$b^{\#}$ D - Sets and Associated Separation Axioms

N.Vithya^{*1} and P.Thangavelu^{†2}

¹Department of Mathematics,Park College of Technology, Coimbatore-641659,Tamilnadu,India ²Department of Mathematics, Karunya University, Coimbatore-641114,Tamilnadu,India

April 20, 2016

Abstract

In this paper the notion of $b^{\#}$ D-sets is introduced. Some weak separation axioms namely $b^{\#} - D_k, b^{\#} - R_0, b^{\#} - R_1$ and $b^{\#} - S_0$ are introduced and studied. Some lower separation axioms are characterized by using these separation axioms.

Keywords : $b^{\#}$ -open set, $b^{\#}$ D-sets, $b^{\#}$ - R_0 , $b^{\#}$ - R_1 , $b^{\#}$ - S_0 , $b^{\#}$ - D_k .

1 Introduction and Preliminaries

In the year 1996, Andrijivic [1] initiated the study of *b*-open sets in topology. Recently Usha Parameswari et.al.[6] introduced the notion of $b^{\#}$ -open sets and $b^{\#}$ -closed sets. The concept of *D*-sets was introduced by Tong [5] using open sets and some separation axioms are studied using this notion. Following this Keskin and Noiri [2] introduced the notion of *bD* sets and their properties are investigated. In this paper, the notion of $b^{\#}D$ sets and the associated separation axioms are investigated. Some new types of separation axioms namely $b^{\#}-R_0$, $b^{\#}-R_1$, $b^{\#}-S_0$ are also introduced using $b^{\#}$ -closure operator. The relationships with analog concepts that are available in the literature of topology are discussed.

Throughout this paper X denotes a topological space on which no separation axiom is assumed. For any subset A of X, cl(A) denotes the closure of A and int(A) denotes the interior of A in X.

Definition 1.1 A subset A of a space X is said to be (i) b-open [1] if $A \subseteq cl(int(A)) \cup int(cl(A))$. (ii)b[#]-open [6] if $A = cl(int(A)) \cup int((cl(A)))$.

^{*}nvithya.r@gmail.com

[†]ptvelu12@gmail.com

The complements of b-open and $b^{\#}$ -open sets are respectively called b-closed and $b^{\#}$ -closed sets.

Definition 1.2 [2] A subset A of a topological space X is called a bD-set if there are $U, V \in bO(X, \tau)$ such that $U \neq X$ and S = U - V.

Definition 1.3 [4] A collection m_X of subsets of X is called a minimal structure on X (briefly *m*-structure) if $\phi \in m_X$ and $X \in m_X$.

Definition 1.4 [3] A collection μ of subsets of X is called a supra topology on X if $\phi, X \in \mu$ and μ is closed under arbitrary union in which case (X, μ) is called a supra topological space or supra space.

The collection B of subsets of X is a supra basis for some supra topology μ on X if every non empty member of μ is a union of members of B. The collection of $b^{\#}$ -open sets in (X, τ) is a supra basis for a supra topology on X. We identify this supra topology on X by $\tau^{\#}$ induced by τ . The members of $\tau^{\#}$ are called *supra*[#]-open sets in (X, τ) .

The intersection of all $b^{\#}$ -closed sets of X containing A is called the $b^{\#}$ -closure of A denoted by $b^{\#}cl(A)$ and the union of all $b^{\#}$ -open sets in X contained in A is called the $b^{\#}$ -interior of A and is denoted by $b^{\#}int(A)$. The notations $bO(X,\tau)$, $bC(X,\tau)$, $b^{\#}O(X,\tau)$, $b^{\#}C(X,\tau)$, $bD(X,\tau)$ respectively denote the family of all b-open sets, b-closed sets, $b^{\#}$ -open sets, $b^{\#}$ -closed sets, bD-sets in X.

2 $b^{\#}$ - T_k Spaces

Recently Usha et.al., introduced $b^{\#}$ - T_k Spaces. In this section these separation axioms are further investigated.

Definition 2.1 [7] Let (X, τ) be a topological space. Then X is said to be

(i). $b^{\#}$ - T_0 if for any two distinct points x and y of X there exists a $b^{\#}$ -open set G such that $(x \in G \text{ and } y \notin G)$ or $(y \in G \text{ and } x \notin G)$.

(ii) $b^{\#}$ - T_1 if for any two distinct points x and y of X there exist $b^{\#}$ -open sets G and H such that $x \in G$ but $y \notin G$ and $y \in H$ but $x \notin H$.

(iii). $b^{\#}$ - T_2 if for any two distinct points x and y of X there exist disjoint $b^{\#}$ -open sets G and H such that $x \in G$ and $y \in H$.

Proposition 2.2 Let X be a topological space. If X is $b^{\#}$ - T_1 , then every singleton subset of X is $supra^{\#}$ -closed in (X, τ) .

Proof.

Suppose that X is $b^{\#}$ -T₁ and x is any point in X. Let $y \in X - \{x\}$. Then $x \neq y$. Therefore there exists a $b^{\#}$ -open set U such that $y \in U$ but $x \notin U$. Thus for each $y \in X - \{x\}$, there exists a $b^{\#}$ -open set U_y such that $y \in U_y \subseteq X - \{x\}$. Therefore $\bigcup \{U_y : y \neq x\} \subseteq X - \{x\}$ which implies that $X - \{x\} = \bigcup \{U_y : y \neq x\}$. This implies that $X - \{x\}$ is supra[#]-open and so $\{x\}$ is supra[#]-closed.

Theorem 2.3 (X,τ) is $b^{\#}$ - T_1 if and only if $b^{\#}cl \{x\} = \{x\}$ for every $x \in X$.

Proof. Assume (X, τ) is $b^{\#}$ - T_1 . Fix $x \in X$. For $y \neq x$, there exist a $b^{\#}$ -open set H with $y \in H$, $x \notin H$ that implies $H \cap \{x\} = \phi$. This proves that $y \notin b^{\#}cl\{x\}$ for every $y \neq x$. Therefore $b^{\#}cl\{x\}$ = x. Suppose $b^{\#}cl\{x\} = \{x\}$ for every $x \in X$. Let $x \neq y$. Then $y \notin b^{\#}cl\{x\}$. Then there exist a $b^{\#}$ -open set H with $y \in H, x \notin H$. Also $y \neq x$ implies $x \notin b^{\#}cl\{y\}$. Then there exist a $b^{\#}$ - T_1 -open set G with $x \in G$, $y \notin G$. Therefore (X, τ) is $b^{\#}$ - T_1 .

Theorem 2.4 Let X be a topological space. Consider the following statements.

(i) X is $b^{\#}$ -T₂.

(ii) Given x_0 , for $x \neq x_0$ in X, there is a $b^{\#}$ -open set U in X containing x_0 such that $x \notin b^{\#}cl(U)$.

(iii) For each $x \in X$, $\bigcap \{ b^{\#} cl(U) : U \text{ is } b^{\#} \text{-open in } X \text{ containing } x = \{x\}$. Then the implications $(i) \Rightarrow (ii) \Leftrightarrow (iii) \text{ hold.}$

Proof. To prove $(i) \Rightarrow (ii)$. Assume X is $b^{\#}-T_2$. Fix $x_0 \in X$. Let $x \neq x_0$. Since X is a $b^{\#}-T_2$, there exist disjoint $b^{\#}$ -open sets U and V such that $x_0 \in U$ and $x \in V$. Then X - V is $b^{\#}$ -closed. Then $U \subseteq X - V$. Since X - V is $b^{\#}$ -closed, $b^{\#}cl(U) \subseteq X - V$. If $x \in b^{\#}cl(U)$ then $x \in X - V$ which is not possible. Therefore $x \notin b^{\#}cl(U)$. Now to prove $(ii) \Rightarrow (iii)$. Suppose that for each $x \neq y$, there exist a $b^{\#}$ -open set U such that $x \in U$ and $y \notin b^{\#}cl(U)$. Then $\bigcap \{b^{\#}cl(U): U \text{ is } b^{\#}-open \text{ in } X \text{ containing } x = \{x\}$. $(iii) \Rightarrow (ii)$ follows easily.

Remark 2.5 The implication (iii) \Rightarrow (i) of Theorem 2.4 does not hold as given in the following example.

Example 2.6 In the real line R, for a < b, [a,b] is $b^{\#}$ -open, (a,b) is $b^{\#}$ -closed and all other intervals are neither $b^{\#}$ -open nor $b^{\#}$ -closed.By Example 4.10 of [6], it is easy to see that the conditions (ii) and (iii) holds in R, but R is not $b^{\#}$ -T₂.

Definition 2.7 A topological space (X, τ) is called $b^{\#}$ -symmetric if for all x and y in $X, x \in b^{\#}cl(y)$ implies $y \in b^{\#}cl(x)$.

Proposition 2.8 If X is $b^{\#}$ -symmetric and $b^{\#}$ - T_0 , then X is $b^{\#}$ - T_1 . **Proof.** Let x, y be such that $x \neq y$. Since X is $b^{\#}$ - T_2 , there is a $b^{\#}$ -open set U such that $x \in U \subseteq X - \{y\}$. Then $x \notin b^{\#}cl(\{y\})$. Since X is $b^{\#}$ -symmetric, $y \notin b^{\#}cl(\{x\})$. Therefore there is a $b^{\#}$ -open set V such that $y \in V \subseteq X - \{x\}$. This shows that X is $b^{\#}$ - T_1 .

3 $b^{\#}D$ -Sets

Definition 3.1 A subset S of a topological space X is called a $b^{\#}D$ -set if there are $b^{\#}$ -open sets U, V such that S = U - V, U is a proper subset of X.

It follows that every proper $b^{\#}$ -open subset S of X is a $b^{\#}$ D-set and a $b^{\#}$ D-set need not be $b^{\#}$ -open. In particular, the empty set is a $b^{\#}$ D-set and the whole set X is not a $b^{\#}$ D-set. Therefore the collection of all $b^{\#}$ D-sets is not a minimal structure [4] on X. The family of all $b^{\#}$ D-sets of X is denoted by $b^{\#}D(X,\tau)$. The next example shows that a $b^{\#}$ D-set need not be $b^{\#}$ -open.

Example 3.2 Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then $b^{\#}O(X, \tau) = \{\phi, \{a, c\}, \{b, c\}, X\}$ and $b^{\#}D(X, \tau) = \{\phi, \{a\}, \{b\}, \{a, c\}, \{b, c\}\}$. Then it is clear that $\{a\}$ is a $b^{\#}D$ -set but not $b^{\#}$ -open. Also the set $\{a, c\}$ is both a $b^{\#}D$ -set and a $b^{\#}$ -open set.

Remark 3.3 Every $b^{\#}D$ -set is a bD-set. But, the converse is not true as seen from the next example.

Example 3.4 Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$. Then $b^{\#}D(X, \tau) = \{\phi, \{a, b\}\}$ and $bD(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$. Then it is clear that $\{a\}$ is a bD-set but not a $b^{\#}D$ -set.

The following implication diagram holds.

 $b-\text{open} \Leftarrow b^{\#}-\text{open}$ $\downarrow \qquad \qquad \downarrow$ $bD-\text{set} \Leftarrow b^{\#}D-\text{set}$

Definition 3.5 A topological space (X, τ) is said to be

(i) $b^{\#}-D_0$ if for any pair of distinct points x and y of X there exists a $b^{\#}D$ -set of X containing x but not y or a $b^{\#}D$ -set of X containing y but not x.

(ii) $b^{\#}-D_1$ if for any pair of distinct points x and y of X there exists a $b^{\#}D$ -set of X containing x but not y and a $b^{\#}D$ -set of X containing y but not x.

(iii) $b^{\#}-D_2$ if for any pair of distinct points x and y of X there exist disjoint $b^{\#}D$ -sets F and G of X such that $x \in F$ and $y \in G$.

Proposition 3.6 For a topological space (X, τ) , the following properties hold

(i) If (X, τ) is $b^{\#}-T_k$, then it is $b^{\#}-D_k$, for k = 0, 1, 2.

(ii) If (X, τ) is $b^{\#} - D_k$, then it is $b^{\#} - D_{k-1}$, for k = 1, 2.

Proof. (i) follows from the fact that every proper $b^{\#}$ -open subset S of X is a $b^{\#}$ D-set. (ii) Suppose (X, τ) is $b^{\#}$ -D₁. Let $x \neq yinX$. Since X is $b^{\#}$ -D₁, there exist $b^{\#}$ D-sets G and H such that $x \in G$ but $y \notin G$ and $y \in H$ but $x \notin H$. Clearly $x \in G$ but $y \notin G$ or $y \in H$ but $x \notin H$. Therefore (X, τ) is $b^{\#}$ -D₀. Suppose (X, τ) is $b^{\#}$ -D₂. Let $x \neq yinX$. Since X is $b^{\#}$ -D₁ there exist disjoint $b^{\#}$ D-sets G and H such that $x \in G$ and $y \in H$. Clearly $x \in G$ but $y \notin G$ and $y \in H$ but $x \notin H$. Therefore (X, τ) is $b^{\#}$ -D₁.

Remark 3.7 The next examples show that the converses in the above proposition are not true.

Example 3.8 Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. $b^{\#}O(X, \tau) = \{\phi, \{a, c\}, \{b, c\}, X\}$ and $b^{\#}D(X, \tau) = \{\phi, \{a\}, \{b\}, \{a, c\}, \{b, c\}\}$. Then (X, τ) is $b^{\#}-D_1$ but not $b^{\#}-T_1$.

Example 3.9 Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$. $b^{\#}O(X, \tau) = \{\phi, \{a, b\}, \{b, c\}, X\}$ and $b^{\#}D(X, \tau) = \{\phi, \{a\}, \{c\}, \{a, b\}, \{b, c\}\}$. Then (X, τ) is $b^{\#}-D_2$ but not $b^{\#}-T_2$.

Volume 4 Issue 2 (November 2015) ISSN : 2277-6982

http://www.ijmes.com/

4 $B^{\#}$ - R_K -**SPACES**

Proposition 3.10 A space (X, τ) is $b^{\#}$ - D_0 if and only if it is $b^{\#}$ - T_0 .

Proof. Suppose that (X, τ) is $b^{\#}-D_0$. Let $x \neq y$ in X. Since X is $b^{\#}-D_0$, there is a $b^{\#}D$ -set G with $x \in G$ and $y \notin G$. Since G is a $b^{\#}D$ -set we have $G = U_1 - U_2$ where $U_1 \neq X$ and $U_1, U_2 \in b^{\#}O(X, \tau)$. Then we have two cases : Case(i) $y \notin U_1$ where U_1 is $b^{\#}$ -open with $x \in U_1$ and $y \notin U_1$. Case (ii) $y \in U_1$ and $y \in U_2$ where U_2 is $b^{\#}$ -open with $y \in U_2$ and $x \notin U_2$. Thus in both the cases, (X, τ) is $b^{\#}-T_0$. Conversely, if (X, τ) is $b^{\#}-T_0$, by Proposition 3.6(i), (X, τ) is $b^{\#}-D_0$.

Proposition 3.11 A space (X, τ) is $b^{\#}$ - D_1 if and only if it is $b^{\#}$ - D_2 .

Proof. Suppose that (X,τ) is $b^{\#}-D_1$. Let $x \neq y$ in X. Since X is $b^{\#}-D_1$, there exist $b^{\#}D$ -sets G_1, G_2 in X such that $x \in G_1, y \notin G_1$ and $y \in G_2, x \notin G_2$. Since G_1 and G_2 are $b^{\#}D$ -sets we have $G_1 = U_1 - U_2$ and $G_2 = U_3 - U_4$, where U_1, U_2, U_3 and U_4 are $b^{\#}$ -open sets in X. Then $x \in G_1$ implies $x \in U_1$ and $x \notin U_2$. Since $y \notin G_1$ we have Case $(i) : y \notin U_1$ Case $(ii) : y \in U_1$ and $y \in U_2$. Now $y \in G_2$ implies $y \in U_3$ and $y \notin U_4$. Since $x \notin G_2$, we have case $(iii) x \notin U_3$ case $(iv) x \in U_3$ and $x \in U_4$. From case(i) and $(iii), x \in U_1 - U_3$ and $y \in U_3 - U_1$ implies $(U_1 - U_3) \cap (U_3 - U_1) = \phi$. From case $(ii), x \in U_1 - U_2$ implies $(U_1 - U_2) \cap U_2 = \phi$. From case $(iv), x \in U_3 - U_4$ implies $(U_3 - U_4) \cap U_4 = \phi$. Therefore (X, τ) is $b^{\#}-D_2$. Converse follows from Proposition 3.6(ii).

Corollary 3.12 If (X, τ) is $b^{\#}-D_1$ then it is $b^{\#}-T_0$. **Proof.** Follows from Proposition 3.6(ii) and Proposition 3.10.

Lemma 3.13 Let (X, τ) be a topological space and $x \in X$. Then (i) if A is regular closed then A is $b^{\#}$ -open. (ii) if A is regular open then A is $b^{\#}$ -closed.

Proof. If A is regular closed then A = cl(int(A)) that implies cl(A) = cl(int(A)) and $int(cl(A)) = int(cl(int(A))) \subseteq cl(int(A))$. (ie.) $int(cl(A)) \cup cl(int(A)) = cl(int(A)) = A$. This proves (i). If A is regular open then X - A is regular closed that implies X - A is $b^{\#}$ -open and A is $b^{\#}$ -closed. This proves (i).

Proposition 3.14 Let $x \neq y$ in (X, τ) . Suppose there exists regular closed sets G and H such that (i) $x \in G, y \notin G$ (or) $y \in H, x \notin H$.

(ii) $x \in G, y \notin G$ and $y \in H, x \notin H$.

(iii) $x \in G, y \notin G, y \in H, x \notin H$ and $G \cap H = \phi$. Then

a) if (i) holds for any pair of distinct points x and y of X then (X, τ) is $b^{\#}$ -T₀.

b) if (ii) holds for any pair of distinct points x and y of X then (X, τ) is $b^{\#}$ - T_1 .

c) if (iii) holds for any pair of distinct points x and y of X then (X, τ) is $b^{\#}$ -T₂.

Proof. Follows from Lemma 3.13.

4 $b^{\#}$ - R_k -Spaces

In this section, separation axioms namely $b^{\#}-R_0$ and $b^{\#}-R_1$ are introduced and characterized.

Definition 4.1 A topological space (X, τ) is called $b^{\#}$ - R_0 if for every $b^{\#}$ -open set $U, b^{\#}cl(\{x\}) \subseteq U$ for all $x \in U$.

http://www.ijmes.com/

4 $B^{\#}-R_{K}$ -SPACES

Example 4.2 Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{c\}, \{b\}, \{a, b\}, \{b, c\}, X\}$. Then $b^{\#}O(X, \tau) = \{\phi, \{c\}, \{a, b\}, X\}$ and $b^{\#}C(X) = \{\phi, X, \{a, b\}, \{c\}\}$. It can be proved that (X, τ) is $b^{\#}-R_0$.

Example 4.3 Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then $b^{\#}O(X, \tau) = \{\phi, \{a, c\}, \{b, c\}, X\}$ and $b^{\#}C(X) = \{\phi, X, \{a\}, \{b\}\}$. It can be proved that (X, τ) is not $b^{\#}-R_0$.

Definition 4.4 A space X is a $b^{\#}$ - R_1 if for any x, y in X with $b^{\#}cl\{x\} \cap b^{\#}cl\{y\} = \phi$, there exist disjoint $b^{\#}$ -open sets U and V such that $b^{\#}cl\{x\}$ is a subset of U and $b^{\#}cl\{y\}$ is a subset of V.

Proposition 4.5 If (X, τ) is $b^{\#}-R_1$, then (X, τ) is $b^{\#}-R_0$. **Proof.** Suppose (X, τ) is $b^{\#}-R_1$. Let U be $b^{\#}$ -open such that $x \in U$. If $y \notin U$, since $x \notin b^{\#}cl \{y\}$, we have $b^{\#}cl \{x\} \neq b^{\#}cl \{y\}$. So, there exists a $b^{\#}$ -open set V such that $b^{\#}cl \{y\} \subseteq V$ and $x \notin V$ implies $y \notin b^{\#}cl \{x\}$. Thus $b^{\#}cl \{x\} \subseteq U$. Therefore (X, τ) is $b^{\#}-R_0$.

Theorem 4.6 Let X be a topological space. Then the following statements are equivalent. (i) X is $b^{\#}-R_0$. (ii) Any two distinct points of X are $b^{\#}$ -symmetric.

Proof. Suppose X is $b^{\#}-R_0$ and $x \neq y$. Let $x \in b^{\#}cl(\{y\})$ and U be any $b^{\#}$ -open set such that $y \in U$. Then $x \in U$. Since X is $b^{\#}-R_0$, every $b^{\#}$ -open set containing y contains x. This implies $y \in b^{\#}cl(\{x\})$ and therefore (X, τ) is $b^{\#}$ -symmetric. This proves $(i) \Rightarrow (ii)$. Conversely suppose X is $b^{\#}$ -symmetric. Let V be a $b^{\#}$ -open set such that $x \in V$. If $y \in b^{\#}cl(\{x\})$ then $x \in b^{\#}cl(y)$. This implies $V \cap \{y\} = \phi$. That is $y \in V$. Therefore $b^{\#}cl(\{x\}) \subseteq V$ for every $x \in V$. This proves that X is $b^{\#}-R_0$. Therefore $(ii) \Rightarrow (i)$.

The notions of $b^{\#}$ -symmetric and $b^{\#}$ - R_0 are equivalent from Definition 2.7 and Theorem 4.6.

Proposition 4.7 A topological space (X, τ) is $b^{\#} - R_0$ if and only if for every point x, y in X, $b^{\#}cl \{x\} \neq b^{\#}cl \{y\}$ implies $b^{\#}cl \{x\} \cap b^{\#}cl \{y\} = \phi$.

Proof. Suppose that (X, τ) is $b^{\#}-R_0$. Let $x, y \in X$ such that $b^{\#}cl \{x\} \neq b^{\#}cl \{y\}$. Then, there exists $z \in X$ with $z \in b^{\#}cl \{x\}$ and $z \notin b^{\#}cl \{y\}$. There exists $V \in b^{\#}O(X)$ such that $y \notin V, z \in V$, $x \in V$. Therefore $x \notin b^{\#}cl \{y\}$. Thus $x \in [X - b^{\#}cl \{y\}]$ which implies $b^{\#}cl \{x\} \subseteq [X - b^{\#}cl \{y\}]$ and $b^{\#}cl \{x\} \cap b^{\#}cl \{y\} = \phi$. Conversely, let $V \in b^{\#}O(X)$ and $x \in V$ we have to show that $b^{\#}cl \{x\} \subseteq V$. Let $y \notin V$. This implies $y \in X - V$. Then $x \neq y$ and $x \notin b^{\#}cl \{y\}$. This shows that $b^{\#}cl \{x\} \neq b^{\#}cl \{y\}$. Since $b^{\#}cl \{x\} \cap b^{\#}cl \{y\} = \phi$, $y \notin b^{\#}cl \{x\}$ and $b^{\#}cl \{x\} \subseteq V$. Therefore (X, τ) is $b^{\#}-R_0$.

Proposition 4.8 If (X,τ) is $b^{\#}-R_1$ then for $x, y \in X$ with $b^{\#}cl\{x\} \cap b^{\#}cl\{y\} = \phi$ there exist $b^{\#}$ -closed sets F_1 and F_2 such that $x \in F_1$, $y \notin F_1$, $y \in F_2$, $x \notin F_2$ and $X = F_1 \cup F_2$.

Proof. Suppose (X, τ) is $b^{\#}-R_1$. By Definition 4.4, for any x, yinX with $b^{\#}cl\{x\} \cap b^{\#}cl\{y\} = \phi$, there exist disjoint $b^{\#}$ -open sets U and V such that $b^{\#}cl\{x\} \subseteq U$ and $b^{\#}cl\{y\} \subseteq V$. Taking complement, $X - b^{\#}cl\{x\} \supseteq X - U$ and $X - b^{\#}cl\{y\} \supseteq X - V$. Let $X - U = F_1$ and $X - V = F_2$. That is $F_1 \subseteq X - b^{\#}cl\{x\}$ and $F_2 \subseteq X - b^{\#}cl\{y\}$. This shows that $x \in F_1, y \notin F_1, y \in F_2$, $x \notin F_2$. Then $U \cap V = \phi$ implies $X = F_1 \cup F_2$.

Volume 4 Issue 2 (November 2015)	ISSN : 2277-6982	·	· · · ·
http://www.ijmes.com/		5	$B^{\#}$ -S ₀ -SPACES

Proposition 4.9 Suppose (X, τ) is $b^{\#}$ - R_1 . Then for every x and y with $x \in X - b^{\#}cl\{y\}, x$ and y have disjoint $b^{\#}$ -open neighbourhoods.

Proof. Assume (X, τ) is $b^{\#}-R_1$. Fix $x \neq y$. Let $x \in X - b^{\#}cl\{y\}$. Then $b^{\#}cl\{x\} \neq b^{\#}cl\{y\}$. By using Proposition 4.7, $b^{\#}cl\{x\} \cap b^{\#}cl\{y\} = \phi$. Since (X, τ) is $b^{\#}-R_1$, $b^{\#}cl\{x\}$ and $b^{\#}cl\{y\}$ have disjoint $b^{\#}$ -open neighbourhoods. This implies x and y have disjoint $b^{\#}$ -open neighbourhoods.

5 $b^{\#}$ -S₀-Spaces

In this section we introduce a new separation axiom $b^{\#}-S_0$ and it is characterized with other separation axioms.

Definition 5.1 A topological space (X, τ) is $b^{\#}$ -S₀ if $b^{\#}$ cl(A) is $b^{\#}$ -closed for every subset A of X.

The example for a space which is $b^{\#}-S_0$ is given below.

Example 5.2 Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a, c\}, \{b, c\}, \{b\}, \{c\}, X\}$. Then $b^{\#}C(X, \tau) = \{\phi, \{b\}, \{a, c\}, X\}$. It can be proved that (X, τ) is $b^{\#}-S_0$.

The next example shows that there is a space which is not $b^{\#}-S_0$.

Example 5.3 In the real line R with the standard topology, each open interval (a, b) is $b^{\#}$ -closed where a *j* b. All other non-empty intervals are not $b^{\#}$ -closed. Let $A = \left(-\frac{1}{n}, \frac{1}{n}\right)$. Then by Example 6.6 of [6], $b^{\#}cl \{0\} = \{0\}$ is not $b^{\#}$ -closed. This shows that the set of real numbers R with standard topology is not $b^{\#}$ -S₀.

Theorem 5.4 Suppose (X, τ) is $b^{\#}$ -S₀. Then (X, τ) is $b^{\#}$ -T₁ if and only if $\{x\}$ is $b^{\#}$ -closed for every $x \in X$.

Proof. Suppose (X, τ) is $b^{\#}$ - T_1 . Then by Theorem 2.3, $b^{\#}cl\{X\} = \{x\}$. Since (X, τ) is $b^{\#}$ - S_0 , it follows that $\{x\} = b^{\#}cl\{X\}$ is $b^{\#}$ -closed. Now Suppose $\{x\}$ is $b^{\#}$ -closed for every $x \in X$. Then $b^{\#}cl\{X\} = \{x\}$ for every $x \in X$. Again by Theorem 2.3, (X, τ) is $b^{\#}$ - T_1 .

Theorem 5.5 X is $b^{\#}-S_0$ if and only if $b^{\#}int(A)$ is $b^{\#}$ -open for $A \subseteq X$. **Proof.** Assume X is $b^{\#}-S_0$. Then $b^{\#}cl(A)$ is $b^{\#}$ -closed for every subset A of X. Taking complement, $X - b^{\#}cl(A)$ is $b^{\#}$ -open that implies $b^{\#}int(X - A)$ is $b^{\#}$ -open. This shows $b^{\#}int(A)$ is $b^{\#}$ -open for $A \subseteq X$. The proof for the converse is analog.

Theorem 5.6 If (X, τ) is $b^{\#}-R_0$ and $b^{\#}-S_0$ then every $b^{\#}$ -open set is a union of $b^{\#}$ -closed sets. **Proof.** Suppose (X, τ) is $b^{\#}-R_0$ and $b^{\#}-S_0$. Let U be a $b^{\#}$ -open set. Since (X, τ) is $b^{\#}-R_0$, $b^{\#}cl\{X\} \subseteq U$ for every $x \in U$. This implies $U = \bigcup \{b^{\#}cl\{X\} : x \in U\}$. Since (X, τ) is $b^{\#}-S_0$, $b^{\#}cl\{X\}$ is $b^{\#}$ -closed for every $x \in X$. Therefore U is a union of $b^{\#}$ -closed sets.

Proposition 5.7 If a topological space (X, τ) is $b^{\#}-T_0$, $b^{\#}-R_0$ and $b^{\#}-S_0$ space then it is $b^{\#}-T_1$. **Proof.** Let x and y be two distinct points of X. Since X is $b^{\#}-T_0$, there exists a $b^{\#}$ -open set U

Volume 4 Issue	e 2 (November 2015)	155N : 2277-6982	
REFERENCES	http://www.i	jmes.com/	REFERENCES

such that $x \in U$ and $y \notin U$. Since $x \in U$ and $y \notin U$ we have $b^{\#}cl \{X\} \subseteq U$ and $y \notin b^{\#}cl \{X\}$. Take $V = X - b^{\#}cl \{X\}$. This implies $y \in V$ and $x \notin V$. Since X is $b^{\#}-S_0$, $b^{\#}cl \{X\}$ is $b^{\#}$ -closed and V is $b^{\#}$ -open. Therefore there exist $b^{\#}$ -open sets U and V containing x and y respectively, such that $y \notin U$ and $x \notin V$. This implies that X is $b^{\#}-T_1$.

Theorem 5.8 Let (X, τ) be $b^{\#}$ -S₀. Then the following are equivalent.

(i) (X, τ) is $b^{\#}-R_0$.

- (ii) For any $F \in b^{\#}C(X)$, $x \notin F$ there exists $U \in b^{\#}O(X)$ with $F \subseteq U$ and $x \notin U$.
- (iii) For $F \in b^{\#}C(X)$, $x \notin F$ the condition $F \cap b^{\#}cl\{x\}$ holds.
- (iv) For any $x \neq y$, either $b^{\#}cl\{x\} = b^{\#}cl\{y\}$ or $b^{\#}cl\{x\} \cap b^{\#}cl\{y\} = \phi$.

Proof. To prove $(i) \Rightarrow (ii)$. Suppose (X, τ) is $b^{\#} - R_0$. Let $F \in b^{\#}C(X)$, $x \notin F$. Therefore $x \in X - F$. Since X - F is $b^{\#}$ -open and (X, τ) is $b^{\#} - R_0$, $b^{\#}cl\{x\} \subseteq X - F$. Take $U = X - b^{\#}cl\{x\}$. Since X is $b^{\#} - S0$, $b^{\#}cl\{x\}$ is $b^{\#}$ -closed and U is $b^{\#}$ -open. Clearly $x \notin U$ and $X - b^{\#}cl\{x\} \supseteq F$. Therefore $F \subseteq U$. Now to prove $(ii) \Rightarrow (iii)$. Suppose $F \in b^{\#}C(X)$, $x \notin F$ there exists $U \in b^{\#}O(X)$ with $F \subseteq U$ and $x \notin U$. Since $U \in b^{\#}O(X)$, $U \cap b^{\#}cl\{x\} = \phi$ and therefore $F \cap b^{\#}cl\{x\} = \phi$. Next to prove $(ii) \Rightarrow (iv)$. Suppose that for any $x \neq y$, $b^{\#}cl\{x\} \neq b^{\#}cl\{y\}$. Then there exists $z \in b^{\#}cl\{x\}$ such that $z \notin b^{\#}cl\{y\}$ and therefore $z \notin b^{\#}cl\{x\}$. Also there exists $V \in b^{\#}O(X)$ such that $y \notin V$, $z \in V$ and $x \in V$. Therefore we have $x \notin b^{\#}cl\{x\}$ By assumption, $b^{\#}cl\{x\} \cap b^{\#}cl\{y\} = \phi$. To prove $(iv) \Rightarrow (i)$. Suppose that for any $x \neq y$, $b^{\#}cl\{x\} \cap b^{\#}cl\{y\} = \phi$. Let $V \in b^{\#}O(X)$ and $x \in V$. For any $x \neq y$, $x \in b^{\#}cl\{y\}$. This implies $b^{\#}cl\{x\} \neq b^{\#}cl\{y\}$ and $(X - V) \cap (b^{\#}cl\{x\}) = \phi$ for $y \in X - V$, $b^{\#}cl\{x\} \cap \left(\bigcup_{y \in X - V} b^{\#}cl\{y\}\right) = \phi$. Also $V \in b^{\#}O(X)$ and $y \in X - V$ implies $b^{\#}cl\{y\} \subseteq X - V$. Therefore $X - V = \bigcup_{y \in X - V} b^{\#}cl\{y\}$ and $(X - V) \cap (b^{\#}cl\{x\}) = \phi$. This implies $b^{\#}cl\{x\} \subseteq V$ and (X, τ) is $b^{\#}-R_0$.

References

- [1] D.Andrijivic, On b-open sets, Mat. Vesnik, 1996.
- [2] A.Keskin and T.Noiri, On bD-sets and associated separation axioms, Bulletin of the Iranian Math. Soc., 2009.
- [3] A.S. Mashhour, A.A. Allam, F.S. Mahmoud, F.H. Khedr, On Supra Topological spaces, *Indian J.Pure Appl. Math.*, 1983.
- [4] V. Popa and T. Noiri, On M-continuous functions, Anal. Univ.Dunarea de Jos Galati, Ser. Mat. Fiz. Mec. Teor. Fasc. II 2000.
- [5] J. Tong, A separation axioms between T_0 and T_1 , Ann. Soc. Sci. Bruxelles 1982.
- [6] R. Usha Parameswari, P.Thangavelu, On b[#]-open sets, International Journal of Mathematics Trends and Technology 2014.
- [7] R. Usha Parameswari, P.Thangavelu, On b[#]-Separation Axioms, International Journal of Applied Research 2015.