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Abstract 

For one-dimensional potentials having, at most, finite discontinuities and 

simple poles at which the wave functions have simple zeros, we give an 

algebraic – i.e. operator-based – proof that an eigenfunction having no 

other zeros is a minimum-energy eigenfunction, and thus it describes the 

ground state. 
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I. Preliminaries 

We know that if the potential has, at most, finite discontinuities, the wave function is 

( )1C R  [1-4]. 

However, the opposite does not necessarily hold, i.e. if the wave function is ( )1C R , 

the potential can be singular. 

Proof 

We consider the bound energy eigenfunction 

( ) ( ) ( )( )0 expx x x f xψ = −         (1) 

which has a simple zero* at 0x . 

* By zero, we mean real zero. 

The function ( )f x  is a polynomial of even – and non-zero degree – with negative 

leading coefficient, so that ( )xψ  is square integrable. 

( )xψ  is ( )C R∞ , thus it is also ( )1C R . 

Using (1), the first derivative of ( )xψ  is written as 

( ) ( )( ) ( ) ( )expx f x f x xψ ψ′ ′= +  

Then, the second derivative of ( )xψ  is 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )expx f x f x f x x f x xψ ψ ψ′′ ′ ′′ ′ ′= + +  

Substituting into the last equation the expression of ( )xψ ′  yields 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )exp expx f x f x f x x f x f x f x xψ ψ ψ′′ ′ ′′ ′ ′= + + + =

( ) ( )( ) ( ) ( ) ( )( )2 2 expf x f x x f x f xψ′′ ′ ′= + +  

Substituting ( )( )exp f x  from (1), we obtain 

( ) ( ) ( ) ( ) ( )2

0

2 f x
x f x f x x

x x
ψ ψ

′ 
′′ ′′ ′= + + − 
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Then, the ratio ( ) ( )x xψ ψ′′  is 

( )
( ) ( ) ( ) ( )2

0

2x f x
f x f x

x x x
ψ
ψ

′′ ′
′′ ′= + +

−
       (2) 

Since the wave function ( )xψ  is an energy eigenfunction, it satisfies the energy 

eigenvalue equation in position space, i.e. the well-known time-independent 

Schrödinger equation 

( ) ( )( ) ( )2

2 0mx E V x xψ ψ′′ + − =
h

 

where E  is the energy of the eigenstate described by ( )xψ  and ( )V x  is the potential. 

Solving for the potential, we obtain 

( ) ( )
( )

2

2
x

V x E
m x

ψ
ψ

′′
= +

h         (3) 

By means of (2), (3) becomes 

( ) ( ) ( ) ( )2
2

0

2
2

f x
V x f x f x E

m x x
′ 

′′ ′= + + + − 

h  

If ( )0 0f x′ ≠ , the potential ( )V x  has a simple pole at 0x . 

We thus showed that a simple zero in a ( )1C R  wave function can be related to a 

simple pole in the potential. 

Therefore, assuming that the wave function is ( )1C R  does not exclude the 

possibility that the potential is singular. 

Next, we consider an energy eigenfunction ( )xϕ  of some potential ( )1V x . 

Then 

( ) ( )
( )

2

1 12
x

V x E
m x

ϕ
ϕ

′′
= +

h         (4) 

From (4), we see that, in general, the zeros of ( )xϕ  – if any – are singularities of the 

potential. 



 

  14 March 2018

  

4 

If the zeros of ( )xϕ  are also zeros of ( )xϕ′′ , the singularities of the potential are 

removable, practically the potential has no singularities. 

Moreover, if the potential is ( )C R∞ , all zeros of ( )xϕ  are simple zeros, i.e. zeros of 

multiplicity 1. 

Proof 

If ( ) ( ) ( )0
kx x x xϕ ϕ= − % , with ( )0 0xϕ ≠% , then 

( ) ( ) ( ) ( ) ( )1
0 0

k kx k x x x x x xϕ ϕ ϕ−′ ′= − + −% %       (5) 

Since the potential is continuous, ( )xϕ′  is continuous [1-4]. 

Then, from (5), 1 0k − ≥  and we have the cases: 

i) 1k =  

Then, from (5), 

( ) ( )0 0 0x xϕ ϕ′ = ≠%  

ii) 1k >  

Then, from (5), 

( )0 0xϕ′ =  

Besides, since at 0x , ( )xϕ  vanishes and the potential is finite, from the energy 

eigenvalue equation, we obtain that ( )xϕ′′  also vanishes at 0x . 

Then, using also that ( )xϕ′  vanishes at 0x  and that the potential is ( )C R∞ , 

successively differentiating the energy eigenvalue equation, we obtain that all 

derivatives of ( )xϕ  vanish at 0x , and thus ( )xϕ  is identically zero. 

But then ( )xϕ  cannot be an eigenfunction, since an eigenfunction is, by definition, a 

linearly independent function, i.e. a non-identically-zero function. 

Therefore, 1k = , i.e. 0x  is a simple zero of ( )xϕ . 

In what follows, we’ll consider potentials having, at most, finite discontinuities 

and simple poles at which the wave functions have simple zeros. 
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From (4), we see that if 0x  is a simple zero of ( )xϕ  which is not a zero of ( )xϕ′′ , the 

potential has a simple pole at 0x , provided that ( )xϕ′′  is finite at 0x . 

Moreover, since every energy eigenfunction satisfies the same equation (4), every 

energy eigenfunction has a simple zero at 0x , provided that its second derivative is 

finite at 0x . 

Thus, all energy eigenfunctions vanish at 0x , and since every wave function is written 

as linear combination of energy eigenfunctions, all wave functions also vanish at 0x . 

II. The ground-state wave function 

Let ( )0 xψ  be a bound energy eigenfunction of some potential ( )V x . 

We’ll show that if ( )0 xψ  does not have other zeros, apart from the zeros at the simple 

poles of the potential (if any), it is the minimum-energy eigenfunction, and thus it 

describes the ground state. 

Proof 

Since ( )0 xψ  is a one-dimensional bound energy eigenfunction, it is real, up to a 

constant phase [2,3]. 

We’ll assume that ( )0 xψ  is ( )1C R . 

As shown, this does not exclude the possibility that the potential ( )V x  has simple 

poles. 

Since the wave functions of a potential having, at most, finite discontinuities are also 

( )1C R , the potential ( )V x  can have, at most, not only simple poles, but finite 

discontinuities too. 

In position space, we consider the dimensionless differential operator 

( ) ( ) ( )
( )

0

0 0

1ˆ ˆ
x

a x p x i
p x

ψ
ψ

 ′
 = +
 
 

h        (6) 

where ( )ˆ dp x i
dx

= − h  is the momentum operator in position space and 0p  a 

momentum scale. 
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Since ( )0 xψ  is real up to a constant phase, ( ) ( )0 0x xψ ψ′  is real, thus the operator 

( )â x  has the non-zero imaginary part ( ) ( )0 0i x xψ ψ′h , and then it is not Hermitian. 

By means of (6), the action of the operator ( )â x  on the wave function ( )0 xψ  yields 

( ) ( ) ( )
( ) ( ) ( ) ( )( )0

0 0 0 0
0 0 0

1ˆ 0
xd ia x x i i x x x

p dx x p
ψ

ψ ψ ψ ψ
ψ

 ′
′ ′ = − + = − + =

 
 

h
h h  

Thus 

( ) ( )0ˆ 0a x xψ =  

That is, ( )â x  kills the eigenstate described by ( )0 xψ . 

( )0 xψ  either has no zeros, or all its zeros are simple and they are also simple zeros of 

every energy eigenfunction, and thus of every wave function too. 

This holds because we assume that the poles of the potential – if any – are simple 

poles at which the wave function has simple zeros (see section I). 

Then, if ψ  is an arbitrary state, the wave function ( )xψ  describing, in position 

space, the state ψ , also vanishes at the zeros of ( )0 xψ , and thus the wave function 

( ) ( )â x xψ  has no singularities. 

As ( )0 xψ , ( )xψ  is ( )1C R , and then ( ) ( )â x xψ  is continuous. Thus, the Riemann 

integral ( ) ( ) 2ˆdx a x xψ
∞

−∞
∫  exists, and since the integrand is a non-negative continuous 

function, the integral is non-negative, i.e. 

( ) ( ) 2ˆ 0dx a x xψ
∞

−∞

≥∫          (7) 

The previous integral is the square of the norm of the state â ψ  in position space, 

where â  is the operator ( )â x  in the state space, or else, ( )â x  is the expression of the 

operator â  in position space [5]. 

Proof 

For convenience, we set 
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âφ ψ≡           (8) 

Using (8), we have 

2 2
â ψ φ φ φ= =  

That is 

2
â ψ φ φ=          (9) 

Using the completeness relation of the position eigenstates, the inner product φ φ  is 

written as 

*

1̂

dx x x dx x x dx x xφ φ φ φ φ φ φ φ
∞ ∞ ∞

−∞ −∞ −∞

 
 
 = = = =
 
 
 

∫ ∫ ∫
14243

( ) ( ) ( ) 2*dx x x dx xφ φ φ
∞ ∞

−∞ −∞

= =∫ ∫  

That is 

( ) 2
dx xφ φ φ

∞

−∞

= ∫         (10) 

where ( )x xφ φ=  is the wave function of the state φ  and, in general, is not 

normalized. 

Using (8), we have 

( )
}

( ) ( ) ( )
see ref. [5]

ˆ ˆ ˆx x a a x x a x xφ ψ ψ ψ= = =  

That is 

( ) ( ) ( )ˆx a x xφ ψ=  

Substituting into (10), we obtain 

( ) ( ) 2ˆdx a x xφ φ ψ
∞

−∞

= ∫  

Substituting into (9), we obtain 
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( ) ( )2 2ˆ ˆa dx a x xψ ψ
∞

−∞

= ∫        (11) 

which shows that the integral ( ) ( ) 2ˆdx a x xψ
∞

−∞
∫  is the square of the norm of the state 

â ψ . 

Using (7) and (11), we derive that 

2ˆ 0a ψ ≥           (12) 

As noted, the operator (6) is not Hermitian. 

Its Hermitian conjugate is, using (6), 

( ) ( ) ( )
( )

0†

0 0

1ˆ ˆ
x

a x p x i
p x

ψ
ψ

 ′
 = −
 
 

h   

Then 

( ) ( ) ( ) ( )
( ) ( ) ( )

( )
0 0†

0 0 0 0

1 1ˆ ˆ ˆ ˆ
x x

a x a x p x i p x i
p x p x

ψ ψ
ψ ψ

   ′ ′
   = − + =
   
   

h h

( ) ( ) ( )
( )

( )
( ) ( ) ( ) ( )

( )

2

20 0 02
2

0 0 0 0

1 ˆ ˆ ˆ
x x x

p x i p x i p x i
p x x x

ψ ψ ψ
ψ ψ ψ

  ′ ′ ′  = + − − =     

h h h

( ) ( ) ( )
( )

( )
( )

2

0 02 2
2

0 0 0

1 ˆ ˆ ,
x x

p x i p x
p x x

ψ ψ
ψ ψ

    ′ ′   = + +        

h h  

That is 

( ) ( ) ( ) ( ) ( )
( )

( )
( )

2

0 0† 2 2
2

0 0 0

1ˆ ˆ ˆ ˆ ,
x x

a x a x p x i p x
p x x

ψ ψ
ψ ψ

    ′ ′   = + +        

h h    (13) 

If ( )f x  is an arbitrary ( )1C R  function, then 

( ) ( ) ( )ˆ ,p x f x i f x′= −   h         (14) 

This can be easily shown by applying the commutator ( ) ( )ˆ ,p x f x    to an arbitrary 

wave function. 
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Using (14), we have 

( ) ( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

2 2

0 0 0 0 0 0

0 0 0 0 0 0

ˆ ,
x x x x x x

p x i i i i
x x x x x x

ψ ψ ψ ψ ψ ψ
ψ ψ ψ ψ ψ ψ

′         ′ ′ ′′ ′ ′′ ′        = − = − − = − +
                 

h h h h

 

Then, (13) is written as 

( ) ( ) ( ) ( )
( )

( )
( )

( )
( )

2 2

0 0 0† 2 2
2

0 0 0 0

1ˆ ˆ ˆ
x x x

a x a x p x i i i
p x x x

ψ ψ ψ
ψ ψ ψ

     ′′ ′ ′     = + − + + =            

h h h h

( ) ( ) ( )
( ) ( ) ( )

( )
( )
( )

2 2

2 20 0 02 2
2

0 0 0 0

1 ˆ
x x x

p x i i
p x x x

ψ ψ ψ
ψ ψ ψ

    ′′ ′ ′    = − + + =         

h h h

( ) ( )
( )

( )
( )

( )
( )

2 2

0 0 02 2 2 2
2

0 0 0 0

1 ˆ
x x x

p x
p x x x

ψ ψ ψ
ψ ψ ψ

    ′′ ′ ′    = + − + =         

h h h

( ) ( )
( )

02 2
2

0 0

1 ˆ
x

p x
p x

ψ
ψ

 ′′
 = +
 
 

h  

That is 

( ) ( ) ( ) ( )
( )

0† 2 2
2

0 0

1ˆ ˆ ˆ
x

a x a x p x
p x

ψ
ψ

 ′′
 = +
 
 

h       (15) 

( )0 xψ  is an energy eigenfunction, thus it satisfies the energy eigenvalue equation in 

position space, i.e. 

( ) ( )( ) ( )0 0 02

2 0mx E V x xψ ψ′′ + − =
h

 

where 0E  is the energy. 

Solving for ( ) ( )0 0x xψ ψ′′  yields 

( )
( ) ( )( )0

02
0

2x m V x E
x

ψ
ψ

′′
= −

h
 

Substituting into (15) yields 
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( ) ( ) ( ) ( )( )( ) ( ) ( )
2

† 2
0 02 2

0 0

ˆ1 2ˆ ˆ ˆ 2
2

p xma x a x p x m V x E V x E
p p m

 
= + − = + − 

 
 

Using that ( ) ( )
2ˆ
2

p x
V x

m
+  is the Hamiltonian ( )Ĥ x  in position space, we obtain 

( ) ( ) ( )( )†
02

0

2 ˆˆ ˆ ma x a x H x E
p

= −  

The constant 2
02m p  has dimensions of inverse energy, and setting 

2
0

0 0
2
p
m

ε ≡ >  

we end up to 

( ) ( ) ( )( )†
0

0

1 ˆˆ ˆa x a x H x E
ε

= −        (16) 

The operator ( ) ( )†ˆ ˆa x a x  has non-negative eigenvalues. 

Proof 

We’ll consider the operator †ˆ ˆa a , which is the operator ( ) ( )†ˆ ˆa x a x  in the state space 

[5]. 

If λ  is an eigenstate of †ˆ ˆa a , of eigenvalue λ , we have, using the, more suitable in 

this case, general notation of the inner product [7], 

( ) ( )( ) ( )† 2† †ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , 0a a a a a a aλ λ λ λ λ λ λ= = = ≥  

That is 

( )†ˆ ˆ, 0a aλ λ ≥          (17) 

But 

†ˆ ˆa a λ λ λ=  

Thus 

( ) ( ) ( ) 2†ˆ ˆ, , ,a aλ λ λ λ λ λ λ λ λ λ= = =  

That is 
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( )2 †ˆ ˆ,a aλ λ λ λ=  

and using (17), we obtain 

2
0λ λ ≥  

and, since 
2

0λ ≥ , we end up to 0λ ≥ , i.e. the eigenvalues of †ˆ ˆa a  are non-

negative. 

Since ( ) ( )†ˆ ˆa x a x  is the expression of †ˆ ˆa a  in position space, ( ) ( )†ˆ ˆa x a x  and †ˆ ˆa a  

have the same eigenvalues, thus the eigenvalues of ( ) ( )†ˆ ˆa x a x  are also non-negative. 

Then, from (16), since 0 0ε > , we derive that the eigenvalues of ( ) 0Ĥ x E−  are also 

non-negative. 

Thus, if E  is an eigenvalue of ( )Ĥ x , i.e. an energy, 0E E≥ , i.e. 0E  is the minimum 

energy, and thus ( )0 xψ  is the minimum-energy eigenfunction, i.e. it is the ground-

state wave function. 

Note 

If ( )0 xψ  has zeros at points where the potential is finite, i.e. if it has a non-zero 

number of typical nodes [6], then the wave function ( ) ( )â x xψ  will have 

singularities, since at the typical nodes of ( )0 xψ , the arbitrary wave function 

( )xψ  does not, in general, vanish. 

Then, the Riemann integral ( ) ( ) 2ˆdx a x xψ
∞

−∞
∫ , i.e. the square of the norm of the 

state â ψ  in position space, is not well-defined, and the above reasoning, which 

results in ( )0 xψ  being the minimum-energy eigenfunction, is not applied. 
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