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Here attention returns to the fundamental starting point for classical thermodynamics – the notion of a heat engine working in a cycle. What 

follows is based exclusively on the lucid writings of Peter Guthrie Tait and much of the argument closely follows his original. However, this 

is used to illustrate how modern physics has tended to stray away from the basics of this crucially important topic of thermodynamics. 

Attention is drawn to the difference between such classical thermodynamics and statistical thermodynamics. 

 
 

 

Introduction.  

 

For many years now, much work on basic ideas in 
thermodynamics has concentrated on mathematically 

acceptable approaches. This follows Max Born’s 

unhappiness with what he regarded as an engineering 

approach to the subject. There can be little doubt that the 
subject has benefitted from this more analytical approach 

but it has lost some physical insight too as is illustrated 

by the following: 

   It should never be forgotten that the subject 
thermodynamics originated with the study of heat 

engines which worked in cycles. All this started with 

Carnot whose work was clarified and extended by 

Clausius and Kelvin. Much of what follows here is 
recorded in Tait’s book Sketch of Thermodynamics1, 

which basically chronicled Kelvin’s contributions to the 

subject. The starting point is the cyclically operating heat 

engine devised by Carnot. It is noted that, in the original 
engine, each stage may be operated in reverse and so the 

entire engine may be so operated also. It is shown that 

such an engine is the most efficient that can be produced. 

It follows immediately, therefore, that any engine which 
may not be operated in reverse must be less efficient than 

this ideal Carnot engine. This very straightforward point 

must be remembered for what follows.  

 

Some fundamental ideas. 

 

Following Tait, suppose an engine of finite range is 

composed of an infinite number of engines with 
infinitesimal range and let q + dq and q be the amounts 

of heat absorbed and expelled at temperature t. Then, by 

the First Law, the work done is 

 
Jdq 

 

where J is the mechanical equivalent of heat. Although 

this quantity, J, rarely appears in modern literature on 
thermodynamics due to the widely accepted definitions 

of the units used throughout the subject, it is used here 

exactly as Tait himself used it1. It also helps recall the 
enormous contribution of Joule to the early formulation 

of thermodynamics since it was he who first determined 

an accurate value of the quantity experimentally. As an 

aside, it might be speculated that a return to the use of 
units so that this factor appeared once again might lead to 

students obtaining a better understanding of at least some 

aspects of the overall subject which is classical 

thermodynamics; after all, the fact that the existence of a 
mechanical equivalent of heat was recognised and its 

value determined was a vital point in the initial 

development of the subject as we know it today. 

   Again, by the Second Law, Tait shows quite clearly 
that the work done is given by 

 

Jqdt/t. 

 
also. Equating these two expressions leads to 

 

dq/q = dt/t 

which leads to 
q/t = const. 

 

Hence, for an engine where an amount of heat q is taken 

in at temperature t and an amount q0 is given out at 

temperature t0, 
q/t = q0/t0. 

 

Then the work done is 

 
J(q – q0) = Jq(t – t0)/t. 

 

As noted by Tait, whatever the temperature of a quantity, 

dq, of heat, the real dynamical value is Jdq. However, in 

practice, the work produced by an engine will be          

J(1 - t0/t)dq. This may be written in the form 

 
Jdq – Jt0dq/t. 

 

Hence, in any cyclic process whatever, if q1 is the total 

heat taken in and q0 that given out, the practical value of 
the work is 

𝐽(𝑞1 − 𝑞0) − 𝐽𝑡0∫
𝑑𝑞

𝑡
. 

 

However, for a reversible cycle, the practical value is just 

𝐽(𝑞1 − 𝑞0) by the first law and so, in this particular case, 

the value of the integral term is zero. In general, though, 

the integral term has a positive value because, in all non-

reversible engines, the practical value for the work done 
is always less than this value of J(q1 – q0), as was 

mentioned earlier. Of course, this is the origin of the 

notion that 

∫
𝑑𝑞

𝑡
≥ 0. 

However, all this implies is that 

 

dS  0; 
that is, 
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TdS = d'Q  0. 
 

It is important to note that this does not mean 

 

TdS  d'Q; 
 

in fact, it is difficult to see how this inequality follows 

from anything. 

Also, it might be noted that the acceptable inequality 
 

TdS = d'Q  0, 
 

does not violate the First Law but merely asserts that for 

an irreversible process 

 

d'Q = dU - d'W  0 
 

and that raises no problems. 

   It is vitally important to note that all of the above 

discussion relates to cycles. The inequality derived refers 
quite specifically to the fact that, in all non-reversible 

engines, the practical value of the work done must be less 

than a specific value always and it is this demand that 

introduces the inequality. The question of the actual 
range of applicability of the said inequality remains. All 

the basics of classical thermodynamics are based on 

cycles so any result so derived cannot necessarily be 

valid for individual processes. This is precisely the main 
point here; the said inequality has been derived for a 

cycle not for an individual process and there is nothing in 

what has gone before to even suggest the inequality true 

for an individual process. Indeed, reference to the 
workings of a Carnot cycle shows that this cannot be the 

case for, in such a cycle, there is one leg in which the 

entropy increases but that is balanced by a leg in which 

the entropy decreases in order for the total entropy 
change in the cycle to be zero and ensure that, at the end 

of the cycle, everything is in exactly the same state as it 

was at the beginning of the cycle. Hence, a true cycle has 

been negotiated.  
   Again, all of the above discussion relates to classical 

macroscopic thermodynamics and not to statistical 

thermodynamics. Hence, the subject under discussion 

involves no indeterminacy whatsoever; classical 
thermodynamics must be – by its very nature – 

deterministic. Therefore, for example, talk of 

thermodynamic uncertainty relations must refer to 

statistical thermodynamics – to the subject after some 
statistical elements have been introduced, so that the 

subject is classical thermodynamics no longer. This point 

is brought out very clearly in appendix D of Baierlein’s 

book Atoms and Information Theory2, where he states 

that the conceptual bases of thermodynamics and 

statistical mechanics are “sufficiently different that one 

can expect only a close correspondence between the 

theoretical quantities, not a true equality or identity”. He 
points out that, for example, the energy in 

thermodynamics has a definite value but, in statistical 

mechanics, that is simply not so – an expectation value 

would be calculated in that discipline and a root mean 
square estimate of the anticipated deviations could be 

found also. This, of course, links in extremely well with a 

comment at the bottom of page 84 of Elsasser’s book The 

Physical Foundation of Biology3, where he draws 
attention to “the efforts to get some profit out of the very 

rare statistical failures of the second law of 

thermodynamics”. Such possible ‘failures’ can only exist 

if a statistical element is introduced into things but, in 

classical thermodynamics, that is simply not possible as 
it is – as stated above – a completely deterministic 

subject. Hence, no violations of the second law of 

thermodynamics are allowable as far as classical 

thermodynamics is concerned!  
   The deterministic nature of classical thermodynamics 

possibly leads to another relevant point re the subject as a 

whole and that refers to the nature of the function known 

as the entropy. Is it a state function or not? Some recent 
evidence would suggest it isn’t, but other would seem to 

indicate the opposite.   

   From the First Law 

𝑑′𝑄 = 𝑑𝑈 − 𝑑′𝑊 
 

which in certain special circumstances takes on the form 

 

𝑑′𝑄 = 𝑑𝑈 + 𝑝𝑑𝑉. 
 

Also, in equation form, the Second Law may be written 

 

𝑑′𝑄 = 𝑇𝑑𝑆. 
 

Combining the two gives 

 

𝑇𝑑𝑆 = 𝑑𝑈 + 𝑝𝑑𝑉 
or 

𝑑𝑆 =
1

𝑇
𝑑𝑈 +

𝑝

𝑇
𝑑𝑉. 

 

Mathematically, this is akin to regarding the function S as 

being dependent on two independent variables - U, the 

internal energy and V, the volume. 
   Now in any cyclic process where the end point is the 

same as the starting point, the internal energy will 

undergo no change and neither will the volume. Hence, 
the function denoted by S can undergo no change either. 

Hence, in this sense, in classical thermodynamics S must 

be a so-called function of state also. This may be 

regarded as a long winded argument to establish this fact 
since it might be deemed to follow immediately from the 

fact that the Second Law establishes 1/T as an integrating 

factor for the inexact differential d'Q and, as such, the 

integral of the product of the two, indicated by the 
symbol dS, around a closed loop must equal zero, which 

is essentially what has just been illustrated. However, in 

statistical thermodynamics, because of the very nature of 

the subject, an element of uncertainty is introduced and 
so, theoretically, one can imagine a situation where such 

uncertainty in the value of S could lead to the end value 

in a cycle not being quite the same as the initial value. 

However, in traditional classical thermodynamics, no 
such possibility would seem allowable.   
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