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Abstract-Task scheduling is one of the most challenging aspects in cloud computing nowadays, 

which plays an important role to improve the overall performance and services of the cloud such 

as response time, cost, makespan, throughput etc. Recently, a cloud task scheduling algorithm 

based on the Symbiotic Organisms Search (SOS)  not only have fewer specific parameters, but also 

take a little time complexity. Symbiotic Organism Search (SOS) is a newly developed metaheuristic 

optimization technique for solving numerical optimization problems. In this paper, the basic 

SOS algorithm is reduced and a chaotic local search(CLS) is integrated into the reduced SOS to 

improve the convergence rate of the basic SOS algorithm. Also, Simulated Annealing (SA)  is 

combined in order to asist the SOS in avoiding being trapped into local minimum. The performance 

of the proposed SA-CLS-SOS algorithm is evaluated by extensive simulation using MATLAB simulation 

framework and compared with SOS, SA-SOS and CLS-SOS. Results of simulation showed that improved 

hybrid SOS performs better than SOS, SA-SOS and CLS-SOS in terms of convergence speed and makespan 

time. 

 

Keywords-Cloud computing, Cloud task scheduling, Symbiotic organisms search, Simulated 

annealing, Chaotic local search  

 

1. Introduction 

 

 The cloud computing is such a computing model with rapid growth in recent years; it was rising 

with the technological development of distributed computing, grid computing and parallel 

computation. Cloud computing is a kind of computing model, which can obtain the resources quickly 

from the configurable computing resources sharing pool in real time according to the demand, 

those resources includes the server, storage, network, service and application, etc; the supply 

and release of resources can be finished in just shorter a time, so as to reduce the load of 

resource management and the interaction of service providers to a minimum [1].  

The basic principles of cloud computing is that to break down the tasks reported by massive 

users into smaller tasks via the network, by using multiple computers connected in the network 

to search, compute and combine the results and then send them back to the users. 

In recent decades, this task scheduling has attracted increasing attention and become a very 

challenging research field. However, Task scheduling problem on cloud is an NP-hard problem, 
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and thus task scheduling constitute one of the crucial aspects of resources management system 

in cloud computing, which ensures the attainment of the general user Quality of Service (QoS) 

performance in terms of response time, total execution time(makespan), throughput among others.  

In addition, appropriate task scheduling is effective in reducing the operational cost of cloud 

service providers in terms of energy consumption and resource utilization. Task scheduling 

problems on cloud have been tackled using heuristic and metaheuristic algorithms.  

The heuristic algorithms provide optimal solution for small size problems, however, the 

solutions produced by these algorithms are far from optimal as the size of a problems increases.  

Metaheuristic algorithms have achieved remarkable success in providing near optimal solutions 

for task scheduling, and it has since draw the attention of several researchers.  

However, metaheuristic algorithms still suffers from issues like entrapment in local optima, 

premature convergence, slow convergence, or imbalance between local and global search.  

Hence, there is scope for further development of task scheduling algorithms in the quest for 

improved solutions. Now there are many metaheuristic algorithms used to solve the task scheduling 

problems, such as Ant Colony Optimization (ACO) [2, 3], Genetic Algorithm (GA) [4–6], Particle 

Swarm Optimization (PSO) [7, 8, 21, 22]. GA simulates natural evolutionary processes [9], PSO 

algorithm simulates behaviors of flock foraging [7, 10], and ACO algorithm imitates the foraging 

behavior of real ant colony [11, 12].  Recently, [13,18] have proposed symbiotic organisms search 

(SOS) algorithm. It is a natureinspired swarm-based optimization algorithm based on the symbiotic 

interaction between different individuals in nature. One major advantage of SOS is that it needs 

only one control variable (eco-size or population size) in comparison with other popular 

optimization techniques surfaced earlier [13]. Also, the basic structure of the SOS algorithm 

is very simple and it is very easy to implement. This makes the SOS algorithm to become very 

popular among many metaheuristic algorithms in recent years, and it has shown improved performance 

to solve different types of optimization problems[14]. Therefore, the potential of SOS in finding 

global solution to optimization problems exhibited so far make it attractive for further 

investigation and exploration. Quality of solution and convergence speed obtained by 

metaheuristic algorithms can be improved by its hybridization with either a metaheuristic 

algorithm or local search method, by generating initial solution using heuristic search 

techniques or by modifying the transition operator [15]. To the best of our knowledge none of 

the aforementioned techniques have been explored to investigate the possible improvement of SOS 

in terms of convergence speed and quality of solution obtained by SOS. In this paper, we studied 

task scheduling using Improved Symbiotic Organism Search(SA-CLS-SOS). The proposed SA-CLS-SOS 

combines SA method [16,20,23] and CLS method[17] into SOS optimization algorithm [13,18,19]. 

I n this paper, the basic SOS algorithm is reduced and a chaotic local search(CLS) is integrated 

into the reduced SOS to improve the convergence rate of the basic SOS algorithm. Also, Simulated 

Annealing (SA) is combined in order to asist the SOS in avoiding being trapped into local minimum . 

The performance of the proposed SA-CLS-SOS algorithm is evaluated by extensive simulation using 

MATLAB simulation framework and compared with SOS, SA-SOS and CLS-SOS. 

Results of simulation showed that hybrid SOS performs better than SOS, SA-SOS and CLS-SOS  in 

terms of convergence speed and makespantime. 

The main contributions of the paper are: 

• Clearer presentation of SOS, SA, CLS procedures for scheduling of tasks in a cloud computing 

environment. 

• Proposal of a new cloud task scheduling method called on SA-CLS-SOS. 

• Performance comparison of the proposed hybrid method with other algorithms(SOS, SA-SOS, 



CLS-SOS). 

• Descriptive statistical validation of the SA-CLS-SOS results against other selected methods 

using significance test. 

The organization of the remainder of the paper is as follows. 

Metaheuristic algorithms applied to task scheduling problems in the cloud, SOS, SA, CLS are 

presented in Section 2. Section 3 describes Task Scheduling Model and proposed algorithm  

in Cloud Computing. Results of simulation and its discussion are in Section 4. Section 5 presented 

a conclusion of the paper. 

 

2. Related work 

 

In computing, scheduling is a method by  which work specified by some means is assigned to 

resources that complete the work. It may be virtual computation elements such as threads& 

processors or data flows, which are in turn scheduled onto hardware resources such as processors.  

A scheduler is carries out the scheduling activity. Schedulers allow multiple users to share 

system resources properly, or to achieve a good quality of service. Scheduling is fundamental 

to computation, and an internal part of the execution model of a computer system, the concept 

of scheduling makes it possible to have computer multitasking with a single CPU.  

Preference is given to any one of the concerns mentioned above, depending upon the user's needs 

and objectives.  Many parallel applications consist of multiple computational components. While 

execution tasks depend on the of other tasks, others can be Symbiotic Organism Search algorithm 

executed at the same time, which increases parallelism of the problem.   

The cloud computing is such a computing model with rapid growth in recent years; it was rising 

with the technological development of distributed computing, grid computing and parallel 

computation.Task scheduling is the main problem in cloud computing. 

In recent decades, this task scheduling has attracted increasing attention and become a very 

challenging research field. However, Task scheduling problem on cloud is an NP-hard problem, 

and thus task scheduling constitute one of the crucial aspects of resources management system 

in cloud computing, which ensures the attainment of the general user Quality of Service (QoS) 

performance in terms of response time, total execution time(makespan), throughput among others.  

In addition, appropriate task scheduling is effective in reducing the operational cost of cloud 

service providers in terms of energy consumption and resource utilization. Task scheduling 

problems on cloud have been tackled using heuristic and metaheuristic algorithms.  

The heuristic algorithms provide optimal solution for small size problems, however, the 

solutions produced by these algorithms are far from optimal as the size of a problems increases.  

Metaheuristic algorithms have achieved remarkable success in providing near optimal solutions 

for task scheduling, and it has since draw the attention of several researchers. 

Metaheuristic methods [2,5,10,13,15-24] have been applied to solve task assignment problems 

in order to reduce makespan and response time. The methods have proven to find an optimum mapping 

of tasks to resources which reduce the cost of computation, improve quality of service, and 

increase utilization of computing resources. 

 

2.1. Symbiotic Organism Search algorithm 

 

The SOS algorithm was inspired by symbiotic interactions between paired organisms in an 



ecosystem. Each organism denotes a potential solution to an optimization problem under 

consideration and has its position in the solution space. Organisms adjust their position 

according to mutualism, commensalism, and parasitism biological interaction models of the 

ecosystem. With mutualism form of interaction, the two interacting organisms benefit from the 

relationship and this is applied in the first phase of the algorithm. The commensalism association 

enables only one organism to benefit from the relationship while other is not harmed. The 

commensalism association is applied in the second phase of the algorithm to fine tune the solution 

space. With parasitism interaction, only one organism benefits while the other is harmed. The 

parasitism interaction technique is applied in the third phase of the algorithm. The fittest 

organisms survive in the solution space while the unfit ones are eliminated. The best organisms 

are identified as those that benefited from the three phases of the interaction. The phases of 

the procedure are continuously applied on the population of organisms which represents candidate 

solutions until the stopping criterion are reached.Each member of the organism within an ecosystem 

is represented by a vector in the solution plane. Each organism in the search space is assigned 

a value which suggests the extent of adaptation to the sought objective. The Algorithm repeatedly 

uses a population of the possible solutions to converge to an optimal position where the global 

optimal solution lies. The algorithm used mutualism, commensalism,and parasitism mechanisms to 

update the positions of the solution vector in the search space.SOS is a repetitive process for 

an optimization problem [19] given in Definition 2.1. The procedure keeps a population of 

organisms that depict the candidate solutions of the studied problem. The relevant information 

concerning the decision variables and a fitness value is encapsulated into the organism as an 

indicator of its performance. Essentially, the trajectories of the organisms are modified using 

the phases of the symbiotic association. 

Definition 2.1. Given a function f：D → R   

X′ ∈ D: ∀X ∈ Df(X′)≤ or ≥ f(X).≤ (≥)minimaization(maxmization), 

where f is an objective function to be optimized and  D represents the search space while the 

elements of D are the feasible solutions.  X is a vector of optimization variables X  

*x1 , x2 ,x3 , , x +. An optimal solution is a feasible solution X
′ that optimizes f . 

The steps of the Symbiotic Organism Search algorithm are given below: 

Step 1: Ecosystem initialization 

Initial population of the ecosystem is generated and other control variables such as ecosystem 

size, maximum number of iterations are specified. The positions of the organisms in the solution 

space are represented by real numbers. 

Step 2: Selection of the organism with the best fitted objective function represented as x     

Step 3: Mutualism phase 

In th iteration, an organism x  is randomly selected from the ecosystem to interact with an 

organism x  for mutual benefit with i  j according to (1) and (2) respectively. 

x 
′  x  rand( , ) (x    −  utual     k1)   (1) 

x 
′  x  rand( , ) (x    − utual     k2)    (2) 

The mutual vector denoted by  utual     is expressed as shown in 

 utual     
     

2
     (3) 

The rand( , ) function is a vector of uniformly distributed ran- dom numbers between 0 and 1. 

The values of the benefit factors k1 and k2 are determined randomly as either 1 or 2, and repre 

sents the level of benefit to each of the two organisms  x  and x  (where 1 and 2 denotes adequate 

and huge benefit that can be received by both  x  and x  in their current mutual symbiotic states). 



The organism with the best objective or fitness function value in terms of the degree of adaptation 

in the ecosystem is represented by x     . The  utual     signifies mutualistic characteristics 

exhib ited between the two organism to increase their survival advan tage. It should be noted 

that any update for any one of the two organisms is computed only if its new fitness function 

value de- noted by f(x 
′) or f(x 

′) is better than the previous solutions, f(x ) and f(x ).  

Given the above Eqs. (1 ) and ( 2 ) become: 

x 
′  x  rand( , ) (x    −  utual     k1),  if    f(x 

′)   (x )     (4) 

x 
′  x  rand( , ) (x    − utual     k2),  if    f(x 

′)  f(x )   (5) 

Step 4: Commensalism phase 

In this phase, the organism x  selected randomly from the ecosystem strives to increase its 

benefits from its association with x  . This kind of symbiotic association only places x  at an 

advan tage position, over x , even though, x  is not harmed in the process. The new solution 

emanating from the symbiotic relationship is calculated as shown in Eq. (6 ): 

x 
′  x  rand(− , ) (x    −x )  if    f(x 

′)  f(x )     (6) 

Step 5: Parasitism phaseIn th iteration, a parasite vector x  is created by mutating x  using 

a randomly generated number in the range of the decision variables under consideration and an 

organism    with     is selected randomly from the population to serve as host to   . If the 

fitness value  (  ) is greater than  (  ), then  
  will replace   , otherwise  

  is discarded.  

Steps 2 through 5 are repeated until stopping criterion is reached. 

Step 6: Stopping criterion 

The pseudocode of Symbiotic Organism Search is presented as Algorithm 1. 

 

Algorithm 1. Symbiotic Organism Search Algorithm 

 

Creat and Initialize the population of organisms in ecosystem   * 1,  2, 3 , ,   + 

Set up stopping criteria 

iteration_number    

         

Do 

                                       

       

        Do 

                 

           For          

                    (  )   (     )          ( )                     

                             

               End if 

End for 

//mutualism phase 

Randomly select             

           

           

           
     

 
  

                           
′         ( , )  (     −              )    



  
′         ( ,  )  (     −              )  

     (  
′)   (  )         

         
′ 

End if 

     (  
′)   (  )         

         
′ 

End if 

//commensalism phase 

Randomly select               

  
′         (− ,  )  (     −   )   

       (  
′)   (  ) The 

         
′ 

End if 

//parasitism phase 

Randomly select               

Creat a parasite vector    from    using random number 

     (  )   (  )        

          

End if 

     While      

While stopping condition is not true 

 

The SOS algorithm though efficient in solving complex opti- mization and discrete engineering 

problems, still has high probability of plunging into local optimum [19]. Therefore, the SOS-SA 

algorithm has been proposed to overcome this shortcoming. 

 

2.2. Simulated annealing algorithm 

 

Simulated annealing is used to do further processing of the result of SOS to avoid falling 

into local optimal solution[20, 23].The process begins by considering a so lution space   of a 

particular tour through the set of given cities or points    |   ,  , , , with an update solutions 

  
′ created by randomly switching the orders of two cities. The energy function or fitness function, 

which represents the length of route   , is denoted by  (  ).  

The relative change in cost    between    and   
′   is expressed as    

 (  
 )  (  )

 (  )
. Beginning with 

the initial solution, only the solution which results in smaller energy value than the previous 

solution is accepted by the algorithm, in other words, a solution is only accepted when the fitness 

value of  (  
′)   (  ).  

However, accepting or rejecting a new solution with higher fitness values for  ′  can be based 

on the acceptance probability function given as follows ( Eq.(7)): 

 (  ,   )  {  
(   

  
)
,      

 ,               ≤   
  for          (7) 

where    is the parameter temperature at the  
   instance of accepting a new solution route, 

and for any given T , for     , P is greater for smaller values of   , which means that for 

the new solution   
′ that is only slightly more costly than the current solution    is more likely 



to be accepted than the new solution   
′ that is much more costly than the current solution   . The 

value of T , which is an important control parameter, decreases proportionally with P , that 

is as the     →   
(
   

  
)
  ,    . Therefore, as the value of T decreases, the probability of 

accepting a degraded route also decreases. In this paper the following cooling schedule is adopted 

( Eq. (8 )):  

              (8) 

Where,   denotes the cooling coefficient, which is some random constant values between 0 and 

1, it is also the rate at which the temperature is lowered each time a new solution   
′ is discovered. 

The SA procedure is as presented in the algorithm2 below: 

 

Algorithm 2. Pseudocode for SA. 

Input : Initial temperature   , final temperature    , cooling rate α, maximum iteration 

maxiter 

 Output : Best cost  

1: Chose a random route    and initialize   T 0 and α  

2: For counter = 1 to maxiter  

3: Create a new solution   
′ by randomly swapping two cities in neighbourhood of    

 3: Compute    
 (  

 )  (  )

 (  )
 and use the acceptance probability function to either accept or 

reject the new solution, based on the following conditions:  

a) if    ≤  ,            
′  

b) if      ,           
′ depending on Eq. (7)  

4: Reduce the temperature using Eq. (8) and increment k 

 5: Update the best solution  

6: End for 

 

2.3. chaotic local search algorithm 
 

Chaos is a deterministic process that is usually found in dynamic and nonlinear systems, and 

has high sensitivity to initial conditions and parameters change. Chaos characterized by 

randomness, ergodicity, irregularity and an apparent unpredictability. Chaos is known as a 

randomness of a simple dynamic system, which motivate its usage as a source of randomness in 

optimization theory and various fields instead of the usual random process.  Chaotic sequences 

have been employed in stochastic optimization techniques to provide population diversity in 

search space to ensure global convergence as well as avoidance of local optima entrapment. Chaotic 

sequences are highly sensitive to their initial value. It is quite important to select the initial 

value for the chaotic map very precisely. In chaotic PSO (CPSO) [21], the decision variables 

of PSO are mapped into chaotic domain by the carrier equation given in (9). 

    ( −    ) (    −    )   (9) 

where     is the initial value of the chaotic sequence, x is the position of the particle and 

     and      are the search boundaries. But this mapping may lead to ineffectiveness of the 

chaotic search as the initial value of the chaotic sequence becomes fixed, and hence, the whole 

chaotic orbit becomes monotonous. CLS is activated when the best solution, obtained by PSO over 

the entire population, does not change for several times[22]. In this case, u becomes fixed, 

and hence, the chaotic search orbit will be always same before the next chaotic search. This 



will worsen the performance of the chaotic search. To avoid this problem and to maintain the 

ergodicity of the chaotic search, [22] have suggested the usage of random function for generating 

the initial value of the chaotic sequence. So, the initial value of the chaotic sequence is 

designed by (10). 

        ( , )   (10) 

As chaotic search is most efficient in small range[17], CLS in the proposed CSOS of the present 

work is performed over a small radius r . The CLS has only been applied to the best organism 

(     ) as achieved after the commensalism phase of the reduced SOS optimizer. It is done so because 

the range (     −r,       +r ) would be the most promising area for the local search. Also, it 

saves more time as compared to the methods that apply chaotic search on all the particles. The 

chaotic search radius r is defined initially by (11), and then, it is, subsequently, decreased 

in the next generations with the help of a shrinking coefficient  (     ) to shrink the search 

area[23]. 

  (    −    )     (11) 

The initial variable of the chaotic sequence, that is,      is generated by using (10), and 

the next variable of that chaotic sequence (i.e.      ) is generated by using the PLCM. The PLCM 

may be formulated by (12)[23] 

      {

   

 
                      ∈ ( ,  )

(     )

(   )
          ∈ ( ,  )

     (12) 

where q is the control parameter (q∈ 0, 0.5). 

The distributions of two different chaotic maps are shown in Fig. 1 over 500 time steps (refer 

Fig. 1a for logistic map and Fig. 1b for PLCM [22]. The chaotic map that is used here to generate 

the chaotic sequence is the simple PLCM. PLCM is ergodic in nature (see Fig. 1b) and has uniform 

invariant density function. It is easy to implement as well as it depicts a very good dynamical 

behaviour which makes it superior to the well-known logistic map (Fig.1a)[22]. 

 

(a)                              (b) 

Fig. 1.  Distribution of chaotic map for a logistic map and b PLCM 

The chaotic variables, generated by the PLCM, are mapped back to the search range around the 

best organism using (13) 

            (      −  )    (13) 

where      is the position of the best organism over the entire population at (i +1)th generation 

of CLS and       is the position of the best organism in the ecosystem after the traditional SOS. 

The fitness value is calculated for the organism     , and it will be considered as the best 

organism, if it gives better fitness than the previous best organism. The CLS procedure is as 

presented in the algorithm listing 3 below: 

Algorithm 3. chaotic local search pseudocode. 



Set i=0 

Initialize chaotic variable         ( , ) 

Set chaotic search radius r by (11) 

do 

Calculate       by (12) 

Map       back to the range around the best organism using the equation 

            (      −  )  

Evaluate fitness value for      

while a better solution is found or maximum number of iteration is reached 

Decrease the radius of the chaotic search space by       

                                         %   is a random number between 0 and 1 

 

 

3.  Task Scheduling Model and algorithm design in Cloud  

Computing Environment 

 

3.1. Task Scheduling Model 
 

To simplify the complexity of the problem and establish an effective task scheduling model, we 

make the following assumptions: Tasks submitted by the users are indivisible Meta-task; 

furthermore, each task owns independent operation and does not run a priority; The number of 

tasks submitted by users in cloud computing is far greater than virtual machines’ in cloud 

datacenter; The execution time of tasks in a virtual machine can be calculated according to the 

information processing speed (MIPS) of the virtual machine(vm). 

To establish the mathematical model of task scheduling facilitatedly, we make the related 

parameters of the task and the virtual machine as following. 

Task set as T  *Task1 ,Task2 , Task3 , , Task , , Taskm+  *Task |i   ,  ∈ , ,m-+ , where m  is the 

number of tasks submitted by the users. Task  Represents the ith task in the task sequence.  

The feature of Task is defined as *ID ,task length ,Time exp , P +, in which ID  is the serial number 

of tasks and task length  is the instruction length of the task (unit: million instruction MI).  

And Time exp  refers to the user’s expected completion time for the Task ; P  refers to the task 

priority. 

VM set as V  {vm1,vm2 , vm3 , , vm , , vm }  {vm |j   ,  ∈ , , 𝑛-}, where n is the 

number of virtual machines and vm  denotes the jth virtual machine resource in the 

cloud environment. The feature of vm  is defined as {ID , IPS }, in which ID  is the 

serial number of virtual machines and  IPS  is the information processing speed of 

virtual machines (unit: millions-of-instructions-per-second, mips). 

The tasks are scheduled on the available VMs and execution of the tasks are done on the basis 

of First-Come First-Serve. Our aim is to schedule tasks on VMs in order to achieve high utilization 

with minimal makespan. As a result, Expected Time to Compute (ETC) of the tasks to be scheduled 

on each VM will be used by the proposed method to make schedule decisions. ETC values were 

determined using the ratio of millions instructions per second (MIPS) of a VM to length of 

the task. 

ETC values are usually represented in matrix form as following. 



ETC  (
ETC11  ETC1 

⋮ ⋱ ⋮
ETCm1  ETCm 

)  (14) 

 

where the number of tasks to be scheduled represents the rows of matrix and number of available 

VMs indicates the columns of the matrix. Each row of ETC matrix represents execution times of 

a given task for each VM, while each column represents execution times of each task on a given 

VM. Since our objective is to minimize the makespan by finding the best group of tasks to be 

executed on VMs. 

Let ETC  , i   ,2, ,m, j   ,2, , n be the execution time of executing ith task on jth VM.  

Then ETC   is calculated as following. 

ETC   task length  IPS ⁄   (15) 

The fitness value of each organism is etermined using Eq (16), which determines the strength 

of the level of adaptation of the organism to the ecosystem. 

objective function  max {∑
f(M )

 
 
 =1 }  (16) 

f(  )  
μ

mak   a 
  (17) 

μ  ∑
λ 

 
 
 =1   (18) 

λ  
Ta k 

mak   a 
  (19) 

makespan  max{ETC  |i ∈ T, i   ,2,3, ,m; j ∈ V , j   ,2,3, , n }  (20) 

 

where f(  ) is the fitness value of virtual machine j; μ is the average utilization of virtual 

machines ready for execution of tasks and its essence is to support load balancing among VMs, 

λ  defines the utilization of virtual machine j. 

 

3.2. SA-CLS-SOS  Task Scheduling algorithm 

 

The SA-CLS-SOS algorithm is a hybrid of symbiotic organisms search and simulated annealing, 

chaotic local search algorithm. CLS is employed after the commensalism phase, replacing the 

parasitism phase of SOS. In mutualism phase, two new candidate solutions are generated while 

in commensalism phase, one new candidate solution is generated, based on the previous best 

solution or organism in the ecosystem. In both mutualism and commensalism phases, the new 

candidate solutions or organisms are accepted if they have better fitness values than the previous 

best organism and these newly generated organisms direct the search process over the unvisited 

portion of the entire search space. In short, the mutualism and the commensalism phases provide 

better exploration of the search space. On the other hand, in parasitism phase, the current best 

organism from the commensalism phase is duplicated to act as parasite vector and it interacts 

with a randomly chosen organism from the ecosystem. If the randomly chosen organism has better 

fitness value than the parasite vector, then it will remain in the ecosystem; otherwise, it will 

be destroyed. This may lead to loss of potential solution in case of any improper duplicating 

of parasite vector or any ineffective interaction which cannot produce any better solution over 

a number of generations. This will affect the computational efficiency and will take unnecessarily 

longer computation time. In contrast to this, in case of CLS, the search process is intensified 



towards a promising region which enhances the exploitation of search space. As a result, better 

solution may be found more quickly. Also, the SA is a local search metaheuristic algorithm widely 

used for solving both discrete and continuous optimization problems. One of the main benefits 

of SA lies in its ability to escape the problem of getting stuck in a local minimum by allowing 

hill-climbing moves to search for a global solution. Therefore, a hybrid approach is proposed 

by introducing SA is to assist the SOS in avoiding being trapped into local minimum and to also 

increase its level of diversity while searching for optimum solution in the problem search space. 

Thus, a new hybrid algorithm (SA-CLS-SOS) is proposed to improve task scheduling optimization 

in cloud computing .  The steps of the hybrid SA-CLS-SOS algorithm are then described in algorithm 

listing 4. 

 

Algorithm 4. SA-CLS-SOS pseudocode. 

 Input: Initial ecosystem x , ecosystem size eco _ size , Initial temperature 𝐓 , final 

temperature 𝐓𝐤, cooling rate  , maximum iteration maxiter ,  

Initialize chaotic variable         ( , ), Set chaotic search radius r by (11) 

Output : best known solution       

1: Create and evaluate new solutions  

a) Generate   , i = 1 , 2 , . . . , eco _ size  

For i = 1 to maxiter  

b) Compute cost / fitness function of    ,  (  ) 

c) Determine the best solution       

d) Compute    
 (  

 )  (  )

 (  )
 

If    ≤          , where p  is the acceptance probability ( Eq. (7)) and u is a random number 

between 0 and 1  

e) then update solution by assigning          

f) End if  

For i = 1 to eco _ size 

 2: Update organism (route) with SA ( Algorithm 2 ) on the two SOS phases in Algorithm 1  

For i =1 to eco _ size  

   a)  Modify the organisms according to (1) and (2) in mutualism phase 

   b) Modify organism    with the help of    using (6) in commensalism phase 

   c) Update the best organism       

3: Update best organism       using the CLS in Algorithm 3 

do 

Calculate       by (12) 

Map       back to the range around the best organism using the equation 

            (      −  )  

Evaluate fitness value for       

while a better solution is found or maximum number of iteration is reached 

Decrease the radius of the chaotic search space by       

4: Update the best solution  𝑏𝑒𝑠𝑡 ever found   

5: Update temperature using the cooling schedule given in Eq. (8)  

5: End for  

6: End for  

7: End for 



Fig. 2 illustrates the SA-CLS-SOS algorithm procedures. 
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Fig. 2. Flowchart for the SA-CLS-SOS Algorithm. 
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4. Simulation and result 

 

In order to test the performance of the proposed method, simulations are carried out using 

MATLAB R2017a_win64 computing environment on a 3.2GHz core i5 personal computer with 4GB RAM. 

The first experiment was carried out for SA-CLS-SOS, SOS, SA-SOS and CLS-SOS, to evaluate the 

makespantime of the proposed SA-CLS-SOS algorithm. The comparison results are as presented 

in(Fg.3) 

The second experiment was carried out to evaluate the quality of solution of the SA-CLS-SOS 

algorithm based on makespantime. The results are presented in(Fig.4-Fig.6).  

The parameter settings of the algorithms are shown in Table 1. 

Table 1. Parameter Settings 

Algorithm Parameter  Value 

SOS Number of eco_sizes 100 

Number of iterations 1,000 

SA Initial temperrature,T0 10 

Final temperature, Tk 0.001 

Cooling rate, α 0.9 

CLS Control parameter, p 0.05 

Search boundaries, xma  

                xm   

1.2 

0.2 

 

In order to exhibit the performance of proposed SA-CLS-SOS against SOS, SA-SOS and CLS-SOS 

graphs of solution quality and makespantime are plotted against number of iterations for the 

task sizes from 100 to 1,000. Figure 3 show the average makespantime for executing task instance 

10 times, using SOS, SA-SOS, CLS-SOS and SA-CLS-SOS. 

 

Fig.3. Makespan time comparison between SOS, SA-SOS, CLS-SOS and SA-CLS-SOS 

 



The figure indicated a minimization of makespan time using SA-CLS-SOS, particularly from task 

instances of 300 upward. The convergence graphs showing improvements in the quality of solution 

for makespantime obtained by SA-SOS and SA-CLS-SOS using data instances 100, 500, 1000 are 

presented in Fig.4-Fig.6.  

 

 

Fig.4. Convergence graph(100 task) 

 

Fig.5. Convergence graph(500 task) 



 

Fig.6. Convergence graph(1000 task) 

 

As can be observed, both methos showed improvement in quality of solution at the beginning 

of the search but SA-CLS-SOS demonstrated the ability of improving its quality of solution at 

a later stage of the search process. The quality of solutions obtained by SA-CLS-SOS is better 

than that of SA-SOS especially when the problem size is large. As it can be observed from Figures, 

SA-CLS-SOS obtain lowest makespan time and the quality solutions obtained by SA-CLS-SOS algorithm 

are better than those of SOS, SA-SOS and CLS-SOS. That is, the search direction of SA-CLS-SOS 

tends to converge to a stable point in a lesser number of iterations. 

The method is able to improve its quality even at a later stage of search process which means 

that SA-CLS-SOS has a higher probability of obtaining near-optimal solution than SA-SOS. 

 

5. Conclution 

 

This paper presents a novel SA-CLS-SOS algorithm to decrease makespantime and improve quality 

of solutin for task scheduling optimization problem in cloud computing. 

The proposed algorithm employs Simulated Annealing (SA) and chaotic local search search ability 

in order to improve the speed of convergence and quality of solution obtained by SOS algorithm 

in terms of makespantime. According to the simulation results, SA-CLS-SOS performs better than 

SOS, SA-SOS and CLS-SOS in terms of the quality of solution obtained and makespantime. 

The proposed method can be used to solve other optimization issues in the cloud computing system 

and other discrete optimization problems in different domains. 
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