In somewhat the same vein, we should mention that we may talk about

rotating a physical plane (such as the plane that contains the meridian of

longitude on which a gnomon stands) in terms of rotating the bivector that

represents it. Said meridian rotates with the Earth, so in that sense the meridian

does rotate. However, when we are using the term “plane” in its strict Euclidean

sense, a plane is a distinct set of points. Thus, the rotation of a plane produces a

different plane, not the same plane in a different orientation. Similar comments

apply to bivectors. Thus. as a the meridian rotates with the Earth, it goes into

and out of alignment with a succession of bivectors.

To put that differently, let’s use the symbol M̂ to denote the bivector that’s

parallel to the plane that contains a certain meridian. We see immediately that

the bivector that’s aligned with the plane at time t1 may be different from that

with which the meridian plane is aligned at some other time t2. Therefore, “the”

bivector with which the meridian is aligned is a function of time. We’ll write

that function as M̂ (t). Having done so, we recognize that although M̂ (t) is a

set of bivectors, each M̂ (τ) for any specific value τ of the time t is a specific,

individual bivector.

2.3.2 Rotations and their Representations in GA

Let’s recall that our purpose in this document is not only to calculate the angles

α and β, etc., but also to learn how to employ GA effectively for the formulation

and solution of certain types of problems. We expect, reasonably, that the

gnomon problem will be a good one for learning how to use GA for expressing

rotations, and also for determining angles between vectors. Refs. [11] and [12]

treat those topics in detail, but we will present only the most-relevant and

-important observations here.

Rotation of a vector by a bivector angle When describing an angle of

rotation in GA, we are often well advised—for sake of clarity—to write it as

the product of the angle’s scalar measure (in radians) and the bivector of the

plane of rotation. Following that practice, we would say that the rotation of

a vector w through the angle γ (measured in radians) with respect to a plane

that is parallel to the unit bivector Q̂, is the rotation of w through the bivector

angle N̂γ. (For example, see Fig. 12.) References [6] (pp. 280-286) and [13] (pp.

89-91) derive and explain the following formula for finding the new vector, w′,

that results from that rotation :

w′ =
[
e−N̂γ/2

]
[w]
[
eN̂γ/2

]
︸ ︷︷ ︸

Notation: R
N̂γ

(w)

. (2.4) Notation: RN̂γ (w) is the

rotation of the vector w by the

bivector angle N̂γ.

For our convenience later in this document, we will follow Reference [13] (p.

89) in saying that the factor e−N̂γ/2 represents the rotation RN̂γ . That factor
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Figure 12: Rotation of the vector w through the bivector angle N̂γ, to produce

the vector w′.

is a quaternion, but in GA terms it is a multivector. We can see that from

the following identity, which holds for any unit bivector B̂ and any angle ξ

(measured in radians):

exp
(
B̂ξ
)
≡ cos ξ + B̂ sin ξ.

The representation of a rotation.

Thus,

e−N̂γ/2 = cos
γ

2
− N̂ sin

γ

2
. (2.5)

In our choice of symbols for

basis vectors and bivectors,

we´re following [13], p. 82.

In this document, we’ll restrict our treatment of rotations to three-dimensional

Geometric Algebra (G3). In that algebra, and using a right-handed reference

system with orthonormal basis vectors â, b̂, and ĉ, we may express the unit

bivector N̂ as a linear combination of the basis bivectors âb̂, b̂ĉ, and âĉ :

N̂ = âb̂nab + b̂ĉnbc + âĉnac,

in which nab, nbc, and nac are scalars, and n2
ab + n2

bc + n2
ac = 1.

If we now write w as w = âwa + b̂wb + ĉwc, Eq. (2.4) becomes

w′ =
[
cos

γ

2
− N̂ sin

γ

2

]
[w]
[
cos

γ

2
+ N̂ sin

γ

2

]
=
[
cos

γ

2
−
(
âb̂qc + b̂ĉqa − âĉqb

)
sin

γ

2

] [
âwa + b̂wb + ĉwc

] [
cos

γ

2
+
(
âb̂qc + b̂ĉqa − âĉqb

)
sin

γ

2

]
. (2.6)

Expanding the right-hand side of that result, we’d obtain 48 (!) terms, some of

which would simplify to scalar multiples of â, b̂, and ĉ, and others of which will

simplify to scalar multiples of the trivector âb̂ĉ. The latter terms would cancel,

leaving an expression for w′ in terms of â, b̂, and ĉ .

Now, we define four scalar variables:
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• fo = cos
γ

2
;

• fab = nab sin
γ

2
;

• fbc = nbc sin
γ

2
; and

• fac = nac sin
γ

2
.

Using these variables, Eq. (2.6) becomes

w′ =
[
fo −

(
âb̂fab + b̂ĉfbc + âĉfac

)] [
âwa + b̂wb + ĉwc

] [
fo +

(
âb̂fab + b̂ĉfbc + âĉfac

)]
.

After expanding and simplifying the right-hand side, we obtain

w′ = â
[
wa
(
f2
o − f2

ab + f2
bc − f2

ac

)
+ wb (-2fofab − 2fbcfac) + wc (-2fofac + 2fabfbc)

]
+ b̂

[
wa (2fofab − 2fbcfac) + wb

(
f2
o − f2

ab − f2
bc + f2

ac

)
+ wc (-2fofbc − 2fabfac)

]
+ ĉ

[
wa (2fofac + 2fabfbc) + wb (2fofbc − 2fabfac) + wc

(
f2
o + f2

ab − f2
bc − f2

ac

)]
.

(2.7)

Note that in terms of our four scalar variables fo, fab, fbc, and fac, the

representation
(
e−N̂γ/2

)
of the rotation is

e−N̂γ/2 = fo −
(
âb̂fab + b̂ĉfbc + âĉfac

)
. (2.8)

Because of the convenience with which Eq. (2.7) can be implemented, the

remainder of this document will express the representations of various rotations

of interest in the form of Eq. (2.8).

Rotation of a bivector Fig. 13 illustrates the rotation of a bivector P by

the bivector angle N̂γ to give a new bivector, H. In his Theorem 7.5, Macdonald

([13], p. 125) states that if a blade P is rotated by the bivector angle N̂γ, the

result will be the blade

RN̂γ (P) =
[
e−N̂γ/2

]
[P]
[
eN̂γ/2

]
. (2.9)

To express the result as a linear combination of the unit bivectors âb̂, b̂ĉ,

and âĉ, we begin by writing the unit bivector N̂ as N̂ = âb̂nab + b̂ĉnbc + âĉnac,

so that we may write the representation of the rotation in exactly the same way

as we did for the rotation of a vector:

e−N̂γ/2 = fo −
(
âb̂fab + b̂ĉfbc + âĉfac

)
,

with fo = cos
γ

2
; fab = nab sin

γ

2
; fbc = nbc sin

γ

2
; fac = nac sin

γ

2
.

Next, we write P as P = âb̂pab+ b̂ĉpbc+ âĉpac. Making these substitutions

in Eq. (2.9), then expanding and simplifying, we obtain
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Figure 13: Rotation of bivector P by the bivector angle N̂γ to give the bivector

H.

RN̂γ (P) = âb̂
{
pab
(
1− 2f2

bc − 2f2
ac

)
+2 [fab (fbcpbc + facpac) + fo (facpbc − fbcpac)]}

+ b̂ĉ
{
pbc
(
1− 2f2

ab − 2f2
ac

)
+2 [fbc (fabpab + facpac) + fo (fabpac − facpab)]}

+ âĉ
{
pac
(
1− 2f2

ab − 2f2
bc

)
+2 [fac (fabpab + fbcpbc) + fo (fbcpab − fabpbc)]} .

(2.10)

2.3.3 Angles Between Projected Vectors

Ref. [12] treats this topics in detail, noting that the direction that we have been

calling “local north” is the perpendicular projection of the Earth’s rotational

axis upon a plane that is tangent to the Earth’s surface (assumed perfectly

spherical) at the gnomon’s location (Figs. 14 and 15).

Another observation in [12] is that the gnomon’s shadow is the the projection

of r̂ upon that same plane. Thus, our angle β is the angle between those two

projections. Ref. [12] considered precisely that sort of problem in GA terms:

the angle between the projections of two vectors, u and v, upon a unit bivector

P̂ whose dual is ê (Fig. 16). Writing these elements as

• u = âua + b̂ub + ĉuc,
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Figure 14: Reproduced from [12]. The flat, horizontal surface surrounding the

gnomon is a plane tangent to the Earth (assumed spherical) at the point at

which our gnomon is embedded .

Figure 15: Reproduced from [12]. Note that the plane that contains the Earth’s

rotational axis and the meridian on which the gnomon is located cuts the tangent

plane along the direction that we have been calling “local north”. Therefore,

the direction “local north” is the perpendicular projection of the direction of

the Earth’s rotational axis (labeled here as n̂c) upon the flat, horizontal surface

on which our gnomon stands.
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Figure 16: The problem treated in GA terms by [12]: the angle between the

projections of two vectors, u and v, upon a unit bivector N̂ whose dual is ê.

• v = âva + b̂vb + ĉvc,

• e = âea + b̂eb + ĉec, and

• N̂ = âb̂nab + b̂ĉnbc + âĉnac

(
= âb̂ec + b̂ĉea − âĉeb

)
,

[12] found that

sin γ =
(uavb − ubva)nab + (ubvc − ucvb)nbc + (uavc − ucva)nac

‖u · N̂‖‖v · N̂‖
,

=
(uavb − ubva) ec + (ubvc − ucvb) ea − (uavc − ucva) eb

‖u · N̂‖‖v · N̂‖
, (2.11)

where ‖u · N̂‖ and ‖v · N̂‖ are the square roots of the expressions

‖u · N̂‖2 = u2
a

(
1− e2

a

)
+ u2

b

(
1− e2

b

)
+ u2

c

(
1− e2

c

)
− 2uaubeaeb − 2ubucebec − 2uauceaec ,

(2.12a)

and

‖v · N̂‖2 = v2
a

(
1− e2

a

)
+ v2

b

(
1− e2

b

)
+ v2

c

(
1− e2

c

)
− 2vavbeaeb − 2vbvcebec − 2vavceaec .

(2.12b)
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Those expressions reduce to

‖u · N̂‖2 = u2 − (u · ê)
2

= u2
a + u2

b + u2
c − (uaea + ubeb + ucec)

2
,

(2.13a)

and

‖v · N̂‖2 = v2 − (v · ê)
2

= v2
a + v2

b + v2
c − (vaea + vbeb + vcec)

2
.

(2.13b)

Ref. [12] also found that

cos γ =
〈
(
u · N̂

)(
v · N̂

)
〉0

‖u · N̂‖‖v · N̂‖
, (2.14)

where

〈
(
u · N̂

)(
v · N̂

)
〉0 = uava

(
1− n2

bc

)
+ ubvb

(
1− n2

ac

)
+ ucvc

(
1− n2

ab

)
− (uavc + ucva)nabnbc

+ (ubvc + ucvb)nabnac + (uavb + ubva)nbcnac,

= uava
(
1− e2

a

)
+ ubvb

(
1− e2

b

)
+ ucvc

(
1− e2

c

)
− (uavc + ucva) eaec

− (ubvc + ucvb) ebec − (uavb + ubva) eaeb.

(2.15)

For our gnomon problem, the relevance of the above equations is that (1)

the unit vector that points from the center of the Earth to the tip of the gnomon

is also the dual of the bivector that is parallel to the plane on which the gnomon

is erected, and (2) the direction of the Sun’s rays is r̂ (Section 2.2.3).

2.4 Observations on the Background

Below, we’ll add the subscript L

to ĝ to denote the orientation of

“our” gnomon, and have used

ĝL (t) instead of simply ĝL in

recognition of the fact that the

orientation of the gnomon on a

rotating Earth is a function of

time.

One purpose of our review was to find a specific instant at which we could

identify both of the following: the direction of the Sun’s rays, and the direction

in which our gnomon is pointing. Fig. 11, showing the geometry of the 2016

December solstice, seems to provide a good starting point. We can now attempt

to use that information to calculate, via GA, the direction of the Sun’s rays and

our own gnomon at any other instant.

To express the following additional observations more conveniently, we’ll

denote the unit vector of the direction from the Earth’s center to the tip of our
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gnomon as ĝL (t), where t is the time elapsed since the Earth was at perihelion.

We’ll also note that r̂, too, is a function of t, and write it as r̂ (t) . Similarly, α is

α (t), and β is β (t). Here, then, are the observations that might be most useful:

1. The key elements in our problem appear to be the direction of the Sun’s

rays; the ecliptic plane; the Earth’s axis of rotation; and the Earth’s

equatorial plane.

2. The ecliptic plane, equatorial plane, and direction of the Earth’s rotational

axis can all be taken as invariant.

3. So that we may use the Kepler equation and its various transformations,

we are well advised to define the time t as Kepler did. That is, t = 0 when

the Earth is at perihelion.

4. The direction of the Sun’s rays can be taken as r̂ (t).

5. From Figs. 3 and 11, we can deduce that cosα (t) = r̂ (t) · [−ĝL (t)].

6. The direction “Local north” is the projection of the Earth’s rotational

axis upon the plane that is tangent to the Earth at the point at which our

gnomon is fixed. Because of the Earth’s rotation, local north is a function

of t.

7. The gnomon’s shadow is the projection of r̂ (t) upon that same plane.

8. To find the angle β (t), given r̂ (t) and ĝL (t), we can use Eqs. (2.11) and

(2.14).

9. To find r̂ (t) at any given time, we can use Eqs. (2.1) and (2.2) .

Hence, we now have all we need for deriving formulas expressing angles

α and β for our gnomon at any time, if we can express the orientation of the

gnomon itself as a function of time.

3 Detailed Formulation of Model in GA Terms

3.1 A Still-Unresolved Detail: How to Express ĝL (t): The

Orientation of Our Gnomon as a Function of Time

One of the purposes of this document is to show one way in which we might

puzzle through a problem like the gnomon, to arrive at a workable model and

solution strategy. Therefore, rather than just present a formula for ĝL (t), we’ll

struggle with the problem a bit.
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Figure 17: Our first step in developing an expression for the orientation of “our”

gnomon at any time: making a diagram of its location and that of the solstice

gnomon, in terms of their respective latitudes and longitudes, at the instant

of the 2016 December solstice (ts). The solstice gnomon is that which points

directly at the Sun at that instant; thus, its orientation is −r̂s.

3.1.1 Finding an Idea

At this moment, our question is, “What do we want?” The answer is, “An

expression for ĝL (t).”

So: what things did we note during our review, that might be useful? Here

are three possibilities:

• Via GA, we can formulate, readily, rotations about a given axis or by a

given bivector angle.

• The Earth rotates about its axis at a constant scalar angular velocity ω.

• We identified Fig. 11 as a promising starting-point for our present task.

An additional consideration might be that we should express the location

of “our” gnomon via its latitude λ and its longitude µ.

Thinking through the above observations. we might draft something like

Fig. 17, and conceive the follow overall plan:

1. First, we’ll derive an expression for the orientation of “our” gnomon at

the instant of the 2016 December solstice. We’ll denote that instant by ts.

Thus, the vector that gives the orientation of our gnomon at that instant

is ĝ (ts).

2. To find an expression for the orientation of our gnomon at any other time

t, we’ll rotate ĝ (ts) about the Earth’s axis via GA.
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Figure 18: The second step in developing an expression for the orientation of our

gnomon at any time: moving the solstice gnomon along the solstice meridian to

the latitude (λ) of our gnomon. The vector of the gnomon in that position is

ĝsλ.

We should make a note to

ourselves here, reminding us that

we’ll want to follow the usual

convention of expressing

northern latitudes as positive

angles, and southern latitudes as

negative ones.

Now, let’s flesh out that plan a bit. At this stage, we may alternate between

thinking in terms of “moving gnomons around on the globe” in Fig. 17, and

rotating the corresponding vectors. So: how can we identify ĝ (ts)? One way is

to recognize that we could do so by moving the solstice gnomon along meridians

of longitude and parallels of longitude to the position of our gnomon. Thus, we

would first slide the solstice gnomon along the solstice meridian, to the latitude

(λ) of our gnomon (Fig. 18). In GA terms, that movement is the rotation of the

vector −r̂s through the scalar angle λ− (−η) , = λ+ η. We’ll call the resulting

vector ĝsλ, and identify the bivector for that rotation later.

Another note to ourselves: we’ll

follow the usual convention of

expressing eastern longitudes as

positive angles, and western

longitudes as negative ones.

Having “moved the solstice gnomon to our latitude”, and called the result

ĝsλ, we’ll now slide ĝsλ along our latitude until it stands on our meridian of

longitude, µ (Fig. 19). In GA terms, that movement is a rotation by the scalar

angle µ − µs about the Earth’s axis. The result will be the vector that we

called ĝ (ts): the orientation of our gnomon at the instant of the 2016 December

solstice.

Now, to find the orientation of our gnomon at any other instant, t, we just

rotate ĝ (ts) about the Earth’s axis by the angle ω (t− ts).

3.1.2 Expressing the Necessary Rotations via GA

How might we formulate in GA terms the rotations that we described in the

previous section? For the “sliding” along the solstice meridian, a reasonable

idea is to define a unit bivector M̂s that’s parallel to the plane containing

that meridian, and whose positive sense is that of the rotation from −r̂s to
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Figure 19: The third step in developing an expression for the orientation of “our”

gnomon at any time: moving the ĝsλ gnomon along latitude λ longitude (µ) of

our gnomon, whose orientation at the instant of the 2016 December solstice is

ĝ (ts).

n̂c. Having defined M̂s in this way, ĝsλ is the rotation of −r̂s through the

bivector angle M̂s (λ+ η). (That is, through the scalar multiple λ + η of the

unit bivector M̂s.) The representation of that rotation ([13], p. 89) would then

be Z1 = e−M̂s (λ+ η) /2.

For the rotations about the Earth’s axis, we’ll define a unit vector Q̂ that’s

parallel to the equator. What should we choose as Q̂’s positive sense? The

direction of the Earth’s rotation about its axis is a good choice, all the more

so because the dual of a Q̂ that’s so defined is none other than the vector

n̂c. Using this definition of Q̂, the representation of the rotation of ĝsλ from

the solstice meridian to our own meridian to the longitude of our meridian at

time ts is Z2 = e−Q̂ (µ− µs) /2. The subsequent rotation of our meridian (and

thus of our gnomon) from the time ts to any other time t is represented by

Z3 = e−Q̂ω (t− ts) /2.

Putting the preceding ideas together, we see that ĝL (t) is the result of the

rotation of −r̂s by the composite of the three above-described rotations. As

explained in [13], p. 125, the representation of that composite rotation is the

product Z3Z2Z1 of their respective rotations:

Z3Z2Z1 =
{
e−Q̂ω (t− ts) /2

}{
e−Q̂ (µ− µs) /2

}{
e−M̂s (λ+ η) /2

}
=
{
e−Q̂ [µ− µs + ω (t− ts)] /2

}{
e−M̂s (λ+ η) /2

}
.

To make that result more convenient, we’ll define k (µ, t) = µ− µs + ω (t− ts),
giving

Z3Z2Z1 =
{
e−Q̂k (µ, t) /2

}{
e−M̂s (λ+ η) /2

}
Because that result is the representation of the rotation that produces ĝL (t)
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from −r̂s,

ĝL (t) =
{
e−Q̂k (µ, t) /2

}{
e−M̂s (λ+ η) /2

}
[−r̂s]

{
eM̂s (λ+ η) /2

}{
eQ̂k (µ, t) /2

}
The above having been said, we’re under no obligation to calculate ĝL (t)

directly from r̂s. Depending upon the complexity of the expressions that arise

when we make substitutions for r̂s, M̂s, and Q̂, we might instead choose to first

derive an expression for ĝsλ from r̂s,

ĝsλ =
{
e−M̂s (λ+ η) /2

}
[−r̂s]

{
eM̂s (λ+ η) /2

}
, (3.1)

after which we would calculate ĝL (t) via

ĝL (t) =
{
e−Q̂k (µ, t) /2

}
[ĝsλ]

{
eQ̂k (µ, t) /2

}
. (3.2)

Other reasons for choosing this route include the possibility of gaining greater

insight into the relationships between the calculations and the physical phenom-

ena, and the desire to check the results of each step to make sure that they make

sense.

3.1.3 Formulating the Bivectors Needed for the Rotations

In the previous section, we used GA’s capacities for formulating rotations to

express ĝL (t) in terms of the vector r̂s (= r̂ (ts)) and the time-invariant bivectors

M̂s and Q̂. Now, let’s develop expressions for those bivectors in terms of the

vectors â and b̂ of the Earth’s Kepler orbit. Our purpose in doing so is to

facilitate the numerical calculations of α (t) and β (t) that we will wish to make.

â ∧ b̂ = âb̂ because â ⊥ b̂. In Fig. 20, we introduce the unit bivector Ĉ
(

= â ∧ b̂ = âb̂
)

. It’s parallel

to the ecliptic plane, and its positive sense is in the direction of the Earth’s

orbit. Thus, for any time t,

r̂ (t) =
[
e−Ĉθ(t)/2

]
[â]
[
eĈθ(t)/2

]
= âeĈθ(t), (3.3)

because â is parallel to Ĉ. In particular, r̂s = âeĈθs .

We decided in the previous section to define M̂s as the unit bivector that is

parallel to the solstice meridian, and whose positive sense is in the direction of the

rotation from −r̂s n̂c . Examining Figs. 21–22, we see that those characteristics

are possessed by the bivector (−r̂s) ∧ ĉ, where ĉ is Ĉ’s dual. Comparing Figs.

20 and 22, we also see that the set of vectors
{

â, b̂, ĉ
}

forms a right-handed,

orthonormal basis—quite a favorable development for our purposes. Thus, we

define

M̂s = (−r̂s) ∧ ĉ

= −r̂sĉ, (3.4)
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Figure 20: Schematic diagram of the Earth’s Kepler orbit, showing the vectors

â and b̂ along with the unit bivector Ĉ
(

= â ∧ b̂ = âb̂
)

. The arrow next to

the square representing Ĉ shows Ĉ’s positive sense. Because that sense is in the

direction of the Earth’s orbit, r̂ (t) = âeĈθ(t).

Figure 21: Definition of the vector ĉ that we will use in formulating M̂s. The

set of vectors
{

â, b̂, ĉ
}

forms a right-handed, orthonormal basis.
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Figure 22: Illustrating the use of ĉ, which is Ĉ’s dual. The bivector (−r̂s) ∧ ĉ

has the characteristics that we specified earlier for M̂s. The arrow next to the

square representing M̂s shows M̂s’s positive sense.

because r̂s ⊥ ĉ.

With M̂s defined in this way, Q̂, which we need for rotations about the

Earth’s axis, is just the rotation of Ĉ through the bivector angle M̂η Fig. 23:

Q̂ =
[
e−M̂sη/2

] [
Ĉ
] [
eM̂sη/2

]
. (3.5)

3.1.4 Celestial North: n̂c

From Fig. 23, we can see that the rotation from ĉ to n̂c is the same as that from

M̂s to Q̂. Therefore, having formulated M̂s, we can now express n̂c readily as

the rotation of ĉ by the bivector angle M̂sη:

n̂c =
[
e−M̂sη/2

]
[ĉ]
[
eM̂sη/2

]
. (3.6)

We could also formulate it as dual of Q̂.

3.2 Our Model, in Words and in GA Terms

We developed our model and defined its variables in the course of “puzzling-

through” the gnomon problem, so we should take time now to summarize and

organize (Table 2 ) before moving on to derive equations for the angles α and β.
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Table 2: Summary of the quantities in our model.

Symbol Description{
â, b̂, ĉ

}
The right-handed, orthonormal basis of our reference system.

t Time, per Kepler equation. When t = 0, Earth is at perihelion.

ts Value of t at the instant of the 2016 December solstice.

η The angle of the equator with respect to the ecliptic. Positive if

in the positive sense of M̂s.

λ Our (that is, our gnomon’s) latitude. Positive in the Northern

Hemisphere, negative in the Southern Hemisphere.

µ Our longitude, with East longitudes taken as positive.

µs Value of µ for the “solstice meridian”: that which faced the Sun

directly at the December 2016 solstice.

ω Angular velocity of the Earth’s rotation about its own axis.

k (µ, t) = µ− µs + ω (t− ts).

r (t) Vector from Sun’s center to Earth’s center at time t. Direction

of Sun’s rays is approximated as equal to r̂ (t).

r̂s = r̂ (ts).

θ (t) Angle from â to r̂ (t). Positive in the direction of the Earth’s

orbit, and thus if in the positive sense of Ĉ.

θs = θ (ts) .

Ĉ Unit bivector
(

= âb̂
)

of the ecliptic plane. Assumed constant.

M̂s Unit bivector of the solstice meridian. Equal to −r̂sĉ.

Q̂ Unit bivector of Earth’s equatorial plane. Assumed constant;

equal to rotation of Q̂ by M̂sη

n̂c “Celestial North”: the direction from the center of the Earth to

the Geographic North Pole.

n̂L (t) “Local north”: the direction, at t, of “north” at our location.

ĝsλ Direction, at time ts, of a gnomon at latitude λ, longitude µs.

ĝL (t) Direction, t, from base of our gnomon to its tip. This vector is

T̂ (t)’s dual.

T̂ (t) Unit bivector parallel to the plane that, at time t, is tangent to

Earth’s surface at base of our gnomon. T̂ (t)’s dual is ĝL (t).

ŝ (t) Direction, at time t, from base of our gnomon to tip of its

shadow.

α (t) Angle between gnomon’s shaft and Sun’s rays at instant t.

β (t) Angle of rotation from n̂L (t) to ŝ (t).
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Figure 23: Q̂ is the rotation of Ĉ through the bivector angle M̂η.

Our model is that the Earth is perfectly spherical, and orbits the Sun

according to the Kepler model. The direction of the Sun’s rays is the same as

the direction r̂ (t) from the center of the Sun to the center of the Earth. The

Earth’s equatorial plane is inclined by angle η (assumed constant) with respect

to the ecliptic. The Earth rotates at constant angular velocity ω. At the instant

of the 2016 December solstice, the longitude that faces the Sun directly is µs.

Our gnomon is located at latitude λ, longitude µ, and casts a shadow upon a

plane that is tangent to the Earth at that same location.

We wish to be able to calculate, for any time t, the angle between the Sun’s

rays and the gnomon, and the angle between the direction “local north” and

the gnomon’s shadow.

In GA terms (Fig. 24), vector ĝL (t) rotates at constant angular velocity

Q̂ω. The vector r̂ (t) varies with time according to the Kepler equation ((2.1)).

Vector n̂c is the dual of Q̂. Vector ĝL (t) is the dual of bivector T̂ (t).

We wish to be able to calculate, for any time t, (1) the angle between the

vectors ĝL (t) and r̂ (t), and (2) the angle of rotation from n̂c’s projection upon

T̂ (t) to r̂ (t)’s projection upon T̂ (t).

4 Derivations of Formulas

Several of the derivations use formulas that are developed in Section 2.3.2, and

implemented in Maxima in [14].
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Figure 24: The model, in GA terms. Arrows show the positive senses of the

bivectors Q̂ and T̂. Vector ĝL (t) rotates at constant angular velocity Q̂ω. The

vector r̂ (t) varies with time according to the Kepler equation ((2.1)). Vector n̂c
is the dual of Q̂. Vector ĝL (t) is the dual of bivector T̂ (t). Not shown is the

angle α between −ĝL (t) and r̂ (t).

4.1 r̂ (t), r̂s

This vector is the rotation of â through the bivector angle Ĉθ (t). Thus (Eq.

(3.3)),

r̂ (t) = aeĈθ(t)

= âeâb̂θ(t)

= â
[
cos θ (t) + âb̂ sin θ (t)

]
= â cos θ (t) + b̂ sin θ (t) . (4.1)

Specifically,

r̂s = r̂ (ts) = â cos θs + b̂ sin θs. (4.2)

4.2 M̂s

From Eq. (3.4), M̂s = −r̂sĉ. Thus, using the expression for −r̂s from Eq. (4.2),

M̂s = −
[
â cos θs + b̂ sin θs

]
ĉ

= −b̂ĉ sin θs − âĉ cos θs. (4.3)
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M̂s is also the rotation of the bivector ĉâ through the bivector angle Q̂θs:

M̂s =

[
e
−Cθs

2

]
[ĉâ]

[
e
C
θs
2

]
=
[
cos θs

2
− âb̂ sin θs

2

]
[ĉâ]

[
cos θs

2
+ âb̂ sin θs

2

]
= −b̂ĉ sin θs − âĉ cos θs.

4.3 n̂c

This vector is the rotation of ĉ by the bivector angle M̂sη. We’ll calculate n̂c
using Eqs. (2.7) and (2.8). To do so, we need to write the representation of the

rotation by M̂sη in the form fo −
(
âb̂fab + b̂ĉfbc + âĉfac

)
:

e
−M̂s

η

2 = cos η

2
−
(
−b̂ĉ sin θs − âĉ cos θs

)
sin η

2

= cos η

2
−
(
b̂ĉ sin θs sin η

2
− âĉ cos θs sin η

2

)
, (4.4)

so fo = cos η

2
, fab = 0, fbc = − sin θs sin η

2
, and fac = − cos θs sin η

2
. Therefore,

n̂c = â sin(η) cos θs

+ b̂ sin(η) sin θs

+ ĉ cos(η).

(4.5)

4.4 ĝsλ

The vector ĝsλ is the rotation of −r̂s by the bivector angle M̂s (η + λ). As was

the case for calculating n̂c, we need to write the representation of our rotation

in the form fo −
(
âb̂fab + b̂ĉfbc + âĉfac

)
:

e
−M̂s

η + λ

2 = cos η + λ

2
−
(
−b̂ĉ sin θs − âĉ cos θs

)
sin η + λ

2

= cos η + λ

2
−
(
b̂ĉ sin θs sin η + λ

2
− âĉ cos θs sin η + λ

2

)
, (4.6)

so fo = cos η + λ

2
, fab = 0, fbc = − sin θs sin η + λ

2
, and fac = − cos θs sin η + λ

2
.

Therefore,

ĝsλ = â [− cos θs cos (η + λ)]

+ b̂ [− sin θs cos (η + λ)]

+ ĉ [sin (η + λ)] .

(4.7)

36



4.5 Q̂

Q̂ is Ĉ rotated through the bivector angle M̂sη:

Q̂ =

[
e
−M̂s

η

2

] [
Ĉ
] [
e
M̂s

η

2

]
=
[
cos η

2
−
(
−b̂ĉ sin θs − âĉ cos θs

)
sin η

2

] [
âb̂
] [

cos η

2
+
(
−b̂ĉ sin θs − âĉ cos θs

)
sin η

2

]
= âb̂ cos η + b̂ĉ cos θs sin η − âĉ sin θs sin η. (4.8)

4.6 Our Gnomon’s Direction: ĝL (t)

This vector is the rotation of ĝsλ by the bivector angle Q̂k (µ, t). The pa-

rameters of our rotation are f0 = cos
k (µ, t)

2
, fab = cos η sin

k (µ, t)

2
, fbc =

cos θs sin(η) sin
k (µ, t)

2
, fac = − sin θs sin(η) sin

k (µ, t)

2
. Therefore, from Eqs.

(2.7) and (2.8),

ĝL (t) = â {sin θs cosλ sin k (µ, t)− cos θs cos (η + λ) + cos θs cos η cosλ [1− cos k (µ, t)]}

+b̂ {sin θs cos η cosλ [1− cos k (µ, t)]− sin θs cos (η + λ)− cos θs cosλ sin k (µ, t)}

+ĉ {sin (η + λ)− sin η cosλ [1− cos k (µ, t)]}.

(4.9)

4.7 The Angle α (t)

As noted in Section 2.4, α (t) is the angle of rotation from -ĝL (t) to r̂ (t). A

gnomon is a device for producing shadows, which occur only when the Sun is

above the horizon; in other words, when the inner product of -ĝL (t) · r̂ (t) is

positive. Having ensured that, the only characteristic of α (t) that interests us is

its magnitude. Therefore, all we need to know is α (t)’s cosine, which is equal to

the inner product û · v̂. Therefore, cosα (t) = [-ĝL (t)] · r̂ (t). We’ve developed

expressions for these two vectors (Eqs. (4.9) and (4.1), we find that

cosα = {cos (η + λ)− cos η cosλ [1− cos k (µ, t)]} cos (θt − θs)
+ cosλ sin (θt − θs) sin k (µ, t) .

(4.10)

Some comments upon that equation: At the instant ts of the December

solstice, θ (t) = θs. In addition, for points along the meridian that’s aligned with

the Sun at that time (e.g., points along Ms), k (µ, t) = 0. Therefore, along that

meridian and at that instant, Eq. (4.10) reduces to cosα (ts) = cos (η + λ).

Does our answer make sense?Does that result make sense?
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4.8 The Angle β (t)

We will find β (t) from its sine and cosine, which we will calculate according to

Section 2.3.3.

4.8.1 Denominator of the sine and cosine of β (t)

This denominator is the product of ‖n̂c · T̂ (t) ‖ and ‖ [r̂ (t)] · T̂ (t) ‖ . We’ll

treat each of those quantities in turn.

The norm ‖n̂c · T̂ (t) ‖ . To calculate this norm, we will use Eq. (2.12),

which expresses the norm of a vector’s projection upon a bivector in terms of

that bivector’s dual. In our case, the dual of T̂ (t) is ĝL (t) (Eq. (4.9)), and

n̂c is given by Eq. (4.3). The result, as given in [14], is ‖n̂c · T̂ (t) ‖ = |cosλ|.
However, |cosλ| = cosλ in our model because −π/2 ≤ λ ≤ π/2 . Thus,

‖n̂c · T̂ (t) ‖ = cosλ. (4.11)

Does our answer make sense? A surprisingly simple result. Does it make sense? Let’s look at Fig. 14. We

can deduce that the angle between n̂c and T̂ (t) is either λ or 180◦ + λ. Because

n̂c is a unit vector, the magnitude of RT̂ (n̂c) (i.e., of n̂c’s projection upon T̂ (t))

is indeed cosλ. As explained in [12], n̂c · T̂ (t) evaluates to a vector that is a

90◦ rotation of RT̂ (n̂c), with no change in the latter’s magnitude. Therefore,

‖n̂c · T̂ (t) ‖ = ‖RT̂ (n̂c) ‖ = cosλ.

The norm ‖ [r̂ (t)] · T̂ (t) ‖ As shown in [14], using (4.1)’s expression for r̂ (t)

in Eq. (2.12) yields a result that I was not able to reduce to a simple form. Nor

was I able to do so by starting from the observation that because r̂ (t) is a unit

vector,

‖ [r̂ (t)] · T̂ (t) ‖2 = 1− {[r̂ (t)] · [ĝL (t)]}2 ,

Does our answer make sense?

What should ‖ [r̂ (t)] · T̂ (t) ‖ be

when t = ts? Note that when

t = ts, θt = θs and k (µ, t) = 0.

from which ( [14])

‖ [r̂ (t)] · T̂ (t) ‖2= 1− {[cos η cosλ (1− cos k (µ, t))− cos (η + λ)] cos [θt − θs]

− cosλ sin k (µ, t) sin [θ (t)− θs]}2.
(4.12)

4.8.2 Numerators of sinβ (t) and cosβ (t)

Eqs. (4.5), (4.1), and (4.9) (respectively) present the expressions that we

developed for n̂c, r̂ (t), and ĝL (t). To calculate the numerators of sinβ (t) and

cosβ (t), we will substitute those expressions for (respectively)u, v, and ê in

Eqs. (2.11) and (2.14). Those equations are implemented in [14], which is the

source from which we cite the results presented in the paragraphs that follow.
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Note that cosλ (which is ‖n̂c · T̂ (t) ‖, Eq. (4.11)) is a factor of every term

in both numerators.

Numerator of sinβ (t) As given in [12], the numerator of sinβ (t) is

Numerator of sinβ (t) = cosλ cos k (µ, t) sin [θ (t)− θs]
− cos η cosλ sin k (µ, t) cos [θ (t)− θs] .

(4.13)

Numerator of cosβ (t) As given in [12], the numerator of sinβ is

Numerator of cosβ (t) = cosλ sinλ sin k (µ, t) sin [θ (t)− θs]
+ cos η cosλ sinλ cos k (µ, t) cos [θ (t)− θs]
+ sin η cos2 λ cos [θ (t)− θs] .

(4.14)

5 Validation of the Model and Calculations

We’ll validate the model and calculations in two ways: (1) by deducing, from

mathematical analyses of our equations for α (t) and β (t), the latitudes at which

solar zeniths occur on the equinoxes and solstices, and the azimuths at which

the Sun sets on those dates; and (2) by making numerical predictions of the

Sun’s azimuth and altitude as seen at specific times from Port Moresby, Papua

New Guinea, and from San Cristóbal de Las Casas, Chiapas, Mexico.

Those locations were chosen because they lie on opposite sides of the equator,

and also on opposite sides of the meridian that faces the Sun at the instant of

the December 2016 solstice. Thus, their values of λ and µ− µs are of opposite

algebraic signs (Fig. 25). For that reason, they provide a way of detecting sign

errors in our calculations. Because the two cities also lie within the Tropics of

their respective hemispheres, the Sun will be in the northern half of the sky

during one part of the year, and in the southern half during the other. That

characteristic will enable us to detect other types of errors, if present.

5.0.1 Data for Earth’s Orbit, the December 2016 Solstice, Port

Moresby, and San Cristóbal de Las Casas

The Earth and its orbit Reference [5] gives the orbit’s eccentricity (ε) as

0.1671022, and its orbital period, T , 365.242 tropical days.

The inclination of the Earth’s rotational axis is 23.44◦. At the December

solstice, the axis is pointed away from the Sun, so the algebraic sign of that angle

is positive. Thus, η = 23.44◦. Identifying the Earth’s rotational angular velocity,

ω, requires some thought. As noted in [8], the Earth rotates by slightly more

than 360◦ during one tropical day. Over the course of a full year, that slight
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Figure 25: Relative positions of the meridians of Port Moresby and San Cristóbal

de Las Casas with respect to the Greenwich Meridian and the meridian that

faces the Sun directly at the instant of the December 2016 solstice. Note that

∆µ = µ− µs.

daily excess adds up to one full rotation. Therefore, the Earth makes 366.242

rotations of 2π radians each in 365.242 tropical days, from which ω = 6.3004

radians/tropical day.

The December 2016 solstice Reference [7] found that for the December 2016

solstice, which occurred at UTC 21 December 2016 10:44:44, θs = −0.230099

radians, and ts = −12.9379 tropical days. Using the planetarium program

Stellarium ([3]), I found that the meridian of longitude that faced the Sun

directly at the instant of the solstice was E 18◦33′ (-0.32376 radians, according

to the sign convention used in our model): approximately that of Stockholm,

Sweden and Cape Town, Republic of South Africa.

Port Moresby and San Cristóbal de Las Casas According to [3], Port

Moresby’s latitude and longitude are S9◦26′35.30′′ E147◦10′46.98′′, while San

Cristóbal’s are N16◦44′12.00′′ W92◦38′18.01′′. Therefore, Port Moresby’s value

of µ− µs is +128◦37′, or 2.2450 radians, and San Cristóbal´s is -1.9406 radians.

Summary of the parameters used in validating the model Tables 3

and 4 summarize the relevant data.
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Table 3: Summary of the parameters used in validating the model. ”Days” are

tropical days. The quantity “∆µ is µ− µs.

Parameters of the Earth and its orbit

ε T, days η, radians ω, radians/day

0.16710 365.242 0.40911 6.30039

Parameters of the December 2016 solstice

Date (UTC) θs, radians ts, days µs, radians

21/12/2016

10:44:00
-0.23010 -12.938 0.32376

Parameters of Port Moresby and San Cristóbal de Las Casas

λ, radians ∆µ, radians

Port

Moresby
-0.16481 2.2450

San

Cristóbal
0.29211 -1.9406

Table 4: Times and dates of solstices and equinoxes for the year 2017, and the

number of tropical days between each event and the December 2016 solstice.

(Adapted and corrected from [7].)

Event UTC Time and date ([4]) t− ts, days

Dec. 2016 solst 21/12/2016 10:44:00 0.000

Mar. 2017 equin 20/03/2017 10:29:00 88.987

June 2017 solst 21/06/2017 04:24:00 181.736

Sept. 2017 equin 22/09/2017 20:02:00 275.388

Dec. 2017 solst 21/12/2017 16:28:00 365.239
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5.1 Predictions, from Mathematical Analyses of Formu-

las, about Solar Zeniths and the Sun’s Azimuths at

Sunrise and Sunset

For convenience, we’ll repeat Eqs. (4.10), (4.13), and (4.14) here:

cosα (t) = {cos (η + λ)− cos η cosλ [1− cos k (µ, t)]} cos (θt − θs)
+ cosλ sin (θt − θs) sin k (µ, t)

(5.1)

Numerator of sinβ (t) = cosλ cos k (µ, t) sin [θ (t)− θs]
− cos η cosλ sin k (µ, t) cos [θ (t)− θs] .

(5.2)

Numerator of cosβ (t) = cosλ sinλ sin k (µ, t) sin [θ (t)− θs]
+ cos η cosλ sinλ cos k (µ, t) cos [θ (t)− θs]
+ sin η cos2 λ cos [θ (t)− θs] .

(5.3)

We’ll also recall that from Eqs. (4.11) and (4.12), the denominator of sinβ

and cosβ is the product of cosλ and the square root of

1− {[cos η cosλ (1− cos k (µ, t))− cos (η + λ)] cos [θt − θs]

− cosλ sin k (µ, t) sin [θ (t)− θs]}2 .
(5.4)

Now, we’ll analyze those formulas to find out what they predict for the

azimuths and latitudes of sunrises, sunsets, and solar zeniths. In some cases,

we’ll also find it useful to recognize that because we measure latitudes from the

equator, the latitudes λ and π − λ are in fact the same latitude (Fig. 26).

5.1.1 On the March Equinox: Sunrise, Sunset, and the Movement

of the Shadow’s Endpoint

The two key ideas in these analyses are that the Sun’s rays are parallel to the

Earth’s surface at sunrise and sunset (thereforecosα = 0), and that at the instant

of the March equinox, θ (t)− θs = π/2. Combining those two observations, we

can deduce from Eq. (5.1) that at the instant of the March equinox sunrise,

cosλ sin k (µ, t) = 0. Thus, we have only two possibilities: either cosλ = 0, or

sin k (µ, t) = 0. The condition cosλ = 0 would mean that at the instant of an

equinox, sunset is occurring only at the north and south poles. We reject that

possibility, because we know that sunsets are never experienced at only one single,

precise latitude. Thus, we conclude that sin k (µ, t) = 0, and cos k (µ, t) = ±1.
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Figure 26: Because we measure latitudes from the equator, the latitudes λ and

π − λ are in fact the same latitude.

The azimuth at which the Sun rises and sets on the equinoxes Sub-

stituting sin k (µ, t) = 0 and θ (t) − θs = π/2 in Eq. (5.4), we find that the

denominator of sinβ is cosλ. Next, substituting sin k (µ, t) = 0, θ (t)− θs = π/2,

and cos k (µ, t) = ±1 in Eq. (5.2), the numerator of sinβ is ± cosλ. Thus,

sinβ = ±1.

What is the physical interpretation of that result? Let’s go back and

re-examine the condition sin k (µ, t) = 0. That condition is met by either of

k (µ, t) = 0 or k (µ, t) = π . Recalling that k (µ, t) = µ − µs + ω (t− ts),
we can now see that the condition sin k (µ, t) = 0 obtains at two longitudes:

µ = µs − ω (t− ts) and µ = π + [µs − ω (t− ts)]. The µ values of our two

longitudes differ by π. One inference from that result is that the two longitudes

are on opposite sides of the Earth. Another (from basic trig identities) is that

signs of those longitudes’ respective values of cos k (µ, t) are opposite in algebraic

sign. Therefore, of the two longitudes at which cosα = 0 at the instant of the

March equinox, cos k (µ, t) must be +1 for one of those longitudes, and −1 for

the other.

Following through on that result, the numerators of sinβfor those longitudes

are + cosλ and − cosλ, respectively, making their respective values of sinβ +1

and −1. Thus, one of those longitudes is experiencing sunrise, and the other is

experiencing sunset.

The preceding analysis shows that for those two longitudes, cosλ sin k (µ, t) =

0, regardless of latitude at the instant of the March equinox. That is, all latitudes

are experiencing sunrise on one of those longitudes, and all latitudes are experi-

encing sunset on the other. Similar reasoning leads to the same conclusion for
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the September equinox. This finding is familiar to anyone who drives eastward

to work around daybreak on the equinoxes: the Sun will be almost directly in

your eyes when on the drive to work in the morning, and again on the drive

home just before sunset.

The longitude that experiences sunrise at the instant of an equinox,

and the longitude that experiences sunset We’ll use the March 2017

equinox as an example. We’ve seen (above) that sin k (µ, t) = 0. Because

k (µ, t) = µ− µs + ω (t− ts) = {µ− [ω (t− ts)− µs]},

sin {µ− [ω (t− ts)− µs]} = 0, giving

sinµ cos [ω (t− ts)− µs] + cosµ sin [ω (t− ts)− µs] = 0.

That equation can be solved either algebraically or by inspection to find the

sines and cosines of the longitudes µ1 and µ2 at which the Sun is either rising

or setting:

1. sinµ1 = sin [ω (t− ts)− µs], cosµ1 = − cos [ω (t− ts)− µs];

2. sinµ2 = − sin [ω (t− ts)− µs], cosµ2 = cos [ω (t− ts)− µs] .

For the March 2017 equinox, t− ts = 88.987 days (Table 4). Using that value,

plus ω = 6.00388 radians/second (Table 3), we find that

1. sinµ1 = 0.909326 and cosµ1 = −0.416084; therefore µ1 = 114.588◦, and ;

2. sinµ2 = −0.909326 and cosµ2 = 0.416084; therefore µ2 = −65.412◦ .

By comparison, Stellarium ([3]) shows the Sun setting at longitude 114.611◦

and rising at longitude −65.387◦ at the instant of the March equinox. Note

that those values, like the ones calculated here, ignore the effects of atmospheric

refraction upon the altitude of the Sun. For more about those effects, see [15].

Trajectory of the shadow’s end point during the day of the March

equinox From Fig. 27, the length, ‖s (t) ‖, of the shadow cast by a gnomon of

height ‖g‖ is ‖g‖ tanα (t). We wish to calculate the length of s (t)’s projection

upon the direction “local north”. That length is ‖s (t) ‖ cosβ (t).

As we’ve done in previous calculations for the March equinox, let’s begin by

finding cosα (t) from Eq. (5.1). Because the quantity θ (t)− θs differs little from

π/2 throughout that day, we can take cosα (t) as cosα (t) = cosλ sin k (µ, t).

The denominator of cosβ (t) (Eq. (5.3)) simplifies to

Denominator of cosβ (t) = cosλ

√√√√√√1−

− cosλ sin k (µ, t)︸ ︷︷ ︸
=cosα(t)


2

= cosλ sinα (t) .
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Figure 27: For simplicity, we’ve written the vector s (t) and the angles α (t) and

β (t) as s, α, and β. The length, ‖s‖, of the shadow cast by a gnomon of height

‖g‖ is ‖g‖ tanα. We wish to calculate the length of s’s projection upon the

direction “local north” on the days of equinoxes.

From Eq. (5.3), the numerator of cosβ (t) on the day of the March

equinox can be taken as sinλ cosλ sin k (µ, t), which is sinλ cosα (t). There-

fore, cosβ (t) = (tanλ) / [tanα (t)]. Assembling all of these ideas, the length of

the projection of the shadow upon the direction “local north” is

‖s (t) ‖ cosβ (t) = [‖g‖ tanα (t)]

[
tanλ

tanα (t)

]
= ‖g‖ tanλ.

The interpretation of that result is that the trajectory of the end of the

gnomon’s shadow is a straight, east-west line at the distance ‖g‖ tanλ from

the base of the gnomon (Fig. 28). This striking phenomenon is one of the

well-known behaviors of the gnomon’s shadow (Section 2.1).

5.1.2 Azimuths of Sunrise and Sunset on the Solstices

We’ll begin with the December solstice. As in the previous analysis, one of the

key ideas is that cosα = 0 at sunrise and sunset. The other is that at the instant

of the December solstice, θ (t)− θs = 0 . Thus, Eq. (5.1) becomes

cos (η + λ)− cos η cosλ (1− cos k (µ, t)) = 0. (5.5)

Again because θ (t)− θs varies little during the 24-hour period surrounding

the instant of the December solstice, Eq. (5.5) should be very nearly true at

sunset and sunrise for every point on Earth throughout that period. As a

consequence of Eq. (5.5), and because θ (t)− θs = 0, the denominator of sinβ (t)
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Figure 28: On the day of an equinox, the trajectory of the end of the gnomon’s

shadow is a straight, east-west line at the distance ‖g‖ tanλ from the base of

the gnomon.

and cosβ (t) (see Eq. (5.4) and the discussion that precedes it) should differ

only slightly from cosλ throughout the day of the December solstice.

A further consequence of Eq. (5.5) can be seen by using cos (η + γ) =

cos η cos γ − sin η sin γ, then rearranging to give

cos η cosλ cos k (µ, t) = sin η sinλ. (5.6)

Using that result in Eq. (5.3), along with θ (t)− θs = 0, we obtain

Numerator of cosβ (t) = cos η cosλ sinλ cos k (µ, t) sin η cos2 λ

= [cos η cosλ cos k (µ, t)] sinλ+ sin η cos2 λ

= [sin η sinλ] sinλ+ sin η cos2 λ

= sin η;

∴ cosβ =
sin η

cosλ
, (5.7)

because the denominator of cosβ (t) is cosλ .

Now, let’s turn to sinβ (t). Its numerator (Eq. (5.2)) reduces to

Numerator of sinβ (t) = − cos η cosλ sin k (µ, t) .

We’ll use Eq. 5.6 to develop an expression for sin k(t):

cos η cosλ cos k (µ, t) = sin η sinλ;

∴ sin k (µ, t) = ±
√

1−
(

sin η sinλ

cos η cosλ

)2

= ±
√

cos2 η coss λ− sin2 η sin2 λ

cos η cosλ
.
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Confirm that sinβ (t) and

cosβ (t), as given by the

equations that we’ve developed

here, do satisfy

sin2 β (t) + cos2 β (t) = 1.

Making that substitution,

Numerator of sinβ (t) = ±
√

cos2 η coss λ− sin2 η sin2 λ;

∴ sinβ (t) = ±
√

cos2 η coss λ− sin2 η sin2 λ

cosλ
, (5.8)

because the denominator of sinβ (t) is cosλ.

How do we interpret the expressions that we’ve derived for sinβ (t) and

cosβ (t)? Because Earth’s η is positive, cosβ (t) is positive, meaning that at

sunset as well as at sunrise, the gnomon’s shadow falls to the north of the point

at which the gnomon is planted. We know that this prediction is correct, because

the Sun rises and sets south of due east on the December solstice. Of sinβ (t)’s

two values, the positive one is for sunrise (the shadow falls to the west of the

gnomon because the Sun rises in the East), and the negative is for sunset.

In the case of San Cristóbal, λ = 0.29211 radians (Table 3), and η = 0.40911

radians. Using those values in Eqs. (5.7) and (5.8), sinβ (t) = 0.90964 and

cosβ (t) = 0.41539. From the conversion formulas in Table 1, β = 1.1424 radians,

or 65.46◦.

Stellarium ([3]) shows sunrise in San Cristóbal as occurring at UTC 12:38:53

on the day of the December 2016 solstice, at which time the Sun’s azimuth

is 114◦32′25′′. The angle β between local north and the shadow cast by the

gnomon would therefore be 65◦27′35′′, which is equal to 65.46◦.

What does the change in sign of

cosβ imply about the Sun’s

position on the horizon in each

hemisphere on the dates of the

solstices?

Similar analyses for the June solstice, when θ (t)− θs = π, give the same

values of sinβ as in Eq. (5.8), but cosβ = − sin η

cosλ
.

5.1.3 Solar Zeniths on the Solstices and Equinoxes

The key fact that we will use here is that for a Solar zenith, cosα = 1.

Latitudes at which zeniths occur on the solstices We’ll consider the

December solstice first. At that instant, θ (t)− θs = 0, so that Eq. (5.1) reduces

to

cos (η + λ)− cos η cosλ (1− cos k (µ, t)) = 1.

We’ll now make a brief aside to show that that condition can be met only

if cos (η + λ) = 1. In our model, η and λ are between −π/2 and π/2. Hence,

the product cos η cosλ cannot be negative. Nor can 1− cos k (µ, t) be negative.

Thus, the term cos η cosλ (1− cos k (µ, t)) cannot be negative. As a consequence,

only if cos (η + λ) = 1 can cos (η + λ)− cos η cosλ (1− cos k (µ, t)) be equal to

1.
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Therefore, λ+ η = 0, and λ = −η. In other words, the Solar zenith on the

December solstice occurs at the southern latitude that’s equal to the Earth’s

inclination with respect to the Earth’s orbit. That prediction is confirmed by the

observation that on the date of the December solstice, the Solar zenith occurs

on the Tropic of Capricorn.

A similar analysis for the June solstice, when θ (t) − θs = π, leads to

− cos (η + λ) = 1, and thus to λ = π − η. We’ve already seen that λ = η and

λ = π − η are the same latitude (Fig. 26). Thus, our model predicts that the

Solar zenith occurs at latitude η on the June solstice, a prediction confirmed by

the fact that the zenith occurs on the Tropic of Cancer on that date.

Latitudes at which zeniths occur on the equinoxes For zeniths on the

March equinox, when θ (t)− θs = π/2, Eq. (5.1) reduces to cosλ = 1, meaning

that λ = 0. That is, the zenith occurs on the equator, as is consistent with

observations that the zeniths occur on the equator at the equinoxes. On the

September equinox, when θ (t) − θs = π/2, Eq. (5.1) reduces to − cosλ = 1;

therefore, λ = π. However, that result, too, means that the zenith occurs on the

equator (Fig. 26).

Longitudes at which solar zeniths occur on the solstices On the De-

cember solstices, θ (t) − θs is a multiple of 2π. As noted above, Solar zeniths

occur at times and places such that cosα = 1. Using this information, Eq. (5.1)

becomes

cos (η + λ)− cos η cosλ [1− cos k (µ, t)] = 1.

Using the formula for the cosine of the sum of two angles, and then simplifying,

we arrive at

− sin η sinλ+ cos η cosλ cos k (µ, t) = 1.

In the process of identifying the latitude at which the Solar zenith occurs

on the December solstice, we found that λ = −η. Therefore,

sin2 λ+ cos2 λ cos k (µ, t) = 1,

giving cos k (µ, t) = 1. Because k (µ, t) = µ−µs+ω (t− ts) = {µ− [ω (t− ts)− µs]},

cos {µ− [ω (t− ts)− µs]} = 1; thus

cosµ cos [ω (t− ts)− µs]− sinµ sin [ω (t− ts)− µs] = 1.

By inspection, the solution to that equation is sinµ = − sin [ω (t− ts)− µs],
cosµ = cos [ω (t− ts)− µs].

In the case of the December 2017 solstice (21/12/2017 16:28:00 UTC),

t− ts = 365.239 days. Using that value, plus other relevant data presented in

Table 3, sinµ = −0.923525 and cosµ = 0.383539, which are the sine and cosine

of −67.447◦. By comparison, Stellarium shows that at that time, along latitude
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S 23.44◦, the Sun’s maximum altitude was 89.995◦, at longitude −67.419◦. The

very small difference between the altitude 89.995◦ and an exact Solar zenith is

probably caused by rounding error in the given value of η and of the time of the

December solstice.

On the June solstices, θ (t)− θs is an odd-number multiple of π. Therefore,

Eq. (5.1) becomes

cos (η + λ)− cos η cosλ [1− cos k (µ, t)] = −1.

In identifying the latitude at which the Solar zenith occurs on the June solstice,

we found that λ = η. Therefore, using reasoning similar to that which we

followed for the December solstices, we arrive at

cos {µ− [ω (t− ts)− µs]} = 1, giving

cosµ cos [ω (t− ts)− µs]− sinµ sin [ω (t− ts)− µs] = −1.

By inspection, the solution to that equation is sinµ = sin [ω (t− ts)− µs],
cosµ = − cos [ω (t− ts)− µs].

In the case of the June 2017 solstice (21/06/2017 04:24:00 UTC), t− ts =

181.736 days. Using that value, plus other relevant data presented in Table

3, sinµ = 0.910524 and cosµ = −0.413457, which are the sine and cosine of

114.422◦. By comparison, Stellarium shows that at that time, along latitude N

23.44◦, the Sun’s maximum altitude was 89.994◦, at longitude 114.450◦. The

very small difference between the altitude 89.994◦ and an exact Solar zenith is

probably caused by rounding error in the given value of η and of the time of the

June solstice.

5.2 Numerical Predictions of Sun’s Azimuth and Eleva-

tion as Seen from Specific Locations at Specific Times

To obtain the values of θ (t) used in these predictions, I first employed Microsoft

Excel’s Solver tool to estimate φ (t) from Eq. (2.1)[
2π

T

]
t = φ (t)− ε sinφ (t) ,

then found θ (t) from Eq. (2.3):

θ (t) = 2 tan−1

[(
1 + ε

1− ε

)1/2

tan
φ (t)

2

]
.

Section 2.2.1 notes that the perihelion of 2017 occurred 12.93 days after the

instant of the December 2016 solstice, at which time the angle θ was 0.2301 rad

before perihelion. Thus, θs = −0.2301 rad and ts = −12.93 days.

Tables 5 and 6 compare calculated altitudes and azimuths to those obtained

via Stellarium, for three different instants in Port Moresby and San Cristóbal de

49



Las Casas. Values of β were converted to azimuths as described in Table 1. For

comparison, Table 7 shows the variation in the Sun’s altitude and azimuth, as

seen from San Cristóbal, at five-minute intervals around UTC 4 October 2071

22:30:00.

5.3 Discussion of Results from the Validations

Predictions derived from analyses of Eqs. (4.10), (4.11), (4.12), (4.13), and

(4.14) are consistent with known characteristics of sunrises, sunsets, and Solar

zeniths on solstices and equinoxes. Numerical predictions of longitudes at which

those phenomena occur on said dates are within a few hundredths of a degree of

Stellarium values.

The same is true for numerical calculations of the Sun’s azimuths and

altitudes as seen from Port Moresby and San Cristóbal de Las Casas. Except for

the azimuths of the Sun at Solar zenith (an essentially meaningless quantity), all

of the differences between calculated values and those obtained via Stellarium

are much smaller than the Sun’s changes in altitude and azimuth during five

minutes. That result is perhaps surprising, because the need to estimate the

timing of the “unperturbed” perihelion was, in itself, expected to cause errors

equal to the Sun’s changes in altitude and azimuth during five minutes ([7]).

6 Conclusions

The accuracy of our simple model’s predictions should neither surprise us nor

cause us to lose sight of our purpose. The predictions are accurate because the

Earth is indeed nearly a perfect sphere, and because (as generations of experi-

ments and observations confirm) its orbital parameters are as used herein. Our

model’s only real novelty—the use of an estimated “perturbed” perihelion—was

known from [7] to be inaccurate by five minutes or less in timings of solstices

and equinoxes; therefore, it should not have been expected to cause significant

errors in our predictions.

Our real purpose, then, was to learn how we might express the Earth’s

movements conveniently in GA terms, after which we would learn how to

manipulate the resulting expressions efficiently via GA to obtain equations

that provide the answers that we needed. The route that we followed here

was by no means the only one possible. For example, the draft version of this

document used rotations of bivectors (as opposed to vectors) almost exclusively.

I chose the result presented herein because it seemed to me to be the easiest

to follow, and to implement in Maxima and Excel. Students and teachers

experienced in using dedicated GA programs may see better ways of solving this

problem. I will be grateful for their comments, criticisms, and suggestions, which

I encourage them to post at the LinkedIn group “Pre-University Geometric
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Table 5: Comparison of Sun’s azimuths and altitudes according to atellarium,

to Those calculated from Eqs. (4.10), (4.11), (4.12), (4.13), and (4.14), as seen

from Port Moresby, Papua New Guinea on three dates in 2017. All of the

calculations are implemented in [16].

UTC 24 February 2017 02:24:32 (Solar zenith)

Azimuth Altitude

Calculated 289.16◦ 89.97◦

From Stellarium 336.76◦ 89.99◦

Calculated minus Stellarium -47.60◦ -0.02◦

UTC 19 May 2017 03:00:00

Azimuth Altitude

Calculated from 336.27◦ 58.05◦

From Stellarium 336.30◦ 58.08◦

Calculated minus Stellarium -0.03◦ -0.03◦

UTC 15 October 2017 23:00:00

Azimuth Altitude

Calculated 92.97◦ 46.38◦

From Stellarium 92.97◦ 46.36◦

Calculated minus Stellarium 0.00◦ 0.02◦
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Table 6: Comparison of Sun’s azimuths and altitudes according to Stellarium,

to those calculated from Eqs. (4.10), (4.11), (4.12), (4.13), and (4.14), as seen

from San Cristóbal de Las Casas, Chiapas, Mexico on three dates in 2017. All

of the calculations are implemented in [16].

UTC 6 May 2017 18:07:11 (Solar zenith)

Azimuth Altitude

Calculated 278.94◦ 89.97◦

From Stellarium 344.56◦ 90.00◦

Calculated minus Stellarium -65.62◦ -0.03◦

UTC 3 July 2017 18:00:00

Azimuth Altitude

Calculated 28.87◦ 82.92◦

From Stellarium 29.08◦ 82.92◦

Calculated minus Stellarium -0.21◦ 0.00◦

UTC 4 October 2017 22:30:00

Azimuth Altitude

Calculated 258.53◦ 19.74◦

From Stellarium 258.52◦ 19.77◦

Calculated minus Stellarium 0.01◦ -0.03◦

Table 7: Solar azimuths and altitudes as seen from San Cristóbal de Las Casas,

according to Stellarium, at five-minute intervals around UTC 4 October 2071

22:30:00

Time

22:20:00 22:25:00 22:30:00 22:35:00 22:40:00

Azimuth 257.61◦ 258.07◦ 258.52◦ 258.96◦ 259.39◦

Altitude 22.11◦ 20.94◦ 19.77◦ 18.59◦ 17.42◦
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Algebra” (https://www.linkedin.com/groups/8278281).
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