Fermat's last theorem. Proof of P. Fermat

In Memory of my MOTHER

<u>Contradiction</u>: Any prime factor *r* of the number R in the equality $A^n = A^n + B^n$ [...=(A+B)R] has a single ending 0...01 of infinite length; where $r \neq n$.

All calculations are done with numbers in base n, a prime number greater than 2.

FLT is proved for the **base** case with AB not divisible by n.

1°) Cⁿ=Aⁿ+Bⁿ [...=(A+B)R or ...=(A+B)(nR)] (see <u>http://vixra.org/abs/1707.0410</u>)), where
2°) the numbers A, B, C, R and A+B are co-primes,
with the help of **the Theorem on power-power binomial**.

Every prime divisor r (different from the prime n>2) of the factor R binomial $A^{n\wedge k}+B^{n\wedge k}=(A^{n\wedge \{k-1\}}+B^{n\wedge \{k-1\}})R$, where the numbers A and B are co-prime and k>1, has the form: $m=dn^{k}+1$ (the proof is in the Appendix).

Proof of the FLT

Let *r* be a prime factor of the number R different from n.

Take the numbers xr+A and yr+B from the equations

4°) xr+A= $A^{n^{k}}$ and yr+B= $B^{n^{k}}$, where x and y have integer solutions (see Annex) and k are arbitrarily large, and consider a number

5°) $D=(xr+A)^n+(yr+B)^n=(xr+A+yr+B)T$, which is divisible by r [since the number $A^{n^{A_k}}+B^{n^{A_k}}$ has a factor A^n+B^n , equal to (A+B)R], and its factor xr+A+yr+B is not divisible by r (see 2°). Thus, given a prime number r, we find an arbitrarily large number k, the number r is a factor of number T and, according to 3°, has the form: $r=dn^{k+1}+1$.

Which implies the truth of the FLT.

I firmly believe that Pierre de Fermat had this proof of the great theorem in mind.

Mézos (France)

March 29, 2018

<u>ANNEX</u>

Theorem on power-power binomial.

Every prime divisor (different from the prime n>2) of the factor R binomial $A^{n\wedge k}+B^{n\wedge k}=(A^{n\wedge \{k-1\}}+B^{n\wedge \{k-1\}})R$, where the numbers A and B are co-prime and k>1, has the form: $m=dn^{k}+1$.

<u>Proof</u>

Suppose that among the prime divisors of the number R there is a divisor in the form: $m=dn^{k-1}+1$, where d is not divisible by n. Then the numbers

1°) $A^{n^{k}}+B^{n^{k}}$ and, according to the Little Fermat's theorem for prime degree r, 2°) $A^{dn^{k-1}}-B^{dn^{k-1}}$ (where d is an even number) are divisible by r.

The theorem about GCD of two power binomials $A^{dn}+B^{dn}$ and $A^{dq}+B^{dq}$, where the natural A and B are co-prime , n [>2] and q [>2] are co-prime and d>0, says that the greatest common divisor (not counting n) of these binomials is equal to A^d+B^d .

In our case, the GCD multiple of r is the number $A^{n^{(k-1)}}+B^{n^{(k-1)}}$, which is co-prime with the number R. Hence, any factor r in the form r=dn $^{n^{(k-1)}}+1$ does not belong to the number R. From which follows the truth of the lemma.

Integer solution of the equation $xr+A=A^{n\wedge k}$ (and $yr+B=B^{n\wedge k}$).

<u>Designation</u>: V // r – number V is divisible by r and r is a factor of number V.

From xr+A= $A^{n^{\wedge k}} \rightarrow A(A^{n^{\wedge k-1}}-1) // r \rightarrow$

number $n^{k}-1$ // r-1 (requirement of Fermat's small theorem for the divisibility of $A^{r-1}-1$ by r), it means: $n^{k}-1=v(r-1)$, where $r-1=s_{1}s_{2}...s_{m}$ and $s_{1}, s_{2}, ...s_{m}$ are prime factors of the number r-1. \Rightarrow $k=M(s_{1}-1)(s_{2}-1)...(s_{m}-1) - is$ a requirement of Fermat's small theorem for divisibility of $n^{k}-1$ by the numbers $s_{1}, s_{2}, ...s_{m}$. After that $A(A^{v(r-1)}-1)$ // $r \Rightarrow$ from where we find $x=A(A^{v(r-1)}-1)/r$. Thus, for a given prime number r, we find such k that $xr+A=A^{n\wedge k}$. I think there is no need to comment virtuosity of P. Fermat.