Related to Fermat's Last theorem:The quadratic formula of the equation $X^{n-1} \mp X^{n-2}Y + X^{n-3}Y^2 \mp ... + Y^{n-1} = Z_2^n$ $\binom{n}{2}(nZ_2^n)$ in the cases $n = 3$, 5 and 7

> Nguyen Van Quang Hue - Vietnam, 04-2018

Abstract

We give some quadratic formulas (including Euler' and Dirichlet's formula in [1],[2]) of the equation $X^{n-1} \mp X^{n-2}Y + X^{n-3}Y^2 \mp ... + Y^{n-1} = Z_2^n(nZ_2^n)$ in the cases $n = 3.5$ and 7 for finding a solution in integer.

The equation $X^{n-1} \mp X^{n-2}Y + X^{n-3}Y^2 \mp \dots + Y^{n-1} = Z_2^n$ always has a solution such as : $X = a(a^{n-1} \mp a^{n-2}b + a^{n-3}b^2 \mp ... + b^{n-1})$ $Y = b(a^{n-1} \mp a^{n-2}b + a^{n-3}b^2 \mp ... + b^{n-1})$ $Z_2 = a^{n-1} \mp a^{n-2}b + a^{n-3}b^2 \mp \dots + b^{n-1}$ X,Y and Z_2 have a common factor = $a^{n-1} \mp a^{n-2}b + a^{n-3}b^2 \mp ... + b^{n-1}$

Below we consider the case X,Y and Z_2 are relative prime and X,Y are odd for $n = 3.5$ and 7.

1 The quadratic formulas of the equation $X^2 - XY + Y^2 = 1$ Z_2^3 X^3_2 (related equation $X^3 + Y^3 = Z^3$; $Z_1 = X + Y$)

1a.

$$
x^2 - xy + y^2 = z_2^3 \tag{1}
$$

 $(x + y)$ is not divisible by 3)

Write $x = u + v$, $y = u - v$, then: $x^2 - xy + y^2 = u^2 + 3v^2$ $u =$ $x + y$ 2 is not divisible by 3, consider the equation $u^2 + 3v^2 = z_2^3$ and z_2 can be written as $z_2 = a + 3b$ $z_2^3 = (a+3b)^3 = a(a-9b)^2 + 27b(a-b)^2$ select $u_1^2 = a(a - 9b)^2$, $v_1^2 = 9b(a - b)^2$ then a and b are the square, write : $a = c^2$, $b = d^2$ it gives: $u_1^2 = c^2(c^2 - 9d^2)^2, v_1^2 = 9d^2(c^2 - d^2)^2$ then:

$$
u_1 = c(c^2 - 9d^2)
$$
 (2)

$$
v_1 = 3d(c^2 - d^2)
$$
 (3)

and $z_2 = (c^2 + 3d^2)$ 1b.

> $x^2 - xy + y^2 = 3z_2^3$ (4)

 $x + y$ is divisible by 3

 $u =$ $x + y$ 2 is divisible by 3,write $u = 3u'$ then : $u^2 + 3v^2 = 3^2u'^2 + 3v^2$ $x^2 - xy + y^2 = u^2 + 3v^2 = 3^2u^2 + 3v^2 = 3(3u^2 + v^2)$ Consider the equation $3(3u^2 + v^2) = 3z_2^3$ So $(3u^2 + v^2) = z_2^3$ And by the same way, we obtain: $v'_1 = c(c^2 - 9d^2)$ as $u_1, u'_1 = 3d(c^2 - d^2)$ as v_1 and $z_2 = (c^2 + 3d^2)$ $x = u + v = 3u' + v$, $y = u - v = 3u' - v$. If u, v is the one solution, then:

$$
u' = \frac{(m^2 - 3n^2)u + 6mnv}{3n^2 + m^2}
$$
\n(5)

$$
v' = \frac{2mnu + (3n^2 - m^2)v}{3n^2 + m^2}
$$
\n⁽⁶⁾

are also solution: $u'^2 + 3v'^2 = u^2 + 3v^2$

2 The quadratic formulas of the equation $X^4 - X^3Y + Y^4Y$ $X^2Y^2 - XY^3 + Y^4 = Z_2^5$ $Z^5_2(\text{related equation}\,\,X^5+Y^5=Z^5;$ $Z_1 = X + Y$

2a.

$$
x^4 - x^3y + x^2y^2 - xy^3 + y^4 = z_2^5 \tag{7}
$$

 $x + y$ is not divisible by 5

Write $x = p + q$, $y = p - q$, then: $x^4 - x^3y + x^2y^2 - xy^3 + y^4 = p^4 + 10p^2q^2 + 5q^4 = p^4 + 10p^2q^2 + 25q^4 - 20q^4 = (p^2 + 5q^2)^2 - 5(2q^2)^2$ $p =$ $x + y$ 2 is not divisible by 5, consider the equation: $(p^2 + 5q^2)^2 - 5(2q^2)^2 = z_2^5$ let $u = p^2 + 5q^2$ and $v = 2q^2$ then $z_2^5 = u^2 - 5v^2$ and z_2 can be written as $z_2 = a - 5b$ $z_2^5 = (a - 5b)^5 = a(a^2 + 50ab + 125b^2)^2 - 5^3b(a^2 + 10ab + 5b^2)^2$ select $u_1^2 = a(a^2 + 50ab + 125b^2)^2$, $v_1^2 = 5^2b(a^2 + 10ab + 5b^2)^2$ then a and b are the square, write : $a = c^2$, $b = d^2$ it gives: $u_1^2 = c^2(c^4 + 50c^2d^2 + 125d^4)^2$ $v_1^2 = 5^2 d^2 (c^4 + 10c^2 d^2 + 5d^4)^2$ then: $u_1 = c(c^4 + 50c^2d^2 + 125d^4)$) (8)

$$
v_1 = 5d(c^4 + 10c^2d^2 + 5d^4)
$$
\n(9)

and $z_2 = c^2 - 5d^2$

2b.

$$
x^4 - x^3y + x^2y^2 - xy^3 + y^4 = 5z_2^5 \tag{10}
$$

 $x + y$ is divisible by 5

 $p =$ $x + y$ 2 is divisible by 5, write $p = 5p'$, so $p^4 + 10p^2q^2 + 5q^4 = (5p)'^4 + 10(5p)'^2q^2 + 5q^4 =$ $5(125p^{\prime 4} + 50p^{\prime 2} + q^4)$ $5(125p^4 + 50p^2 + q^4) = 5(625p^4 + 50p^2 + q^4 - 500p^4) = 5[(q^2 + 25p^2)^2 - 5(10p^2)^2]$ Consider the equation: $5[(q^2 + 25p^2)^2 - 5(10p^2)^2] = 5z_2^5$ So $(q^2 + 25p^2)^2 - 5.(10p^2)^2 = z_2^5$ Let $u = q^2 + 25p'^2, v = 10p'^2$ then $z_2 = c^2 - 5d^2$ and u, v are given by (8);(9).

If u, v is the one solution, then:

$$
u' = \frac{(m^2 + 5n^2)u - 10mnv}{5n^2 - m^2}
$$
\n(11)

$$
v' = \frac{2mnu - (m^2 + 5n^2)v}{5n^2 - m^2}
$$
\n(12)

are also solution: $u'^2 - 5v'^2 = u_0^2 - 5v_0^2$ The other one solution^{*} of the equation $u^2 + 5v^2 = (c^2 - 5d^2)^5$ is:

$$
u = u_2 = c(c^4 + 10c^2d^2 - 75d^4)
$$
\n(13)

$$
v = v_2 = d(3c^4 - 10c^2d^2 - 25d^4)
$$
\n(14)

(* was not considered by Dirichlet in his proof).

3 The quadratic formulas of the equation $X^6 - X^5Y +$ $X^4Y^2 - X^3Y^3 + X^2Y^4 - XY^5 + Y^6 = Z_2^7$ \bar{C}_2^τ (related equation $X^7 + Y^7 = Z^7; Z_1 = X + Y$

3a.

$$
x^{6} - x^{5}y + x^{4}y^{2} - x^{3}y^{3} + x^{2}y^{4} - xy^{5} + y^{6} = z_{2}^{7}
$$
 (15)

 $x + y$ is not divisible by 7

Write $x = p + q$, $y = p - q$, then: $x^6 - x^5y + x^4y^2 - x^3y^3 + x^2y^4 - xy^5 + y^6 = p^6 + 21p^4q^2 + 35p^2q^4 + 7q^6$ $= p^6 + 14p^4q^2 + 49p^2q^4 + 7p^4q^2 - 14p^2q^4 + 7q^6$ $= p^2(p^2 + 7q^2)^2 + 7q^2(p^2 - q^2)^2$ $x + y$

 $p =$ 2 is not divisible by 7, consider the equation: $z_2^7 = p^2(p^2 + 7q^2)^2 + 7q^2(p^2 - q^2)^2$ let $u = p(p^2 + 7q^2)$ and $v = q(p^2 - q^2)$ then $z_2^7 = u^2 + 7v^2$ and z_2 can be written as $z_2 = a + 7b$ and by the same way as above, we obtain:

$$
u_1 = c[c^2(c^2 - 21d^2)^2 - 7d^2(3c^2 - 7d^2)^2 - 14d^2(c^2 - 21d^2)(3c^2 - 7d^2)]
$$
 (16)

$$
v_1 = d[2c^2(c^2 - 21d^2)(3c^2 - 7d^2) + c^2(c^2 - 21d^2)^2 - 7d^2(3c^2 - 7d^2)^2]
$$
(17)

$$
u_2 = c[c^2(c^2 - 21d^2)^2 - 7d^2(3c^2 - 7d^2)^2 + 14d^2(c^2 - 21d^2)(3c^2 - 7d^2)]
$$
\n(18)

$$
v_2 = d[2c^2(c^2 - 21d^2)(3c^2 - 7d^2) - c^2(c^2 - 21d^2)^2 + 7d^2(3c^2 - 7d^2)^2]
$$
(19)

and $z_2 = c^2 + 7d^2$ 3b.

$$
x^{6} - x^{5}y + x^{4}y^{2} - x^{3}y^{3} + x^{2}y^{4} - xy^{5} + y^{6} = 7z_{2}^{7}
$$
 (20)

 $x + y$ is divisible by 7

 $p =$ $x + y$ 2 is divisible by 7,write $p = 7 p'$, so $p^2(p^2 + 7q^2)^2 + 7q^2(p^2 - q^2)^2 = 7^2p'^2(7^2p'^2 +$ $(7q^2)^2 + 7q^2(7^2p^{\prime 2} - q^2)^2$ $= 7[7^3p'^2(7p'^2+q^2)^2+q^2(7^2p'^2-q^2)^2]$ Consider the equation $7[7^3p'^2(7p'^2+q^2)^2+q^2(7^2p'^2-q^2)^2]=7z_2^7$
So $7^3p'^2(7p'^2+q^2)^2+q^2(7^2p'^2-q^2)^2=z_2^7$ Let $u = q(7^2p'^2 - q^2), v = 7p'(7p'^2 + q^2)$, then $z_2^7 = u^2 + 7v^2$, and u, v are given by (16) ; (17) ; (18) ; (19) .

If u, v is the one solution, then:

$$
u' = \frac{(m^2 - 7n^2)u + 14mnv}{7n^2 + m^2}
$$
\n(21)

$$
v' = \frac{2mnu + (7n^2 - m^2)v}{7n^2 + m^2}
$$
\n(22)

are also solution: $u'^2 + 7v'^2 = u^2 + 7v^2$

Notes:

- Different from case $n = 3$, for the case $n = 5$, u and v must satisfy $u = p^2 + 5q^2$ and $v = 2q^2$ (2a), $u = q^2 + 25p'^2$, $v = 10p'^2$ (2b), for the case $n = 7$, u and v must satisfy $u = p(p^2 + 7q^2)$, $v = q(p^2 - q^2)$ (3a), $u = q(7^2p'^2 - q^2)$, $v = 7p'(7p'^2 + q^2)$ (3b). - u',v' are integer or not, depend on u,v,m,n.

- For the equation $X^{n-1} + X^{n-2}Y + X^{n-3}Y^2 + ... + Y^{n-1} = Z_2^n(nZ_2^n)$, the algorithm is the same as above.

References

- [1] Quang N V, Euler's proof of Fermat Last's Theorem for n = 3 is incorrect Vixra:1605.0123v3(NT)
- [2] Quang N V, Dirichlet's proof of Fermat last's theorem for n = 5 is flawed Vixra:1607.0400v2(NT)

Email: nguyenvquang67@gmail.com quangnhu67@yahoo.com.vn