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ABSTRACT 

 

 
This work expounds upon a theory of peripheral-integers and peripheral-reals, integers 

and reals that in a modular number line mirror their counterparts. It illustrates the 

properties of these numbers in hopes to breathe life into research of numbers that go 

beyond infinity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Figure 1.0 

 

 

Often we may ask, is infinity the very limit of analysis. But infinity is not a number, it is 

a tool, an idea invented to assist in calculation. Infinity minus infinity is undefined. 

Because infinity operated on infinity often absorbs resulting in undefined situations is it 

really a reliable measure of the limit of all real numbers? The combined modular 

number line is a modular number line consisting of the reals and a set of numbers known 

as the peripheral-reals. The peripheral-reals extend the traditional number line past 

infinity to negative infinity. 

 
Suppose there exists an infinite set of numbers that extends beyond the largest real 

number. Let that set of numbers be denoted by 𝕌𝑛. Then let the union ℝ𝑛⋃𝕌𝑛𝔸𝑛 where 

𝔸𝑛 is the combined modular numbers and the circle formed by 𝔸𝑛 the combined 

modular number line.  
 

If x is an element of ℝ𝒏, the following holds true: 
 

lim
𝑥→∞−

𝑥 =  ∞ 

 

lim
𝑥→−∞+

𝑥 =  −∞ 

 
But what if a number system existed where infinity could be approached from the  right? 

Or if negative infinity could be approached from the left. In very short, this is what we 

will expand upon in this paper. A general illustration of this number system is visible in 

figure 1.0 
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Definition: 

If x is an element of 𝕌𝑛, the following holds true: 
 

 

lim
𝑥→∞−

𝑥 =  −∞ 

 

lim
𝑥→∞+

𝑥 =  +∞ 

 

Let us name the integers spanning from +∞ to −∞ as the peripheral-integers 𝕎𝑛. There 

behavior is illustrated in Figure 2.0.  
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FUNDAMENTAL THEOREM OF THE PERIPHERAL NUMBERS 

 

Given a peripheral integer k, k decreases as the limit of k approaches -∞ 

 

PROOF 

 

Let 

lim
𝑥→∞−

𝑥 =  −∞ 

lim
𝑥→∞+

𝑥 =  ∞ 

 

Let k be at infinity. If the limit of x to the left of infinity is approaching infinity, k-1 is 

closer to infinity and thus greater than k. In reverse, if k is at infinity, k+1 is further from 

infinity. If k+1 is further from infinity than k, k must be decreasing. 

 

THEOREM 1.0 

 

𝔸𝒏 is discontinuous at [−∞, ∞] 
 

PROOF 

 

Let 

lim
𝑥→∞−

𝑥 =  ∞ 

 

lim
𝑥→−∞+

𝑥 =  −∞ 

 

There is an asymptote at ∞ and -∞ and is therefore discontinuous. The rest of the 

proof is trivial. 

 

 

MODULAR OPERATION 

 

The modular operation on an integer divides the integer and returns the remainder. 

The modular operation operates in a cycle, repeating according to the number being 

divided. For example: 

 

1 mod 5 = 1 

2 mod 5 = 2 

3 mod 5 = 3 

4 mod 5 = 4 

5 mod 5 = 0 

6 mod 5 = 1 

7 mod 5 = 2 

And so on. 

 



So what happens if we expand the modular operation to far beyond 5, up to infinity. 

Suppose we take x mod k, where x is any integer and k is the largest integer possible. 

 

0 mod k= 0 

1 mod k = 1 

. 

. 

k-1 mod k = k-1 

 

THEOREM 2.0 

 

Any integer a mod k, where k is the largest integer, is equal to a. 

 

COROLLLARY 

 

The set of integers mod k, where k is the largest integer, is equal to the set of integers. 

 

PROOF 

 

Base Case: 

 

0 mod 1 = 0 

 

Inductive Case: 

 

If n holds, then n+1 holds 

 

n+1 mod k = n+1 

 

let n+1 = m 

 

m mod k = m 

 

If there are k integers, m divided into the largest integer must return a remainder of m.\ 

 

 

  



Now, since the set of integers is equal to the set of integers retrieved from the mod 

operation, we can map the set of integers to the set of peripheral integers. Let an integer 

defined by the mod function k be a modular integer. 

 

Letting k be the largest integer, and -k the smallest integer, for every integer there is a 

modular integer. There is a one-to-one relationship and an onto relationship, forming a 

function Gi(x) mapping the Integers to the Modular Integers 

 

Integers 

-2 -1 0 1 2 

 

Modular Integers 

-2 -1 0 1 2 

 

 

 

So we have established that the set of integeres can be mapped to the set of modular 

integers, but we still have yet to establish the existence of the peripheral-integers (and 

peripheral-reals).  

 

To establish the peripheral-integers we start with peripheral-zero, 0. Peripheral-zero 

according to our figures 1.0 and 2.0 above occurs at the halfway point between -∞ and ∞, 

on the other side of the integers. The behavior of the peripheral-reals is the opposite and 

counter-intuitive. They decrease as we progress from infinity to negative infinity, 

opposite on the circle from the integers. So, taking the largest integer k, to reach 0 we 

must add k peripheral-integers. Therefore, to reach from the largest peripheral-integer k 

to the smallest peripheral-integer, let’s call it z, we add k+z. Then to reach 0, we take 

k+z. k will be approximately infinity and z will approximately be negative infinity, 

giving us our term 0. 

 

 

Let us define a successor function succi(x) over 0.  

 

 

 

Before we can define the successor function, we have to prove that the rest of the 

peripheral-reals exist. This is a tough question. 

 

THEOREM 3.0 

 

Existence of the peripheral-integers 

 

 

 

 

m + 0 = m 

m + S(n) = S(m) + n 



PROOF 

 

Let the largest integer be denoted by k. Suppose k+1 is the largest peripheral-integer. Let 

k+1 = c. Then c-1=k which is the largest integer. If c-1 exists, then c must exist as well. 

 

With the existence of c and 0 we can now use the successor function, however, since the 

hyper-reals are decreasing in the positive direction of the integers, we have to modify  the 

successor function: 

 

 

We have established the existence of the peripheral-integers { c, c-1, c-2, …,  z } 

Now the next step is to expand the modulo for a complete modular integer plane. 

 

THEOREM 4.0 

The modular ring of integers can be expanded to include the peripheral-integers. 

 

PROOF 

 

We established before: 

 

a mod k = a. Where a is some integer and k is the largest possible integer. 

 

Now we propose: 

 

a mod k = b 

 

But what is b? And what is the new value for k since we are expanding beyond the 

integers? 

 

We need to establish a new largest number. This largest number has to take into account 

the peripheral-integers. This means interactions with the integers is a must. We will keep 

k as the largest integer, but instead, keep it as the largest integer of well, we need a name 

for this. Let us call the union of 𝕎𝑛 and ℤ𝑛: 𝕋𝑛 Let t be the largest value of 𝕋𝑛 . Then 

 

Where 𝑡 ∈  𝕋 and t is the largest of this set, 

0 mod t = 0 

1 mod t = 1 

. 

. 

. 

t mod t = 0 

t+1=t mod t = 1 

t+2=t mod t = 2 

 

etc. around the modular circle 

m - 0 = m 

m - S(n) = S(m) - n 



 

Finally, we need to prove the hardest part, that the modular number line of integers 𝕋 can 

be extended to the real number line, giving us the real numbers and the peripheral-reals. 

 

Before we can do that, we must prove some properties of the peripheral-integers. 

 

OPERATION OF ADDITION 

 

Because of the mirroring effect, addition works like subtraction since we are decreasing 

in the positive integer direction. 

m + n = q where m > n  

if m = q and m > n, m + n < q 

 

 

 

ASSOCIATIVE PROPERTY OF ADDITION 

 

(underlines left out for brevity) 

 

(a+b)+c=c+(a+b)=(b+a)+c 

 

(1 + 2) + 3 = -5 

 3+ (1+2) = 5 

(2 + 1) + 3 = -2 

This does not hold. Since the peripheral-reals are decreasing and addition of integers 

works like subtraction. 

 

 

COMMUTATIVE PROPRETY OF ADDITION 

 

(underlines left out for brevity) 

 

1 + 2 =-5  

2 + 1=-3 

 

Again, this does not hold for the same reason. 

 

COMMUTATIVE PROPERTY OF MULTIPLICATION 

 

(underlines left out for brevity) 

 

1*2 =1 + 1 = -2 

2*1= 1 + 1 = -2 

 

 

ADDITIVE IDENTITY 



 

1 + 0 = 1 

0, by definition of peripheral-integers 

 

MULTIPLICATIVE IDENTITY 

 

2 * 1 = 2 

Self-evident. There is one instance of 2. 

 

 

ASSOCIATIVE PROPERTY OF MULTIPLICATION 

 

1*(2*3) = 6 

(1*2)*3= 6 

 

Holds. 

 

INVERSE 

 

a*a-1=a-1a = e 

 

Where e is the multiplicative identity, for some number a-1, multiplied by a, equals 1. 

2 * ½ = 1.  

But what is ½? That is what we are about to prove. 

 

PROOF OF THE PERIPHERAL RATIONALS 

 

Given the peripheral-integer n, the mirroring map is as follows: 

 

M: 𝕌 → ℝ 

 

THEOREM 5.0 (MIRRORING THEOREM) 

Given any peripheral-integer, there is a corresponding integer. Given any integer there is 

a corresponding peripheral-integer. 

 

PROOF 

 

For every integer a, largest integer k, and integer b the operation 

 

a mod k = b 

 

has a one to one correspondence with mod function a,b,k 

 

a mod k =b. 

 

 



THEOREM 6.0 

For every rational number there is a rational peripheral number. For every real number 

there is a real peripheral number. 

 

PROOF 

If M: 𝕌 → ℝ holds true, then since for every integer there is a peripheral-integer, then for 

every quotient m/n in the integers, there is a corresponding quotient in the peripheral-

integers. 

 

Then for every rational number in the integers there is one in the peripheral-integers and 

for every real number there is a peripheral-real number.  

 

 

CONCLUSION 

 

We have shown that it is possible to create a model that extends beyond infinity and 

negative infinity and we have shown the behavior of this new set of numbers. The 

peripheral integers mirror the integers in a sort of topsy-turvy way. We have shown that 

the modular operation can extend the integers and reals, transforming the number line 

into a circle that inverts the operations on the integers, transforming addition into 

subtraction and creating an environment where associativity of addition doesn’t hold. We 

are certain that there is much more that can be discovered about this model of the integers 

and reals with further investigation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 


