
A Novel Architecture for Cloud Task Scheduling Based on Improved

Symbiotic Organisms Search

Song − Il Choe1,2,∗, Il − Nam Li1, Chang − Su Paek2, Jun −Hyok Choe2,Su− Bom Yun2

1 College of Information Science, Kim Il Sung University, Pyongyang, Democratic People’s

Republic of Korea

2 Department of Information Science, HuiChon Industry University, HuiChon, Democratic

People’s Republic of Korea

Corresponding author. * E-mail address: cxl2015316@163.com

Abstract-Task scheduling is one of the most challenging aspects in cloud computing nowadays,

which plays an important role to improve the overall performance and services of the cloud such

as response time, cost, makespan, throughput etc. Recently, a cloud task scheduling algorithm

based on the Symbiotic Organisms Search (SOS) not only have fewer specific parameters, but also

take a little time complexity. Symbiotic Organism Search (SOS) is a newly developed metaheuristic

optimization technique for solving numerical optimization problems. In this paper, the basic

SOS algorithm is reduced and a chaotic local search(CLS) is integrated into the reduced SOS to

improve the convergence rate of the basic SOS algorithm. Also, Simulated Annealing (SA) is

combined in order to asist the SOS in avoiding being trapped into local minimum. The performance

of the proposed SA-CLS-SOS algorithm is evaluated by extensive simulation using MATLAB simulation

framework and compared with SOS, SA-SOS and CLS-SOS. Results of simulation showed that improved

hybrid SOS performs better than SOS, SA-SOS and CLS-SOS in terms of convergence speed and makespan

time.

Keywords-Cloud computing, Cloud task scheduling, Symbiotic organisms search, Simulated

annealing, Chaotic local search

1. Introduction

 The cloud computing is such a computing model with rapid growth in recent years; it was rising

with the technological development of distributed computing, grid computing and parallel

computation. Cloud computing is a kind of computing model, which can obtain the resources quickly

from the configurable computing resources sharing pool in real time according to the demand,

those resources includes the server, storage, network, service and application, etc; the supply

and release of resources can be finished in just shorter a time, so as to reduce the load of

resource management and the interaction of service providers to a minimum [1].

The basic principles of cloud computing is that to break down the tasks reported by massive

users into smaller tasks via the network, by using multiple computers connected in the network

to search, compute and combine the results and then send them back to the users.

In recent decades, this task scheduling has attracted increasing attention and become a very

challenging research field. However, Task scheduling problem on cloud is an NP-hard problem,

mailto:cxl2015316@163.com

and thus task scheduling constitute one of the crucial aspects of resources management system

in cloud computing, which ensures the attainment of the general user Quality of Service (QoS)

performance in terms of response time, total execution time(makespan), throughput among others.

In addition, appropriate task scheduling is effective in reducing the operational cost of cloud

service providers in terms of energy consumption and resource utilization. Task scheduling

problems on cloud have been tackled using heuristic and metaheuristic algorithms.

The heuristic algorithms provide optimal solution for small size problems, however, the

solutions produced by these algorithms are far from optimal as the size of a problems increases.

Metaheuristic algorithms have achieved remarkable success in providing near optimal solutions

for task scheduling, and it has since draw the attention of several researchers.

However, metaheuristic algorithms still suffers from issues like entrapment in local optima,

premature convergence, slow convergence, or imbalance between local and global search.

Hence, there is scope for further development of task scheduling algorithms in the quest for

improved solutions. Now there are many metaheuristic algorithms used to solve the task scheduling

problems, such as Ant Colony Optimization (ACO) [2, 3], Genetic Algorithm (GA) [4–6], Particle

Swarm Optimization (PSO) [7, 8, 21, 22]. GA simulates natural evolutionary processes [9], PSO

algorithm simulates behaviors of flock foraging [7, 10], and ACO algorithm imitates the foraging

behavior of real ant colony [11, 12]. Recently, [13,18] have proposed symbiotic organisms search

(SOS) algorithm. It is a natureinspired swarm-based optimization algorithm based on the symbiotic

interaction between different individuals in nature. One major advantage of SOS is that it needs

only one control variable (eco-size or population size) in comparison with other popular

optimization techniques surfaced earlier [13]. Also, the basic structure of the SOS algorithm

is very simple and it is very easy to implement. This makes the SOS algorithm to become very

popular among many metaheuristic algorithms in recent years, and it has shown improved performance

to solve different types of optimization problems[14]. Therefore, the potential of SOS in finding

global solution to optimization problems exhibited so far make it attractive for further

investigation and exploration. Quality of solution and convergence speed obtained by

metaheuristic algorithms can be improved by its hybridization with either a metaheuristic

algorithm or local search method, by generating initial solution using heuristic search

techniques or by modifying the transition operator [15]. To the best of our knowledge none of

the aforementioned techniques have been explored to investigate the possible improvement of SOS

in terms of convergence speed and quality of solution obtained by SOS. In this paper, we studied

task scheduling using Improved Symbiotic Organism Search(SA-CLS-SOS). The proposed SA-CLS-SOS

combines SA method [16,20,23] and CLS method[17] into SOS optimization algorithm [13,18,19].

I n this paper, the basic SOS algorithm is reduced and a chaotic local search(CLS) is integrated

into the reduced SOS to improve the convergence rate of the basic SOS algorithm. Also, Simulated

Annealing (SA) is combined in order to asist the SOS in avoiding being trapped into local minimum .

The performance of the proposed SA-CLS-SOS algorithm is evaluated by extensive simulation using

MATLAB simulation framework and compared with SOS, SA-SOS and CLS-SOS.

Results of simulation showed that hybrid SOS performs better than SOS, SA-SOS and CLS-SOS in

terms of convergence speed and makespantime.

The main contributions of the paper are:

• Clearer presentation of SOS, SA, CLS procedures for scheduling of tasks in a cloud computing

environment.

• Proposal of a new cloud task scheduling method called on SA-CLS-SOS.

• Performance comparison of the proposed hybrid method with other algorithms(SOS, SA-SOS,

CLS-SOS).

• Descriptive statistical validation of the SA-CLS-SOS results against other selected methods

using significance test.

The organization of the remainder of the paper is as follows.

Metaheuristic algorithms applied to task scheduling problems in the cloud, SOS, SA, CLS are

presented in Section 2. Section 3 describes Task Scheduling Model and proposed algorithm

in Cloud Computing. Results of simulation and its discussion are in Section 4. Section 5 presented

a conclusion of the paper.

2. Related work

In computing, scheduling is a method by which work specified by some means is assigned to

resources that complete the work. It may be virtual computation elements such as threads&

processors or data flows, which are in turn scheduled onto hardware resources such as processors.

A scheduler is carries out the scheduling activity. Schedulers allow multiple users to share

system resources properly, or to achieve a good quality of service. Scheduling is fundamental

to computation, and an internal part of the execution model of a computer system, the concept

of scheduling makes it possible to have computer multitasking with a single CPU.

Preference is given to any one of the concerns mentioned above, depending upon the user's needs

and objectives. Many parallel applications consist of multiple computational components. While

execution tasks depend on the of other tasks, others can be Symbiotic Organism Search algorithm

executed at the same time, which increases parallelism of the problem.

The cloud computing is such a computing model with rapid growth in recent years; it was rising

with the technological development of distributed computing, grid computing and parallel

computation.Task scheduling is the main problem in cloud computing.

In recent decades, this task scheduling has attracted increasing attention and become a very

challenging research field. However, Task scheduling problem on cloud is an NP-hard problem,

and thus task scheduling constitute one of the crucial aspects of resources management system

in cloud computing, which ensures the attainment of the general user Quality of Service (QoS)

performance in terms of response time, total execution time(makespan), throughput among others.

In addition, appropriate task scheduling is effective in reducing the operational cost of cloud

service providers in terms of energy consumption and resource utilization. Task scheduling

problems on cloud have been tackled using heuristic and metaheuristic algorithms.

The heuristic algorithms provide optimal solution for small size problems, however, the

solutions produced by these algorithms are far from optimal as the size of a problems increases.

Metaheuristic algorithms have achieved remarkable success in providing near optimal solutions

for task scheduling, and it has since draw the attention of several researchers.

Metaheuristic methods [2,5,10,13,15-24] have been applied to solve task assignment problems

in order to reduce makespan and response time. The methods have proven to find an optimum mapping

of tasks to resources which reduce the cost of computation, improve quality of service, and

increase utilization of computing resources.

2.1. Symbiotic Organism Search algorithm

The SOS algorithm was inspired by symbiotic interactions between paired organisms in an

ecosystem. Each organism denotes a potential solution to an optimization problem under

consideration and has its position in the solution space. Organisms adjust their position

according to mutualism, commensalism, and parasitism biological interaction models of the

ecosystem. With mutualism form of interaction, the two interacting organisms benefit from the

relationship and this is applied in the first phase of the algorithm. The commensalism association

enables only one organism to benefit from the relationship while other is not harmed. The

commensalism association is applied in the second phase of the algorithm to fine tune the solution

space. With parasitism interaction, only one organism benefits while the other is harmed. The

parasitism interaction technique is applied in the third phase of the algorithm. The fittest

organisms survive in the solution space while the unfit ones are eliminated. The best organisms

are identified as those that benefited from the three phases of the interaction. The phases of

the procedure are continuously applied on the population of organisms which represents candidate

solutions until the stopping criterion are reached.Each member of the organism within an ecosystem

is represented by a vector in the solution plane. Each organism in the search space is assigned

a value which suggests the extent of adaptation to the sought objective. The Algorithm repeatedly

uses a population of the possible solutions to converge to an optimal position where the global

optimal solution lies. The algorithm used mutualism, commensalism,and parasitism mechanisms to

update the positions of the solution vector in the search space.SOS is a repetitive process for

an optimization problem [19] given in Definition 2.1. The procedure keeps a population of

organisms that depict the candidate solutions of the studied problem. The relevant information

concerning the decision variables and a fitness value is encapsulated into the organism as an

indicator of its performance. Essentially, the trajectories of the organisms are modified using

the phases of the symbiotic association.

Definition 2.1. Given a function f：D → R

X′ ∈ D: ∀X ∈ Df(X′)≤ or ≥ f(X).≤ (≥)minimaization(maxmization),

where f is an objective function to be optimized and D represents the search space while the

elements of D are the feasible solutions. X is a vector of optimization variables X

*x1 , x2 ,x3 , , x +. An optimal solution is a feasible solution X
′ that optimizes f .

The steps of the Symbiotic Organism Search algorithm are given below:

Step 1: Ecosystem initialization

Initial population of the ecosystem is generated and other control variables such as ecosystem

size, maximum number of iterations are specified. The positions of the organisms in the solution

space are represented by real numbers.

Step 2: Selection of the organism with the best fitted objective function represented as x

Step 3: Mutualism phase

In th iteration, an organism x is randomly selected from the ecosystem to interact with an

organism x for mutual benefit with i j according to (1) and (2) respectively.

x
′ x rand(,) (x − utual k1) (1)

x
′ x rand(,) (x − utual k2) (2)

The mutual vector denoted by utual is expressed as shown in

 utual

2
 (3)

The rand(,) function is a vector of uniformly distributed ran- dom numbers between 0 and 1.

The values of the benefit factors k1 and k2 are determined randomly as either 1 or 2, and repre

sents the level of benefit to each of the two organisms x and x (where 1 and 2 denotes adequate

and huge benefit that can be received by both x and x in their current mutual symbiotic states).

The organism with the best objective or fitness function value in terms of the degree of adaptation

in the ecosystem is represented by x . The utual signifies mutualistic characteristics

exhib ited between the two organism to increase their survival advan tage. It should be noted

that any update for any one of the two organisms is computed only if its new fitness function

value de- noted by f(x
′) or f(x

′) is better than the previous solutions, f(x) and f(x).

Given the above Eqs. (1) and (2) become:

x
′ x rand(,) (x − utual k1), if f(x

′) (x) (4)

x
′ x rand(,) (x − utual k2), if f(x

′) f(x) (5)

Step 4: Commensalism phase

In this phase, the organism x selected randomly from the ecosystem strives to increase its

benefits from its association with x . This kind of symbiotic association only places x at an

advan tage position, over x , even though, x is not harmed in the process. The new solution

emanating from the symbiotic relationship is calculated as shown in Eq. (6):

x
′ x rand(− ,) (x −x) if f(x

′) f(x) (6)

Step 5: Parasitism phaseIn th iteration, a parasite vector x is created by mutating x using

a randomly generated number in the range of the decision variables under consideration and an

organism with is selected randomly from the population to serve as host to . If the

fitness value () is greater than (), then
 will replace , otherwise

 is discarded.

Steps 2 through 5 are repeated until stopping criterion is reached.

Step 6: Stopping criterion

The pseudocode of Symbiotic Organism Search is presented as Algorithm 1.

Algorithm 1. Symbiotic Organism Search Algorithm

Creat and Initialize the population of organisms in ecosystem * 1, 2, 3 , , +

Set up stopping criteria

iteration_number

Do

 Do

 For

 () () ()

 End if

End for

//mutualism phase

Randomly select

′ (,) (−)

′ (,) (−)

 (
′) ()

′

End if

 (
′) ()

′

End if

//commensalism phase

Randomly select

′ (− ,) (−)

 (
′) () The

′

End if

//parasitism phase

Randomly select

Creat a parasite vector from using random number

 () ()

End if

 While

While stopping condition is not true

The SOS algorithm though efficient in solving complex opti- mization and discrete engineering

problems, still has high probability of plunging into local optimum [19]. Therefore, the SOS-SA

algorithm has been proposed to overcome this shortcoming.

2.2. Simulated annealing algorithm

Simulated annealing is used to do further processing of the result of SOS to avoid falling

into local optimal solution[20, 23].The process begins by considering a so lution space of a

particular tour through the set of given cities or points | , , , , with an update solutions

′ created by randomly switching the orders of two cities. The energy function or fitness function,

which represents the length of route , is denoted by ().

The relative change in cost between and
′ is expressed as

 (
) ()

 ()
. Beginning with

the initial solution, only the solution which results in smaller energy value than the previous

solution is accepted by the algorithm, in other words, a solution is only accepted when the fitness

value of (
′) ().

However, accepting or rejecting a new solution with higher fitness values for ′ can be based

on the acceptance probability function given as follows (Eq.(7)):

 (,) {
(

)
,

 , ≤
 for (7)

where is the parameter temperature at the
 instance of accepting a new solution route,

and for any given T , for , P is greater for smaller values of , which means that for

the new solution
′ that is only slightly more costly than the current solution is more likely

to be accepted than the new solution
′ that is much more costly than the current solution . The

value of T , which is an important control parameter, decreases proportionally with P , that

is as the →
(

)
 , . Therefore, as the value of T decreases, the probability of

accepting a degraded route also decreases. In this paper the following cooling schedule is adopted

(Eq. (8)):

 (8)

Where, denotes the cooling coefficient, which is some random constant values between 0 and

1, it is also the rate at which the temperature is lowered each time a new solution
′ is discovered.

The SA procedure is as presented in the algorithm2 below:

Algorithm 2. Pseudocode for SA.

Input : Initial temperature , final temperature , cooling rate α, maximum iteration

maxiter

 Output : Best cost

1: Chose a random route and initialize T 0 and α

2: For counter = 1 to maxiter

3: Create a new solution
′ by randomly swapping two cities in neighbourhood of

 3: Compute
 (

) ()

 ()
 and use the acceptance probability function to either accept or

reject the new solution, based on the following conditions:

a) if ≤ ,
′

b) if ,
′ depending on Eq. (7)

4: Reduce the temperature using Eq. (8) and increment k

 5: Update the best solution

6: End for

2.3. chaotic local search algorithm

Chaos is a deterministic process that is usually found in dynamic and nonlinear systems, and

has high sensitivity to initial conditions and parameters change. Chaos characterized by

randomness, ergodicity, irregularity and an apparent unpredictability. Chaos is known as a

randomness of a simple dynamic system, which motivate its usage as a source of randomness in

optimization theory and various fields instead of the usual random process. Chaotic sequences

have been employed in stochastic optimization techniques to provide population diversity in

search space to ensure global convergence as well as avoidance of local optima entrapment. Chaotic

sequences are highly sensitive to their initial value. It is quite important to select the initial

value for the chaotic map very precisely. In chaotic PSO (CPSO) [21], the decision variables

of PSO are mapped into chaotic domain by the carrier equation given in (9).

 (−) (−) (9)

where is the initial value of the chaotic sequence, x is the position of the particle and

 and are the search boundaries. But this mapping may lead to ineffectiveness of the

chaotic search as the initial value of the chaotic sequence becomes fixed, and hence, the whole

chaotic orbit becomes monotonous. CLS is activated when the best solution, obtained by PSO over

the entire population, does not change for several times[22]. In this case, u becomes fixed,

and hence, the chaotic search orbit will be always same before the next chaotic search. This

will worsen the performance of the chaotic search. To avoid this problem and to maintain the

ergodicity of the chaotic search, [22] have suggested the usage of random function for generating

the initial value of the chaotic sequence. So, the initial value of the chaotic sequence is

designed by (10).

 (,) (10)

As chaotic search is most efficient in small range[17], CLS in the proposed CSOS of the present

work is performed over a small radius r . The CLS has only been applied to the best organism

() as achieved after the commensalism phase of the reduced SOS optimizer. It is done so because

the range (−r, +r) would be the most promising area for the local search. Also, it

saves more time as compared to the methods that apply chaotic search on all the particles. The

chaotic search radius r is defined initially by (11), and then, it is, subsequently, decreased

in the next generations with the help of a shrinking coefficient () to shrink the search

area[23].

 (−) (11)

The initial variable of the chaotic sequence, that is, is generated by using (10), and

the next variable of that chaotic sequence (i.e.) is generated by using the PLCM. The PLCM

may be formulated by (12)[23]

 {

 ∈ (,)

()

()
 ∈ (,)

 (12)

where q is the control parameter (q∈ 0, 0.5).

The distributions of two different chaotic maps are shown in Fig. 1 over 500 time steps (refer

Fig. 1a for logistic map and Fig. 1b for PLCM [22]. The chaotic map that is used here to generate

the chaotic sequence is the simple PLCM. PLCM is ergodic in nature (see Fig. 1b) and has uniform

invariant density function. It is easy to implement as well as it depicts a very good dynamical

behaviour which makes it superior to the well-known logistic map (Fig.1a)[22].

(a) (b)

Fig. 1. Distribution of chaotic map for a logistic map and b PLCM

The chaotic variables, generated by the PLCM, are mapped back to the search range around the

best organism using (13)

 (−) (13)

where is the position of the best organism over the entire population at (i +1)th generation

of CLS and is the position of the best organism in the ecosystem after the traditional SOS.

The fitness value is calculated for the organism , and it will be considered as the best

organism, if it gives better fitness than the previous best organism. The CLS procedure is as

presented in the algorithm listing 3 below:

Algorithm 3. chaotic local search pseudocode.

Set i=0

Initialize chaotic variable (,)

Set chaotic search radius r by (11)

do

Calculate by (12)

Map back to the range around the best organism using the equation

 (−)

Evaluate fitness value for

while a better solution is found or maximum number of iteration is reached

Decrease the radius of the chaotic search space by

 % is a random number between 0 and 1

3. Task Scheduling Model and algorithm design in Cloud

Computing Environment

3.1. Task Scheduling Model

To simplify the complexity of the problem and establish an effective task scheduling model, we

make the following assumptions: Tasks submitted by the users are indivisible Meta-task;

furthermore, each task owns independent operation and does not run a priority; The number of

tasks submitted by users in cloud computing is far greater than virtual machines’ in cloud

datacenter; The execution time of tasks in a virtual machine can be calculated according to the

information processing speed (MIPS) of the virtual machine(vm).

To establish the mathematical model of task scheduling facilitatedly, we make the related

parameters of the task and the virtual machine as following.

Task set as T *Task1 ,Task2 , Task3 , , Task , , Taskm+ *Task |i , ∈ , ,m-+ , where m is the

number of tasks submitted by the users. Task Represents the ith task in the task sequence.

The feature of Task is defined as *ID ,task length ,Time exp , P +, in which ID is the serial number

of tasks and task length is the instruction length of the task (unit: million instruction MI).

And Time exp refers to the user’s expected completion time for the Task ; P refers to the task

priority.

VM set as V {vm1,vm2 , vm3 , , vm , , vm } {vm |j , ∈ , , 𝑛-}, where n is the

number of virtual machines and vm denotes the jth virtual machine resource in the

cloud environment. The feature of vm is defined as {ID , IPS }, in which ID is the

serial number of virtual machines and IPS is the information processing speed of

virtual machines (unit: millions-of-instructions-per-second, mips).

The tasks are scheduled on the available VMs and execution of the tasks are done on the basis

of First-Come First-Serve. Our aim is to schedule tasks on VMs in order to achieve high utilization

with minimal makespan. As a result, Expected Time to Compute (ETC) of the tasks to be scheduled

on each VM will be used by the proposed method to make schedule decisions. ETC values were

determined using the ratio of millions instructions per second (MIPS) of a VM to length of

the task.

ETC values are usually represented in matrix form as following.

ETC (
ETC11 ETC1

⋮ ⋱ ⋮
ETCm1 ETCm

) (14)

where the number of tasks to be scheduled represents the rows of matrix and number of available

VMs indicates the columns of the matrix. Each row of ETC matrix represents execution times of

a given task for each VM, while each column represents execution times of each task on a given

VM. Since our objective is to minimize the makespan by finding the best group of tasks to be

executed on VMs.

Let ETC , i ,2, ,m, j ,2, , n be the execution time of executing ith task on jth VM.

Then ETC is calculated as following.

ETC task length IPS ⁄ (15)

The fitness value of each organism is etermined using Eq (16), which determines the strength

of the level of adaptation of the organism to the ecosystem.

objective function max {∑
f(M)

 =1 } (16)

f()
μ

mak a
 (17)

μ ∑
λ

 =1 (18)

λ
Ta k

mak a
 (19)

makespan max{ETC |i ∈ T, i ,2,3, ,m; j ∈ V , j ,2,3, , n } (20)

where f() is the fitness value of virtual machine j; μ is the average utilization of virtual

machines ready for execution of tasks and its essence is to support load balancing among VMs,

λ defines the utilization of virtual machine j.

3.2. SA-CLS-SOS Task Scheduling algorithm

The SA-CLS-SOS algorithm is a hybrid of symbiotic organisms search and simulated annealing,

chaotic local search algorithm. CLS is employed after the commensalism phase, replacing the

parasitism phase of SOS. In mutualism phase, two new candidate solutions are generated while

in commensalism phase, one new candidate solution is generated, based on the previous best

solution or organism in the ecosystem. In both mutualism and commensalism phases, the new

candidate solutions or organisms are accepted if they have better fitness values than the previous

best organism and these newly generated organisms direct the search process over the unvisited

portion of the entire search space. In short, the mutualism and the commensalism phases provide

better exploration of the search space. On the other hand, in parasitism phase, the current best

organism from the commensalism phase is duplicated to act as parasite vector and it interacts

with a randomly chosen organism from the ecosystem. If the randomly chosen organism has better

fitness value than the parasite vector, then it will remain in the ecosystem; otherwise, it will

be destroyed. This may lead to loss of potential solution in case of any improper duplicating

of parasite vector or any ineffective interaction which cannot produce any better solution over

a number of generations. This will affect the computational efficiency and will take unnecessarily

longer computation time. In contrast to this, in case of CLS, the search process is intensified

towards a promising region which enhances the exploitation of search space. As a result, better

solution may be found more quickly. Also, the SA is a local search metaheuristic algorithm widely

used for solving both discrete and continuous optimization problems. One of the main benefits

of SA lies in its ability to escape the problem of getting stuck in a local minimum by allowing

hill-climbing moves to search for a global solution. Therefore, a hybrid approach is proposed

by introducing SA is to assist the SOS in avoiding being trapped into local minimum and to also

increase its level of diversity while searching for optimum solution in the problem search space.

Thus, a new hybrid algorithm (SA-CLS-SOS) is proposed to improve task scheduling optimization

in cloud computing . The steps of the hybrid SA-CLS-SOS algorithm are then described in algorithm

listing 4.

Algorithm 4. SA-CLS-SOS pseudocode.

 Input: Initial ecosystem x , ecosystem size eco _ size , Initial temperature 𝐓 , final

temperature 𝐓𝐤, cooling rate , maximum iteration maxiter ,

Initialize chaotic variable (,), Set chaotic search radius r by (11)

Output : best known solution

1: Create and evaluate new solutions

a) Generate , i = 1 , 2 , . . . , eco _ size

For i = 1 to maxiter

b) Compute cost / fitness function of , ()

c) Determine the best solution

d) Compute
 (

) ()

 ()

If ≤ , where p is the acceptance probability (Eq. (7)) and u is a random number

between 0 and 1

e) then update solution by assigning

f) End if

For i = 1 to eco _ size

 2: Update organism (route) with SA (Algorithm 2) on the two SOS phases in Algorithm 1

For i =1 to eco _ size

 a) Modify the organisms according to (1) and (2) in mutualism phase

 b) Modify organism with the help of using (6) in commensalism phase

 c) Update the best organism

3: Update best organism using the CLS in Algorithm 3

do

Calculate by (12)

Map back to the range around the best organism using the equation

 (−)

Evaluate fitness value for

while a better solution is found or maximum number of iteration is reached

Decrease the radius of the chaotic search space by

4: Update the best solution 𝑏𝑒𝑠𝑡 ever found

5: Update temperature using the cooling schedule given in Eq. (8)

5: End for

6: End for

7: End for

Fig. 2 illustrates the SA-CLS-SOS algorithm procedures.

 No

 Yes

Yes

 No

 No

 Yes

Ecosystem Initialisation, eco_size, initial ecosystem x ,

initial tempurature, cooling rate, termination criteria,

main loop

Generate a candidate solution x
′, based on current solution x

and a speified neighbourhood structure

Identify best organism((x) i i

p e
(f
Tk

)

Generate u rand(,) randomly

x x

Update organism by Mutualism phase

Update organism by Commensalism phase

Set i

Set chaotic search radius (−)

 No

 Yes

 No

Fig. 2. Flowchart for the SA-CLS-SOS Algorithm.

Initialize chaotic variable cx rand(,)

{

 ∈ (,)

(−)

(−)
 ∈ (,)

 (−)

Evaluate fitness value for x 1

Decrease the radius of the chaotic search space by

r δ r

Apply cooling schedule: T 1 αT

Best known solution

4. Simulation and result

In order to test the performance of the proposed method, simulations are carried out using

MATLAB R2017a_win64 computing environment on a 3.2GHz core i5 personal computer with 4GB RAM.

The first experiment was carried out for SA-CLS-SOS, SOS, SA-SOS and CLS-SOS, to evaluate the

makespantime of the proposed SA-CLS-SOS algorithm. The comparison results are as presented

in(Fg.3)

The second experiment was carried out to evaluate the quality of solution of the SA-CLS-SOS

algorithm based on makespantime. The results are presented in(Fig.4-Fig.6).

The parameter settings of the algorithms are shown in Table 1.

Table 1. Parameter Settings

Algorithm Parameter Value

SOS Number of eco_sizes 100

Number of iterations 1,000

SA Initial temperrature,T0 10

Final temperature, Tk 0.001

Cooling rate, α 0.9

CLS Control parameter, p 0.05

Search boundaries, xma

 xm

1.2

0.2

In order to exhibit the performance of proposed SA-CLS-SOS against SOS, SA-SOS and CLS-SOS

graphs of solution quality and makespantime are plotted against number of iterations for the

task sizes from 100 to 1,000. Figure 3 show the average makespantime for executing task instance

10 times, using SOS, SA-SOS, CLS-SOS and SA-CLS-SOS.

Fig.3. Makespan time comparison between SOS, SA-SOS, CLS-SOS and SA-CLS-SOS

The figure indicated a minimization of makespan time using SA-CLS-SOS, particularly from task

instances of 300 upward. The convergence graphs showing improvements in the quality of solution

for makespantime obtained by SA-SOS and SA-CLS-SOS using data instances 100, 500, 1000 are

presented in Fig.4-Fig.6.

Fig.4. Convergence graph(100 task)

Fig.5. Convergence graph(500 task)

Fig.6. Convergence graph(1000 task)

As can be observed, both methos showed improvement in quality of solution at the beginning

of the search but SA-CLS-SOS demonstrated the ability of improving its quality of solution at

a later stage of the search process. The quality of solutions obtained by SA-CLS-SOS is better

than that of SA-SOS especially when the problem size is large. As it can be observed from Figures,

SA-CLS-SOS obtain lowest makespan time and the quality solutions obtained by SA-CLS-SOS algorithm

are better than those of SOS, SA-SOS and CLS-SOS. That is, the search direction of SA-CLS-SOS

tends to converge to a stable point in a lesser number of iterations.

The method is able to improve its quality even at a later stage of search process which means

that SA-CLS-SOS has a higher probability of obtaining near-optimal solution than SA-SOS.

5. Conclution

This paper presents a novel SA-CLS-SOS algorithm to decrease makespantime and improve quality

of solutin for task scheduling optimization problem in cloud computing.

The proposed algorithm employs Simulated Annealing (SA) and chaotic local search search ability

in order to improve the speed of convergence and quality of solution obtained by SOS algorithm

in terms of makespantime. According to the simulation results, SA-CLS-SOS performs better than

SOS, SA-SOS and CLS-SOS in terms of the quality of solution obtained and makespantime.

The proposed method can be used to solve other optimization issues in the cloud computing system

and other discrete optimization problems in different domains.

REFERENCES

[1] XiaoLi He, et al., “The Intelligent Task Scheduling Algorithm in Cloud Computing”,

International Journal of Grid and Distributed Computing, Vol. 9, No. 4 , pp.313-324, 2016.

[2] Gao, Y.Q., et al., “A multi-objective ant colony system algorithm for virtual machine

placement in cloud computing”, J. Comput. Syst. Sci. 79, pp.1230–1242, 2013.

[3] Raju, R., et al., “Minimizing the makespan using hybrid algorithm for cloud computing”,

Adv. Comput. Conf. 7903, pp.957–962, 2013.

[4] Xu, Y.M., et al., “A genetic algorithm for task scheduling on heterogeneous computing

systems using multiple priority queues”, Inf. Sci. 270, pp.255–287, 2014.

[5] Jiang, Y.S., et al., “Task scheduling for grid computing systems using a genetic

algorithm”, Kluwer Academic Publishers, Hingham, 2015

[6] Dasgupta, K., et al., “A genetic algorithm (GA) based load balancing strategy for cloud

computing”, Procedia Technol. 10, pp.340–347, 2013.

[7] Awad, A.I., et al., “Enhanced particle swarm optimization for task scheduling in cloud

computing environments”, Procedia Comput. Sci. 65, pp.920–929, 2015.

[8] Cai, Q., et al., Resource scheduling in cloud computer based on improved particle swarm

optimization algorithm”, J. Liaoning Tech. Univ. (Natural Science) 5, pp.93–96, 2016.

[9] Cuppini, M., et al., “A genetic algorithm for channel assignment problems”, Eur. Trans.

Telecommun.5, pp.285–294, 1994.

[10] Guan, T.T., et al., “Application research of multi objective partice swarm optimization

in logistics distribution”, Nanchang University, Nanchang, 2012.

[11] Dorigo, M., et al., “Ant colony optimization”, IEEE Comput. Intell. Mag. 1, pp.28–39,

2006.

[12] Li-Fen, L.I.,et al., “A cloud model based multiple ant colony algorithm for the routing

optimization of WSN with a long-chain structure”, Comput. Eng. Sci. 32(11), pp.10–14, 2010.

[13] ChengMY, et al., “Symbiotic organisms search: a newmetaheuristic optimization

algorithm”, Comput Struct 139, pp. 98–112, 2014.

[14] Tejani GG, et al., “Adaptive symbiotic organisms search (SOS) algorithm for structural

design optimization”, J.Comput Design Eng 3(3), pp.226–249, 2016.

[15] Kalra Mala and Singh Sarbjeet, “A review of metaheuristic scheduling techniques in cloud

computing”, Egyptian Informatics Journal.16(3), pp. 275–295, 2016.

[16] Hwang Chii-Ruey., “Simulated annealing: theory and applications”, Acta Applicandae

Mathematicae.12(1), pp.108–111, 1988.

[17] Yang D, Li G, Cheng G, “On the efficiency of chaos optimization algorithms for global

optimization”, Chaos Solitons Fract.34(4), pp.1366–1375, 2007.

[18] Abdullahi Mohammed and Ngadi Md Asri and Abdulhamid Shafi’i Muhammad., “Symbiotic

Organism Search optimization based task scheduling in cloud computing environment”, Future

Generation Computer Systems.56, pp.640–650, 2016.

[19] Vincent, F. Y. , Redi, A. P. , Yang, C. L. , Ruskartina, E. , & Santosa, B., “Symbiotic

organisms search and two solution representations for solving the capacitated vehicle routing

problem”, Applied Soft Computing, 52 ,pp. 657–672, 2017.

[20] Strobl Maximilian AR and Barker Daniel., “On Simulated Annealing Phase Transitions in

Phylogeny Reconstruction”, Molecular Phylogenetics and Evolution.101, pp.46–55, 2016.

[21] Liu B,Wang L, Jin YH et al., “Improved particle swarm optimization combined with chaos”,

Chaos Solitons Fract 25, pp.1261–1271, 2005.

[22] Xiang T, Liao X, Wong K, “An improved particle swarm optimization algorithm combined

with piecewise linear chaotic map”, Appl Math Comput 190, pp.1637–1645, 2007.

[23] Absalom El-Shamir Ezugwu, “Simulated annealing based symbiotic organisms search

optimization algorithm for traveling salesman problem”, Expert Systems With Applications 77,

pp.189–210, 2017.

