A Clear Trend in the Mass-Radius Relationship Concerning Stellar Evolution

Jeffrey J. Wolynski Jeffrey.wolynski@yahoo.com April 14, 2018 Rockledge, FL 32955

Abstract: Data was obtained from the Kepler Space Telescope and through various media to plot the trend in the mass-radius relationship of stars as they evolve. The trend is that as they lose mass and evolve, they shrink in diameter. This is predicted by stellar metamorphosis, as stellar evolution is planet formation itself.

The nebular hypothesis and all accretion theories cannot explain anything. It is suggested to notice that stars cool, shrink and lose mass becoming what are called "planets/exoplanets". The trend is clear.

Star	Radius/Jupiters	Mass/Jupiters
Jupiter	1	1
Earth	0.09	0.003
Neptune	0.346	0.054
Kepler-419 b	1.11	2.71
Wasp 144 b	0.85	0.44
HAT P 2 b	0.951	8.74
CoRoT 33 b	1.1	59.2
CoRoT 15 b	1.12	63.4
GJ 570 D	0.855	42.5
EPIC 219388192 b	0.937	36.5
NLTT 41135	1.13	33.7
WISE 1217+16 A b	0.96	22
Kepler 57 b	0.2	18.86
HN Peg b	1.1	16
WISE 0458+6434 b	1.01	13
GJ 229 B	0.468	21
Kapteyn's Star	3	274
TRAPPIST 1	1.1	80
Wolf 359	1.6	90
Barnard's Star	1.96	144
Proxima Centauri	1.5	122
Kepler 42	2.4	220
Kepler 445	2.1	180
Kepler 1649	2.5	220
K2-28	2.8	201
Kepler 1646	2.6	240
GJ 1214	2.16	150
GJ 1132	2.07	181
Y7 Cet	1.68	130

We can even stretch it out to make sure that it is even clearer, in fact, crystal clear, that stars can be traced all the way back to earlier stages of evolution.

Sun	10	1000
K06893	4.6	480
K06904	7.4	770
K06910	5.5	570
K06918	9.3	950
K06942	13.8	1230
K07034	6.6	690
K07009	8.4	880
K07003	10.7	1050
K07005	11.3	1070
K07040	12	1120
K07059	17.7	1600
K2-14	3.86	433
K07272	12.5	1160
Kepler 249	3.8	400
Kepler 560	3.3	340
HATS 27	17.4	1415
Kepler 1104	14.1	1300
HAT P 34	14.5	1360

The bunched up stars that the very bottom left are the most evolved. Astronomers call those planets and brown dwarfs. They are expanded in the first diagram above this one. Most data was collected on this page:

http://iopscience.iop.org/0004-637X/822/2/86/suppdata/apj523473t5_mrt.txt

and this one:

https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblSearch/nph-tblSearchInit?app=ExoTbls&config=exomultpars

and of course Wikipedia.

It is suggested to discard the nebular hypothesis and big bang.

Addition to the graph. The author has recently been accused of cherry-picking data. (As of May, 2018). So more data was added on the next pages, for a total of 141 stars. As well as what the graph looks like on the very last page. It is not really necessary to add any more. It is obvious what is going on here. The dogma is old, crusty, moldy bread and needs to be thrown in the trash.

Star	Radius/Jupiters	Mass/Jupiters
Jupiter	1	1
Earth	0.09	0.003
Neptune	0.346	0.054
Kepler-419 b	1.11	2.71
Wasp 144 b	0.85	0.44
HAT P 2 b	0.951	8.74
CoRoT 33 b	1.1	59.2
CoRoT 15 b	1.12	63.4
GJ 570 D	0.855	42.5
EPIC 219388192	0.937	36.5
b		
NLTT 41135	1.13	33.7
WISE 1217+16	0.96	22
Ab		
Kepler 57 b	0.2	18.86
HN Peg b	1.1	16
WISE	1.01	13
0458+6434 b		
GJ 229 B	0.468	21
Kapteyn's Star	3	274
TRAPPIST 1	1.1	80
Wolf 359	1.6	90
Barnard's Star	1.96	144
Proxima	1.5	122
Centauri		
Kepler 42	2.4	220
Kepler 445	2.1	180
Kepler 1649	2.5	220
K2-28	2.8	201
Kepler 1646	2.6	240
GJ 1214	2.16	150
GJ 1132	2.07	181
YZ Cet	1.68	130
Sun	10	1000
K06893	4.6	480
K06904	7.4	770

K06910	5.5	570
K06918	9.3	950
K06942	13.8	1230
K07034	6.6	690
K07009	8.4	880
K07003	10.7	1050
K07005	11.3	1070
K07040	12	1120
K07059	17.7	1600
K2-14	3.86	433
K07272	12.5	1160
Kepler 249	3.8	400
Kepler 560	3.3	340
HATS 27	17.4	1415
Kepler 1104	14.1	1300
HAT P 34	14.5	1360
K00023	14.8	1310
K00024	11.5	1100
K00082	7.4	800
K00227	5.9	620
K00249	3.3	330
K00314	5.3	560
K00326	6.5	650
K00455	6.2	650
K00463	3.3	340
K00588	6.9	730
K00604	8.6	890
K00612	7.9	850
K00778	5.7	600
K00781	4.9	510
K00812	5.3	540
K00815	8.8	920
K01334	9	940
K01422	3.7	380
K02006	4.9	510
K02156	3.4	350
K02685	4.3	450
K02704	4.2	430
K02793	5.3	550
K02811	6.7	710
K02873	5.8	600

K02874	8.8	920
K02983	5	530
K03085	9.6	980
K03094	5	520
K03119	3.4	350
K03138	3.6	360
K03144	4.3	460
K03389	9.7	980
K03609	9.3	950
K03712	5.8	610
K03920	6.6	690
K03932	8.4	870
K04087	5.3	550
K04252	5.7	590
K04290	3	280
K04427	5.2	540
K04472	4.5	470
K04533	1.3	100
K04538	17.6	1450
K04578	14.8	1310
K04589	15	1290
K04601	15.3	1330
K04733	7.5	790
K04746	7.3	770
K04795	7.2	760
K04928	4.7	500
K04975	12.4	1160
K05108	15.8	1360
K05327	2.5	240
K05662	2.8	270
K06335	12.9	1190
K06444	4.9	510
K06705	4.7	480
K06716	8.2	850
K06750	9.3	950
K06757	10.5	1040
K06766	10.4	1030
K06786	10.1	1010
K06799	6.2	640
K06839	3.4	340
K06880	10.1	1010

K06881	10.2	1010
K07019	15.4	1330
K07093	13.3	1210
K07135	16.4	1400
K07155	16.9	1420
K07190	17.5	1630
K07206	16.5	1360
K07209	11.3	1090
K07258	11.3	1100
K07289	11.1	1080
K07290	17.5	1590
K07344	18.1	1500
K07367	17.1	1430
K07392	10.8	1060
K07425	19.2	1550
K07436	19.9	1610
K07440	13.8	1240
K07559	15.3	1320
K07602	14.2	1240
K00132	14.4	1280
K00158	14.6	1270
K00286	17.8	1590
K00705	19.2	1580
K01075	18.1	1460
K01178	18.9	1540
K01414	18.7	1610
K01474	15.9	1440
K01487	16.2	1380

Extended graph on the next page. If the accusers want to step up to the plate and take a swing, I assure you they will strike out. There couldn't be a more flawless trend in mass-radius of stars as they cool and die, becoming "exoplanets/planets".

