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Complexification of Maxwell’s equations with an extension of the gauge condition to non-Abelian 
algebras, yields a putative metrical unification of relativity, electromagnetism and quantum theory. This 
unique new approach also yields a universal nonlocality with implications for Bell’s Theorem and the 
possibility of instantaneous quantum connections because spatial separation can vanish by utilizing the 
complex space. 
 
 
1. Introduction 
 
In this chapter we develop non-Abelian gauge groups for real and complex amended Maxwell’s 
equations in a complex 8-Dimensional Minkowski space in order to describe nonlocality in quantum 
theory and relativity which has implications for extending gravitational theory to the unitary regime. 
We demonstrate a mapping between the twistor algebra of the complex 8-space and the spinor calculus 
of 5D Kaluza-Klein geometry which attempts to unify Gravitational and EM theory. (Chap. 6) Our 
quantum formalism demonstrates that solving the Schrödinger equation in a complex 8D geometry 
yields coherent collective state phenomena with soliton wave solutions. The model shows that standard 
quantum theory is a linear approximation of a higher Dimensional complex space. Through this 
formalism we can assess that complex systems can be defined within conventional quantum theory as 
long as we express that theory in a hyper-geometric space. We utilize our complex dimensional 
geometry to formulate nonlocal correlated phenomena, including the quantum description of the 1935 
EPR paradox formulated with Bell's theorem. Tests by Clauser, Aspect, and Gisin have demonstrated 
that particles emitted with approximate simultaneity at the speed of light, c remain correlated nonlocally 
over meter and kilometer distances. As Stapp has said, Bell’s theorem and its experimental verification 
is one of the most profound discoveries of the 20th century. We will demonstrate the application of our 
formalism for complex systems and review the history of our model from 1974.  
 We have analyzed, calculated and extended the modification of Maxwell’s equations in a complex 
Minkowski metric, M4 in a C2 space using the SU2 gauge, SL(2,c) and other gauge groups, such as SUn 
for n > 2 expanding the U1 gauge theories of Weyl. This work yields additional predictions beyond the 
electroweak unification scheme. Some of these are: 1) modified gauge invariant conditions, 2) short 
range non-Abelian force terms and Abelian long-range force terms in Maxwell’s Eq. 3) finite but small 
rest mass of the photon, and 4) a magnetic monopole like term and 5) longitudinal as well as transverse 
magnetic and electromagnetic field components in a complex Minkowski metric M4 in a 2C  space. 

 This is an 8D complex Minkowski space, M4+C4 composed of 4 real and 4 imaginary dimensions 
consistent with Lorentz invariance and analytic continuation in the complex plane [1-6]. The unique 
feature of this geometry is that it admits nonlocality consistent with Bell’s theorem, (EPR paradox), 
possibly Young’s double slit experiment, the Aharonov-Bohm effect and multi mirrored interferometric 
experiment. 
 Also, expressing Maxwell’s EM equations in complex 8-space, leads to some new and interesting 
predictions in physics, including possible detailed explanation of some of the previously mentioned 
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nonlocality experiments [7-11]. Complexification of Maxwell’s equations requires a non-Abelian gauge 
group which amends the usual theory, which utilizes the usual unimodular Weyl U1 group.  We have 
examined the modification of gauge conditions using higher symmetry groups such as SU2, SUn and 
other groups such as the SL(2,c) double cover group of the rotational group SO(3,1) related to Shipov’s 
Ricci curvature tensor [12,13] and a possible neo-aether picture. Thus, we are led to new and interesting 
physics involving extended metrical space constraints, the usual transverse and also longitudinal, non 
Hertzian electric and magnetic field solutions to Maxwell’s equations, possibly leading to new 
communication systems and antennae theory, non-zero solutions to B , and a possible finite but 
small rest mass of the photon. 
 Comparison of our theoretical approach is made to the work on amended Maxwell’s theory [14-17]. 
We compare our predictions such as our longitudinal field to the )3(B term of Vigier, and our Non-
Abelian gauge groups to that of Barrett and Harmuth. This author interprets this work as leading to new 
and interesting physics, including a possible reinterpretation of a neo-aether with nonlocal information 
transmission properties. 
 
 
2. Complexified EM Fields in Local & Nonlocal Minkowski Space 
 

We expand the usual line element metric 2ds g dx dx 
  in the following manner. We consider a 

complex 8D space, M4 constructed so that Zu = xx
uu

i
ImRe

  and likewise for Z   where the indices   

and   run 1 to 4 yielding (1, 1, 1, -1). Hence, we now have a new complex eight space metric as 


 dZdZds v2 . We have developed this space and other extended complex spaces and examined 

their relationship with the twistor algebras and asymptotic twistor space and the spinor calculus and 
other implications of the theory [18-21]. The Penrose twistor SU(2,2) or U4 is constructed from four 

space – time, U2 ~
U 2

 where U2 is the real part of the space and 
~

U 2  is the imaginary part of the space, 
this metric appears to be a fruitful area to explore. 
 The twistor Z can be a pair of spinors UA and  A  which are said to represent the twistor. The 

condition for these representations are 1) the null infinity condition for a zero-spin field is 0
 ZZ

, 2) conformal invariance and 3) independence of the origin. The twistor is derived from the imaginary 
part of the spinor field. The underlying concept of twistor theory is that of conformally invariance fields 
occupy a fundamental role in physics and may yield some new physics. Since the twistor algebra falls 
naturally out complex space. 
 Other researchers have examined complex dimensional Minkowski spaces. In [2], Newman 
demonstrates that M4 space do not generate any major ‘weird physics’ or anomalous physics predictions 
and is consistent with an expanded or amended special and general relativity. In fact, the Kerr metric 
falls naturally out of this formalism as demonstrated by Newman [4,5]. 
 As we know twistors and spinors are related by the general Lorentz conditions in such a manner that 
all signals are luminal in the usual four N Minkowski space but this does not preclude super or trans 
luminal signals in spaces where N > 4. Stapp, for example, has interpreted the Bell’s theorem 
experimental results in terms of transluminal signals to address the nonlocality issue of the Clauser, 
et.al and Aspect experiments [22]. Kozameh and Newman demonstrate the role of nonlocal fields in 
complex 8-space. 
 We believe that there are some very interesting properties of the M4 space which include the 
nonlocality properties of the metric applicable in the non-Abelian algebras related to the quantum theory 
and the conformal invariance in relativity as well as new properties of Maxwell’s equations. In addition, 
complexification of Maxwell’s equations in M4 space yields some interesting predictions, yet we find 
the usual conditions on the manifold hold [23-25]. Some of these new predictions come out of the 
complexification of four space 2 and appear to relate to the work of Vigier, Barrett, Harmuth and others 
[14]. Also we fin,d that the twistor algebra of the complex eight dimensional, M4 space is mappable 1 
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to 1 with the twistor algebra, C2 space of the Kaluza-Klein five dimensional electromagnetic - 
gravitational metric [12,13]. 
 Some of the predictions of the complexified form of Maxwell’s equations are 1) a finite but small 
rest mass of the photon, 2) a possible magnetic monopole, 0  , 3) transverse as well as 

longitudinal B(3) like components of E and B, 4) new extended gauge invariance conditions to include 
non-Abelian algebras and 5) an inherent fundamental nonlocality property on the manifold. Vigier also 
explores longitudinal E and B components in detail and finite rest mass of the photon [26]. 
 Considering both the electric and magnetic fields to be complexified as ImRe EiEE   and 

imBiBB  Re  for ReImRe ,, BEE and ImB are real quantities. Then substitution of these two equations 

into the complex form of Maxwell’s equations above yields, upon separation of real and imaginary 
parts, two sets of Maxwell-like equations. The first set is 
 

  eE 4Re  , Re
Re

1 B
E

c t




   ; 0Re  B ,     B
c

E

t
J eRe

Re1 


   (1) 

 
the second set is 
 

          miBi 4Im  ,    
  iB

c

iE

tIm

Im1 


;   

 
                          (2) 

             0Im  iE ,    
   iE

c

iB

t
i Jm

1 


Im
    

   
 The real part of the electric and magnetic fields yield the usual Maxwell’s equations and complex 
parts generate ‘mirror’ equations; for example, the divergence of the real component of the magnetic 
field is zero, but the divergence of the imaginary part of the electric field is zero, and so forth. The 
structure of the real and imaginary parts of the fields is parallel with the electric real components being 
substituted by the imaginary part of the magnetic fields and the real part of the magnetic field being 
substituted by the imaginary part of the electric field. 
 In the second set of equations, (2), the i’s, ‘go out’ so that the quantities in the equations are real, 
hence mB 4Im  , and not zero, yielding a term that may be associated with some classes of 

monopole theories. See references in [16,17]. We express the charge density and current density as 
complex quantities based on the separation of Maxwell’s equations above. Then, in generalized form 
   e mi  and J=Je+iJm where it may be possible to associate the imaginary complex charge with 
the magnetic monopole and conversely the electric current has an associated imaginary magnetic 
current. 
 The alternate of defining and using, which Evans does E = ERe + iBIm and B = BRe + iEIm would not 
yield a description of the magnetic monopole in terms of complex quantities but would yield, for 
example   0Im  Bi  in the second set of equations. Using the invariance of the line element s2 = x2 – 

c2t2 for r = ct = x 2 and for x2 = x2 +y2 + z2 for the distance from an electron charge, we can write the 

relation, 
 

iJm
t

iB

c
im 


1

 or m
im J
t

B

c



1

;    iEIm 0  for E Im  0  or    

 

             
 1

c

iB

t
iJm




Im           (3) 
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3. Complex Minkowski Space: Implications for Physics 
 
In a series of papers, Barrett, Harmuth and Rauscher have examined the modification of gauge 
conditions in modified or amended Maxwell theory. The Rauscher approach, as briefly explained in the 
preceding section is to write complexified Maxwell’s equation in consistent form to complex 
Minkowski space [17]. 
 The Barrett amended Maxwell theory utilizes non-Abelian algebras and leads to some very 
interesting predictions which have interested me for some years. He utilizes the non-commutative SU2 
gauge symmetry rather than the U1 symmetry. Although the Glashow electroweak theory utilizes U1 
and SU2, but in a different manner, but his theory does not lead to the interesting and unique predictions 
of the Barrett theory. 
 Barrett, in his amended Maxwell theory, predicts that the velocity of the propagation of signals is 
not the velocity of light. He presents the magnetic monopole concept resulting from the amended 
Maxwell picture. His motive goes beyond standard Maxwell formalism and generate new physics 
utilizing a non-Abelian gauge theory. 
 The SU2 group gives us symmetry breaking to the U1 group which can act to create a mass splitting 
symmetry that yield a photon of finite (but necessarily small) rest mass which may be created as self 
energy produced by the existence of the vacuum. This finite rest mass photon can constitute a 
propagation signal carrier less than the velocity of light. 
 We can construct the generators of the SU2 algebra in terms of the fields E, B, and A. The usual 

potentials, A  is the important four vector quality  A A  ,  where the index runs 1 to 4. One of 

the major purposes of introducing the vector and scalar potentials and also to subscribe to their 
physicality is the desire by physicists to avoid action at a distance. In fact in, gauge theories A  is all 

there is! Yet, it appears that, in fact, these potentials yield a basis for a fundamental nonlocality! 
 Let us address the specific case of the SU2 group and consider the elements of a non-Abelian algebra 
such as the fields with SU2 (or even SUn) symmetry then we have the commutation relations where XY-
YX 0 or [X,Y]  0. Which is reminiscent of the Heisenberg uncertainty principle non-Abelian gauge. 
Barrett does explain that SU2 fields can be transformed into U1 fields by symmetry breaking. For the 
SU2 gauge amended Maxwell theory additional terms appear in term of operations such BAEA  ,  

and A B and their non-Abelian converses.  For example B  no longer equals zero but is given as 
  0 ABBAjgB  where [A,B] 0  for the dot product of A and B and hence we have a 

magnetic monopole term and j is the current and g is a constant. Also, Barrett gives references to the 
Dirac, Schwinger and t’ Hooft monopole work. Further commentary on the SU2 gauge conjecture of 
Mamuth that under symmetry breaking, electric charge is considered but magnetic charges are not. 
Barrett further states that the symmetry breaking conditions chosen are to be determined by the physics 
of the problem. These non-Abelian algebras have consistence to quantum theory. 
 In our analysis, using the SU2 group there is the automatic introduction of short range forces in 
addition to the long-range force of the U1 group. U1 is one dimensional and Abelian and SU2 is three 
dimensional and is non-Abelian. U1 is also a subgroup of SU2. The U1 group is associated with the long 
range 2/1 r  force and SU2, such as for its application to the weak force yields short range associated 
fields. Also SU2 is a subgroup of the useful SL(2,c) group of non compact operations on the manifold. 
SL(2,c) is a semi simple four dimensional Lie group and is a spinor group relevant to the relativistic 
formalism and is isomorphic to the connected Lorentz group associated with the Lorentz 
transformations. It is a conjugate group to the SU2 group and contains an inverse. The double cover 
group of SU2 is SL(2,c) where SL(2,c) is a complexification of SU2. Also SL(2,c) is the double cover 
group of SU3 related to the set of rotations in three dimensional space.  Topologically, SU2 is 
associated with isomorphic to the 3D spherical, O3

+ (or 3D rotations) and U1 is associated with the O2 
group of rotations in two dimensions. The ratio of Abelian to non-Abelian components, moving from 
U1 to SU2, gauge is 1 to 2 so that the short-range components are twice as many as the long-range 
components. 
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 Instead of using the SU2 gauge condition we use SL (2,c) we have a non-Abelian gauge and hence 
quantum theory and since this group is a spinor and is the double cover group of the Lorentz group (for 
spin ½) we have the conditions for a relativistic formalism. The Barrett formalism is non-relativistic. 
SL (2,c) is the double cover group of SU2 but utilizing a similar approach using twistor algebras yields 
relativistic physics. 
 It appears that complex geometry can yield a new complementary unification of quantum theory, 
relativity and allow a domain of action for nonlocality phenomena, such as displayed in the results of 
the Bell’s theorem tests of the EPR paradox, and in which the principles of the quantum theory hold to 
be universally. The properties of the nonlocal connections in complex 4-space may be mediated by non 
-or low dispersive loss solutions. We solved Schrödinger equation in complex Minkowski space 
[27,28]. 
 In progress is research involving other extended gauge theory models, with particular interest in the 
nonlocality properties on the S pact-time manifold, quantum properties such as expressed in the EPR 
paradox and coherent states in matter. 
 Utilizing Coxeter graphs or Dynkin diagrams, Sirag lays out a comprehensive program in terms of 
the An, Dn and E6, E7 and E8 Lie algebras constructing a hyper dimensional geometry for as a 
classification scheme for elementary particles. Inherently, this theory utilizes complexified spaces 
involving twistors and Kaluza-Klein geometries. This space incorporates string theory and GUT models 
[29]. 
 
 
4. Complex Vector and Advanced Potentials & Bell's Inequality 
 
The issue of whether Bell's theorem and other remote connectedness phenomena, such as Young's 
double slit experiment, demands superluminal or space-like signals or prior luminal signals is an area 
of hot debate. Also, the issue of advanced vs. retarded potentials is of interest in this regard.  

 Using the complex model of A  we will examine the issue of the non-locality of Bell's theorem as 
quantum mechanical ‘transactions’ providing a microscopic communication path between detectors 
across space-like intervals, which violate the EPR locality postulate. This picture appears to be 
consistent with the remote connectedness properties of complex Minkowski space. Also, there are 
implications for macroscopic communications channels; another area of hot debate. Detailed 
discussions of Bell's theorem are given in [30].  

 We will formulate fields in terms of A or ),(
~

jAA  where jA is A  rather than the tensor F or 

E or B . We can proceed from the continuity equation 0/  tJ   and the expression 

 XAXAF  // . For the usual restored potentials then, we have the Lorentz condition 

 

               0




t

A
  and also J

t

A
A  





2

2
2         (4) 

 
We can also derive   
 




 1
2

2
2 





t

          (5) 

 
 These equations possess a restored potential solution. The radiation field in quantum 
electrodynamics is usually quantized in terms of ),( A .[We can also convert back to the 


E and


B

.fields using tAE  / and ].AB  Quantization of the field consists of regarding the 
coordinates (x, k) or (q, p) as quantum mechanical coordinates of a set of equivalent harmonic 
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oscillators. In the second quantized method treating rr qk , and rA as quantum numbers then we have 

quantized allowable energy levels such as r
r

rnW    )( 2 . Solutions are given in the form  

 

             


)(
exp r

n
r

niW
en

r

            (6) 

 

and we have a Hamiltonian equation of motion 0)( 2  abab qckp  or abab pq   and  

 

            ℋ =   ])([ 2222
2
1

abab qqckp .      (7)  

 

 The electromagnetic field energy of the volume integral 8/)( 22 BE   is just equal to the 

Hamiltonian.  
We can examine such things as absorption and polarization in terms of the complexification of 


E and


B or 


A and  . We define the usual ED  (or displacement field) and HB  for a homogeneous 

isotopic media. If we introduce 0p and 0m as independent of 

E and


H where the induced polarizations 

of the media are absorbed into the parameters  and  , we have 

 
                 0pED    and 0

1 mBH              (8) 

 
Then we define a complex field as  
 

                  EiBQ                (9) 

 
so that we have Maxwell's equations now written as  
 

          Jt
QiQ  
  and 

iQ         (10) 

 
Using vector identities [23-25] and resolving into real and imaginary parts, we have  
 

J
t

H
H 





2

2
2   and 


 








1

2
2

t

J

t

E
E    (11) 

 

We define Q in terms of the complex vector potential that complexLA Re  and .Re complex    

Then  
 

                          



 i
t

L
iLQ        (12) 

 

subject to the condition similar to before, 0
 tL  . Then we have 
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       J
t

LL  


 2

22  and 
 1

2

2
2 




t
    (13) 

 
Separation into real and imaginary parts of these potentials, L and   can be written as  
 

            ImRe AiAL 
  and ImRe 

 i             (14) 

 
Upon substitution into the equation for Q and separation into real and imaginary parts we have  
 

   Im
Im

ReRe 






t

A
AB ;   Im

Re
ReRe

1
A

ct

A
E 




      (15) 

 
The usual equations are allowed when ImA  and Im  are taken as zero.  

If free currents and charges are everywhere zero in the region under consideration, then we have  
 

          0
 t
QiQ  ; 0Q         (16) 

 
and we can express the field in terms of a single complex Hertzian vector 


  as the solution of  

 

             02

2
2 




t
             (17) 

 
We can define   by  
 

            ImRe 
 i               (18) 

 
where  Re  and we can write such expressions as  

 

          tA 
 Im

Im
  and ImIm         (19) 

 
This formalism works for a dielectric media but if the media is conducting the field equations is no 
longer symmetric then the method fails. Symmetry can be maintained by introducing a complex induced 

capacity 
 Im

Re
' i . The vector B is in a solenoid charge-free region; this method works. 

Calculation of states of polarization by the complex method demonstrates its usefulness and validity. 
Also, absorption can be considered in terms of complex fields. We will apply this method to solutions 
that can be described as restored and advanced and may explain Bell's theorem of non-locality. Linear 
and circular polarization can be expressed in terms of complex vectors ImRe iAAA  . The light 

quanta undergoing this polarization is given as kn    ˆ . Complex unit vectors are introduced 
so that real and imaginary components are considered orthogonal. We have a form such as 

ReImReIm
ˆ)ˆ(ˆ)ˆ( jjAAA   . The linearly polarized wave at angle   is 
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                             )(
2

ReRe
 ii eije

A
A   .            (20) 

 
Now let us consider use of this polarization formalism to describe the polarization-detection process in 
the calcium source photon experiment of J. Clauser et al [31]. Let us first look at solutions to the field 
equations for time-like and space-like events. The non-locality of Bell's theorem appears to be related 
to the remote connected-ness of the complex geometry and the stability of the soliton over space and 
time. 
 We will consider periodically varying fields which move along the x-axis. For source-free space, we 
can write 
 

                                      2

2
22

t
FFc


             (21) 

 
where F represents either E  or B . The two independent solutions for this equation are [32]

)2sin(),( 0 tkxEtxE    and 

 
                            )(2sin),( 0 tkxBtxB          (22) 

 
and k is the wave number and   the frequency of the wave. The  sign refers to the two independent 
solutions to the above second order equation in space and time. The wave corresponding to E and B

will exist only when t < 0 (past lightcone) and the wave corresponding to E_ and B_ will exist for t >0 
(future lightcone). Then the E_ wave arrives at a point x in a time t after emission, while

E  wave arrive 

at x in time, t before emission (like a tachyon). 
 Using Maxwell's equations for one spatial dimension, x, and the Poynting vector which indicates the 
direction of energy and momentum flow of the electromagnetic wave, we find that E and B correspond 

to a wave emitted in the +x direction but with energy flowing in the -x direction. For example, E (x, t) 

is a negatives-energy and negative-frequency solution. The wave signal will arrive t = x/c before it is 
emitted, and is termed an advanced wave. The solution E_(x,t) is the normal positive-energy solution 
and arrives at x in time, t = x/c, after the instant of emission and is called the retarded potential, which 
is the usual potential. 
 The negative energy solutions can be interpreted in the quantum picture in quantum electrodynamics 
as virtual quantum states such as vacuum states in the Fermi-sea model. 'These virtual states are not 
fully realizable as a single real state but can definitely effect real physical processes to a significant 
testable extent’. The causality conditions in S-matrix theory, as expressed by analytic continuation in 
the complex plane, relate real and virtual states [28,29]. Virtual states can operate as a polarizable media 
leading to modification of real physical states. In fact, coherent collective excitations of a real media 
can be explained through the operations in a underlying virtual media. 
 Four solutions emerge: Two retarded ( 1F and 2F ) connecting processes in the forward light cone and 

two advanced, ( 3F and 4F ) connecting processes in the backward slight cone [33]. These four solutions 

are 

                 
( ) ( )

1 0 2 0

( ) ( )
3 0 4

, ;

,

i kx t i kx t

i kx t i kx t

F F e F F e

F F e F e

 

 

   

  

 

 
     (23) 

 
where 1F  is for a wave moving in the (-x, + t) direction, 2F  is for a (+x, +t) moving wave, 3F  is for a (-

x, -t) moving wave, and 4F is a (+x, -t) moving wave. 1F  and 4F  are complex conjugates of each other 
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and 2F and 3F , are complex conjugates of each other, so that 
41 FF  and 32 FF  . Then the usual 

solutions to Maxwell's equations are retarded plane wave solutions.  
 

 
 
Figure 1. Adaptation of a complex Minkowski light-cone showing advanced-retarded future-past Cramer 
wavefront transactions with a central Witten Ising lattice string vertex able to undergo symmetry transformations.   
 
 The proper formulation of nonlocal correlations, which appear to come out of complex geometries 
may provide a conceptual framework for a number of quantum mechanical paradoxes and appear to be 
explained by Bell's nonlocality, Young's double slit experiment, the Schrödinger cat paradox, 
superconductivity, superfluidity, and plasma ‘instabilities’ including Wheeler's ‘delayed choice 
experiment’. Interpretation of these phenomena is made in terms of their implications about the lack of 
locality and the decomposition of the wave function which arises from the action of advanced waves 
which ‘verify’ the quantum-mechanical transactions or communications. 
 Cramer [33] has demonstrated that the communication path between detectors in the Bell inequality 
experiments can be represented by space-like intervals and produce the quantum mechanical result. By 
the addition of two time-like four vectors having time components of opposite signs which demonstrate 
the locality violations of Bell's theorem and is consistent with the Clauser, Fry and Aspect experimental 
results. This model essentially is an ‘action-at-a-distance’ formalism.  
 One can think of the emitter (in Bell's or Young's quantum condition) as sending out a pilot or probe 
‘wave’ in various allowed directions to seek a ‘transaction’ or collapse of the wave function. A receiver 
or absorber detects or senses one of these probe waves, ‘sets its state’ and sends a ‘verifying wave’ back 
to the emitter confirming the transaction and arranging for the transfer of actual energy and momentum. 
This process comprises the non-local collapse of the wave function. The question now becomes: does 
such a principle have macroscopic effects? Bell's non-locality theorem cancan be effective over a matter 
of distance.  
 An attempt to examine such a possible macroscopic effect over large distances has been made by 
Partridge [34]. Using 9.7 GHz microwave transmitted by a conical horn antenna so that waves were 
beamed in various directions. Partridge found that there was little evidence for decreased emission 
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intensities in any direction for an accuracy of a few parts per th910 . Interpretation of such a process is 
made in terms of advanced potentials. Previously mentioned complex dimensional geometries give rise 
to solutions of equations that form subluminal and superluminal signal propagations or solitons. 
 The possibility of a remote transmitter-absorber communicator now appears to be a possibility. The 
key to this end is an experiment by Pflelgov and Mandel [35]. Interference effects have been 
demonstrated, according to the authors, in the superposition of two light beams from two independent 
lasers. Intensity is kept so low that, to high probability, one photon is absorbed before the next one is 
emitted. The analogy to Young's double slit experiment is enormous. 
 In Wheeler's recent paper, he presents a detailed discussion of the physics of delayed choice proton 
interference and the double slit experiment (from the Solvay conference, Bohr-Einstein dialogue). 
Wheeler discusses the so-called Bohm ‘hidden variables’ as a possible determinant that nonlocality 
collapses the wave function [36]. Further theoretical and experimental investigation is indicated; but 
there appears to be a vast potential for remote non-local communication and perhaps even energy 
transfer (See Chaps 5,12). In the next section we detail the forms of transformations of the vector and 
scalar potentials at rest and in moving frames, continuing our formulation in terms of ),( A . The issues 

of sub and superluminal transformations of A and   are given in a complex Minkowski space. Both 
damped and oscillatory solutions are found and conditions for advanced and restored potentials are 
given. 
 
 
5. Superluminal Vector & Scalar Potential Transformation Laws 
 
For simplicity we will consider superluminal boost xv  along the positive x direction. The space 

and time vectors in the real 4D Minkowski space transform as follows [37] 
 
                   ,' tx   y’ = - iy, z’ = i z, t’ = x         (24) 

 
for real and imaginary parts separately, where x, y, z, t are real quantities in the laboratory (S) frame, 
and x',y',z',t’ are the real quantities in the moving (S’) frame. Now in the 6D ( 6M ) complex Minkowski 
space, the above transformation laws for a superluminal boost )( xv  in the positive x direction 

become [38] 
 

            

' ' ' '
Re Im ,Re ,Im Re Im Im Re

' ' ' '
Re Im Im Re ,Re ,Im Re Im

' ' ' '
,Re ,Im ,Im ,Re ,Re ,Im ,Im ,Re

, ,

; ,

,

x x

x x

y y y y z z z z

x ix t it y iy y iy

z iz z iz t it x ix

t it t it t it t it

     

     

     

 (25)  

 
The transformation laws given by (25) preserve the magnitude of the line element but not the sign as 
in:  
        

              xxxx  ''            (26) 
 
where index  and   run over 1,2,3,4 representing 1 as time vector and 2,3,4 as spatial vectors. 

Therefore, we have the signature (+++-). Similar to the transformation laws for space and time vectors 
as given by (25) we can write the transformation laws for the vector and scalar potential. For a 
superluminal boost in positive x direction, the transformation laws for ),( A are: 
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       )(,,, '''
2

2
'

xxzzyy
x

xx AvAAAA
c

v
AA 








     (27) 

 
where   is the scalar potential and   is the usual Lorentz term 
 

             
1

' 2
2

2

1

1xv

c

 
 

 
 

          (28) 

 

We consider '
xA , etc., transforming as a gauge. In Eq. (27), the vector potential A is considered to be a 

four-vector real quantity, A or c
i

zyx AAAA ,,,(
~
 , which preserves the length of the line element but 

not the sign, i.e. we have   
 

              ''
 AAAA            (29) 

 
Eq. (27) then simplifies to the following relationships for the velocities approaching infinity, xv . 

 We can write the transformation laws for scalar and vector potentials under the superluminal boost 
in the positive x direction for xv . From the rest frame, S, to the moving frame, S’, for 

unaccelerated vector and scalar potentials, we have 
 

        '''' ,,, xzzyyx AAAAAA         (30) 

 
From the moving frame, S', to the rest frame, S, for the unaccelerated vector and scalar potentials we 
obtain 
 

        xzzyyx AAAAAA  '''' ,,,            (31) 

 
Eq. (31) is valid for real or complex vector and scalar potentials. Real and imaginary parts are easily 
separable in a complex quantity and they will transform according to Eq. (31) under the influence of a 
superluminal boost in the positive x direction. Now if these are the retarded (or accelerated or advanced) 
vector and scalar potentials then the transformation laws under the superluminal boosts will be different 
from the ones given by Eq. (31). These will be given by the combination of Eq. (31) and the 
transformation laws of the complex space and time vectors as given by Eq. (25). 
 These conditions are illustrated in Fig. 2. In 2a we represent a generalized point P(xRe,tRe,tIm), 
displaced from the origin which is denoted as P1. This point can be projected on each dimension xRe, tRe 
and tIm as points P2, P3, and P4 respectively. In Fig. 2b, we denote the case where a real-time spatial 

separation exists between points, P1 and P2 on the xRe axis, so that xRe  0 , and there is no 
anticipation, so that tRe = 0, and access to imaginary time tIm, nonlocality can occur between the P1 to 

P4 interval, so that t Im  0 . Then, our metric gives us s2 0 , where nonlocality is the contiguity 

between P1 and P2 by its access to the path to P4. By using this complex path, the physical spatial 
separation between P1 and P2 becomes equal to zero, allowing direct nonlocal connectedness of distant 
spatial locations 
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Figure 2. We represent the location of four points in the complex manifold. In figure 1a, point P1 is the origin, 
and P is a generalized point which is spatially and temporally separated from P1. In figure 5.2b, the Points P1 and 
P2 are separated in space but synchronous in time. This could be a representation of real-time nonlocal spatial 
separation. In figure 5.2c, points P1 and P3 are separated temporally and spatially contiguous. This represents an 
anticipatory temporal connection.   
 
, observed as a fundamental nonlocality of remote connectedness on the spacetime manifold.  
 Figure 2c represents the case where anticipation occurs between P1 and an apparent future 
anticipatory accessed event, P3 on the tRe axis. In this case, no physical spatial separation between 
observer and event is represented in the figure. Often such separation on the xRe exists. In the case where 
xRe = 0, then access to anticipatory information, along tRe can be achieved by access to the imaginary 
temporal component, tIm. Hence, remote, nonlocal events in four space or the usual Minkowski space, 
appear contiguous in the complex eight space and nonlocal temporal events in the four space appear as 
anticipatory in the complex eight space metric. Both nonlocality and anticipatory systems occur in 
experimental tests of Bell’s Theorem and perhaps in all quantum measurement processes. 
 The propagation constant is considered to be isotropic in vacuum and defined as  vd x / , where

v , is the phase velocity and   is the radian frequency of the propagating signal. Usually in most cases 

the phase velocity of propagation in vacuum is a constant cv  , where c is the velocity of light in 

vacuum. For the purpose of this paper, we will consider a tachyon traveling faster than light emitting 
an electromagnetic signal at frequency   which propagates at the velocity of light. This assumption 
will simplify the subject matter of this paper. Later on, in a separate paper, we will examine the faster 
than light electromagnetic signals emitted by a traveling tachyon which might lead into a Doppler effect 
at velocities faster than light.  
 Considering only the advanced potential solution from (24). Eq. (24) can now be rewritten as two 
separate terms, so that in the S frame,  
 

           
0 ,Re 0 ,Im ,Re Re

,Im Im

( ){ exp [ ]

exp [ ]}
x x x x

x

A A iA e i t kx

e t kx





   

 
    (32) 

 
where the first exponent represents the usual type of oscillatory terms and the second exponent 
represents a decaying component which is not present in the usual 4D spacetime model. Note also that 
we have used the isotropy of the vector k in Eq. (32) as examined in the previous section.  
 Now let us examine the complex exponential of Eq. (32) using the transformations of Eq. (24) as 
follows so that we have for the exponents 
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          ][exp];[exp '
Im,

'
Im

'
Re,

'
Re xx ktxektxie            (33) 

 
We regroup terms in   and k so that we have 
 

          )]()([exp '
Im,

'
Re,

'
Im

'
Re xx ittkixxie             (34) 

 

Now using equations from for '
Im

'
Re' ixxx  we have 

 

                 )]('[exp '
Im,

'
Re, xz ittkxie          (35) 

 
Note that the second part of the exponent for the k term does not reduce to t’ since there is a minus 

before '
Im,xit . Thus, for the boost xv or v >c, we obtain for ][exp kxtie  from Eq. (24) under 

this transformation going to  
  

         ][exp];'[exp '
Im,

'
Re, xx ittkexie          (36) 

 

 Let us look at the example of the transformation from '
xA (in the moving frame S') to its form in the 

restframe, S. We find a mixing vector and scalar potential. In the SLT from the restframe S to the moving 
S' frames we have a change of length of the time component vector in Eq. (36). The vector potential 
term xA0  transforms as  

              







 

2

2
'

c

v
AA x

xx          (37) 

 
which is the same as Eq. (28), so that for the superluminal boost xv  , implies that  

 

           
x

x

xx
v

c

v

c

c

v

c

v










2

2

2

2

1

1

1

1         (38) 

 

where the 22 /1 xvc  term approaches unity as xv . Then we rewrite the transformed vector 

potential as  
 

          

1

,

1

1

2

2

2

2

'









c

v

c

v

A

c

v
A

x

x

x

x

x       (39) 

 
Then for xv  and from Eqs. (38) and (39), 

 

          


 
cv

c

c

v

v

cA
A

x

x

x

x
x

1
0

2
'        (40) 
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for units in which c = 1. Therefore '
xA  for a superluminal boost, xv . 

 For the transformation of the scalar potential, in analogy to Eq. (28), we have  
 

   )(' xx Av               (41) 

 
and for xv , we have xvc /  so that in the limit of the SLT,  

 

               xx
x

v
cAcA

v

c



 lim'         (42) 

 

and for the units of c = 1, then xA' . Compare this equation to Eq. (40). Also for yy AA ' and zz AA '

we can now write  
 

          
0 ,Re 0 ,Im

' ' '
Re Im ,Re ,Im

[ ] exp [ ]

[ ] exp ' exp [ ]

x x x

x x x

A A iA e i t kx

i e i x e k t it



  

   

   
        (43) 

 

where '
Im

'
Re' ixxx  and using the result of Eq. (40) and (42) for the non-exponent part and the 

exponential term which is given in Eq. (35), Eq. (43) gives us the vector and scalar form in the moving 
S' frame. 
 If we consider only the accelerated potential, then we consider only the plus sign in Eq. (43). By use 
of the definition of complex quantities, Eq. (43) can be rewritten in a compact, simplified form:   
 

                    )exp()'exp( ''
0 xxxx tikxiA   .       (44) 

 
 Then by use of Eq. (44) we can describe the x component of the complex vector potential in moving 
frame S' after a superluminal boost in the positive x direction. The same vector potential in the rest 
frame is defined. 
 The transformation of the yA and zA components of the complex vector potential under a 

superluminal boost in the positive x direction can similarly be written as 
 

    )](exp[)](exp[

)](exp[)](exp[

'
Im

'
Re

'
Im,

'
Re,

'
0

'
Im

'
Re

'
Im,

'
Re,

'
0

izzkyittA

iyzkyittAA

zzz

yyyy








         (45) 

We will now consider the scalar potential as defined by a complex quantity, so that  
 

             '
Im

'
Re'  i                 (46) 

 
which we use for the non-exponential term of Eq. (45) which then becomes 
 

         ][exp'exp' Im,'Re, xxx ittkexieA             (47) 

 
Let us now compare the vector potential forms of xA in Eq. (42) in the S or laboratory frame, and xA of 

Eq. (47) in the S' frame or moving frame. (See Table 5.1) 
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TABLE 1 Comparison of The Exponential Part of the Vector 

 Potential xA In The S and S' Frames Of Reference 

 OSCILLATORY DAMPED 

S Frame ][exp ReRe,0 kxtieA xx    ][exp ImIm, kxte x    

S’ Frame ]'[exp' xi    ][exp '
Im,

'
Re, xx ittke   

 
In the oscillatory solution of the S' frame for ' , we find no dependence on the wave number factor k 

and hence we have apparent media independence, recalling ImRe' ixxx  , whereas in the S frame for

oxA , we have dependence on   and k. 

 For the damped solution, we have  and k dependence in the S frame for oxA , which is a pure real 

exponential and hence not oscillatory. In the S' frame then, ' sometimes has a damped solution 

dependent on k which has a real and imaginary component. The exponential factor can be written a 
 

          ImRe
'

Im,
'

Re, ixxitt xx           (48) 

 
Time dilation and vector length are modified in the complex 12D space [38]. We find that a 
superluminal, unidimensional (x-dimensional) boost in complex Minkowski space not only modifies 
space and time (as well as mass) by the  factor, it also modifies ),(

~
AA   and we find a mixing of

 and   for jAA  where j runs 1 to 3 (or spacelike quantities) and   transforms as a temporal 

quantity for subluminal transformations.  
 
 
6. Insights Into Dirac and Penrose Spinor Calculus 
 
The spinor calculus of the Kaluza-Klein geometry [11,12] mappable one to one with the twistor space 
of the complex 8-space. The Dirac equation is based on the fundamental properties of spinors. The 
complexification of four space by the Rauscher [39] and Newman [2-5] method yields a manner to 
relate Maxwell’s equations to the relativistic space time metric, as shown above. In this section we 
detail the Dirac spinor formalism with the twistor topology.  
 The Penrose and other twistor approaches have been in an attempt to quantize gravity in order to 
unify the physics of the micro-cosmos and macro-cosmos. Such an approach has been taken by Penrose, 
et al. and is based on the concept of a more general theory that has limits in the quantum theory and the 
relativistic theory [40]. In addition, there have been approaches to the underlying structure of space-
time in the quantum and structural regime [40-43]. A structured and/or quantized space-time may allow 
a formalism that unequally relates the electromagnetic fields with the gravitational metric. Feynman 
and Penrose graphs were developed in an attempt to overcome the divergences of such an approach. In 
order to translate the equations of motion and Lagrangians from spinors to twistors, one can use the 
eigenfunctions of the Casimir operators of the Lie algebra of  2,2U . 

 The simplest case of a zero-rest mass field is the simplest and can represent the photon for 2n  spin 

where 0n , and we can write  
 

                0...  
NA

AA             (49) 

A
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for NA,....,  written in terms of n  indices, and for 1n , we have the Dirac equation for massless 

particles. For a spin zero field, we have the Klein-Gordon equation   
 

                0 
 AA

AA           (50) 

 

and for 2n , we have the source-free Maxwell equation □ 0F  for spin 1 or 1U for the 

electromagnetic fields, and for 4n , we have the spin Einstein free field equations, 0R . The 

indices   and   run 0 to 3. For a system with charge, then  □ 
 JJF   , or this can be written 

as  



J

x

F



 and then we can write 

 

              



 J

x

F





          (51) 

 
We present an approach to relate the twistor topology to the spinor space and specifically to the Dirac 
spinors. Both Fermi-Dirac and Bose-Einstein statistics are considered. The twistor theory and Dirac 
models can be related to electrodynamics, and gravitation. The Penrose spin approach is designed to 
facilitate the calculation of angular momentum states for SL(2,2). The spinor formalism, in the Dirac 
equation, utilize spinors within the quantum theory. The twistor formalisms are related to the structure 
of space-time and the relation of the spinors and twistors is also of interest because it may yield a 
relationship between quantum mechanics and relativity. The twistor theory has been related to 
conformal field theory and the string theory [44]. Also, twistor theory has been related to quaternions 
and complex quaterionic manifolds [45]. The projective twistor space, PT, corresponds to two copies 

of the associated complex projective space of 3CP  or 33 CPCP  . It is through the conformal geometry 

of surfaces in 4S , utilizing the fact that 3CP  is an 2S  bundle over 4S , that can be related to quaternions 
[44]. 
 The complex 8-space and the Penrose twistor topology are fundamentally related since the twistor 
is derived from the imaginary part of the spinor field. The Kerr Theorem results naturally from this 
approach in which twisting is shear free in the limit of asymptotic flat space. The twistor is described 

as a two-plane in complex Minkowski space, 4M . Twistors define the conformal invariance of the 
tensor field, which can be identified with spin or spinless particles. For particles with a specific intrinsic 

spin, s , we have s2 
 , and for zero spin, such as the photon, 0 

  where   is the 

Hermitian conjugate of  , and   and   can be regarded as canonical variables such as x , p  in 

the quantum theory phase space analysis. Note that these fields are independent of the origin [59]. The 

twist free conditions, 
  , hold precisely when   is a null twistor. The upper case Latin indices 

are used for spinors, and the Greek indices for twistors. The spinor field of a twistor is conformally 
invariant and independent of the choice of origin [45]. For the spinor, the indexes A  and A  take on 
values 1, 2 [44]. We briefly follow along the lines of Hanson and Newman in the formalism relating the 
complex Minkowski space to the twistor algebra. Spinors and twistors are related by the general Lorentz 
conditions in such a manner as to retain the fact that all signals are luminal in the real four-space, which 

does not preclude superluminal signals in an 4N  dimensional space. The twistor   can be 

expressed in terms of a pair of spinors, A  and A , which are said to represent the twistor. We write  

 

              A
A

  ,            (52) 
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where  A
AAA ri 
   

 Every twistor   is associated with a point in complex Minkowski space, which yields an associated 

spinor, A , A . The spinor is associated with a tensor which can be Hermitian, but is not necessarily 

Hermitian. The spinor can be written equivalently as a bivector forming antisymmetry. In terms of 

spinors A  and A , they are said to represent the twistor   as  A
A

  , . In terms of 

components of the twistor space in Hermitian form,   for  AAAA   ,  we have, 

 

           13023120        (53)  

 

where the   index runs 0 to 3. The components of   are 3210 ,,,   and are identifiable with a 

pair of spinors, A  and A , so that   
 

          1 ,     2
0  ,    3          (54)  

 
so that we have   
       

          
1

1 '1

  



       (55)     

 

Note that the spinor A  is the more general case of A . This approach ensures that the transformations 

on the spin space preserve the linear transformations on twistor space, which preserves the Hermitian 
form, . 
 The underlying concept of twistor theory is that of conformal invariance or the invariance of certain 
fields under different scalings of the metric under the general relativistic space-time metric, g . 

Related to the Kerr theorem, for asymptotic shear-free null flat space, the analytic functions in the 
complex space of twistors may be considered a twisting of shear-free geodesics. In certain specific 
cases, shear inclusive geodesics can be accommodated. Twistors are formally connected to the topology 

of certain surfaces in complex Minkowski space 4M . This space, the complex space 4C , is the cover 

space of 4R , the 4D Riemannian space. On the Riemann surface, one can interpret spinors as roots of 

the conformal tangent plane of a Riemann surface into 3R . This approach is significant because it 

ensures the diffeomorphism of the manifold. Complexification is formulated as 
ImRe XX  , 

which constitutes the complexification of the Minkowski space, 4M . The usual form Minkowski space 
is a submanifold of complex Minkowski space. Twistors are space-time structures in Minkowski space, 
which is based upon the representation of twistors in terms of a pair of spinors. Twistors provide a 
unique formulation of complexification. The interpretation of twistors in terms of asymptotic 
continuation accommodate curved space-time.  
 The spinor representation of a twistor makes it possible to interpret a twistor as a two-plane in 

complex Minkowski space, 4M . Then we can relate A  and B  so that AA   is a solution as 

 

               B
BAA i 
             (56) 

 

for the position vector BA   in the complex Minkowski space. We can also consider the relationship of 
AA   and A to a complex position vector as   
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             AAAAAA          (57) 
 

where A  is a variable spinor. Just as in the conformal group on Minkowski space, spin space forms a 
two-valued representation of the Lorentz group. Note that 2SU  is the four-value covering group of C

 2,1 , the conformal group of Minkowski space. The element of a 4D space can be carried over to the 

complex eight space. The Dirac spinor space for spin, n  is a covering group of nSO  where this 

cohomology theory will allow us to admit spin structure and can be related to the 2SU  Lie group. Now 

let us consider the spin conditions associated with the Dirac equation and formulate the Dirac ‘string 
trick’ that describes the electron spin path. The requirement for a 720° twist or rotation results from the 
electron spin and chirality where the spin is aligned or anti-aligned along the particle’s direction of 
motion. 

 For a spin, 2
1s  particle, the spin vector  pu  is written as 








0

1
 and 








1

0
 for spin up and spin 

down and p is momentum. For a particle with mass we have for 1c ,   
 
 

           02 














 


 mc
x

ci        (58) 

 
for the time independent equation, and we can divide Eq. (58) by ci  and have, 
 

            0

















 
mc

x
          (59) 

 
where  mck   and   ic  where indices   run 0 to 3. The dependent Dirac equation is given 

as, 
 

         02 



















t

i
mc

x
ci




 
      (60) 

 
The solution to the Dirac equation is in terms of spin  pu  as  

 

             Etxp
i

epu 


          (61) 

 
the Dirac spin matrices   ic . The spinor calculus is related to the twistor algebra, which relates 

a 2-space to an associated complex 8-space. 
The Dirac equation and spinors are fundamentally connected. For example, we have the Dirac spin 

matrices, 



 




 i









0

0
 where terms such as  51     come into the electroweak vector 

- axial vector formalism. The three Dirac spinors, which are also related to the Pauli spin matrices, are 
given as 
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01

10
x , 

0

0

i

i
y


 and 

10

01


z       (62) 

 

and 3210
32105  ii   for  0  is given as, 

 

                    
























1000

0100

0010

0001

0           (63) 

 
for trace 0tr , that is, Eq. (63) can be written as, 
 

             










2

2
0 0

0

I

I
           (64)  

 

where we have the 2x2 spin matrix as   
10

01
2 I .  Note that the Dirac spinors are the standard 

generators of the Lie algebra of 2SU .  
 The commutation relations of the Dirac spin matrices is given as  
 

               
~

, Iig   


        (65) 

 

and  gdetdet    where  g  is the metric tensor. The Dirac spin matrices come into use in the 

electroweak vector-axial vector model as  51     for 5   as, 

 

             3210
32105  ii           (66) 

 
where indices run 0 to 3. We can also write, 
 

                    





n

inxn exxx
5

,5 



           (67)   

 
which expresses some of the properties of a 5D space having 32,10 ,,    and  5 . Note that 5  is 

associated with a 5D metric tensor. This five-dimensional space passes exactly one geodesic curve 
which returns to the same point with a continuous direction which is similar to the formation of the 
Dirac string trick which requires a 720°path of an electron to return to its exact original quantum state.  
 The electromagnetic potential; and the metric of the Kaluza-Klein geometry are related where we 
express 5  in terms of a potential   so that we have 

 

                 25           (68)   
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where F
 8  and where G

cF
4

  or the Rauscher quantized cosmological force. Then we have a 

five space vector as, 

                   

























1

0

0

0

0

5             (69)   

 
Through this approach, we can relate covariance and gauge invariance. 
 For the Poisson's equation we have,   
 

                 
4

2

1
c          (70) 

 

where again F
 8  as above. The electromagnetic field, F , can be expressed as, 

 

                







xx

F







          (71) 

 
which yields an interesting relation of the gravitational metric to the electromagnetic field. Also, the 

Lagrangian is given as 
 FFL

2

1
  so that L g L  for the space-time metric g . Note that we 

have dgL  , where d  represents a four space. Now let us return to our discussion of the twistor 

algebra and relate it to the spinor calculus. The Penrose twistor space also yields a 5D formalism similar 
to that formulated by the Kaluza-Klein theory.  
 The quanta are associated with a quantum field of particles that carry both momentum and energy. 
The total energy Hamiltonian can be defined in terms of a number of simple phonon states which can 

be expressed in terms of 
na creation and na  destruction operator states. Since all creation operators 

commute, these states are completely symmetric and satisfy Bose-Einstein statistics. Such phonon 
states, having a definite number of phonons, are called Fock states, which is the vector sum of the 

momentum of each of the photons in the state. The ground state 0  can be considered the photon 

vacuum state or Fock state where the photon is taken as a phonon state. The creation and destruction 

operators commute as   nnnn aa 
  ,  for the delta function nn  . Both projective and non-projective 

twistors are considered as images in a complex Riemannian manifold in its strong conformal field 
condition. In analogy to the Hartree-Fock spaces, or Fock space, using the appropriate spin statistics, 
Bose-Einstein or Fermi-Dirac; duality, analytic continuation, unitary and other symmetry principles. 
Particles can be considered as states as the Fock space elements or the ‘end’ of each disconnected 
portion of the boundary of the manifold [47]. 
 We can consider an n -function as a ‘twistor wave’ function for a state of n -particles. In the first 
order consideration, Penrose considers a set of n -massless particles as a first order approximation. We 
form a series on a complex manifold as elements of the space nC  as 

 

               ...,,,,,,, 3210
 xyzfyzfzff      (72) 
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which are, respectively, the 0th function, 1st function, 2nd function, and 3rd function, etc. of the twistor 
space, which are also elements of nC . We can also consider ....,,,, 3210 ffff  as the functions of 

several nested twistors in which 0f  is the central term of the wave of the twistor space. We can say that 

these nested tori can act as a recursive sequence. Penrose relates the twistor to particle physics by 
suggesting that, to a first approximation, 1f  corresponds to the amplitude of a massless, spin 1 particle, 

2f  to a lepton spin ½ particle, and 3f  to Hadron particle states, and 4f  to higher energy and exotic 

Hadron particle states. Mass results from the breaking of conformal invariance for nf  for 2n or 

greater, similar to the S matrix approach [48]. The harmonic functions, nf  , form a harmonic 

sequence, where nf  for 2n  form the Fermion states, and nf  for 3n  form the Hadron twistor 

states. Essentially, in the twistor space, we have a center state 0f  around which ...,, 21 ff  occur. Each 

of these sequences waves forms a torus-like topology, hence, 1f  and 2f  form a double nested tori set 

consistent with both spin 1 and spin ½ particle states where all n  states are elements of the twistor, z
, as zn . In the specific case of a massless particle with spin for 1f , the two-surface in complex 
Minkowski space corresponding to the twistor represents the center of mass of the system so that the 
surface does not intersect the real Minkowski space. This reflects the system's intrinsic spin. We see an 
analogy to the 3-tori Calabi-Yau string theory. The higher order nf  may describe higher order string 

modes or oscillations of 0
 ZZ  or 0f . This occurs for the case using ,, 21 ff and 3f  and, hence, 

all known particle states.  

 The topology of the first three Penrose projective twistor states are PT , PT , and PT . The PT
, and PT  are the domain of the projective twistor space, PT , where we denote these two states in 
which  1)(-1, are elements of t where   is small. We denote two line elements which are denoted in 

terms of twistors as a surface on the sphere 3S  as PT  which corresponds to 0
 tt

ZZ 


 and 

0
tt

ZZ 


 for 1t  for PT , and PT  gives 11  t . These two branches correspond 

to a transformation matrix, 
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 This gives us a translation formulation for vectors into the states of spinors in terms of t , in terms 
of the spinors 
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       (74) 

 

which is 
tZ  and 1~ t  since   is small. Then in terms of twistors,   
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B

ABAA f







ˆ           (75) 

 

for  AA   ̂  where   and   are orthogonal spinors. The term 
B

AB f







  is small compared to A  

and A   since   is small. The unit spinors or vectors are A̂  and A̂  for both 2,1, BA  

 A 5D surface of projective twistors in a spin free state, which can have genus 0g  for a spherical, 

no ‘hole’ surface to 0g  for RS 3 . Penrose has formulated the relations between the conformal 
geometry of Minkowski space, complex analysis, and hence, analytic continuation, and the solutions to 
certain conformally invariant differential equations such as Maxwell's equations. Gauge theory in this 
context also allows the formalism of the Yang-Mills equations, which have become a major tool in four-
dimensional differential topology. The Yang-Mills theory is a non-Abelian gauge group theory, which 
is the basis of modern quantum particle field theory. Invariance under the local gauge group 2SU  can 

be extended to larger groups nSU  for 2n . A theory which is invariant under the local gauge group 

2SU  is referred to as a Yang-Mills theory. For example, chromodynamics is a Yang-Mills theory with 

the gauge group 3SU . The exploration of conformally invariant conditions on Minkowski space is 

formulated for contour integral formulation process solutions to the Dirac equation. The contour integral 
methods allow integrability and are used to deal with the ‘holes’ or singularities in real and complex 
manifolds [49,50]. 
 Work is in progress to complete the complexification of the Dirac equation [51] in the complex-8 
space. 
 

 
7. Conclusions 
 
It appears that utilizing a complexification of Maxwell’s equations with the extension of the gauge 
condition to non-Abelian algebras, yields a possible metrical unification of relativity, electromagnetism 
and quantum theory. This unique new approach yields a universal nonlocality. No radical spurious 
predictions result from the theory, but some new predictions are made which can be experimentally 
examined. Also, this unique approach in terms of the twistor algebras may lead to a broader 
understanding of macro and micro nonlocality and possible transverse electromagnetic fields observed 
as nonlocality in collective plasma state and other media. In the next chapter we demonstrate application 
of the model to complex 12-space and develop correspondence to M-Theory and F-Theory. 
 

References 

 
[1] Penrose, R. & Newman, E.J. (1978) Proc. Roy. Soc. A363, 445. 
[2] Newman, E.T. (1973) J. Math. Phys.14, 774.  
[3] Hansen, R.O. & Newman, E.T. (1975) Gen. Rel. and Grav. 6, 216. 
[4] Newman, E.T. (1976).Gen. Rel. and Grav. 7, 107.  
[5] Newman, E.T. (1983) 3rd MG meeting on Gen. Rel., Ha Nang (ed.) Amsterdam: North-Holland, 
pgs 51-55. 
[6] Rauscher, E.A. (1996) The physics of nonlocality, in: The Iceland Papers, Frontiers of Physics, p 
93, (ed.) B.J. Josephson, Essentia Res. Associates, Amherst, Wisconsin, 54406; and (1979) P.A.C.E., 
Ottowa. 
[7] Stapp, H.P. (1993) Phys. Rev. A47, 847. 
[8] Bell, J.S. (1964) Physics 1, 195.  



Multidimensional Geometries and Measurement 
 

22

[9] Clauser, J.F. & Horne, W.A. (1971) Phys. Rev. 10D, 526. 
[10] Aspect, A. et. al. (1982) Phys. Rev. 49, 1804.. 
[11] Einstein, A., Podolsky, B. & Rosen, N. (1935) Phys. Rev. 47, 777. 
[12] Kaluza, Th. (1921) Sitz. Berlin Press, A. Kad. Wiss, 968. 
[13] Klein, O. (1926) Z. Phys. 37, 805; (1927) Z. Phys. 41, 407. 
[14] Vigier, J-P (1991) Foundations of Physics, 21, 125. 
[15] Evans, M.W. &  Vigier, J-P (1996) The Enigmatic Photon Vols. 1 & 2, Dordrecht: Kluwer 
Academic. 
[16] Rauscher, E.A. (1993) Electromagnetic Phenomena in Complex Geometries and Nonlinear 
Phenomena, Non-Hertzian Waves and Magnetic Monopoles, Millbrae: Tesla Books. 
[17] Rauscher, E.A. (2008) Electromagnetic Phenomena in Complex Geometries and Nonlinear 
Phenomena, Oakland: Noetic Press. 
[18] Baston, R. & Eastwood, M.B. (1985) The Penrose transformation for complex homogenous 
spaces, Twistor Newsletter, 20, 34. 
[19] Eastwood, M.G. (1985) Complex quaternionic Kahler manifolds, Twistor Newsletter 20, 63. 
[20] Penrose, R. (1986) Pretzel twistor spaces, Twistor Newsl 21, 7-11. 
[21] Hughston L.P. & Ward , R.S.(1979) Adv in Twistor Theory, Pitman. 
[22] Aspect, A., Granger, P. & Rogier, G. (1982) Phys Rev Let, 49, 91; Aspect, A. (1976) Phys. Rev. 
D14, 1944. 
[23] Rauscher, E.A. & Targ, R. (2006) Investigation of a complex space-time metric, pp. 121-146, 
Frontiers of Time, New York: AIP Conference Proceedings #863.  
[24] Rauscher, E.A. (1976) Bull. Am. Phys. Soc. 21, 1305. 
[25] Rauscher, E.A. (1968)  J. Plasma Phys. 2, 517. 
[26] Amoroso, R.L., Hunter, G., Kafatos, M. & Vigier, J-P (eds.) Gravitation & Cosmology: From 
The Hubble Radius to the Planck Scale, Dordrecht: Kluwer. 
[27] Rauscher, E.A.  (1987) Soliton solutions to the Schrödinger equation in complex Minkowski 
space, pp. 89-105, Proceeding of the First International Conference, Berkeley. 
[28] Rauscher, E.A. & Amoroso, R.L.(2005) The Schrödinger equation in complex Minkowski, 
nonlocal and anticipatory systems, Unified Theories, Budapest, Hungary, in R. L. Amoroso, I. Dienes 
& C. Varges (eds) Oakland: Noetic Press. 
[29] Sirag, S.P. (1996) A mathematical strategy for a theory of particles, pp. 579-588, The 1st Tucson 
Conference, S.R. Hameroff, A.W. Kasniak & A.C. Scott (eds.) Cambridge: MIT Univ. Press. 
[30] Rauscher, E.A. (1999) D and R Spaces, Lattice Groups and Lie Algebras and their Structure, 
LBL Report. 
[31] Clauser, J.F. & Shimoney, A. (1978) Pep. Prog. Phys. 41, 1881.  
[32] Jackson, J.D. (1975) Classical Electrodynamics, NY: Wiley & Sons. 
[33] Cramer, J.G. (1980) Phys. Rev, D22, 362. 
[34] Partridge, R.B. (1973) Nature, 244, 263. 
[35] Pflelgov, R.L. & Mandel, L. (1967) Phys. Let. 24A, 766. 
[36] Wheeler, J.A. (1982) Int. J. Theor. Phys., 21, 557. 
[37] Ramon, C.  & Rauscher, E.A. (1980) Found. Physics, 10, 661.  
[38] Amoroso, R.L. (2002) Developing the cosmology of a continuous state universe, in R.L. 
Amoroso et al (eds.) Gravitation & Cosmology: From The Hubble Radius to the Planck Scale, 
Dordrecht: Kluwer. 
[39] Ramon, C. & Rauscher, E.A. (1980) Superluminal transformations in complex Minkowski 
spaces, Foundations of Physics 10, 661. 
[40] Rauscher, E.A. (1971) A unifying theory of fundamental processes, Lawrence Berkeley National 
Laboratory Report (UCRL-20808; and (1968) Bull. Am. Phys. Soc. 13, 1643. 
[41] Rauscher, E.A. (1972) Closed cosmological solutions to Einstein’s field equations, Lett. Nuovo 
Cimento 3, 661. 
[42] Rauscher, E.A. (1981) Conceptual Changes in Reality Models and New Discoveries in Physics:  
Soliton Solutions to the Schrödinger Wave Equations, Tecnic Research Lab of California Report 



Multidimensional Geometries and Measurement 
 

23

PSRL-1076, in the Proceedings of the 1st Intl Energy Conference, Ontario; Univ of Toronto. 
[43] Rauscher, E.A. (1983) Coherent Nondispersive Solutions to the Schrödinger and Dirac 
Equations, Tecnic Res. Labs, CA Report, PSRL-6941. 
[44] Isham, J., Penrose, R. & Sciomci, D.W (eds.) (1975) Quantum Gravity, Oxford: Clarendon Press.  
[45] Nash, C. & Sen, S. (2000) Topology and Geometry for Physicists, New York: Academic Press. 
[46] Rauscher, E.A., Rasmussen, J.D. & Harada, K.(1967) Coupled channel alpha decay rate theory 
applied to Po212m, Nucl. Phys, A94, 33. 
[47] Rauscher, E.A. (1968) Electron interactions and quantum plasma physics, J. Plasma Phys. 2, 517. 
[48] Chew, G. (1964) The Analytic S-matrix, New York: Benjamin. 
[49] Dang, Y., Kauffman, L.H. &  Sandin,D. (2002) Hypercomplex Iterations: Distance Estimation 
And Higher Dimensional Fractals, Singapore: World Scientific. 
[50] Rauscher, E.A. (1968) A unified theory of fundamental processes, Univ. California, Los Angeles, 
Bull. Am. Phys. Soc., 13, 1643. 
[51] Amoroso, R.L. & Rauscher, E.A. (2009) The complexified Dirac equation and the completion of 
quantum theory (In Progress).     


