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Abstract 

Mobile cloud computing (MCC) has attracted extensive attention in recent years. With 

the prevalence of MCC, how to select trustworthy and high quality mobile cloud services 

becomes one of the most urgent problems. Therefore, this paper focuses on the 

trustworthy service selection and recommendation in mobile cloud computing 

environments. We propose a novel service selection and recommendation model (SSRM), 

where user similarity is calculated based on user context information and interest. In 

addition, the relational degree among services is calculated based on PropFlow 

algorithm and we utilize it to improving the accuracy of ranking results. SSRM supports a 

personalized and trusted selection of cloud services through taking into account mobile 

user’s trust expectation. Simulation experiments are conducted on ns3 simulator to study 

the prediction performance of SSRM compared with other two traditional approaches. 

The experimental results show the effectiveness of SSRM. 

 

Keywords: mobile cloud computing, Quality of Service, service selection, collaborative 

filtering  

 

1. Introduction 

Mobile Cloud Computing (MCC) is a new computing model where Cloud 

Computing (CC) is integrated into mobile computing environments. The new 

computing model breaks through the resource limitation of mobile terminals by 

moving data processing and storage from mobile device to cloud service platforms 

via wireless networks. Rich mobile applications can be easily created and accessed 

just based on web browser on the mobile devices [1]. The architecture of MCC is 

shown is in the figure 1. Internet content providers in figure 1 put video information, 

games and news resources in appropriate data centers in order to provide users more 

rich and efficient content services. Mobile users use the wireless connections to 

access the data centers of public clouds over the Internet. Data centers of public 

clouds are distributed in different locations and provide users with elastic and 

scalable computing or storage services. In addition, some mobile users with the 

demand for higher privacy protection, lower network latency and energy 

consumption can connect to cloudlets via local area networks.  A cloudlet located at 

the edge of the Internet is a mobility-enhanced small-scale cloud datacenter, which 

extends cloud computing infrastructure [2]. 

MCC is derived from Cloud Computing, thus it inherits the advantages of Cloud 

Computing such as dynamic development of mobile applications, resource 

scalability, multi-user sharing and multi-service integration, et.al. But, quite apart 

from that, it has also some problems including resource limits, weak battery strength, 

user mobility and low network coverage. With the prevalence of MCC, more and 

more internet users from mobile devices use cloud computing services through 

wireless interface (e.g. GPRS/3G/WiFi). As shown in the figure 1, there exits 

abundant functionally similar cloud services provided by different cloud service 

https://en.wikipedia.org/wiki/Cloud_computing
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providers. Therefore, how to select appropriate cloud services for mobile users 

becomes one of the most urgent problems. 
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Figure 1 Architecture of Mobile Cloud Computing 

To address the problem of cloud service selection and recommendation, 

researchers have done many notable works in cloud computing literature [3-7]. The 

most of existing methods mainly depend on ranking Quality-of-Service (QoS) to 

select an optimal cloud service from a set of functionally equivalent cloud services. 

Quality-of-Service (QoS) usually describes non-functional performance of cloud 

services. QoS values of cloud services provide valuable information to assist 

decision making [3].  

The challenge here is to recommend an optimal mobile cloud service based on 

dynamic QoS properties. In real-world applications, QoS in MCC is referring to 

dynamic QoS properties (packet loss ratio, end-to-end throughput, delay etc.), which 

are affected by the user context information [23]. Context information includes 

location, time, resource ability (processing power, memory or battery capacity), 

bandwidth, status (online or offline), etc. For example, limited bandwidth and 

resource ability can make the values of QoS properties degrade. Naturally, 

consumers hope to select the most trustworthy cloud service among abundant 

candidates by considering the dynamic context information over multiple time 

periods. However, the works done for cloud computing rarely focus on investigating 

the influence of user context information on service selection. User mobility in 

MCC can lead to the dynamic changes of user context information. The selection 

results of mobile user may vary according to the changes of user context 

information. Therefore, user context information plays an important role when 

designing such selection and recommendation algorithms.  

Moreover, the existing methods always assume that cloud services are 

independent and ignore the fact that the relation among cloud services has important 

effect on the accuracy of recommendation results. The related services will be 

probably selected by the same user based on the intuition [8]. For example, in 

tourism service scenario the users purchasing airplane ticket service probably prefer 

to purchase car rental service in future. 

To attack this critical challenge, the algorithm for MCC is expected not only to 

satisfy the required service level by user, but also to adapt to dynamic changes of 

user context information. In the paper, we make use of user-based collaborative 

filtering method to propose a novel context-aware service selection and 

recommendation model (SSRM), which combines the user context information, user 

interest, historical service usage experiences (QoS value or customer rating) of  
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cloud services and the relation among cloud services to rank the cloud services. 

Collaborative filtering technologies [22] in the field of online recommendation 

system offer us a strong theoretical foundation to deal with the service selection and 

recommendation problem. Recently, they have been successfully applied to predict 

the missing QoS value in cloud computing. Collaborative filtering technologies are 

categorized as user-based collaborative filtering approaches, item-based 

collaborative filtering approaches and their fusion approaches. In addition, SSRM 

model only select trusted mobile cloud service as candidates for mobile users. 

Different users have different trust requirement, the personalized service selection 

and recommendation method is thus required by different users [3]. To support 

personalized selection of cloud services, SSRM takes into account mobile user’s 

trust expectation through using a trust threshold. 

Within the SSRM model, there are a few modules. Figure 2 shows the system 

architecture of SSRM model, which supports personalized selection and 

recommendation of cloud services.  
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Figure 2 Architecture of SSRM model 

A user requesting service selection and recommendation is called target user in 

the model. A user providing historical service usage experiences is called training 

user. Our aim is to get the service ranking results from SSRM model by predicting 

the missing service usage experiences for target user. SSRM involves the following 

key steps: 

Step A: A target user requests service selection and recommendation; 

Step B: User similarities between target user and training users are calculated 

based on context similarity and user interest similarity. 

Step C: Based on the similar values, a set of similar users are identified.  
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Step D: The basic service ranking results are obtained by taking advantages of the 

past service usage experiences of similar users. 

Step E: Relational degree among cloud services is evaluated. Through utilizing 

relational degree to improving the accuracy of ranking results, we succeed in 

obtaining the ultimate service ranking results.  

Step F: SSRM only selects trusted mobile cloud services as candidates based on 

trust filter module.  

Step G: The ranking prediction results are provided to the active user. 

This paper targets the research task of accurately making QoS ranking prediction, 

with consideration of user context information and the relation among cloud 

services, according to the requirements of different application scenarios. This paper 

makes the following contributions: 

1) This paper focuses on the trustworthy service selection and recommendation 

in mobile cloud computing environments. We propose a novel service 

selection and recommendation model (SSRM), where similarity is calculated 

based on user context information and interest. 

2) SSRM calculate the relational degree among services based on PropFlow 

algorithm and utilize relational degree to improving the accuracy of ranking 

results. 

3) SSRM supports a personalized and trusted selection of cloud services through 

taking into account mobile user’s trust expectation. 

4) Simulation experiments are conducted on ns3 simulator to study the 

prediction performance of SSRM compared with other two traditional 

approaches: item-based CF approach (IBCF) and user-based CF approach 

(UBCF). The experimental results show the effectiveness of SSRM. 

This paper is organized as follows. Section 2 describes related work. In Section 3, 

the proposed SSRM model is discussed. Section 4 describes the test scenario and 

simulation results. Finally, we conclude with a summary of our results and 

directions for new research in Section 5. 

2. Related Work 

Mobile cloud computing (MCC) has attracted extensive attention in recent years, 

since it provides real-time access to real-time information through the applications on 

mobile devices. The rapid advancements of mobile cloud technology have been the 

prime reason for significant expansions in this market, where exists abundant 

functionally similar services provided by cloud vendors including Amazon, Google, 

Inc., Apple, Inc., Microsoft Corporation, etc. Markets and Markets [14] forecast the 

global mobile cloud market will grow to over $46.90 Billion by 2019. The 

exponential growth of mobile cloud market makes it hard for users to select the 

most suitable mobile cloud service. Therefore, how to select trustworthy and high 

quality mobile cloud services becomes one of the most urgent problems.  A number 

of works have been carried out on cloud service selection issue including rating-

oriented collaborative filtering methods [4, 5], ranking-oriented collaborative 

filtering methods [3] and some other methods. 

Rating-oriented or ranking oriented collaborative filtering methods can produce QoS 

prediction or service ranking using collaborative filtering technology. Rating-oriented 

collaborative filtering methods rank the cloud services based on the predicted QoS 

values. QoS presents the non-functional properties of cloud services including 

security, availability, throughput and response-time properties, etc. Based on the 

service QoS measures, various approaches are proposed for service selection.  Pan et 
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al. [4] propose a trust-enhanced cloud service selection model based on QoS 

analysis. In the model, trust is utilized to find similar neighbors and predict the 

missing QoS values. Ding et al. [5] propose a personalized cloud service selection method 

to make experience usability and value distribution to measure the service similarity. 

Rating-oriented collaborative filtering approaches first predict the missing QoS values 

before making QoS ranking. The target of rating-oriented approaches is to predict QoS 

values as accurate as possible. However, accurate QoS value prediction may not lead to 

accurate QoS ranking prediction [3]. 

Compared with rating-oriented methods, ranking-oriented methods predict the QoS 

rankings directly. Different from the previous ranking-oriented methods, Zheng et al. [3] 

propose a comprehensive study of how to provide accurate QoS ranking for cloud 

services. Although ranking-oriented methods can be used to make optimal cloud service 

selection from a set of functionally equivalent service candidates, these methods ignore 

the changes of QoS. QoS in MCC might vary largely, even for the same type of 

mobile cloud services. QoS in MCC are affected by the user context information. The 

rating-oriented collaborative filtering methods and ranking-oriented collaborative 

filtering methods both can help user to predict missing QoS value, but they did not 

consider the dynamic QoS properties in MCC.  

Other types of service selection approaches are also been widely examined. The 

most employed approaches include multicriteria decision analysis-based service 

selection [7, 18, 19 and 26], reputation-aware service selection [16], adaptive 

learning mechanism-based service selection [17, 23], economic theoretical model-

based service selection [15, 20], service level agreement-based service ranking [21], 

visualization framework for service selection [24] and trust evaluation middleware 

for cloud service selection [25]. Though these approaches can efficiently measure 

service quality, the implementation of some approaches is time-consuming and 

costly. 

Ma et al. [7] propose a time-aware service selection approach by using interval 

neutrosophic set. In the paper, the strategy for selecting trustworthy services from 

an abundant field of candidates involves formulating the problem of time-aware 

service selection with tradeoffs between performance–costs and potential risk as a 

multi-criterion decision-making (MCDM) problem that creates a ranked services list 

using interval neutrosophic set (INS) theory. The experimental results demonstrate 

that the proposed approach can work effectively in both the risk-sensitive service 

selection mode and the performance-cost-sensitive service selection mode, but the 

approach ignores the changes of user context information in MCC environments.  

Whaiduzzaman et al. [18] identify and synthesize several multicriteria decision 

analysis (MCDA) techniques and provide a comprehensive analysis of this 

technology for general readers. In addition, this paper presents a taxonomy derived 

from a survey of the current literature. The results show that MCDA techniques are 

indeed effective and can be used for cloud service selection but that different 

techniques do not select the same service.  

This paper [26] presents a cloud service selection methodology that utilizes 

quality of service history of cloud services over different time periods and performs  

parallel multi-criteria decision analysis to rank all cloud services in each time period 

in accordance with user preferences before aggregating the results to determine the  

overall rank of all the available options for cloud service selection. This 

methodology assists the cloud service user to select the best possible available 

service according to the requirements. The main disadvantages are that the 

framework proposed in this paper deals with service selection in the pre-interaction 

period only. Work on post-interaction service migration decisions is needed, and 

several other important factors such as the cost of migration in terms of service 
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disruption and data transfer, etc. also need to be included in the decision making 

process. 

Fan et al. [16] propose a multi-dimensional trust-aware cloud service selection 

mechanism based on evidential reasoning approach which aggregates multi-

dimensional trust feedback ratings to form the reputation values of the cloud service 

providers. Though the experimental results show that this approach is effective in 

cloud systems, but it can be only used to recommend an optimal cloud service which 

satisfies the key QoS requirements for users. 

Wang et al [17] propose a dynamic cloud service selection method by using an 

adaptive learning mechanism, which involves incentive, forgetting and degenerate 

functions that can realize the self-adaptive regulation for optimizing next service 

selection according to the status of current service selection. To assist users to 

efficiently select their preferred cloud services, a cloud service selection model 

adopting the cloud service brokers is given in the paper. However, in the paper the 

brokerage scheme on cloud service selection typically assumes that brokers are 

completely trusted, and do not provide any guarantee over the correctness of the 

service recommendations. It is then possible for a compromised or dishonest broker 

to easily take advantage of the limited capabilities of the clients and provide 

incorrect or incomplete responses. 

Do et al. [15] propose a dynamic service selection method which provides a price 

game in heterogeneous cloud market. The paper studies price competition in a 

heterogeneous cloud market, where users can identify benefit and cost of cloud 

service application and choose the best one through analyzing market-relevant 

factors. But this paper only considers one service. In real-world applications, there 

are many cloud services in the practical cloud market. Additionally, this paper has 

not considered service-level agreement issues that are also important for cloud 

users. 

The visualization framework for service selection [24] takes into cognizance the 

set of cloud services that matches a user’s request and based on QoS attributes, 

users can interact with the results via bubble graph visualization to compare and 

contrast the search results to ascertain the best alternative.  Although the result from 

the experiments shows that visualization framework simplifies decision making, the 

use of bubble graph introduces additional complexity for the user when making a 

suitable service selection. 

The authors [25] discuss the method of enhancing service trust evaluation and 

propose a trustworthy selection framework for cloud service selection, named 

TRUSS. Aiming at developing an effective trust evaluation middleware for TRUSS, 

this paper proposes an integrated trust evaluation method via combining objective 

trust assessment and subjective trust assessment. Simulation-based experiments 

validated the performance of the proposed method, but the method assumes that the 

majority of service users are honest and a dishonest user gives more unfair ratings 

than fair ratings. This assumption is unrealistic. 

Cloud computing and mobile cloud computing are quite different. The mobile 

cloud pays attention to services available through mobile network operators (MNOs 

like Verizon and AT&T). While a great number of researchers have focused on the 

service selection and recommendation in cloud computing, little attention has been 

devoted to trustworthy service selection in mobile cloud computing. Different from 

these existing approaches, our work focuses on how to select trustworthy and high 

quality cloud services for mobile user in MCC, which is an urgently-required 

research problem. Thus, we propose a context-aware cloud service selection method 

for mobile cloud computing environments, which considers user context information 

http://en.wikipedia.org/wiki/Mobile_network_operator
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and interest in order to calculate user similarities and utilize relational degree 

among cloud services to improve the accuracy of service ranking results.  

 

3. SSRM Model 

In this section, we present a detailed discussion of the proposed novel service 

selection and recommendation model (SSRM). Firstly, user similarities are 

calculated and the basic personalized service ranking results are obtained in section 

3.1. Secondly, relational degree is calculated and used to improve the accuracy of 

ranking results in section 3.2. 

 

3.1. User Similarity Computation 

Given m  users and n mobile cloud services, the user-service matrix (USM) for 

predicting the missing service usage experiences is denoted as  

                                     

1 1,u mcsr
1 , nu mcsr

1,mu mcsr ,m nu mcsr
                                              (1) 

where 
,m nu mcs

r expresses historical service usage experiences (QoS value or customer 

rating) of mobile cloud service 
n

m cs made by user 
m

u . “
,m n

r null ” states that 

m
u didn’t invoke

n
m cs yet. In order to get the ranking results, we firstly calculate 

user similarity. The user similarity is measured with the following Equation: 

  ( , ) ( , ) (1 ) ( , )
U x y C x y I x y

sim u u sim u u sim u u                              (2) 

where
x

u and 
y

u denote two users. ( , )
C x y

sim u u and ( , )
I x y

sim u u  respectively express 

context similarity and user interest similarity between
x

u and 
y

u .   is defined to 

determine how much similarity measure relies on context and interest.   is in the 

interval [0,1]. 

3.1.1 Context Similarity Computation 

Cloud service selection of a user in a context (e.g., a laptop with enough battery) 

may be much different from that of another user in a different context (e.g., a smart 

phone without enough battery). Hence, cloud service selection can be significantly 

affected by user context. To evaluate the context similarities between target user and 

training user, we provide the definition of context. The definition from [9] is 

referenced by us. Let 
,x ju m cs

r be usage experience of cloud service 
j

mcs made by user 

x
u . 

Definition 1 (Context): Context 
,x ju m cs

C  is any information that can be used to 

characterize the situation where usage experience
,x ju m cs

r of cloud service
j

mcs  is 

made by user
x

u . 

Context information has different properties which include location, resource ability, 

status, etc. Let v  be the type of context property of
,x ju m cs

C  . 

The context 
,x ju m cs

C is denoted as: 
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, , , ,

( (1), (2), ..., ( ))
x j x j x j x j

nor nor nor

u mcs u mcs u mcs u mcs
C C C C v                          (3) 

where 
,

( )
x j

nor

u mcs
C v is the  normalized property value. 

Pearson Correlation Coefficient (PCC) has been successfully employed to obtain the 

numerical distance between different users for similarity calculation [4-5]. Let 
x

u and 

y
u be two users, then PCC is applied to calculate the context similarity between

x
u and 

y
u  

over service
j

mcs by 

, , , ,

1

2 2

, , , ,

1 1

( ( ) ( ))( ( ) ( ))

( , )

( ( ) ( )) ( ( ) ( ))

x j x j y j y j

m cs j

x j x j y j y j

v

nor nor nor nor

u m cs u m cs u m cs u m cs

s

C x y
v v

nor nor nor nor

u m cs u m cs u m cs u m cs

s s

C s C s C s C s

sim u u

C s C s C s C s



 

 



 



 

(4) 

where ( , )
m cs j

C x y
sim u u expresses the context similarity between

x
u and 

y
u  and it  is in 

the interval of [-1, 1], and
,

( )
x ju mcs

C s and
,

( )
y ju mcs

C s  stand for the average values of 

context.  

3.1.2 Interest Similarity Computation 

In mobile cloud computing environments, each user lives in a large network of 

friends which is called social network. It has been reported that user interests’ 

similarity can be leveraged to support services and products recommendation [10]. 

A user prefers to choose the items recommended by other user with similar interest 

in a social network. Exploring those users of a high interest similarity with the 

existing clients could efficiently enlarge client groups for cloud service providers 

[10].  

Here, we use cosine similarity to compute interest similarity, similar to [10]. 

Interest similarity between users 
x

u  and 
y

u  is then defined as the cosine distance 

between their respective cloud service invocation sets: 

                                           ( , )
x y

x y

u u

I x y

u u

I I

sim u u

I I







                                     (5) 

where 
x xu u

I l (
xu

l is the number of mobile cloud service which have been 

invoked by
x

u ) and 
x yu u

I I is the number of mobile cloud service which been 

invoked co-invoked by 
x

u  and 
y

u . If 0
xu

l  or 0
yu

l  , ( , )
I x y

sim u u is undefined. 

Cloud service invocation is an important factor to determine the interest of users 

[5]. For example, user 
x

u has invoked mobile cloud service 
1

m cs ,
3

m cs ,
6

m cs  and 

7
m cs , 

y
u has invoked 

6
m cs  and 

7
m cs and 

z
u has invoked 

1
m cs and 

2
m cs . Though 

x
u ,

y
u and 

z
u don’t know each other in real world, 

x
u and 

y
u have a high interest 

similarity than 
x

u and 
z

u , as they both invoked 
6

m cs  and 
7

m cs [4]. 

3.1.3 Getting Initial Ranking Results 
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We first predict the missing value 
,x ju m cs

r  of mobile cloud service 
j

mcs made by 

user 
m

u  before making initial ranking results. For every mobile cloud service, only 

the Top-k similar training user is selected to making missing value prediction.  

Based on the ( , )
U x y

sim u u  values, a set of the Top-k similar training 

user ( )
m cs j

C x
N u over service

j
mcs  is identified for target user 

x
u by: 

                     ( ) , ( , ) 0,
m c s xj

C x y y u U x y x y
N u u u T S sim u u u u                           (6) 

where 
xu

TS is a set of the Top-k similar training user to target user 
x

u  and 

( , ) 0
U x y

sim u u  excludes the dissimilar user with negative similar values. The value of  

( , )
U x y

sim u u in Equation (6) is calculated by Equation (2).  The missing value
,x ju m cs

r  is 

predicted as follows: 

                           

, ,

( )

,

,

( )

( ) ( )

( )

y j y

y C xm cs j

x j x

y C xm cs j

u m cs u U x y

u N u

u m cs u

U x y

u N u

r r sim u u

r r
sim u u







 




                      (7) 

where 
xu

r and 
yu

r is the average value of service usage experiences (QoS value or 

customer rating) of mobile cloud service made by user 
x

u and
y

u , respectively . As 

different QoS properties have different dimensions and range of values, we first 

ensure predicted missing values in the range of [0, 1].  In [5], QoS properties are 

classified into two categories: “cost” and “benefit”.  For “cost” property (response-

time), the lower its value is, the greater possibility that a user would choose it 

becomes. In SSRM, all QoS properties are considered as “benefit” attribute. 

Normalized missing value
,x ju m cs

Q  is computed as followed: 

                       

,

,

,

,

,

m in ( )
, " "

m ax ( ) m in ( )

m ax ( )
, " co s "

m ax ( ) m in ( )

x j x

x j

x x

x j

x x j

x j

x x

u m cs u

u m cs

u u

u m cs

u u m cs

u m cs

u u

r r
r benefit

r r
Q

r r
r t

r r
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where min( )
xu

r and max( )
xu

r denote the minimum and maximum QoS property value  

for user  
x

u  and they are subject to the following constrains: 

,

,

m in( ) m in( 1, ..., )

m ax( ) m ax( 1, ..., )

x x j

x x j

u u m cs

u u m cs

r r j n

r r j n

  



 


                               (9) 

,x ju m cs
Q  is in the range of [0,1]. The larger its value is, the more possibility that 

user
x

u  would be satisfied with the service becomes. Finally, the cloud services are 

ranked for 
x

u in the order of decreasing
,x ju m cs

Q values for cloud service selection, 

similar to [4]. The basic ranking algorithm is shown in figure 3. The basic ranking 

algorithm is similar to [3]. Compared with [3]， [4] and [5], in our ranking 

algorithm the user similarity is measured based on user context information and user 
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interest. In addition, the basic ranking algorithm is enhanced in section 3.2. In the 

enhanced ranking algorithm, we calculate the relational degree among cloud 

services and utilize it to improving the accuracy of ranking results. 

The basic algorithm ranks the employed mobile cloud service in E based on the 

observed historical service usage experiences. The ranking results are stored in 

( )
e

R t which is in the interval [1, ]E . A smaller value shows a higher rank. t 

expresses a mobile cloud service. For every cloud service mcsj, normalized 

value
,x ju m cs

Q  is calculated. Services are ranked from high to low by picking up the 

service t that has the maximum 
,x ju m cs

Q value. 

( ( ))
mcs j

y C xu N u

Input: 

an employed service set E; 

a full service set I; 

an employed similar training user set

observed service usage experience values 

Out: 

a service ranking 

F = E;

while F≠Ø do 

t = arg 

         = |E| − |F| + 1;

F = F − {t};

end

foreach mcsj ∈ I do

end

n = |I|;

while I≠Ø do

t = arg 

       = n − |I| + 1;

I = I − {t};

 end 

end

,y ju mcsr

( );
mcs j

C xN u

R̂

ˆ( )R t

( )eR t
,max ;

j x jmcs F u mcsQ

,max
j x jmcs I u mcsQ

,

,

,

,

,

min( )
, " "

max( ) min( )

max( )
, "cos "

max( ) min( )

x j x

x j

x x

x j

x x j

x j

x x

u mcs u

u mcs

u u

u mcs

u u mcs

u mcs

u u

r r
r benefit

r r
Q

r r
r t

r r





 


 

 

Figure 3 Basic ranking algorithm 

3.2. Improving Accuracy of Ranking Results 

Through calculating the similar relation among users, the missing value 
,x ju m cs

r is 

successfully predicted in the above section 3.1. However, the relation among cloud 

services is no doubt an important evaluation factor of missing value prediction. The 

related services will be probably selected by the same user based on the intuition 

[8]. Therefore, we calculate the relational degree and utilize it to improving the 

accuracy of missing value
,x ju m cs

r computation in the section. The relational degree 

between service mcsj and service mcsi is denoted as 
ji

d . In the paper, PropFlow [11] 

is used to calculate
ji

d . PropFlow algorithm computes the information flow between 

services, where a larger value indicates tighter relation. In order to calculating
ji

d , 

we firstly describe the formal definition of service relation graph. 

Definition 2 (Service Relation Graph). Given a set of service MCS and a totally 

ordered domain of weights W, a service relation graph is a weighted undirected 



11 

graph ( , )G M C S E . The edge (mcsi; mcsj; wij) in the set E U U W   encodes the 

link weight wij (wij≥ 0) between service mcsi and service mcsj. An edge depicts the 

direct link relationship between mcsi and mcsj. As G is undirected, 
ij ji

w w . 

Equation (10) shows how to calculate
ji

d . 

                                               

( )

ji

ji j

jk

k N j

w
d Input

w



 


                                      (10) 

where initial input is regarded as 1, ( )N j  is the set of neighbor of mcsj.  

mcsh

mcsj mcsimcsk mcsl

mcse

wjk=3 wkl=1 wli=5

wie=1
wle=1

wke=1

wkh=2

mcsf

wjf=1

 

Figure 4 An example of service relation graph 

Figure 4 shows an example of relation degree computation, where there are six 

kinds of mobile cloud services. mcsi and mcsj are indirectly linked. We assume mcsj 

is starting node. 

Four paths can reach mcsi from mcsj, but only two paths are considered for 

computation based on PropFlow algorithm. They are mcsj   mcsk  mcsl   mcsi 

and mcsj   mcsk  mcse   mcsi. 

First, we compute 
jk

d . The sum of link weights of mcsj and its neighbor is 4. 

jk
d is computed as; 

                                            
3 3 3

1 1
(1 3) 4 4

jk
d     


                                    (11) 

kl
d is computed as; 

                                           
1 3 1 3

(1 1 2 ) 4 4 1 6
k l j k

d d    
 

                          (12) 

With the same method, 
ji

d is computed as; 

                                          
5 1 3

5 1 8
ji li ei kl ke

d d d d d                                (13) 

The more details of calculating 
ji

d  are shown in [12]. 
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Next, we assume service mcsi is invoked recently by user 
x

u .
ji

d is incorporated 

into the Equation (7), and then, the missing value
,x ju m cs

r is computed with Equation 

(14) in basic ranking algorithm. Finally, the ultimate ranking results are got. 

                      

, ,

( )

,

,

( )

( ) ( )

( )(1 )
( )

y j y

y C xm cs j

x j x

y C xm cs j

u m cs u U x y

u N u

u m cs u ji

U x y

u N u

r r sim u u

r r d
sim u u







  




          (14) 

In SSRM model, we only select trusted mobile cloud service as candidates. 

Therefore, a set of trusted candidates are identified for 
x

u  by: 

                                  , 1, .. . ,
j

x

j m c s x
M C S m cs tru s t j N                          (15) 

where 
jm cs

trust denotes the trustworthiness of mobile cloud service  mcsj, 

x
 expresses the trust threshold decided by user 

x
u . Many existing methods [4-6] 

can be applied to compute
jm cs

trust . Here, how to compute 
jm cs

trust is not be 

discussed. We omit the details for brevity. 

4. Experimental Study 

In this section, in order to evaluate the effectiveness of SSRM model, a series of 

test scenarios are developed. To study the prediction performance, we compare 

SSRM with other two traditional approaches: item-based CF approach (IBCF) and 

user-based CF approach (UBCF). SSRM, IBCF and UBCF are both rating-oriented 

methods, which rank the cloud services based on the predicted QoS values. Since 

there is no suitable real data supporting mobile cloud computing simulation, we use 

ns3 simulator to generate the experimental dataset. Firstly, we generated cloud 

service invocation codes by Axis2 [27], a Java-based open source package for cloud 

services. Then we simulates mobile cloud service on ns3 [13] based on the 

invocation codes. On ns3, the creation of servers, mobile users and service model 

was easier than with other network simulators. In the simulating process of dataset, 

the real-world web service QoS dataset from WS-DREAM team [3] is referenced by 

us. The detailed real-world QoS values are publicly released online [28], which 

makes our experimental evaluations reproducible. We simulate 100 mobile users, 25 

servers and 300 services. The value of link weight between two services is randomly 

generated, which is in the range of [1, 5]. In order to conduct our experiments 

realistically, the changes of user context information are simulated.  Three types of 

context are considered including bandwidth, memory and battery capacity. The 

bandwidth value of a mobile user is in the range of 4M-8M, The values of memory 

and battery capacity will declines over time. These values are in the range of 

100000000-2100000000MB and 0.5-2KVA.  

We normalize the context information by: 

                                    
,

,

tan ( ( )) 2
( )

x j

x j

u m csnor

u m cs

a C v
C v




                               (16) 

where
,

( )
x j

nor

u mcs
C v  denotes the normalized context value of user

x
u over cloud 

service 
j

mcs . Inverse tangent function is applied to normalize the raw 

data
,

( )
x ju m cs

C v . Then, these normalized property value are used to calculate context 
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similarity with Equation (4). Once the context simulation is finished, the target 

user
x

u  will obtain context similarity results for each cloud service.  

Similar to [3], QoS properties include throughput and response-time that are in 

the range of 0–1000 kbps and 0–20 second, respectively. Most of the throughput and 

response-time values fall between 5–40 kbps and 0.1–0.8 seconds. In order to 

simply the experimental process, 200 service QoS records are randomly selected and 

two 100× 200 user-service matrices are constructed. The two matrices include 

throughput and response-time, respectively. User-service matrices are separated into 

two parts: training set (80% historical usage experiences in the matrix) and test set 

(the remaining 20% usage experiences). Each entry in the matrix is the QoS value 

(e.g., response-time or throughput) of a mobile cloud service observed by a user. 

The experiments employ the QoS values of response-time and throughput to rank 

the services independently. Table 1 shows descriptions of the obtained the practical 

cloud service QoS values and context information. 
Table 1.  Mobile Cloud Service QoS Dataset and Context Information Descriptions 

Statistics Value 

Num. of mobile cloud service invocations 180,000 

Num. of service users 100 

Num. of mobile cloud services 200 

Minimum response-time value 0.004s 

Maximum response-time value 20s 

Mean of response-time 1.10s 

Standard deviation of response-time 2.26s 

Minimum throughput value 0.1kbps 

Maximum throughput value 1000kbps 

Mean of throughput 25.46kbps 

Standard deviation of throughput 48.03kbps 

Bandwidth 4M-8M 

Memory  100000000MB-2100000000MB 

Battery capacity 0.5KVA-2KVA 

We use Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) as the 

metric to evaluate prediction performance of the proposed approach in comparison 

with other approaches. MAE and RMSE are defined as: 

                               

, ,,

2

, ,,
( )

x j x j
x j

x j x j
x j

act pre

u m cs u m csu m cs

pre

act pre

u m cs u m csu m cs

pre

r r

M AE
l

r r

RM SE
l

 
 













                      (17) 

where 
,x j

act

u m cs
r and 

,x j

pre

u mcs
r denote the actual QoS value and predicted value, 

respectively.
pre

l is the number of predicted QoS values. Smaller values of MAE and 

RMSE indicate better results. 

 

4.1. Impact of   

 is weighting factor in Equation (2).   determines how much similarity measure 

relies on context and interest. In the experiment, we vary the weighting factor 

 from 0 to 1 in increment of 0.1. The Top-k is set to 5. Matrix density is set to 10%. 

Matrix density means the percentage of selected QoS entries that are used to predict 

the missing QoS value. The experimental results are shown in figure 5. As the value 

of   increases, MAE firstly decreases and then quickly increases. When  =0.4, 
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our results have the best value. As shown in figure 5(b), RMSE presents similar 

trend. 
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(a) MAE values                                (b) RMSE values 

Figure 5. Impact of weighting factor   

 

4.2. Performance Comparison of SSRM, IBCF and UBCF 

To compare the performance of SSRM, IBCF and UBCF similarity computation 

methods, we implement IBCF and UBCF methods.  

Item-based CF approach (IBCF): We apply PCC to calculate similarities between 

users and predicted QoS values based on similar users. The user similarity is 

calculated by: 

,

, ,

, ,

2 2

, ,

( )( )

( , )

( ) ( )

x j x y j y

j u ux y

x j x y j y

j u u j u ux y x y

u m cs u u m cs u

m cs m cs

x y

u m cs u u m cs u

m cs m cs m cs m cs

r r r r

sim u u

r r r r
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where 
,x yu u

m cs is the set of mobile cloud services that have been co-invoked by 
x

u  

and 
y

u .
xu

r and 
yu

r are average QoS values of cloud service invoked by 
x

u  and 

y
u ,respectively. 

User-based CF approach (UBCF). We apply PCC to calculate similarities 

between services and predicted QoS values based on similar services. The service 

similarity is calculated by: 

,

, ,

, ,

2 2

, ,

( )( )

( , )

( ) ( )

x j j x i i

x m cs m csj i

x j j x i i

x m cs m cs x m cs m csj i j i

u m cs m cs u m cs m cs

u u

j i

u m cs m cs u m cs m cs

u u u u

r r r r

sim m cs m cs

r r r r



 

 



 



 
         (19) 

where 
,j im cs m cs

u is the set of users who have both invoked the cloud service 
j

mcs and 

i
m cs  .

jm cs
r and 

im cs
r are average QoS values of cloud service 

j
mcs and 

i
m cs made by 

x
u . 

In the experiments, trustworthiness of cloud service has no influence on similarity 

computation and service decision in the experiments. In order to simplify the 

experimental process, we consider all cloud services are trustworthy. Weighting 
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factor   is set to 0.4. We firstly study the effect of neighbor size k. Matrix density is 

set to 10%. We change k from 5 to 30 in increment of 5. Figure 6 shows the 

experimental results for response time and throughput. 

As shown in figure 6, the prediction performance of SSRM outperforms other two 

approaches. The performance of IBCF is similar to UBCF. As the values of k 

increases, better accuracy can be achieved. This indicates that more similar neighbor 

records can provides more information for missing value prediction. However, when 

k is larger than 25, MAE and RSME fail to drop with the value of k increasing. The 

main reason is the limited number of similar neighbors. The observations also show 

that RMSE has the similar trend, but with larger fluctuations.  

Next, we investigate the impact of matrix density. The matrix density varies from 

10% to 50% in increment of 10%. Similar user size k is set to 5 in this experiment. 

Figure 7 shows the experimental results for response time and throughput. 

As presented in figure 7, the prediction performance is also enhanced with the 

value of matrix density increasing. The main reason is that denser user-service 

matrix provides more information for missing value prediction. NARM has the 

better performance than LBCF and UBCF under all experimental setting 

consistently, since NARM considers context similarity and the relational degree 

among cloud services. The experimental results of LBCF and UBCF are similar in 

this experiment, since these two similarity computation methods are similar with 

each other and are both rating-oriented. 
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Figure 6. Impact of neighbor size k comparison with SSRM, IBCF and UBCF 
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Figure 7. Impact of matrix density comparison with SSRM, IBCF and UBCF 

 

4.2. Performance Comparison with Other Popular Approaches 

To study the prediction performance of SSRM, we compare SSRM with three 

existing QoS properties prediction approaches: CloudRank2 [3], TECSS [4] and JV-

PCC [5].  

The size of top-k similar service is an important factor in CF approach, which 

determines how many neighbors’ historical records are employed  to generate 

predictions [5]. Therefore, the impact of matrix density is not considered in the 

experiments. We set the density to 10%. We vary k from 5 to 30 in increment of 5. 

In order to simplify the experimental process, we consider all cloud services are 

trustworthy. Figure 8 shows the experimental results for response time and 

throughput. Under the same simulation condition, SSRM significantly outperform 

CloudRank2, TECSS and JV-PCC. The observations also suggest that better 

accuracy can be achieved by our model when more historical records are available 

in the service selection study. The main reason is that computing context similarity 

can improve the performance of prediction evaluation in MCC environments. 



17 

0.2

0.25

0.3

0.35

0.4

0.45

10 15 20 25 30

M
A

E

5

0.5

0.55

0.6

0.65

0.7

k

Response-time

SSRM

JV-PCC

CloudRank2

TECSS

 

0.2

0.25

0.3

0.35

0.4

0.45

10 15 20 25 30

M
A

E

5

0.5

0.55

0.6

0.65

0.7

k

Throughput

SSRM

JV-PCC

CloudRank2

TECSS

 

(a)                                                         (b) 

k

0.3

0.35

0.4

0.45

0.5

0.55

10 15 20 25 30

R
M

S
E

5

0.6

0.65

0.7

0.75

0.8

Response-time

SSRM

JV-PCC

CloudRank2

TECSS

0.3

0.35

0.4

0.45

0.5

0.55

10 15 20 25 30

R
M

S
E

5

0.6

0.65

0.7

0.75

0.8

k

Throughput

SSRM

JV-PCC

CloudRank2

TECSS

 

(c)                                                       (d) 

Figure 8. Impact of neighbor size k comparison with Other Popular Approaches 

Figure (a) and (b) depict the MAE fractions of SSRM, CloudRank2, TECSS and 

JV-PCC for response-time and throughput, while Figure (c) and (d) depict the 

RMSE fractions. It can be observed that SSRM achieves smaller MAE and RMSE 

consistently than other approaches for both response-time and throughput. 

5. Conclusions and Future 

In the paper, we propose a novel service selection and recommendation model 

(SSRM) for mobile cloud computing environments. When calculating user 

similarity, context information and interest are considered. Through utilizing 

relational degree to improving the accuracy of ranking result, our service selection 

and recommendation method succeed in obtaining the ultimate service ranking 

results. In addition, SSRM only select trusted mobile cloud service as candidates. 

Therefore, a set of trusted candidates are identified for target user. The experimental 

results show that our approach significantly improves the prediction performance as 

compared with other two traditional approaches: item-based CF approach (IBCF) 

and user-based CF approach (UBCF). 

There are some disadvantages in our SSRM model. Firstly, we exploit node 

distance to compute context similarity. There is an underlying assumption in this 

exploitation: each two adjacent nodes have equal semantic distance or granularity of 

nodes in each level is identical. This underlying assumption is not true in some 
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scenarios and it deteriorates the performance of similarity evaluation. Secondly, the 

trust threshold is used to select trusted mobile cloud service as candidates. However, 

it cannot detect and exclude malicious QoS values provided by users. Thirdly, in our 

experiments there are only three types of context information are considered.  

Therefore, in the future we will study the methods to improve context similarity 

measurement. We will study how to select the most trustworthy cloud service of 

certain type for the active users based on multi-dimensional trust evidence. We also 

will conduct more experimental investigations deal with the impact of different 

context changes on service selection. Moreover, we will improve the ranking 

accuracy of our approaches by exploiting additional techniques (e.g., combining 

rating-oriented approaches and ranking-oriented approaches, matrix factorization, 

intelligent optimization algorithms, etc.). 
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