GENERALIZED LORENTZ TRANSFORMATIONS

A. Blato

Creative Commons Attribution 3.0 License (2018) Buenos Aires

Argentina

This article presents the generalized Lorentz transformations of time, space, velocity and acceleration which can be applied in any inertial or non-inertial (non-rotating) frame.

Introduction

If we consider a (non-rotating) frame S relative to another inertial frame Σ then the time (t), the position (**r**), the velocity (**v**) and the acceleration (**a**) of a (massive or non-massive) particle relative to the frame Σ are given by:

$$\begin{split} t &= \int_0^t \gamma \, \mathrm{dt} + \gamma \, \frac{\vec{r} \cdot \varphi}{c^2} + \mathrm{h} \\ \mathbf{r} &= \vec{r} + \frac{\gamma^2}{\gamma + 1} \, \frac{(\vec{r} \cdot \varphi) \, \varphi}{c^2} + \int_0^t \gamma \, \varphi \, \mathrm{dt} + \mathrm{k} \\ \mathbf{v} &\doteq \frac{d\mathbf{r}}{dt} \\ \mathbf{a} &\doteq \frac{d\mathbf{v}}{dt} \end{split}$$

where (t, \vec{r}) are the time and the position of the particle relative to the frame S (μ, φ, α) are the position, the velocity and the acceleration of the origin of the frame S relative to the frame Σ , $(\vec{\mu})$ is the position of the origin of the frame Σ relative to the frame S, (h, k) are constant between the frames $\Sigma \& S(c)$ is the speed of light in vacuum, and $\gamma \doteq (1 - \varphi \cdot \varphi/c^2)^{-1/2}$

•
$$\frac{\gamma^2}{\gamma+1}\frac{1}{c^2} = \frac{\gamma-1}{\varphi^2}$$
 $(\varphi^2 \doteq \varphi \cdot \varphi)$

•
$$\vec{r} + \frac{\gamma^2}{\gamma+1} \frac{(\vec{r} \cdot \boldsymbol{\varphi}) \, \boldsymbol{\varphi}}{c^2} = \gamma \, \vec{r} + \frac{\gamma^2}{\gamma+1} \frac{(\vec{r} \times \boldsymbol{\varphi}) \times \boldsymbol{\varphi}}{c^2}$$

•
$$\vec{\mu} + \frac{\gamma^2}{\gamma+1} \frac{(\vec{\mu} \cdot \boldsymbol{\varphi}) \, \boldsymbol{\varphi}}{c^2} = \gamma \, \vec{\mu} + \frac{\gamma^2}{\gamma+1} \frac{(\vec{\mu} \times \boldsymbol{\varphi}) \times \boldsymbol{\varphi}}{c^2}$$

•
$$\mu = \int_0^t \gamma \varphi \, dt + k = \int_0^t \varphi \, dt + k = -\vec{\mu} - \frac{\gamma^2}{\gamma + 1} \frac{(\vec{\mu} \cdot \varphi) \varphi}{c^2}$$

The frame S is inertial when $(\alpha = 0)$

The frame S is non-inertial (rectilinear accelerated motion) when ($\alpha \neq 0$) and ($\alpha \times \varphi = 0$)

The frame S is non-inertial (uniform circular motion) when $(\alpha \neq 0)$ and $(\alpha \cdot \varphi = 0)$

If the frame S is inertial then the observer S must use a fixed origin O such that $(\vec{\mu} \times \varphi = 0)$

If the frame S is non-inertial (rectilinear accelerated motion) then the observer S must use a fixed origin O such that $(\vec{\mu} \times \varphi = 0)$

If the frame S is non-inertial (uniform circular motion) then the observer S must use a fixed origin O such that $(\vec{\mu} \cdot \varphi = 0)$

If the frame S is inertial then ($\alpha = 0$), ($\varphi = \text{constant}$), ($\gamma = \text{constant}$) ($\int_0^t \gamma \, dt = \gamma \, t$), ($\mu = \gamma \, \varphi \, t + k$) and ($\vec{\mu} \times \varphi = 0$)

If the frame S is non-inertial (rectilinear accelerated motion) then $(\alpha \neq 0)$ $(\alpha \times \varphi = 0)$ and $(\vec{\mu} \times \varphi = 0)$

If the frame S is non-inertial (uniform circular motion) then $(\alpha \neq 0)$ $(\alpha \cdot \varphi = 0), (\gamma = \text{constant}), (\int_0^t \gamma \, dt = \gamma \, t) \text{ and } (\vec{\mu} \cdot \varphi = 0)$

If the frame S is inertial or non-inertial (non-rotating) then the observer S can use test particles such that $(\vec{r} \cdot \varphi = 0)$ or $(\vec{r} \times \varphi = 0)$

General Observations

It is known that in inertial frames the local geometry is Euclidean and that in non-inertial frames the local geometry is in general non-Euclidean.

According to this article, the local line element of the frame S must be obtained from the local line element of the frame Σ .

Therefore, the local line element (in rectilinear coordinates) in the frame Σ and the local line element in the frame S are given by:

$$ds^{2} = c^{2}dt^{2} - d\mathbf{r}^{2}$$

$$ds^{2} = \left[\left(1 + \frac{\mathbf{w} \cdot \vec{r}}{c^{2}} \right)^{2} - \left(\frac{\phi \times \vec{r}}{c} \right)^{2} \right] c^{2} dt^{2} - 2 \left(\phi \times \vec{r} \right) d\vec{r} dt - d\vec{r}^{2}$$

$$\mathbf{w} \doteq \gamma^{2} \left(\alpha + \frac{\gamma^{2}}{\gamma + 1} \frac{(\alpha \cdot \varphi) \varphi}{c^{2}} \right) , \qquad \phi \doteq \gamma^{1} \left(\frac{\gamma^{2}}{\gamma + 1} \frac{(\varphi \times \alpha)}{c^{2}} \right)$$

According to this article, the kinematic quantities ($t, \mathbf{r}, \mathbf{v}, \mathbf{a}$) are the proper kinematic quantities of the frame Σ .

Therefore, the kinematic quantity (t) is a tensor of rank 0 and the kinematic quantities ($\mathbf{r}, \mathbf{v}, \mathbf{a}$) are tensors of rank 1.

Finally, the velocity of light in vacuum is (c) in the frame Σ and (\vec{c}) in the frame S and ($\mathbf{c} \cdot \mathbf{c}$) & ($\vec{c} \cdot \vec{c}$) are constant in the frames Σ & S.

Bibliography

- [1] R. A. Nelson, J. Math. Phys. 28, 2379 (1987).
- [2] R. A. Nelson, J. Math. Phys. 35, 6224 (1994).
- [3] C. Møller, The Theory of Relativity (1952).