b #D - Sets and Associated Separation Axioms

N.Vithya[∗]¹ and P.Thangavelu†²

¹Department of Mathematics,Park College of Technology, Coimbatore-641659,Tamilnadu,India ²Department of Mathematics, Karunya University, Coimbatore-641114,Tamilnadu,India

April 20, 2016

Abstract

In this paper the notion of $b^{\#}$ D-sets is introduced. Some weak separation axioms namely $b^{\#}-D_k$, $b^{\#}-R_0$, $b^{\#}-R_1$ and $b^{\#}-S_0$ are introduced and studied. Some lower separation axioms are characterized by using these separation axioms.

Keywords: $b^{\#}$ -open set, $b^{\#}D$ -sets, $b^{\#}$ - R_0 , $b^{\#}$ - R_1 , $b^{\#}$ - S_0 , $b^{\#}$ - D_k .

1 Introduction and Preliminaries

In the year 1996, Andrijivic [\[1](#page-7-0)] initiated the study of b-open sets in topology. Recently Usha Parameswari et.al. [\[6](#page-7-1)] introduced the notion of $b^{\#}$ -open sets and $b^{\#}$ -closed sets. The concept of D-sets was introduced by Tong [\[5\]](#page-7-2) using open sets and some separation axioms are studied using this notion. Following this Keskin and Noiri [\[2](#page-7-3)] introduced the notion of bD sets and their properties are investigated. In this paper, the notion of $b#D$ sets and the associated separation axioms are investigated. Some new types of separation axioms namely $b^{\#}\text{-}R_0$, $b^{\#}\text{-}R_1$, $b^{\#}\text{-}S_0$ are also introduced using $b^{\#}$ -closure operator. The relationships with analog concepts that are available in the literature of topology are discussed.

Throughout this paper X denotes a topological space on which no separation axiom is assumed. For any subset A of X, $cl(A)$ denotes the closure of A and $int(A)$ denotes the interior of A in X.

Definition 1.1 A *subset* A *of a space* X *is said to be (i)* b-open [\[1\]](#page-7-0) if $A ⊂ cl(int(A)) ∪ int(cl(A))$. (iii) ^{*b*#}-open</sup> [\[6\]](#page-7-1) if $A = cl(int(A)) ∪ int((cl(A)).$

[∗]nvithya.r@gmail.com

[†]ptvelu12@gmail.com

The complements of b-open and $b^{\#}$ -open sets are respectively called b-closed and $b^{\#}$ -closed sets.

Definition 1.2 [\[2](#page-7-3)] A subset A of a topological space X is called a bD-set if there are $U, V \in$ $bO(X, \tau)$ *such that* $U \neq X$ *and* $S = U - V$ *.*

Definition 1.3 [\[4](#page-7-4)] A collection m_X of subsets of X is called a minimal structure on X (briefly *m-structure)* if $\phi \in m_X$ and $X \in m_X$.

Definition 1.4 [\[3](#page-7-5)] A collection μ of subsets of X is called a supra topology on X if ϕ , $X \in \mu$ and μ *is closed under arbitrary union in which case* (X, μ) *is called a supra topological space or supra space.*

The collection B of subsets of X is a supra basis for some supra topology μ on X if every non empty member of μ is a union of members of B. The collection of $b^{\#}$ -open sets in (X, τ) is a supra basis for a supra topology on X. We identify this supra topology on X by $\tau^{\#}$ induced by τ . The members of $\tau^{\#}$ are called $\text{supr}a^{\#}$ -open sets in (X, τ) .

The intersection of all $b^{\#}$ -closed sets of X containing A is called the $b^{\#}$ -closure of A denoted by $b \# cl(A)$ and the union of all $b \#$ -open sets in X contained in A is called the $b \#$ -interior of A and is denoted by $b^{\#}int(A)$. The notations $bO(X, \tau)$, $bC(X, \tau)$, $b^{\#}O(X, \tau)$, $b^{\#}C(X, \tau)$, $bD(X, \tau)$ respectively denote the family of all b-open sets, b-closed sets, $b^{\#}$ -open sets, $b^{\#}$ -closed sets, bD-sets in X.

$2 \quad b^{\#}\text{-}T_k \text{ Spaces}$

Recently Usha et.al., introduced $b^{\#}\text{-}T_k$ Spaces. In this section these separation axioms are further investigated.

Definition 2.1 [\[7](#page-7-6)] Let (X, τ) be a topological space. Then X is said to be

 (i) . $b^{\#}-T_0$ *if for any two distinct points* x *and* y *of* X *there exists* a $b^{\#}$ -*open set* G *such that* $(x \in G \text{ and } y \notin G)$ or $(y \in G \text{ and } x \notin G)$.

 $(iii).b$ [#]-T₁ *if for any two distinct points* x and y of X there exist b [#]-open sets G and H such *that* $x \in G$ *but* $y \notin G$ *and* $y \in H$ *but* $x \notin H$ *.*

 $(iii).b^{\#}\text{-}T_2$ *if for any two distinct points* x *and* y *of* X *there exist disjoint* $b^{\#}\text{-}open$ *sets* G *and* H such that $x \in G$ and $y \in H$.

Proposition 2.2 Let X be a topological space. If X is $b^{\#}\text{-}T_1$, then every singleton subset of X is $supra^{\#}-closed$ in (X, τ) *.*

Proof.

Suppose that X *is* $b^{\#}$ - T_1 *and* x *is any point in* X*. Let* $y \in X - \{x\}$ *. Then* $x \neq y$ *. Therefore there exists a* $b^{\#}$ -open set U such that $y \in U$ but $x \notin U$. Thus for each $y \in X - \{x\}$, there exists a $b^{\#}$ *open set* U_y *such that* $y \in U_y \subseteq X - \{x\}$. Therefore $\bigcup \{U_y : y \neq x\} \subseteq X - \{x\}$ *which implies that* $X - \{x\} = \bigcup \{U_y : y \neq x\}$. This implies that $X - \{x\}$ is supra[#]-open and so $\{x\}$ is supra[#]-closed. **Theorem 2.3** (X, τ) *is* $b^{\#}\text{-}T_1$ *if and only if* $b^{\#}\text{cl } \{x\} = \{x\}$ *for every* $x \in X$ *.*

Proof. Assume (X, τ) is $b^{\#}\text{-}T_1$. Fix $x \in X$. For $y \neq x$, there exist a $b^{\#}\text{-}open$ set H with $y \in H$, $x \notin H$ that implies $H \cap \{x\} = \phi$. This proves that $y \notin b^{\#}cl \{x\}$ for every $y \neq x$. Therefore $b^{\#}cl \{x\}$ $= x$ *. Suppose* $b \neq c \{x\} = \{x\}$ *for every* $x \in X$ *. Let* $x \neq y$ *. Then* $y \notin b \neq c \{x\}$ *. Then there exist a* $b^{\#}$ -open set H with $y \in H$, $x \notin H$. Also $y \neq x$ implies $x \notin b^{\#}cl \{y\}$. Then there exist a $b^{\#}$ - T_1 -open *set* G with $x \in G$, $y \notin G$. Therefore (X, τ) is $b^{\#}$ - T_1 .

Theorem 2.4 *Let* X *be a topological space. Consider the following statements.*

(i) X is $b^{\#}$ -*T*₂*.*

(ii) Given x_0 , for $x \neq x_0$ *in* X, there is a $b^{\#}$ -open set U *in* X containing x_0 such that $x \notin$ $b^{\#}cl(U)$.

(iii) For each $x \in X$, \bigcap { $b \# cl(U)$: U is $b \#$ -open in X containing $x = \{x\}$. Then the implications $(i) \Rightarrow (ii) \Leftrightarrow (iii) \text{ hold.}$

Proof. To prove (i) \Rightarrow (ii). Assume X is $b^{\#}\text{-}T_2$. Fix $x_0 \in X$. Let $x \neq x_0$. Since X is a $b^{\#}\text{-}T_2$, *there exist disjoint* $b^{\#}$ -open sets U and V such that $x_0 \in U$ and $x \in V$. Then $X - V$ is $b^{\#}$ -closed. *Then* $U \subseteq X - V$ *. Since* $X - V$ *is* $b^{\#}$ -closed, $b^{\#}cl(U) \subseteq X - V$ *. If* $x \in b^{\#}cl(U)$ *then* $x \in X - V$ *which is not possible. Therefore* $x \notin b^{\#}cl(U)$ *. Now to prove (ii)* \Rightarrow *(iii). Suppose that for each* $x \neq y$, there exist a $b^{\#}$ -open set U such that $x \in U$ and $y \notin b^{\#}cl(U)$. Then $\bigcap \{b^{\#}cl(U): U$ is $b^{\#}$ -open in X containing $x = \{x\}$. *(iii)* \Rightarrow *(ii)* follows easily.

Remark 2.5 *The implication (iii)* \Rightarrow *(i)* of *Theorem 2.4* does not hold as given in the following *example.*

Example 2.6 In the real line R, for $a < b$, $[a, b]$ is $b^{\#}$ -open, (a, b) is $b^{\#}$ -closed and all other *intervals are neither* b #*-open nor* b #*-closed.By Example 4.10 of [\[6](#page-7-1)], it is easy to see that the conditions (ii) and (iii) holds in* R *, but* R *is not* $b^{\#}$ - T_2 *.*

Definition 2.7 *A topological space* (X, τ) *is called* $b^{\#}$ -symmetric if for all x and y in X, x \in $b^{\#}cl(y)$ *implies* $y \in b^{\#}cl(x)$ *.*

Proposition 2.8 If X is $b^{\#}$ -symmetric and $b^{\#}$ -T₀, then X is $b^{\#}$ -T₁. **Proof.** Let x, y be such that $x \neq y$. Since X is $b^{\#}\text{-}T_2$, there is a $b^{\#}\text{-}open$ set U such that $x \in U \subseteq X - \{y\}$. Then $x \notin b^{\#}cl(\{y\})$. Since X is $b^{\#}$ -symmetric, $y \notin b^{\#}cl(\{x\})$. Therefore there *is a* $b^{\#}$ -open set *V* such that $y \in V \subseteq X - \{x\}$. This shows that X is $b^{\#}$ - T_1 .

3 b $b#D$ -Sets

Definition 3.1 *A subset* S *of a topological space* X *is called a* b #*D-set if there are* b #*-open sets* U, V such that $S = U - V$, U is a proper subset of X.

It follows that every proper $b^{\#}$ -open subset S of X is a $b^{\#}D$ -set and a $b^{\#}D$ -set need not be $b^{\#}$ -open. In particular, the empty set is a $b^{\#}$ D-set and the whole set X is not a $b^{\#}$ D-set. Therefore the collection of all $b^{\#}$ D-sets is not a minimal structure [\[4\]](#page-7-4) on X. The family of all $b^{\#}$ D-sets of X is denoted by $b^{\#}D(X, \tau)$. The next example shows that a $b^{\#}D$ -set need not be $b^{\#}$ -open.

Example 3.2 *Let* $X = \{a, b, c\}$ *and* $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ *. Then* $b#O(X, \tau) = \{\phi, \{a, c\}, \{b, c\}, X\}$ $and \, b^{\#}D(X,\tau) = \{\phi, \{a\}, \{b\}, \{a, c\}, \{b, c\}\}.$ Then it is clear that $\{a\}$ is a $b^{\#}D\text{-}set but not \, b^{\#}\text{-}open.$ Also the set $\{a, c\}$ is both a $b^{\#}D$ -set and a $b^{\#}$ -open set.

Remark 3.3 *Every* b #*D-set is a* bD*-set. But, the converse is not true as seen from the next example.*

Example 3.4 *Let* $X = \{a, b, c\}$ *and* $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$ *. Then* $b^{\#}D(X, \tau) = \{\phi, \{a, b\}\}\$ *and* $bD(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}\$ *. Then it is clear that* $\{a\}$ *is a* bD-set but *not a* b #*D-set.*

The following implication diagram holds.

 b -open \Leftarrow b[#]-open \downarrow $bD-set \leftarrow b^{\#}D-set$

Definition 3.5 *A topological space* (X, τ) *is said to be*

(*i*) $b^{\#}$ - D_0 *if for any pair of distinct points* x *and* y *of* X *there exists* a $b^{\#}$ *D-set of* X *containing* x but not y or a $b^{\#}D$ -set of X containing y but not x.

(*ii*) $b^{\#}$ - D_1 *if for any pair of distinct points* x and y of X there exists a $b^{\#}$ *D-set of* X *containing* x but not y and a $b^{\#}D$ -set of X containing y but not x.

(iii) $b^{\#}$ - D_2 *if for any pair of distinct points* x *and* y *of* X *there exist disjoint* $b^{\#}$ *D-sets* F *and* G of X such that $x \in F$ and $y \in G$.

Proposition 3.6 *For a topological space* (X, τ) *, the following properties hold*

(i) If (X, τ) *is* $b^{\#}\text{-}T_k$ *, then it is* $b^{\#}\text{-}D_k$ *, for* $k = 0, 1, 2$ *.*

(ii) If (X, τ) *is* $b^{\#}$ - D_k *, then it is* $b^{\#}$ - D_{k-1} *, for* $k = 1, 2$ *.*

Proof. *(i) follows from the fact that every proper* $b^{\#}$ -open subset S of X is a $b^{\#}D\text{-}set.$ *(ii) Suppose* (X, τ) is $b^{\#}$ -D₁. Let $x \neq \text{y}$ inX. Since X is $b^{\#}$ -D₁, there exist $b^{\#}$ D-sets G and H such that $x \in G$ *but* $y \notin G$ *and* $y \in H$ *but* $x \notin H$ *. Clearly* $x \in G$ *but* $y \notin G$ *or* $y \in H$ *but* $x \notin H$ *. Therefore* (X, τ) *is* $b^{\#}$ - D_0 *. Suppose* (X, τ) *is* $b^{\#}$ - D_2 *. Let* $x \neq \text{y}$ *inX. Since* X *is* $b^{\#}$ - D_1 *there exist disjoint* $b^{\#}$ *D-sets* G and H such that $x \in G$ and $y \in H$. Clearly $x \in G$ but $y \notin G$ and $y \in H$ but $x \notin H$. Therefore (X, τ) isb[#]-D₁.

Remark 3.7 *The next examples show that the converses in the above proposition are not true.*

Example 3.8 *Let* $X = \{a, b, c\}$ *and* $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ *.* $b^{\#}O(X, \tau) = \{\phi, \{a, c\}, \{b, c\}, X\}$ *and* $b^{\#}D(X,\tau) = \{\phi, \{a\}, \{b\}, \{a, c\}, \{b, c\}\}\$. Then (X,τ) *is* $b^{\#}$ - D_1 *but not* $b^{\#}$ - T_1 .

Example 3.9 *Let* $X = \{a, b, c\}$ *and* $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$ *.* $b^{\#}O(X, \tau) = \{\phi, \{a, b\}, \{b, c\}, X\}$ *and* $b^{\#}D(X,\tau) = \{\phi, \{a\}, \{c\}, \{a, b\}, \{b, c\}\}\$. Then (X,τ) *is* $b^{\#}$ - D_2 *but not* $b^{\#}$ - T_2 .

Volume 4 Issue 2 (November 2015) ISSN : 2277-6982

<http://www.ijmes.com/> $4 B#-R_K$ -SPACES

Proposition 3.10 *A space* (X, τ) *is* $b^{\#}$ - D_0 *if and only if it is* $b^{\#}$ - T_0 *.*

Proof. Suppose that (X, τ) is $b^{\#}$ - D_0 . Let $x \neq y$ in X. Since X is $b^{\#}$ - D_0 , there is a $b^{\#}D$ -set G with $x \in G$ and $y \notin G$. Since G is a $b \# D$ -set we have $G = U_1 - U_2$ where $U_1 \neq X$ and $U_1, U_2 \in b^{\#}O(X, \tau)$. Then we have two cases : Case(i) $y \notin U_1$ where U_1 is $b^{\#}$ -open with $x \in U_1$ *and* $y \notin U_1$ *. Case (ii)* $y \in U_1$ *and* $y \in U_2$ *where* U_2 *is* $b^#$ -*open with* $y \in U_2$ *and* $x \notin U_2$ *. Thus in both the cases,* (X, τ) *is* $b^{\#}\text{-}T_0$ *. Conversely, if* (X, τ) *is* $b^{\#}\text{-}T_0$ *, by Proposition 3.6(i),* (X, τ) *is* $b^{\#}$ - D_0 .

Proposition 3.11 *A space* (X, τ) *is* $b^{\#}$ - D_1 *if and only if it is* $b^{\#}$ - D_2 *.*

Proof. Suppose that (X, τ) is $b^{\#}\text{-}D_1$. Let $x \neq y$ in X. Since X is $b^{\#}\text{-}D_1$, there exist $b^{\#}D\text{-}sets$ G_1, G_2 in X such that $x \in G_1$, $y \notin G_1$ and $y \in G_2$, $x \notin G_2$. Since G_1 and G_2 are $b^{\#}D$ -sets we have $G_1 = U_1 - U_2$ and $G_2 = U_3 - U_4$, where U_1, U_2, U_3 and U_4 are $b^{\#}$ -open sets in X. Then $x \in G_1$ *implies* $x \in U_1$ *and* $x \notin U_2$ *. Since* $y \notin G_1$ *we have Case* (*i*) : $y \notin U_1$ *Case* (*ii*) : $y \in U_1$ *and* $y \in U_2$ *. Now* $y \in G_2$ *implies* $y \in U_3$ *and* $y \notin U_4$ *. Since* $x \notin G_2$ *, we have case (iii)* $x \notin U_3$ *case (iv)* $x \in U_3$ *and* $x \in U_4$ *. From case(i) and (iii),* $x \in U_1 - U_3$ *and* $y \in U_3 - U_1$ *implies* $(U_1 - U_3) \cap (U_3 - U_1)$ $= \phi$ *. From case (ii),x* $\in U_1 - U_2$ *implies* $(U_1 - U_2) \cap U_2 = \phi$ *. From case (iv),* $x \in U_3 - U_4$ *implies* $(U_3 - U_4) \cap U_4 = \phi$. Therefore (X, τ) is $b^{\#}$ -D₂. Converse follows from Proposition 3.6(ii).

Corollary 3.12 *If* (X, τ) *is* $b^{\#}$ - D_1 *then it is* $b^{\#}$ - T_0 *.* Proof. *Follows from Proposition 3.6(ii) and Proposition 3.10.*

Lemma 3.13 Let (X, τ) be a topological space and $x \in X$. Then (i) if A is regular closed then A *is* $b^{\#}$ -open. *(ii) if* A *is regular open then* A *is* $b^{\#}$ -closed.

Proof. If A is regular closed then $A = cl(int(A))$ that implies $cl(A) = cl(int(A))$ and $int(cl(A))$ $= int(cl(int(A))) \subseteq cl(int(A))$ *.* (ie.) $int(cl(A)) \cup cl(int(A)) = cl(int(A)) = A$ *. This proves (i).* If A is regular open then $X - A$ is regular closed that implies $X - A$ is $b^{\#}$ -open and A is $b^{\#}$ -closed. *This proves (ii).*

Proposition 3.14 Let $x \neq y$ in (X, τ) . Suppose there exists regular closed sets G and H such that (i) $x \in G$ *,* $y \notin G$ (or) $y \in H$ *,* $x \notin H$ *.*

 (ii) $x \in G$ *,* $y \notin G$ *and* $y \in H$ *,* $x \notin H$ *.*

 (iii) $x \in G$ *,* $y \notin G$ *,* $y \in H$ *,* $x \notin H$ *and* $G \cap H = \phi$ *. Then*

a) if (i) holds for any pair of distinct points x and y of X then (X, τ) is $b^{\#}$ -T₀.

b) if (ii) holds for any pair of distinct points x and y of X then (X, τ) is $b^{\#}\text{-}T_1$.

c) if (iii) holds for any pair of distinct points x and y of X then (X, τ) is $b^{\#}$ - T_2 .

Proof. *Follows from Lemma 3.13.*

$4 \quad b^{\#}$ - R_k -Spaces

In this section, separation axioms namely $b^{\#}\text{-}R_0$ and $b^{\#}\text{-}R_1$ are introduced and characterized.

Definition 4.1 *A topological space* (X, τ) *is called* $b^{\#}$ - R_0 *if for every* $b^{\#}$ -open set U, $b^{\#}cl(\lbrace x \rbrace) \subseteq U$ *for all* $x \in U$ *.*

<http://www.ijmes.com/> $4 B^{\#}$ - R_K -SPACES

Example 4.2 Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{c\}, \{b\}, \{a, b\}, \{b, c\}, X\}$. Then $b \# O(X, \tau) =$ $\{\phi, \{c\}, \{a, b\}, X\}$ and $b# C(X) = \{\phi, X, \{a, b\}, \{c\}\}\$. It can be proved that (X, τ) is $b^{\#}$ -R₀.

Example 4.3 Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then $b^{\#}O(X, \tau) = \{\phi, \{a, c\}, \{b, c\}, X\}$ *and* $b# C(X) = \{\phi, X, \{a\}, \{b\}\}\$. It can be proved that (X, τ) *is not* $b^{\#}$ -R₀.

Definition 4.4 *A space* X *is a* $b^{\#}\text{-}R_1$ *if for any* x, y *in* X with $b^{\#}cl\{x\} \cap b^{\#}cl\{y\} = \phi$, there exist *disjoint* $b^{\#}$ -open sets U and V such that $b^{\#}cl \{x\}$ is a subset of U and $b^{\#}cl \{y\}$ is a subset of V.

Proposition 4.5 *If* (X, τ) *is* $b^{\#}$ - R_1 *, then* (X, τ) *is* $b^{\#}$ - R_0 *.* **Proof.** Suppose (X, τ) is $b^{\#}\text{-}R_1$. Let U be $b^{\#}\text{-}open$ such that $x \in U$. If $y \notin U$, since $x \notin b^{\#}\text{cl } \{y\}$, $we \; have \; b# cl \{x\} \neq b# cl \{y\}.$ So, there exists a $b#$ -open set V such that $b# cl \{y\} \subseteq V$ and $x \notin V$ *implies* $y \notin b^{\#}cl \{x\}$ *. Thus* $b^{\#}cl \{x\} \subseteq U$ *. Therefore* (X, τ) *is* $b^{\#}$ *-R*₀*.*

Theorem 4.6 *Let* X *be a topological space. Then the following statements are equivalent. (i)* X *is* $b^{\#}$ - R_0 . *(ii)* Any two distinct points of X are $b^{\#}$ -symmetric.

Proof. Suppose X is $b^{\#}\text{-}R_0$ and $x \neq y$. Let $x \in b^{\#}\textit{cl}(\{y\})$ and U be any $b^{\#}\text{-}open$ set such that $y \in U$. Then $x \in U$. Since X is $b^{\#}$ -R₀, every $b^{\#}$ -open set containing y contains x. This implies $y \in b^\#cl(\lbrace x \rbrace)$ and therefore (X, τ) is $b^\#$ -symmetric. This proves $(i) \Rightarrow (ii)$. Conversely suppose X *is* $b^{\#}$ -symmetric. Let V be a $b^{\#}$ -open set such that $x \in V$. If $y \in b^{\#}cl(\lbrace x \rbrace)$ then $x \in b^{\#}cl(y)$. This *implies* $V \cap \{y\} = \phi$. That is $y \in V$. Therefore $b^{\#}cl(\{x\}) \subseteq V$ for every $x \in V$. This proves that X is $b^{\#}$ - R_0 . Therefore (ii) \Rightarrow (i).

The notions of $b^{\#}$ -symmetric and $b^{\#}$ - R_0 are equivalent from Definition 2.7 and Theorem 4.6.

Proposition 4.7 *A topological space* (X, τ) *is b*[#]- R_0 *if and only if for every point* x, y *in* X *,* $b# cl \{x\} \neq b# cl \{y\}$ *implies* $b# cl \{x\} \cap b# cl \{y\} = \phi$.

Proof. Suppose that (X, τ) is $b^{\#}\text{-}R_0$. Let $x, y \in X$ such that $b^{\#}\text{cl } \{x\} \neq b^{\#}\text{cl } \{y\}$. Then, there $exists z \in X \text{ with } z \in b^{\#}cl \{x\} \text{ and } z \notin b^{\#}cl \{y\}.$ There exists $V \in b^{\#}O(X)$ such that $y \notin V, z \in V$, $x \in V$. Therefore $x \notin b^{\#}cl \{y\}$. Thus $x \in [X - b^{\#}cl \{y\}]$ which implies $b^{\#}cl \{x\} \subseteq [X - b^{\#}cl \{y\}]$ and $b \# cl \{x\} \cap b \# cl \{y\} = \phi$. Conversely, let $V \in b \# O(X)$ and $x \in V$ we have to show that $b^{\#}cl\{x\} \subseteq V$ *. Let* $y \notin V$ *. This implies* $y \in X - V$ *. Then* $x \neq y$ and $x \notin b^{\#}cl\{y\}$ *. This shows* $that\ b# cl \{x\} \neq b# cl \{y\}$. Since $b# cl \{x\} \cap b# cl \{y\} = \phi$, $y \notin b# cl \{x\}$ and $b# cl \{x\} \subseteq V$. Therefore (X, τ) *is b*[#]-R₀.

Proposition 4.8 *If* (X, τ) *is* $b^{\#}\text{-}R_1$ *then for* $x, y \in X$ *with* $b^{\#}\text{cl} \{x\} \cap b^{\#}\text{cl} \{y\} = \phi$ *there exist* $b^{\#}$ -closed sets F_1 and F_2 such that $x \in F_1$, $y \notin F_1$, $y \in F_2$, $x \notin F_2$ and $X = F_1 \cup F_2$.

Proof. Suppose (X, τ) is $b^{\#}\text{-}R_1$. By Definition 4.4, for any $x, \text{yin}X$ with $b^{\#}\text{cl }\{x\} \cap b^{\#}\text{cl }\{y\}$ $=\phi$, there exist disjoint $b^{\#}$ -open sets U and V such that $b^{\#}cl\{x\} \subseteq U$ and $b^{\#}cl\{y\} \subseteq V$. Taking *complement,* $X - b^{\#}cl\{x\} \supseteq X - U$ *and* $X - b^{\#}cl\{y\} \supseteq X - V$ *. Let* $X - U = F_1$ *and* $X - V =$ *F*₂*.* That is $F_1 \subseteq X - b^{\#}cl \{x\}$ and $F_2 \subseteq X - b^{\#}cl \{y\}$. This shows that $x \in F_1$, $y \notin F_1$, $y \in F_2$, $x \notin F_2$ *. Then* $U \cap V = \phi$ *implies* $X = F_1 \cup F_2$ *.*

<http://www.ijmes.com/> $5 \quad B^{\#}\text{-}S_0\text{-}SPACES$

Proposition 4.9 *Suppose* (X, τ) *is* $b^{\#}\text{-}R_1$ *. Then for every* x and y with $x \in X - b^{\#}\text{cl } \{y\}$ *,x and* y *have disjoint* b #*-open neighbourhoods.*

Proof. Assume (X, τ) is $b^{\#}\text{-}R_1$. Fix $x \neq y$. Let $x \in X - b^{\#}cl \{y\}$. Then $b^{\#}cl \{x\} \neq b^{\#}cl \{y\}$. By *using Proposition 4.7,* $b# cl$ {x} ∩ $b# cl$ {y} = ϕ *. Since* (X, τ) *is* $b# -R_1$ *,* $b# cl$ {x} *and* $b# cl$ {y} *have disjoint* b #*-open neighbourhoods. This implies* x *and* y *have disjoint* b #*-open neighbourhoods.*

$5\overline{)}$ $b^{\#}$ -S₀-Spaces

In this section we introduce a new separation axiom $b^{\#}\text{-}S_0$ and it is characterized with other separation axioms.

Definition 5.1 *A topological space* (X, τ) *is* $b^{\#}\text{-}S_0$ *if* $b^{\#}\text{-}cl(A)$ *is* $b^{\#}\text{-}closed$ *for every subset A of X*.

The example for a space which is $b^{\#}$ -S₀ is given below.

Example 5.2 *Let* $X = \{a, b, c\}$ *and* $\tau = \{\phi, \{a, c\}, \{b, c\}, \{b\}, \{c\}, X\}$ *. Then* $b# C(X, \tau) = \{\phi, \{b\}, \{a, c\}, X\}$ *. It can be proved that* (X, τ) *is* $b^{\#}$ -S₀.

The next example shows that there is a space which is not $b^{\#}$ -S₀.

Example 5.3 In the real line R with the standard topology, each open interval (a, b) is $b^{\#}$ -closed where a *i* b. All other non-empty intervals are not $b^{\#}$ -closed. Let $A = \left(-\frac{1}{n}, \frac{1}{n}\right)$. Then by Example 6.6 of [\[6\]](#page-7-1), $b \# cl$ {0} = {0} *is not* $b \#$ -closed. This shows that the set of real numbers R with standard *topology is not* $b^{\#}$ - S_0 *.*

Theorem 5.4 Suppose (X, τ) is $b^{\#}\text{-}S_0$. Then (X, τ) is $b^{\#}\text{-}T_1$ if and only if $\{x\}$ is $b^{\#}\text{-closed}$ for *every* $x \in X$.

Proof. Suppose (X, τ) is $b^{\#}\text{-}T_1$. Then by Theorem 2.3, $b^{\#}cl\{X\} = \{x\}$. Since (X, τ) is $b^{\#}\text{-}S_0$, it *follows that* $\{x\} = b^{\#}cl\{X\}$ *is* $b^{\#}$ -closed. Now Suppose $\{x\}$ *is* $b^{\#}$ -closed for every $x \in X$. Then $b^{\#}cl\{X\} = \{x\}$ for every $x \in X$. Again by Theorem 2.3, (X, τ) is $b^{\#}$ - T_1 .

Theorem 5.5 X is $b^{\#}$ -S₀ if and only if $b^{\#}int(A)$ is $b^{\#}$ -open for $A \subseteq X$. **Proof.** Assume X is $b^{\#}-S_0$. Then $b^{\#}cl(A)$ is $b^{\#}-closed$ for every subset A of X. Taking complement, $X-b^{\#}cl(A)$ *is* $b^{\#}$ -open that implies $b^{\#}int(X-A)$ *is* $b^{\#}$ -open. This shows $b^{\#}int(A)$ *is* $b^{\#}$ -open for $A \subseteq X$. The proof for the converse is analog.

Theorem 5.6 If (X, τ) is $b^{\#}$ -R₀ and $b^{\#}$ -S₀ then every $b^{\#}$ -open set is a union of $b^{\#}$ -closed sets. **Proof.** Suppose (X, τ) is $b^{\#}\text{-}R_0$ and $b^{\#}\text{-}S_0$. Let U be a $b^{\#}\text{-}open$ set. Since (X, τ) is $b^{\#}\text{-}R_0$, $b^{\#}cl\{X\} \subseteq U$ for every $x \in U$. This implies $U = \bigcup \{b^{\#}cl\{X\} : x \in U\}$. Since (X, τ) is $b^{\#}\text{-}S_0$, $b^{\#}cl$ {X} *is* $b^{\#}$ -closed for every $x \in X$. Therefore U *is* a union of $b^{\#}$ -closed sets.

Proposition 5.7 If a topological space (X, τ) is $b^{\#}\text{-}T_0$, $b^{\#}\text{-}R_0$ and $b^{\#}\text{-}S_0$ space then it is $b^{\#}\text{-}T_1$. **Proof.** Let x and y be two distinct points of X. Since X is $b^{\#}\text{-}T_0$, there exists a $b^{\#}\text{-}open$ set U

such that $x \in U$ and $y \notin U$. Since $x \in U$ and $y \notin U$ we have $b \# cl \{X\} \subseteq U$ and $y \notin b \# cl \{X\}$. *Take* $V = X - b \# cl \{X\}$. This implies $y \in V$ and $x \notin V$. Since X is $b \# \text{-}S_0$, $b \# cl \{X\}$ is $b \# \text{-closed}$ and V is $b^{\#}$ -open. Therefore there exist $b^{\#}$ -open sets U and V containing x and y respectively, *such that* $y \notin U$ *and* $x \notin V$ *. This implies that* X *is* $b^{\#}$ - T_1 *.*

Theorem 5.8 *Let* (X, τ) *be* $b^{\#}$ -S₀. Then the following are equivalent.

(i) (X, τ) *is* $b^{\#}$ - R_0 .

- (*ii*) For any $F \in b^{\#}C(X)$, $x \notin F$ there exists $U \in b^{\#}O(X)$ with $F \subseteq U$ and $x \notin U$.
- (*iii*) For $F \in b^{\#}C(X)$, $x \notin F$ the condition $F \cap b^{\#}cl\{x\}$ holds.

(iv) For any $x \neq y$, either $b \# cl \{x\} = b \# cl \{y\}$ or $b \# cl \{x\} \cap b \# cl \{y\} = \phi$.

Proof. To prove $(i) \Rightarrow (ii)$. Suppose (X, τ) is $b^{\#}\text{-}R_0$. Let $F \in b^{\#}\mathcal{C}(X)$, $x \notin F$. Therefore $x \in X - F$ *. Since* $X - F$ *is* $b^{\#}$ -open and (X, τ) *is* $b^{\#}$ - R_0 , $b^{\#}cl\{x\} \subseteq X - F$ *. Take* $U = X - b^{\#}cl\{x\}$ *. Since* X *is* $b^{\#}$ -*S0,* $b^{\#}c$ *l* $\{x\}$ *is* $b^{\#}$ -closed and *U is* $b^{\#}$ -open. Clearly $x \notin U$ and $X - b^{\#}c$ l $\{x\} \supseteq F$. *Therefore* $F \subseteq U$ *. Now to prove* (ii) \Rightarrow (iii). Suppose $F \in b^{\#}C(X)$, $x \notin F$ there exists $U \in b^{\#}O(X)$ *with* $F ⊆ U$ *and* $x \notin U$ *. Since* $U ∈ b#O(X)$ *,* $U ∩ b# cl$ { x } = $φ$ *and therefore* $F ∩ b# cl$ { x } = $φ$ *. Next to prove (iii)* \Rightarrow *(iv). Suppose that for any* $x \neq y$, $b \# cl \{x\} \neq b \# cl \{y\}$. Then there exists $z \in b \# cl \{x\}$ *such that* $z \notin b \# cl \{y\}$ *and therefore* $z \notin b \# cl \{x\}$ *. Also there exists* $V \in b \# O(X)$ *such that* $y \notin V$ *,* $z \in V$ and $x \in V$. Therefore we have $x \notin b^{\#}cl \{y\}$. By assumption, $b^{\#}cl \{x\} \cap b^{\#}cl \{y\} = \phi$. To *prove (iv)* \Rightarrow *(i). Suppose that for any* $x \neq y$, $b \# cl \{x\} \cap b \# cl \{y\} = \phi$ *. Let* $V \in b \# O(X)$ *and* $x \in V$ *. For any* $x \neq y$, $x \in b^{\#}cl \{y\}$. This implies $b^{\#}cl \{x\} \neq b^{\#}cl \{y\}$. Since $b^{\#}cl \{x\} \cap b^{\#}cl \{y\} = \phi$ $for y \in X - V, b \# cl \{x\} \cap (\bigcup_{y \in X - V} b \# cl \{y\}) = \phi.$ Also $V \in b \# O(X)$ and $y \in X - V$ *implies* $b# cl \{y\} \subseteq X - V$. Therefore $X - V = \bigcup_{y \in X - V} b# cl \{y\}$ and $(X - V) \cap (b# cl \{x\}) = \phi$. This *implies* $b^{\#}cl\{x\} \subseteq V$ *and* (X, τ) *is* $b^{\#}$ - R_0 *.*

References

- [1] D.Andrijivic, On b-open sets, *Mat. Vesnik*, 1996.
- [2] A.Keskin and T.Noiri, On bD-sets and associated separation axioms, *Bulletin of the Iranian Math. Soc.,* 2009.
- [3] A.S. Mashhour, A.A. Allam, F.S. Mahmoud, F.H. Khedr, On Supra Topological spaces, *Indian J.Pure Appl. Math.,* 1983.
- [4] V. Popa and T. Noiri, On M-continuous functions, *Anal. Univ.Dunarea de Jos Galati, Ser. Mat. Fiz. Mec. Teor. Fasc. II* 2000.
- [5] J. Tong, A separation axioms between T⁰ and T1, *Ann. Soc. Sci. Bruxelles* 1982.
- [6] R. Usha Parameswari, P.Thangavelu, On b #-open sets, *International Journal of Mathematics Trends and Technology* 2014.
- [7] R. Usha Parameswari, P.Thangavelu, On b #-Separation Axioms, *International Journal of Applied Research* 2015.