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Abstract- All forces in the universe are created from potential 
changes in energy levels. Even when particles are constrained so 
that they cannot expend the energy giving rise to those forces 
they still experience them; for the force to exist the energy 
system creating it must exist. We examine the second part of the 
Lorentz Force Equation, which looks at the forces experienced 
by a charged particle travelling through a fixed magnetic field. 
Here there is a transverse force on the electron normal to the 
direction of travel, and the electron’s path is deflected into a 
curve, with no expenditure of energy. However, the existence of 
this force requires an energy mechanism. This paper analyses 
the energy system behind this force and shows that there is a 
dependency on magnetic geometry that has been neglected. 
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I. INTRODUCTION (HEADING 1) 

We consider the second component of the Lorentz Force 
Equation, which describes a force from the induced electric field 
on a charge moving through a magnetic field [1]. This force 
affects the electrons’ path, changing it from a straight-line 
course to a circular one. Lorentz states that F=q(v x B), that is, 
force is equal to the moving charge times the cross product of 
the magnetic field strength and the charge’s velocity through the 
field. Although it tells us that the electron experiences forces 
when moving through a magnetic field in a gap inside a magnet, 
the motionally-induced electric field is constant everywhere in 
the gap. The electron can move through any part of the gap and 
the combined energy of the electron’s field and the induced 
electric field is constant everywhere inside the gap because the 
magnetic field is a constant in the gap. Without energy 
differentials no forces can come directly from the interaction of 
the electron with the local induced field inside the gap. We must 
look elsewhere for the deflecting force. This force-generating 
mechanism must pass two tests. 

A. The neutron is not deflected inside a magnetic field 

First, we know that the neutron has an intense electric field 
even though it is bounded at a femtometer-scale radius [2]. 
Nevertheless, it is not deflected inside a magnetic field, so the 
magnetic component of the Lorentz Force Equation seems to 
work with electrons, but not with neutrons. Our theory needs to 
show why this anomalous behavior happens. 

B. There is an apparent violation of the Conservation 

of Energy 

Second, the Lorentz Force Equation suggests that if we 
replace the magnetic field with an electric field (in order that the 
electric field always pointed in the same direction rather than 
remaining normal to B x v and thus causing the electron to 
follow a curved path) an infinite number of electrons could 
traverse the field, increasing their kinetic energy inside the field, 
without any expenditure of energy anywhere in the system; 
when they left the field with their augmented kinetic energy they 
would have gained something for nothing; this violates the 
Principle of Conservation of Energy. Again, our theory must 
demonstrate there is no such violation. Whilst this is a thought 
experiment rather than a practical one it nevertheless highlights 
an important issue. 

 

II. IDENTIFYING THE ENERGY SYSTEM 

Let us start with a simple square magnetic field with the 
electron travelling in the field, parallel to one of the sides, as 
shown in Fig. 1 in plan. This shows a magnetic field B depicted 
in half-tone with the magnetic field vector pointing up out of the 
page. A test electron ‘e-’ is travelling through this field with a 
velocity v, and perceives an electric field E induced in its own 
frame of reference. The electron will perceive forces that direct 
it towards the left in this picture. These forces must derive from 
a potential (but unrealized) reduction in energy somewhere in 
the system that creates attractive forces to the left via the 
equation F=dE/dl where force F equals rate of change of Energy 
E over distance l, and/or repulsive forces from the right that will 
have the same effect. Here the electron’s kinetic energy remains 
constant, and it is merely deflected into a curved path. The fact 
that energy is not consumed does not change this argument as 

 
Figure 1. Electron moving through magnetic field in plan view. 
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the expression of a force does not require an actual energy 
change in a system, it just requires the potential for one.  

The obvious place to look is where the induced field changes 
its strength along the vector of the induced accelerative force 
that curves the path of the electron. The induced electric field 
has a sudden step in field strength at the left and right edges of 
the magnet, amounting to a massive localized gradient in the 
induced field, and this is therefore a candidate for the energy 
system. We now consider what happens at the left and right 
edges. 

Although Fig. 1 refers to a simple slice through the magnetic 
field, it is important to realize we are not analyzing just one slice. 
Looking at the magnet side-on in Fig. 2 shows how the field 
extends in three dimensions. As before, the magnetic field is 
shown in halftone and its vector by B, and the induced electric 
field by E. The electron is shown travelling into the page inside 
the gap between the two poles of the magnet. As can be seen, 
the magnetic field, and therefore the induced electric field, 
continues through the poles of the magnet. The moving electron 
interacts with the whole field - the electron’s electric field 
penetrates even into the atoms of the poles. Hence the 
computation must be over all interacting space, not just the gap 
between the poles. 

In Fig. 3 we show the interaction between the electron’s field 
and the induced electric field at the edges of the induced field. 
Two separate points are highlighted in inset pictures that show 
the electric vectors just within the edges of the magnet. The 
electron’s field is shown in by dashed vectors Ee and the induced 
field is shown by solid vectors Em describing the electric field 
induced by the magnetic field. In the right-hand inset the vertical 
component of the electron’s field vector (a downward pointing 
vector in this inset) is not shown for clarity; it has no effect on 
the path of the electron, being orthogonal to the induced electric 
field and hence not interacting with it. The cutaways show only 

the effect on the horizontal component and the resultant 
horizontal electric field vector Erh is shown as a solid vector. 

Where two electric fields interact then the energy density is 
given by 
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The first and third terms are simply the energy densities of 
the individual fields. The middle term is the energy density of 
interaction, or the potential energy density. If this term is 
positive there is an increase in energy when the fields interact 
and therefore forces will be generated that oppose the 
interaction. If it is negative there is a fall in energy and forces 
will be generated that encourage the interaction. It is positive 
where the originating field vectors are aligned within +90 to -90 
degrees of each other, generating repulsive forces. It is negative 
where they are in opposition within +90 to +270 degrees of each 
other, generating attractive forces.  

We now consider the interaction of the electron’s fields with 
the edges of the magnet. If the electron moves a little to the left 
those parts of the fields of the electron that remain inside the 
magnetic field see no change in their energy density as the 
induced electric field has a zero gradient there, so those parts of 
the field produce no force. Equally all those parts of the fields 
that remain outside the magnet see no change in their energy 
density and produce no force. However, those horizontal 
components of the electron’s field that enter at the right edge of 
the magnet as a result of this movement will go from their 
normal field to a partial cancellation with the magnet’s induced 
electric field and hence to a reduced energy density and a 
leftwards force. Those horizontal components of the electron’s 

 
Figure 2. Side view of electron in magnet 

 
Figure 3. Electric field interaction at edges s of magnet 
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field leaving the magnet on the left will go from the increased 
energy density of interaction with the induced electric field to 
their normal independent energy density outside the magnet, 
leading to a drop in the energy density and a leftwards force. 
Hence there is a drop in the energy densities at both edges 
leading to forces that tend to force the electron to the left. There 
is clearly an energy system operating at the edges of the magnet. 

 

III. COMPARISON WITH THE LORENTZ FORCE EQUATION 

How does this compare with the Lorentz Force Equation? 
Let us use the following co-ordinate system for Fig. 4. The x-
axis is parallel with the lines of the induced electric field, that is, 
left to right as in Fig. 2 and Fig. 3. The y-axis is parallel with the 
lines of the magnetic flux, that is, vertically as in Fig. 2. The z-
axis is aligned with the electron’s instantaneous velocity vector, 
that is, vertically in Fig. 3. In Fig. 4 the z-axis points out of the 
page and the left and right edges of the magnet are shown. The 
magnetic field B lies vertically along the y-axis and the motion 
v of the electron is instantaneously along the z-axis. 

The whole of the induced electric field is normal to both the 
magnetic field and to the direction of motion. There is no 
component of the induced field in any other axis and the 
potential energy lies along only the x-axis component field of 
the electron in Fig. 4. Hence any forces must be along the x-axis. 
Next, if we consider that the induced electric field is some non-
zero constant value within the magnet and zero elsewhere, then 
for any specific point in the electron’s field the energy density 
of interaction with the induced field will be constant inside that 
field and zero outside. There are therefore changes in the energy 
density of interaction only on the boundaries of the induced field. 
We need consider only the potential energy associated with this 
edge-plane normal to the x-axis as shown in Fig. 4. 

Using Fig. 4 we can derive the equation for the interaction 
energy density at a point [x,y,z] on one of these planes as the x-
component of the electric field strength from the electron at the 
boundary, times the induced electric field strength from the 
magnet [3]. This plane is conceptually just inside the magnetic 
field, on its edge. 
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We then consider the edge as a boundary lying in axes y-z, 
and analyze what force we get from the energy system described 
above. The interaction energy outside the magnetic field is zero 
as there is no induced field there, so the whole of the energy 
density step across the boundary is the above equation. We take 
the rate of change of energy over potential motion dxmot along 
the x-axis to give the sideways force ‘F’ on the electron from 
this interaction. 
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We can simplify this integration by recognizing that the term 
(y2+z2) = r2 is constant for a circle around the x-axis, where ‘r’ 
is the radius of the circle. Substitute semi-polar co-ordinates and 
multiply the function by 2πr, equivalent to one rotation, and 
integrating over the radius. This changes our plane from a 
rectangular one to a circular one but that is unimportant for this 
analysis. 
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Evaluating for a plane of infinite size, evaluating from r=zero 
to r=infinity gives 
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The same result holds for the edge plane at the opposite side 
of the magnet. The force in both cases is in the same direction as 
there is repulsion on the electron from one edge and attraction 
from the other, so the total force is twice the above, namely 
q(vxB). This is simply the Lorentz result, and so it can be seen 
that this energy system produces the same result as the Lorentz 
equation predicts. 

 

IV. ISSUES THAT ARISE FROM THIS MODEL 

However, the integration above is over edge-planes of 
infinite extent; the left and right edges of the induced electric 
field parallel to the motion of the electron are assumed to be an 
infinite plane; anything less and we do not get the Lorentz result. 
It can therefore be seen that the result agrees with Lorentz only 
where the areas of the left and right edge-planes of the magnet 
are infinite in extent and at a finite distance along the x-axis from 
the center of the electron, and the particle’s electric field extends 
across the edges of the magnetic field (as it does for the electron, 

 
Figure 4. The interacting edges of the magnetic field 
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but not the neutron). Cutting the sides down in size to some finite 
area will reduce the integration sum and so one can expect 
significant discrepancies for short magnets between the actual 
magnetic field strength and that strength as measured by the 
deflecting force on a charged particle. Any measurement of a 
practical magnetic field made by looking at the deflective force 
on a moving charged particle will therefore be artificially low in 
value, although it will obviously be in full agreement with every 
experiment involving the deflection of moving charged 
particles, which will suffer matching errors. 

The term in ‘x’ disappears for the infinite-area integration. It 
does not matter what finite width the magnet is in ‘x’ if the 
length of the sides is infinite. The Lorentz value will hold only 
when the whole of the left hemisphere of the electron’s solid 
angle of electric field lines interact with the left edge of the 
magnetic fields, and the whole of the right hemisphere interacts 
with the right edge.  

Therefore, if we make both the magnet’s y-axis and z-axis 
very much larger than its x-axis, we should find that the resultant 
computed force on the electron approaches the value given by 
the Lorentz Force Equation. Conversely, as the y-axis and/or the 
z-axis dimension of the magnet reduces in size whilst keeping 
the x-axis width constant, the resultant force drops further and 
further below the Lorentz value; the deflection of an electron by 
the induced field is reduced. Since many measurements of 
magnetic field strength are made by measuring the effect of the 
field on the motion of an electron (as in the Hall effect), in this 
model they would report a lower magnetic field than actually 
exists. 

The treatment here has been simplified. The electron in Fig. 
4 interacts with all of the magnetic field, not just that inside the 
magnet. In actuality the magnetic field diverges beyond the end 
of the magnetic poles and then loops around to meet up with the 
magnetic flux lines from the opposite pole in a return loop 
outside the magnet. The initial diverging flux lines near a pole 
acts to extend the effective length of the magnet, but we can 
ignore the region where they have looped back to meet the flux 
from the opposite pole as the electric field lines from the electron 
intersects both the inside and outside edges of the return flux and 
the effects at these edges therefore cancel out even where those 
return flux edges are diffuse as happens in magnets without a 
yoke. 

 

V. THE SOLUTIONS TO OUR CONUNDRUMS 

The solutions to our two conundrums are then 

A. The neutron is not deflected inside a magnetic field 

A neutron will not be subject to any forces inside the magnetic 

field despite having a strong electric field, because its electric 

field is wholly contained within the magnet where the induced 

electric field gradient is zero, and its electric field does not 

reach the edges of the magnetic field. There is therefore no 

potential change in energy density as it moves through the 

magnetic field, and hence no forces exist. 

B. There is an apparent violation of the Conservation 

of Energy 

What if we replace the magnetic field with an electric field 
so that the electric field always pointed in the same direction 
rather than remaining normal to B x v and thus following a 
curved path? A theoretical electron falling from infinity is 
indeed accelerated across the field. But it is decelerated before 
entering the field by the interaction of the leading edge of the 
field with the electron’s field, its effect being reversed by the 
center of the electron being on the other side of the boundary, 
and likewise decelerated after exit from the field, the sum of the 
two decelerations matching the single acceleration. The overall 
effect is of no net change in the kinetic energy. The Principle of 
Conservation of Energy stands. 

 

VI. TESTING THE MODEL 

This model makes predictions at odds with the Lorentz Force 
Equation which can be tested. For example, consider an electron 
‘e-’ circling inside a magnet, where the plan view of the 
magnetic field gap is rectangular, as shown in Fig. 5 (i.e. the 
magnetic field lines lie normal to the page). Here the Lorentz 
Force Equation predicts a perfectly circular path. However, this 
model predicts that the forces on the electron are greater when 
the electron is travelling parallel to the longer sides, causing the 
electron to follow an elliptical rather than a circular path. The 
major axis of the ellipse would therefore be parallel to the shorter 
sides. 

Another prediction is that a short wide magnet and a long 
narrow magnet that have the same measurement of magnetic 
field strength when measured by electron deflection should have 
different measurements of magnetic field strength when 
measured by Paramagnetic Resonance. 

 

VII. CONCLUSION 

There is perhaps an unstated assumption in the magnetic 
component of the Lorentz Force Equations that a moving 
electron in a magnetic field is a point object sensitive only to the 
electric field strength at that point. Such a model cannot work 
because the induced field has a zero gradient in the region of the 
electron and no forces can result. The model presented here has 
no such defects, but indicates a sensitivity of the deflective force 
to the geometry of the magnetic field. Where the magnetic field 
strength is measured by the deflection of an electron inside the 
field in equipment such as Hall-effect devices and applied 
involving the deflection of electrons in the field, there is no 
conflict as the errors are identical in both cases. However, 

 
Figure 5. Electron circulating in magnet gap in plan view 
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according to the model presented here, discrepancies should 
appear when a magnetic field is calibrated by electron deflection 
and then used to measure a magnetic dipole, as in paramagnetic 
resonance. For all realizable geometries electron deflection 
measurements should underestimate the strength of the magnetic 
field. 
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