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Abstract

A method of function expansion is presented. It is based on matching the definite integrals of the
derivatives of the function to be approximated by a series of (scaled) Bernoulli polynomials. The method
is fully integral-based, easy to construct and presumably slightly outperforms Taylor series in the conver-
gence rate. Text presents already known results.

Important Notice
This text presents already known results. Learning about their existence at the time when the text was
already published, I refused to remove the text: some minor ideas of mine may still be new.

As mathematical hobbyist, I sometimes miss a general overview and overlook what was already done.
This is also the case of the expansion into Bernoulli polynomials. Only after publishing it I discovered that
the results were already presented in [1] (pp. 15–17) and [2] (pp. 253-254). Actually, I am not the only
one: in [3], published four years after [1], the author (well know mathematician, it seems) says: “a result
apparently new is given by the“. Dividing the shame makes is little smaller...

Still, some minor and rather trivial ideas presented in this text may be new: the interpretation (i.e.
matching definite integrals of derivatives) and generalization to a greater interval then just an interval with
length one (scaling). Actually the last generalization is not out of interest: convergence of the series depends
on the integral length.

The following text is written as if new results were presented. The words “novel” and “original” are not
justified.

1 Introduction
Different ideas can be forwarded when discussing function approximations. For example, the case of Fourier
series is often interpreted as a decomposition of a vector (function) into the basis of the vector space (sines
and cosines). Yet, a more general view can be adopted: if a function g (x) is to be approximated by
an approximation Ag (x) then one usually tries to formulate an infinite number of conditions/restrictions
respected by the function g and build Ag such as to respect them too. As examples:

• Taylor series, Neumann series (of Bessel functions) and Padé approximation are based on matching
derivatives

dn

dxn
Ag (x) |x=x0 =

dn

dxn
g (x) |x=x0 , n = 0, 1, 2, . . .
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• Fourier and Fourier-like (Legendre polynomials) series match integrals of the function to be approxi-
mated with a predefined function set∫ 2π

0

sin (nx)Ag (x) dx =

∫ 2π

0

sin (nx) g (x) dx,∫ 2π

0

cos (nx)Ag (x) dx =

∫ 2π

0

cos (nx) g (x) dx,

n = 0, 1, 2, . . .

If, in addition to an infinite set of conditions, further requirements are adopted (integrability, smoothness,
analyticity) one may be lucky to get an approximation which works for a large set of functions. The approx-
imation very often converges for some trivial cases (e.g. g (x) = 0) but, also usually, fails on a large set of
functions1.

In case of the Taylor and Fourier series a huge number of results exists and specific criteria on convergence
are established. This is not the case of the approximation I present in this text. This text should be seen
as “brainstorming”: the principle is presented without actually providing nice criteria for convergence or
proving the convergence for specific cases. Well, for some trivial scenarios, like g (x) = 0, the convergence is
guaranteed.

2 Approximation method
A function g can be characterized by a set of numbers

cn[g] =

∫ b

a

[
g(n)(x)

]
dx,

where
g(n)(x) =

dn

dxn
g(x)

and a < b are arbitrary real numbers on which the expansion depends. A rather natural choice is a = 0, b = 1.
By construction, the coefficients cn can be computed easily

cn =
[
g(n−1)(x)

]b
a
= g(n−1)(b)− g(n−1)(a).

The approximation Ag (x) is built requiring the same characterization

cn[Ag] = cn[g] for each n.

Clearly, for some choice of a and b, two different functions can have the same characterization, e.g. function
g1 (x) = sin (x) and g2 (x) = 0 when a = 0 and b = 2π, leading so to a failure of the approximation. Yet, for
a different interval, the approximation can be valid. One may notice a similarity with Taylor polynomials:
the coefficients cn are as easy to determine as the Taylor series coefficients, only the derivatives need to be
computed at two points instead of one.

A more complicated task one needs to fulfill to guarantee the simplicity of the approximation is to find a
set of functions bn (x) having the delta-property with respect to the presented characterization

cn[bm (x)] = δn,m.

Once these functions are found the approximation can be very easily written as

Ag (x) =
∞∑

n=0

cnbn (x) ,

1Non-analytic smooth functions in case of derivative matching or non-periodic functions when Fourier series are concerned.
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where
cn = cn[g] = g(n−1)(b)− g(n−1)(a).

Indeed, one has

cn[Ag] = cn

[ ∞∑
m=0

cm [g] bm (x)

]

=

∞∑
m=0

cm [g] cn [bm (x)] (because cn [f ] is linear in f )

=

∞∑
m=0

cm [g] δn,m

= cn [g]

I would like to bring the attention to the nature of the method: it is a fully “integral” method and in this
sense it can be compared to the Fourier series. And yet, it is based on differentiation. The “integral” approach
is however applied to the derivatives which might lead to a specific behavior: different regions of the (a, b)
interval might have different weights, in fact in some situations a very small region can have a large effect on
the approximation2. I believe this is an interesting mix of properties which makes the method unique and
unlike others.

Now the focus should be given to the construction of the functions bn. Without loss of generality I assume
a = 0 and b = 1. Then one is free to chose a function b−1 (x) which satisfies∫ 1

0

[
b
(n)
−1 (x)

]
dx = 0 for any n ≥ 0.

As already stated this choice is ambiguous, an infinite number of functions fulfills this requirement. In what
follows I adopt the most natural choice

b−1 (x) = 0.

Then, by integration with carefully chosen integration constants, one can progressively build a sequence of
functions having the property ∫ 1

0

b0 (x) dx = 1,∫ 1

0

bn (x) dx = 0 for n > 0,

with
d

dx
bn (x) = bn−1 (x) .

It turns out that such functions are know, the above-mentioned properties are fulfilled by scaled Bernoulli
polynomials

bn (x) =
1

n!
Bn (x) .

The functions bn can be easily further scaled to any interval (a, b)

ba,bn (x) = (b− a)n−1bn

(
x− a

b− a

)
. (1)

2Consider a situation where some derivative is close to a delta function - and it can well be situated somewhere inside the
(a, b) interval.
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3 Numerical results, observations, comments, conjectures

Approximation of polynomials
Bernoulli polynomials represent a linearly independent set of polynomials with progressively increasing order
and therefore the following statement holds: any polynomial Pn, if approximated by the presented method,
leads to an exact expression

APn (x) = Pn (x) =

n∑
m=0

cmbm (x) .

This expansion always exists and is unique. It follows from the “vector space” point of view and can be seen
as linear algebra problem of combining the basal vectors bm to construct the vector Pn.

When approximation fails
As already stated, the approximation fails, in a convergent manner, when one has a non-zero function g
which is characterized on the interval (a, b) by zeros cn[g] = 0. From this, one can generalize to other
functions: if a function f can be split to two non-zero functions f = g1 + g2 such that Ag1(x) = g1 (x) and
cn[g2] = 0, then the approximation Af (x) fails to approximate f . This is a trivial statement which wants only
to say that a non-working but convergent (to a different value) expansions do not happen only for functions
characterized by zeros but also for functions which have components (additive parts) characterized by zeros.
As an example: expansion for g1 (x) = exp (x) seems to work for a = −1 and b = 1 but the approximation
fails for g1 (x) = exp (x) + exp

(
− 1

1−x2

)
on the same interval3.

It is unclear whether a different scenario exists, where a convergent but non-approximating expansion
occurs. In other words: can one from Ag(x) ̸= g (x) deduce cn [Ag(x)− g (x)] = 0 for any n?

Determining coefficient c0

A very nice feature of the proposed expansion lies in the fact that one does not need to integrate (unlike in
Fourier series, for example). The exception is the coefficient c0:

c0 = g(−1)(b)− g(−1)(a),

where the integral of g appears. Clearly, the “c0” issue is only an issue of an absolute offset (because b0 is
constant). To avoid integration a different strategy for its determination can be adopted: one first determines
cn for n > 0, builds the series and then adjusts c0 such as to match the function value at some point

c0 such as to provide Ag(x0) = g (x0)

where some natural choice of x0 can be made, such as

x0 = a, b,
a+ b

2
. . .

Relation to Taylor series
An obvious idea comes to the mind: the approximation is based on the evaluation of the derivatives at two
points, a and b, and therefore, maybe, it can be expressed as some function of the Taylor series at these points,
Ta (x) and Tb (x). Let me now give some arguments that a simple link between the proposed expansion and
the Taylor series is improbable.

First, the coefficients inside the Bernoulli polynomials (in front of monomials) are rather complicated
objects (binomial coefficient times Bernoulli number). It seems unlikely that some simple combination of
Taylor polynomials could lead to the same result as the summation of the bn functions.

3A “standard” bump function is used here, where the value at |x| = 1 is assumed to be zero.
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In addition, the numerical results seem to also dismiss this hypothesis. The numerical observation is as
follows: the proposed approximation, when applied to the exponential function, works for a = 0 and b = 1
but fails for a = −5 and b = 5. On the other hand, the Taylor series Ta (x) and Tb (x) converge expanded
at any point. If the method presented in this text depends on the Taylor series expanded at the endpoints
of the integral, then this dependence is clearly a complicated one: it does or does not provide a converging
result depending on a and b, while, at least in the case of the exponential function, there is nothing special
about Taylor expansions at any of these points whatever the distance between them is.

An interesting scenario is the limit a → b. In this limit the integrals (i.e. the cn coefficients) go to zero
but the functions bn are scaled also, see (1). The multiplicative factor makes them smaller, the argument
scaling greater. Because many changing parameters are in game, it is difficult to see what actually happens.
It might well be that the Taylor series is obtained.

Clearly, the question about how is the presented expansion related with the Taylor series is a good one.
One cannot conclude that a simple relation is impossible; however, in the defense of the originality of the
new method I try to provide (some rough) arguments that it is improbable.

Convergence
Let me first focus on the case a = 0 and b = 1. For this setting the numerical observation is as follows:
when the absolute value of all derivatives is bounded (by a common bound, uniformly bounded) then the
approximation converges . This is, obviously, a very constraining criterion which implies that the method
does not do better than the Taylor series: bounded derivatives imply analyticity. Yet, the previous statement
is an implication. Numerical observation is, that even growing derivatives may lead to a convergent result,
but the growth cannot be very fast. Let the toy function be exp (αx). Its derivatives are bounded by the
value at x = 1 and, if α > 1, the bound is growing in geometrical progression (with growing derivative
order). It seems the convergence is lost somewhere around α ≈ 6.2. One should notice that the bn functions
are greater than the 1

n!x
n functions (for high values of n), the latter being the basic building blocks of the

Taylor series. In both cases one may expect the coefficients to be of the order of the derivatives4, thus the bn
functions have greater chances to diverge when comparable coefficients are used. This are rather pessimistic
statements about the new expansion and naturally lead to the question: are there any cases where the new
expansion outperforms the Taylor series5? I did not find such an example for now and hopes are rather
small: a non-analytic smooth function should be targeted (because here the Taylor expansion fails), yet, such
functions have to have unbounded derivatives... can their growth be slow enough?

In the case a ̸= 0 , b ̸= 1 further factors come into the play: the bn functions are scaled and the factor
(b − a)n−1 becomes important, see (1). It makes the function smaller if b − a < 1, it makes the function
greater if b− a > 1. In the latter case the convergence become “worse”, the function which has a converging
approximation on (a, b) = (0, 1) might not have it on a larger interval. Let me chose the test function to
be exp (x) and the interval in the form (a, b) = (0, b). It turns out6 that the convergence is lost somewhere
around b ≈ 6.2, which is a similar number7 to the one from the previous paragraph. It seems the convergence
scales with scaling the argument. One cannot approximate a larger portion of a function by scaling it to a
smaller interval. What is gained by the interval becoming smaller, that is lost by the increase of the function
derivatives: the convergence remains the same.

Approximation power
I use to test the approximation power on four elementary functions and make comparison to the Taylor
polynomials. The functions are x2, exp (x), sin (x) and ln (x+ 1). Here, however, the function x2 is by both
methods reconstructed exactly, therefore it is dropped. The method presented in this text also needs a choice
of the interval limits a and b. To be symmetric with respect to zero, I adopt the choice a = −1 and b = 1 (and

4Exactly derivatives in case of the Taylor series.
5Converges in a scenario where the Taylor series does not.
6Pure numerical observation.
7Is not that close to 2π?
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use scaled bn functions). This choice is made for exp (x) and sin (x), the function ln (x+ 1) is not defined at
−1. A different choice needs to be made: it turns out that in addition to the divergence at −1, the function
ln (x+ 1) needs a small interval for the expansion to converge, e.g. the expansion on the interval (−0.5, 0.5)
seems to diverge. Therefore I shrink the interval enough to get a convergent regime: the function ln (x+ 1)
is expanded on the interval (a, b) = (−0.1, 0.1).

With these settings and using 11 terms for each series I get descriptions shown on Fig. 1. At last some
good news: it seems that in all three cases the new expansion outperforms the Taylor series, the approximation
stays longer with the original function that its concurrent. The expansion proposed in this text seems to
depart more quickly from the logarithm function on the positive side, the zoom however reveals that, on the
most of the interval where the approximation is good (up to x ≈ 0.92) it actually stays closer to the original
function than the Taylor series. One must honestly admit that the improvement with respect to the Taylor
series is very modest.

4 Summary, conclusion
In this text I presented a method of approximation based on matching the definite integrals of derivatives.
It turns out that the Bernoulli polynomials are suitable functions to be used for this purpose. The method
is (presumably) an original one and has several appealing features: it is fully integral-based, simple to
construct and, it seems, it performs somewhat better than the Taylor series when the rate of the convergence
is concerned. This text is based only on numerical evidence, a future development of a rigorous treatment is
desirable.
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A Program
Here follows the WxMaxima code of the new expansion, the Taylor polynomials are, for comparison purposes,
displayed also.
k i l l ( a l l ) ;

/∗∗∗∗ START OF THE IMPUT ∗∗∗∗/

/∗ Enter func t i on to expand ∗/
fun (x ) := exp (x ) $

/∗ Enter number o f terms ∗/
N: 5$

/∗ Enter i n t e r v a l l im i t s ∗/
a : −1$
b : 1$

/∗ Enter graphic window i n t e r v a l ∗/
gLL:−3$
gUL:2 $

/∗∗∗∗ END OF THE IMPUT ∗∗∗∗/
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dL : b−a$
N : N−1$

b(n , x ) := bernpoly (x , n)/n ! $
sb (n , x ) := dL^(n−1)∗b(n , (x−a )/dL ) $

c f [ n ] := at ( d i f f ( fun (x ) , x , n−1) ,x=b)−at ( d i f f ( fun (x ) , x , n−1) ,x=a ) $

approx (x ) := ’ ’ ( sum( c f [ n ]∗ sb (n , x ) , n , 1 ,N ) ) $

mdp : ( a+b)/2 $
s h i f t : fun (mdp)−approx (mdp) $

approx (x ) := ’ ’ ( approx (x ) + s h i f t ) $

wxplot2d ( [ fun (x ) , approx (x ) , t ay l o r ( fun (x ) , x , 0 , N) ] , [ x , gLL , gUL ] , [ legend ," f " ,"A_{ f }" ,"T_{ f } " ] ) ;
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Figure 1: Approximations of three function exp (x), sin (x) and ln (x+ 1) by Taylor polynomials (T ) and the
expansion presented in this text (A) with 11 terms in both cases. For exp (x) and ln (x+ 1) a zoom into the
tail-region area on both sides is provided.
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