Title: The product of the prime numbers. Author: Gabriel Martin Zeolla Comments: 4 pages. Subj-class: Theory number. <u>gabrielzvirgo@hotmail.com</u>

Abstract: This paper shows that the product of the prime numbers adding and subtracting one is always Simple Prime numbers.

Keywords: Golden Pattern, rough number, prime number, simple prime number.

Introduction

The product of the prime numbers adding one is always simple prime numbers, in all cases to infinity. Also the product of the prime numbers subtracting one is always a simple prime number, in all cases to infinity.

The simple prime numbers are known as the rough numbers.

1) **Demonstration** (The product of the prime numbers adding one is always simple prime numbers)

A) Example 3-Golden Pattern

(2*3)+1=7 The 7 is not divisible by 2 or 3 and is within the sequence of simple prime numbers-3

Reference <u>https://oeis.org/A007310</u> http://vixra.org/abs/1803.0098

B) Example 5-Golden Pattern

(2*3*5)+1=31 The 31 is not divisible by 2, 3 or 5 and is within the sequence of simple prime numbers-5

Reference <u>https://oeis.org/A007775</u> http://vixra.org/abs/1802.0201

C) Example 7-Golden Pattern

(2*3*5*7)+1=211 The 211 is not divisible by 2, 3, 5 or 7 and is within the sequence of simple prime numbers-7

Reference <u>https://oeis.org/A008364</u> http://vixra.org/abs/1801.0064

D) Example 11-Golden Pattern

(2*3*5*7*11)+1=2.311

The 2.311 is not divisible by 2, 3, 5, 7 or 11 and is within the sequence of simple prime numbers-11

Reference <u>https://oeis.org/A008365</u> http://vixra.org/abs/1802.0236

E) Example 13-Golden Pattern

(2*3*5*7*11*13)+1=30.031

The 30.031 is not divisible by 2, 3, 5, 7, 11 or 13 and is within the sequence of simple prime numbers-13

Reference <u>https://oeis.org/A008366</u> http://vixra.org/abs/1802.0363

F) Example 17-Golden Pattern

(2*3*5*7*11*13*17)+1=510.511 The 510.511 is not divisible by 2, 3, 5, 7, 11, 13 or 17 and is within the sequence of simple prime numbers-17

Reference https://oeis.org/A166061

G) Example 19-Golden Pattern

(2*3*5*7*11*13*17*19)+1=9.699.691 The 9.699.691 is not divisible by 2, 3, 5, 7, 11, 13, 17 or 19 and is within the sequence of simple prime numbers-19

Reference https://oeis.org/A166063

2) <u>Demonstration</u> (the product of the prime numbers subtracting one is always a simple prime number)

A) Example 3-Golden Pattern

(2*3)-1=5

The 7 is not divisible by 2 or 3 and is within the sequence of simple prime numbers-3

Reference <u>https://oeis.org/A007310</u> http://vixra.org/abs/1803.0098

B) Example 5-Golden Pattern

(2*3*5)-1=29

The 31 is not divisible by 2, 3 or 5 and is within the sequence of simple prime numbers-5

Reference <u>https://oeis.org/A007775</u> http://vixra.org/abs/1802.0201

C) Example 7-Golden Pattern

(2*3*5*7)-1=209 The 211 is not divisible by 2, 3, 5 or 7 and is within the sequence of simple prime numbers-7

Reference <u>https://oeis.org/A008364</u> http://vixra.org/abs/1801.0064

D) Example 11-Golden Pattern

(2*3*5*7*11)-1=2.309 The 2.311 is not divisible by 2, 3, 5, 7 or 11 and is within the sequence of simple prime numbers-11

Reference <u>https://oeis.org/A008365</u> http://vixra.org/abs/1802.0236

E) Example 13-Golden Pattern

(2*3*5*7*11*13)-1=30.029 The 30.031 is not divisible by 2, 3, 5, 7, 11 or 13 and is within the sequence of simple prime numbers-13

Reference <u>https://oeis.org/A008366</u> http://vixra.org/abs/1802.0363

F) Example 17-Golden Pattern

(2*3*5*7*11*13*17)-1=510.509 The 510.511 is not divisible by 2, 3, 5, 7, 11, 13 or 17 and is within the sequence of simple prime numbers-17

Reference https://oeis.org/A166061

G) Example 19-Golden Pattern

(2*3*5*7*11*13*17*19)-1=9.699.689

The 9.699.691 is not divisible by 2, 3, 5, 7, 11, 13, 17 or 19 and is within the sequence of simple prime numbers-19

Reference https://oeis.org/A166063

We could continue adding examples infinitely with the following prime numbers.

Final conclusion

The product of the prime numbers adding 1 always results in a simple prime number, also if we subtract one. This happens in all cases to infinity.

References

Enzo R. Gentile, Elementary arithmetic (1985) OEA. Burton W. Jones, Theory of numbers Iván Vinográdov, Fundamentals of Number Theory Niven y Zuckermann, Introduction to the theory of numbers Dickson L. E., History of the Theory of Numbers, Vol. 1 Zeolla Gabriel Martin, 7-Golden Pattern. http://vixra.org/abs/1801.0064 Zeolla Gabriel Martin, 3-Golden Pattern. http://vixra.org/abs/1803.0098 Zeolla Gabriel Martin, 5-Golden Pattern. http://vixra.org/abs/1802.0201 Zeolla Gabriel Martin, 7-Golden Pattern, Formula to Get the Sequence. http://vixra.org/abs/1802.0236 Zeolla Gabriel Martin, 11-Golden Pattern. http://vixra.org/abs/1802.0236 Zeolla Gabriel Martin, 13-Golden Pattern. http://vixra.org/abs/1802.0363 Zeolla, Gabriel Martin, Construction of the Golden Patterns http://vixra.org/abs/1803.0121

> Professor Zeolla Gabriel Martin Buenos Aires, Argentina 04/2018 gabrielzvirgo@hotmail.com