
INPUT RELATION AND COMPUTATIONAL COMPLEXITY

KOJI KOBAYASHI

Abstract. This paper describes about complexity of PH problems by using

“Almost all monotone circuit family” and “Accept input pair that sandwich

reject inputs”.

Explained in Michael Sipser “Introduction to the Theory of COMPUTA-

TION”, circuit family that emulate Deterministic Turing machine (DTM) are

almost all monotone circuit family except some NOT-gate that connect input

variables (like negation normal form (NNF)). Therefore, we can find out DTM

limitation by using this “NNF Circuit family”.

To clarify NNF circuit family limitation, we pay attention to AND-gate

and OR-gate relation. If two accept “Neighbor input” pair that sandwich

reject “Boundary input” in Hamming distance, NNF circuit have to meet these

different variables of neighbor inputs in AND-gate to differentiate boundary

inputs. NNF circuit have to use unique AND-gate to identify such neighbor

input.

The other hand, we can make neighbor input problem “Neighbor Tautol-

ogy DNF problem (NTD)” in PH. NTD is subset of tautology DNF that do

not become tautology if proper subset of one variable permutate positive /

negative. NTD include many different variables which number is over polyno-

mial size of input length. Therefore NNF circuit family that compute NTD

are over polynomial size of length, and NTD that include PH is not in P.

1. NNF circuit family

Explained in [Sipser] Circuit Complexity section, Circuit family can emulate

DTM only using NOT-gate in changing input values {0, 1} to {01, 10}. This “almost

all monotone circuit family” have simple structure like monotone circuit family.

Definition 1.1. �

Date: 2018-03-14.
1

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 2

We use term as following;

NNF : Negation Normal Form.

DTM : Deterministic Turing Machine

DNF : Disjunctive Normal Form.

In this paper, we will use words and theorems of References [Sipser].

To simplify, we treat DNF as set of clauses, and also treat clause as set of literals

as far as it’s all right with you.

Definition 1.2. �

We will use the terms;

“NNF Circuit Family” as circuit family that have no NOT-gate except connecting

INPUT-gates directly (like negation normal form).

“Input variable pair” as output pair of INPUT-gate and NOT-gate {01, 10} that

correspond to an input variable {0, 1}.

Figure 1.1 is example of a NNF circuit. NNF circuit consist two subcirtuit

(NOT-gate subcircuit and Monotone subcircuit).

Theorem 1.3. �

Let t : N −→ N be a function where t (n) ≥ n.

If A ∈ TIME (t (n)) then NNF circuit family can emulate DTM that compute

A with O
(
t2 (n)

)
gate.

Proof. This Proof is based on [Sipser] proof.

NNF circuit family can emulate DTM by computing every step’s cell values (and

head state if head on the cell). Figure 1.2 shows part of a NNF circuit block diagram.

Input of this circuit is modified w1 · · ·wn to c1,1 · · · c1,n, and finally output result

at cout = ct(n),1 cell. This circuit emulate DTM behavior, so cu,v compute cell’s

state of step u from previous step cell cu−1,v and each side cells cu−1,v−1, cu−1,v+1

(because head affect at most side cells in each step).

Figure 1.3 shows example of cu,v sub circuit that transition function is “if state

is qk and tape value is 0, then move +1 and change state to qm”. This circuit shows

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 3

Figure 1.1. NNF circuit

one of transition configuration which (cu−1,v−1, cu−1,v, cu−1,v+1) = (qk0, q−0, q−0).

q− means “no head on the cell”.

Each OR-gate ∨w,q in cu,v correspond to every step’s cell condition (cell value

w, and head status q if head exist on the cu,v cell), and output 1 if and only if cu,v

cell satisfy corresponding condition. Previous step’s ∨ output in cu−1,v−1, cu−1,v,

cu−1,v+1 are connected to next step’s AND-gate ∧δ in cu,v with transition wire.

Each ∧δ correspond to transition function δ, and each ∧δ output correspond to

each transition function’s result of cu,v. To simplify, NNF circuit include separate

three gates ∧δ,−1, ∧δ,0, ∧δ,+1 according to head exists position cu−1,v−1, cu−1,v,

cu−1,v+1, and special transition function δ− which correspond to no head transition

(keep current tape value). So ∧δ in cu,v output 1 if and only if previous step’s ∨

output in cu−1,v−1, cu−1,v, cu−1,v+1 satisfy transition function δ condition. Each

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 4

Figure 1.2. NNF circuit block diagram

transition functions affect (or do not affect) next step’s condition, so ∧δ output is

connected to ∨w,qm in cu,v and decide cu,v condition. Because DTM have constant

number of transition functions, NNF can compute each step’s cell by using constant

number of AND-gates and OR-gates (without NOT-gate).

First step’s cells are handled in a special way. Input is {0, 1}∗ and above mono-

tone circuit cannot manage 0 value. So NNF circuit compute {0, 1}∗ −→ {01, 10}∗

by using NOT-gate.

�

Corollary 1.4. �

NNF circuit family can compute P problem with polynomial number of gates of

input length.

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 5

Figure 1.3. cu,v circuit

Confirm NNF circuit family behavior. NNF circuit family can emulate DTM

with polynomial number of gate of DTM computation time. All effective circuit

become DAG that root is specified OUTPUT-gate. All gates that include effective

circuit become 1 if OUTPUT-gate become 1. Especially, all different variables of

input cannot overlay in same input, so all effective circuits (with different inputs)

are join at OR-gate to connect OUTPUT-gate. This NNF circuit behavior clarify

input exclusivity and symmetry.

Definition 1.5. �

We will use the term;

“Neighbor input (pair)” as accept inputs pair that no accept inputs exists be-

tween these accept input with Hamming distance.

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 6

Figure 1.4. First step

“Boundary input (set) of neighbor input” as reject inputs that exist between

neighbor inputs in Hamming space.

“Different Variables” as all difference part of neighbor input pair.

“Same Variables” as all same part of neighbor input pair.

“Sandwich structure” as connected graph which nodes are accept inputs and

edges are some of neighbor input pair in Hamming space.

Figure 1.5 shows example of sandwich structure which neighbor input pair is

0000111110011000 and 0000000000000000. In this case, ◦ ◦ ◦ ◦ 11111 ◦ ◦11 ◦ ◦◦ and

◦ ◦ ◦ ◦ 00000 ◦ ◦00 ◦ ◦◦ are different variables, and 0000 ◦ ◦ ◦ ◦ ◦ 00 ◦ ◦000 are same

variables.

“Effective circuit of accept input t” as one of minimal sub circuit of NNF circuit

that decide circuit output as 1 with accept input t. Effective circuit do not include

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 7

Figure 1.5. Sandwich structure

gates which output 0, or even if gate change output 0 and effective circuit keep

output 1.

Figure 1.6 shows example of effective circuit which previous 1.1 and input {x1, x2, x3} =

{1, 1, 0}. Dotted gates do not affect OUTPUT-gate even if the gate negate output,

so effective circuit do not include them.

Theorem 1.6. �

All input variable pair of different variables join OR-gate in effective circuit.

Proof. Because all input variable pair is {01, 10} and do not become {00, 11} in one

input, and NNF circuit is almost monotone circuit, so effective circuit have to to

join another input effective circuit with OR-gate before connecting OUTPUT-gate.

Figure 1.7 shows example of connectivg effective circuit which previous 1.1 and

input {x1, x2, x3} = {1, 1, 0} , {0, 0, 1}. Effective circuit include one of input variable

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 8

Figure 1.6. Effective circuit

pair, and other side of variable pair do not become 1. So AND-gate cannot meet

another effective circuit.

�

Theorem 1.7. �

NNF circuit have at least one unique AND-gate to differentiate neighbor input

and boundary input.

That is, each different valiables correspond to unique AND-gate.

Proof. Mentioned above 1.6, all accept input variable pair of different variables join

at OR-gate. Because NNF circuit is almost all monotone circuit, there is two case

of joining at OR-gate;

a) all different variables meet at AND-gate, and join at OR-gate after meeting

AND-gate.

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 9

Figure 1.7. Different variables independency

b) some partial different variables meet at AND-gate, and join at OR-gate these

AND-gate output, and meet at AND-gate all OR-gate output.

Case a), some AND-gate become 1 if and only if input include one side of different

variables. Therefore, trunk of these AND-gate does not become 1 if input AND-gate

does not include these different variables.

Case b), because no boundary input become accept input, some OR-gate which

join neighbor input become 0 if input is boundary input. That is, effective circuit

become 0 if some of these OR-gate become 0, and become 1 if all of these OR-gate

become 1. Therefore, it is necessary that effective circuit include AND-gate that

meet all these OR-gate which join all different variables like 1.9. Such AND-gate

become 1 if and only if input include different variables of one side of neighbor

input pair. That is, AND-gate correspond to each different variables.

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 10

Figure 1.8. Example of a)

Therefore, NNF circuit have at least one unique AND-gate that correspond to

different variables to differentiate neighbor input and boundary input. �

That is to say, we can measure NNF circuit family size (that equal DTM com-

puting time) by counting different variables of problem’s sandwich structure.

2. Sandwich structure

Consider sandwich structure of some problems. For example, ta = (x1 ∨ x2) ∧

(x1 ∨ x3)∧x2∧x3∧x4 is one of negation of Horn SAT problem HornSAT (Accept

if and only if Horn CNF is ⊥). We can reduce ta easily to another accept input

tr = (x1__)∧ (x1 ∨ x3)∧ x2 ∧ x3 ∧ x4 (_: filler). This means that each HornSAT

input are close each other, and number of HornSAT different variables type is not

many.

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 11

Figure 1.9. Example of b)

This is one of reason that we can compute P problem easily.

Theorem 2.1. �

Let HornSAT (negation of Horn SAT problem) as problem if and only if Horn

CNF is ⊥.

In HornSAT , there is some sandwich structure which number of different vari-

ables is at most polynomial size.

Proof. t ∈ HornSAT can reduce another t′ ∈ HornSAT that delete all literal xi

which xi = c ∈ t. Therefore, t can reduce t′ by deleting xi one by one. From

the view of sandwich structure, xi can delete within constant different variables if

HornSAT have ignore symbol like �i. Therefore, number of different variables of

t ∈ HornSAT is at most constant size.

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 12

Consider number of different variables type in HornSAT . Because number of

different variables is at most constant size, number of different variables type is

combination of different variables; |t|

k

 = |t|!
k!×(|t|−k)! < O

(
|t|k

)
k : length of � code

Therefore we obtain theorem. �

3. Neighbor Tautology DNF

Let clarify number of neighbor input pair. To consider DNF tautology problem,

some input become neighbor input by changing one variable positive / negative.

So we define new partial problem of DNF tautology.

Definition 3.1. �

We will use the term “Neighbor Tautology DNF problem” or “NTD” as partial

Minimal Tautology DNF problem which input also tautology if one variables x

change positive / negative {x, x} → {x, x}, and not tautology if proper subset of

one variables x change positive / negative.

NTD =

f | f ≡ >, f

 · · · x x · · ·

· · · x x · · ·

 ≡ >, g = f

 · · · {x, x} {x, x} · · ·

· · · {x, x} {x, x} · · ·

 6≡ >

 · · · x x · · ·

· · · x x · · ·

: permutate all x, x to x, x.

 · · · {x, x} {x, x} · · ·

· · · {x, x} {x, x} · · ·

: permutate (any) proper subset of x, x to x, x.

Theorem 3.2. �

If f ∈ NTD, then f

 · · · x x · · ·

· · · x x · · ·

 is neighbor input of f .

Proof. It is trivial because of x, x symmetry with tautology and NTD definition;

f

 · · · x x · · ·

· · · x x · · ·

 · · · x x · · ·

· · · x x · · ·

 = f ≡ >

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 13

f

 · · · x x · · ·

· · · x x · · ·

 · · · {x, x} {x, x} · · ·

· · · {x, x} {x, x} · · ·

= f

 · · · {x, x} {x, x} · · ·

· · · {x, x} {x, x} · · ·

 6≡ > �

Theorem 3.3. �

Minimal Tautology DNF (MTD) correspond to NTD.

Proof. Proof this theorem by constructing NTD from MTD.

If f ∈ MTD and f /∈ NTD, then there are some variable x that keep tautology

to change proper subset of x.

f ∈ MTD ∧ f /∈ NTD → ∃x

f

 · · · x x · · ·

· · · {x, x} {x, x} · · ·

 ≡ >

Let attach free variable y to x. y have some relation g with x.

f ∈ MTD∧f /∈ NTD → ∃x

f

 · · · x x · · ·

· · · {x, y} {x, y} · · ·

 ≡ >

 ∧ (g (x, y) ≡ >)

y: free variable.

However, from f ∈ MTD then

(x, y) → (1, 1) , (0, 0)

and from f

 · · · x x · · ·

· · · {x, y} {x, y} · · ·

 ≡ > then

(x, y) → (1, 0) , (0, 1)

So

(x, y) → (1, 1) , (0, 0) , (1, 0) , (0, 1)

and g is no bind of (x, y). So

f ∈ MTD ∧ f /∈ NTD → ∃x

f

 · · · x x · · ·

· · · {x, y} {x, y} · · ·

 ≡ >

This means

f ∈ MTD ∧ f /∈ NTD → ∃x

f

 · · · x x · · ·

· · · {x, y} {x, y} · · ·

 ∈ MTD

y: free variable.

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 14

On the other hand, each MTD have limitation of length and number of variables

type. So we can repeat this operation to any proper subset of variables cannot

change another free variable. Such MTD satisfy NTD condition. �

x, y of NTD that made by 3.3 is independent each other, but we can modify

easily to depend x, y each other. Before proofing this, we proof following lemma.

Lemma 3.4. �

There is some DNF f which;

a) become 1 at one of any set of truth value assignment T

∀T∀t ∈ T (f (t) = 1)

b) each clauses have pre-defined 3 variables combination. (We can only decide

these literal become positive or negative.)

c) number of clauses is at most polynomial size of variables type.

Proof. Let f = d1 ∨ d2 ∨ · · · ∨ dn that variables is x1, x2, · · ·xk and n = O (kc) ,

and d1 include variables x1, x2, x3. Because we can decide positive / negative of

x1, x2, x3 in d1, so d1 is possible 8 patterns;

x1 ∧ x2 ∧ x3, x1 ∧ x2 ∧ x3, x1 ∧ x2 ∧ x3, x1 ∧ x2 ∧ x3,

x1 ∧ x2 ∧ x3, x1 ∧ x2 ∧ x3, x1 ∧ x2 ∧ x3, x1 ∧ x2 ∧ x3

These possible d1 become partition of truth value assignment, one of above d1

become true at least 1
8 of truth value assignment T . So we can reduce number of

|T | at most 7
8 by deciding suitable positive / negative pattern as d1.

Above condition is applicable another clauses d2, · · · dn, so we can decide positive

/ negative of variables x1, x2, · · ·xk in d2, · · · dn one by one to reduce T at most 7
8 .

Number of |T | is at most 2k, so some constant c0 that 2k× (7/8)
nc0 → 0. Therefore,

we can make f that cover ∀T∀t ∈ T (f (t) = 1). �

Theorem 3.5. �

Any NTD can convert some NTD that have all pair of variables in some clauses,

and number of these clauses is at most polynomial of variables types.

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 15

Proof. If NTD f does not have clauses which include both x and y, we can make

another NTD f ′ that include x, y in same clause with following step;

1) add literal y or y to some clauses c that include x, x

c → c′ = c ∧ Y | Y ∈ {y, y}

c = X ∧ · · · | X ∈ {x, x}

2) add new clauses d which include x, y and complement all truth value assign-

ment {t} that c′ (t) = 0 → d (t) = 1.

Mentioned above 3.4, number of such clauses is at most polynomial number of

variables type. So |f ′| is polynomial size of |f | because number of variables type in

f is at most |f |. �

Theorem 3.6. �

There is some NTD f that does not keep same clauses to permutate literal x, x.

∃f ∈ NTD

f ∩ f

 · · · x x · · ·

· · · x x · · ·

 6= f ∪ f

 · · · x x · · ·

· · · x x · · ·

f

 · · · x x · · ·

· · · x x · · ·

 : clauses that permutate all x, x to x, x in f .

Proof. To modify methods mentioned above proof 3.5, we can easily make f from

which keep same clauses to permutate literal x, x. In 2) step, we choose some

variables set that do not same variables set in any clauses (and also another clauses

in f), these clauses does not become symmetry with permutation of (x, x). �

Theorem 3.7. �

NTD ∈ PH

Proof. We can solve NTD by computing;

a) input as TAUT problem, and

b) all input that change any proper subset of one type literal as non TAUT

problem.

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 16

We can compute b) that choice changing literal as universal and compute them

as non TAUT problem. coNP Oracle machine with TAUT oracle can compute this

problem. Therefore NTD is in PH. �

Theorem 3.8. �

If input of NTD have some clauses which include variables x, y, the input that

change variables y to x (and reduce all x ∧ x → x, x ∧ x → 0 to become indistin-

guishable what variables changed) also in NTD.

∀p ∈ NTD

∃x, y ∈ p (x, y ∈ d ∈ p) → q ∈ NTD | q = p

 · · · x x y y · · ·

· · · x x x x · · ·

x, y ∈ d ∈ p: DNF p have some clauses d that include variable x, y.

Proof. (Proof by contradiction.) Assume to the contrary that

∃p ∈ NTD

∃x, y ∈ p (x, y ∈ d ∈ p) ∧ q /∈ NTD | q = p

 · · · x x y y · · ·

· · · x x x x · · ·

Because of p ≡ >, it is trivial that q ≡ > and q

 · · · x x · · ·

· · · x x · · ·

 ≡ >. So

some q

 · · · x x · · ·

· · · {x, x} {x, x} · · ·

 ≡ > from assumption q /∈ NTD.

However,

p ∈ NTD → p

 · · · x x · · ·

· · · {x, x} {x, x} · · ·

 6≡ >, p

 · · · y y · · ·

· · · {y, y} {y, y} · · ·

 6≡

>

So following are only tautology of changing positive / negative variables

p

 · · · x x y y · · ·

· · · x x y y · · ·

 ≡ >, p

 · · · x x y y · · ·

· · · x x y y · · ·

 ≡ >

then q satisfy following conditions.

q

 · · · x x x x · · ·

· · · x x x x · · ·

 ≡ >, q

 · · · x x x x · · ·

· · · x x x x · · ·

 ≡ >

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 17

This means that we have to treat each x, y in q = p

 · · · x x y y · · ·

· · · x x x x · · ·

separately. That is, q = p

 · · · x x y y · · ·

· · · x x x x · · ·

 is irreducible about x∧x →

x and x ∧ x → 0, so ∀x, y ∈ p (x, y /∈ d ∈ p). This is contradict assumption ∃x, y ∈

p (x, y ∈ d ∈ p). �

Theorem 3.9. �

Number of different variables type in NTD is over polynomial number of input

length.

Proof. Mentioned above 3.8, if p ∈ NTD and exists x, y ∈ c ∈ p then q ∈ NTD |

q = p

 · · · x x y y · · ·

· · · x x x x · · ·

. Because of symmetry of y, y in tautology, q′ ∈

NTD | q′ = p

 · · · x x y y · · ·

· · · x x x x · · ·

 also true. If p does not have some

clauses that include x, y in same clauses, we can change p to p′ that have some

clauses that include x, y in same clauses like 3.5. If generated formula q, q′ consist

of same clauses, we can change p to p′′ that p′′

 · · · x x y y · · ·

· · · x x x x · · ·

 and

p′′

 · · · x x y y · · ·

· · · x x x x · · ·

 do not consist of same clauses like 3.6. When we

add some clauses previous changing, adding clauses include some clauses that have

unique variables set that does not have another generated formulas not to come

to the same clauses. In this way, we can generate at least two times of NTD from

some NTD by reducing y, y → x, x or y, y → x, x.

On the other hand, we can repeat above variables reducing each variables in p.

To confirm number of variables type in p, we cannot limit the number no more

than logarithm number of input length |p|. So generated NTD amount to over

polynomial number of input length |p|, and number of reduced literal x, x type

also amount to over polynomial number of input length |p| (because if x, x is same

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 18

anthre NTD, these NTD become same, and we can make different NTD by using

above process).

Therefore, number of different variables type also over polynomial number. �

Theorem 3.10. �

NNF circuit family have to use over polynomial number of gates of input length

to compute NTD.

Proof. Mentioned above 1.7, NNF have to unique gate which different variables of

neighbor input. Mentioned above 3.9, number of different variables type in NTD

is over polynomial size of input length. Therefore size of NNF circuit family that

compute NTD is over polynomial size. �

Theorem 3.11. �

NTD /∈ P

Proof. Mentioned above 1.4, NNF circuit family can compute P problem with poly-

nomial number of gates of input length. However mentioned above 3.10, NNF

circuit family have to use over polynomial number of gates of input length to com-

pute NTD. Therefore NTD is not in P. �

Theorem 3.12. �

P (PH

Proof. Mentioned above 3.7, NTD ∈ PH, but mentioned above 3.11, NTD /∈ P .

Therefore PH is not in P. �

References

[Sipser] Michael Sipser, (translation) OHTA Kazuo, TANAKA Keisuke, ABE Masayuki, UEDA

Hiroki, FUJIOKA Atsushi, WATANABE Osamu, Introduction to the Theory of COM-

PUTATION Second Edition, 2008

	1. NNF circuit family
	2. Sandwich structure
	3. Neighbor Tautology DNF
	References

