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Utilizing the spinor approach, electromagnetic and gravitational metrics are mapable to the twistor 
algebra, which corresponds to the complexified Minkowski space. Quaternion transformations relate to 
spin and rotation corresponding to the twistor analysis.  
 
 
1. Introduction 
 
In this chapter we will present a formalism that uniquely relates electromagnetic and gravitational fields. 
Through this formalism and the relationship of the spinor calculus and the twistor algebra we can 
demonstrate the fundamental conditions of such a system which accommodates macroscopic 
astrophysical phenomena as well as microscopic quantum phenomena. The generalized Minkowski 
formalism has large scale astrophysical as well as quantum level consequences. 

The generalized hyperdimensional Minkowski manifold has nonlocal as well as anticipatory 

properties. Also, briefly we discuss the 720  symmetry of the so-termed Dirac string trick within the 
context of the relativistic form of the Dirac formalism. Twistors and spinors are examined and are 
applicable to the quaternion formalism. The quaternion formalism can be related to the 
hyperdimensional complexified Minkowski space, Lie groups, nSU , as well as Riemannian topologies 

and the Dirac equation.  
In Sec. 2 we present the formalism for the role of the spinor calculus which is utilized to relate the 

expression for the metric tensor to gravitational and electromagnetic field components through the 
relationship of the twistor algebra and spinor calculus. The Minkowski space formalism consistent with 
this approach uniquely relates to the twistors in Sec. 3. In this section, we demonstrate the manner in 
which the approaches presented in this paper relate to the current supersymmetry and GUT models as 
well as string theory. We further elaborate on the symmetry principles of the complexification of 
Minkowski space, twistors and their properties. A fundamental relationship between complex 
Minkowski space, twistor algebra and quaternions are developed in Sec. 4. Of interest are the non-
Abelian nature of quaternions, the nSU  groups, quantum theory and Penrose topology. 

 
 

2. The Spinor Formalism and their Relationship to Twistors  
 
The approach to unification of the electromagnetic and gravitational fields was developed by Kaluza 
[1] and Klein [2] in the 1920s and their work was seriously considered by Einstein in the 1930’s. This 
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5D geometry utilizes the spinor calculus to account for the coupling of the electromagnetic field to the 
gravitational field, in which the spinor is treated as a rolled-up dimension rather than as the four 
extended dimensions of the gravitational field. The concept of small Planck scale rotational "extra 
dimensions" (XD) is postulated in current 10D and 11D supersymmetry models. They are considered 
to be ultramicroscopic because they are not seen. However, following Randall our cosmology utilizes 
large scale XD in our model. Kaluza-Klein Planck-scale XD is not the only interpretation; even infinite 
size XD can be hidden behind the barrier of uncertainty by a topological switching process of 
subtractive interferometry [36,37]. Theory is treated as a subset of this supersymmetry, including the 
grand unification theory (GUT) and theory of everything (TOE).  
 The Kaluza-Klein Theory requires a periodicity of the 5D spinor fields to unify electromagnetism 
and gravity based on the homeomorphism between the Lorentz group and the unimodular 
transformation of Maxwell’s equations and the weak Weyl limit of the gravitational field. A discussion 
of the Kaluza-Klein model, Rauscher [3,4], Newman [5] and Hansen and Newman complex 8-space is 
given in [6]. In the approach of the latter three references, the spinor calculus is demonstrated as 
mapable one-to-one with the twistor algebra of the complex 8-space and, hence, the Penrose twistor [3]. 
 The coupling of the electromagnetic field with the gravitational field in the Kaluza-Klein may also 
yield a connection through the photon description of the twistor algebra. The photon is the quanta of 
the electromagnetic field and the interaction mediation between leptons, such as the electron. The 5D 
spinor calculus has been developed within a 5D relativistic formalism [1-3]. The spinor calculus 
developed in the 5D spinor formalism accounts for the coupling of the electromagnetic field to the 
gravitational metric.  
 This approach is manifestly 5-covariant in a special 5D space. The specific spin frames of reference 
of the 5D Kaluza-Klein geometry reduces to the spinor formalism of curved spacetime. The theory of 
spinors in 4D space is based upon the transformation L  and the group of unimodular transformation 

1U  in  CSL ,2 . This formalism is related to 2-toroidal space 11 UU  . Unimodular action of the 

symplectic automorphism group  RSL ,2  of the Heisenberg 2-step nilpotent Lie group, N has the 

discrete subgroups  ZSL ,2  of  RSL ,2 . The 2D compact unit sphere = 2S  (Riemannian sphere) and 

the 3D spherical component unit sphere can map as  4
3 RS  .  

 It has been established that the 5D 4-component spinor calculus is related to the 4D spinor formalism 
in order to account for the coupling of the electromagnetic field as a periodic 5D spinor field to the 
curved space of the gravitational Riemannian metric [7]. We can utilize projective geometry to relate 
5D spinor calculus to the 4D twistor space. 
 An isomorphism between vectors v  and spinors AAv   satisfies the condition  
 

         AAAA            (1) 
 

so that the spinor equivalent to a vector v  is  
 

          
 vAAAA            (2) 

where AA 
  is a tensor.  

Therefore,  
 

        AA
AAv 
            (3) 
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where v  is real for AAAA    . The covering map  CSL ,2  goes to  3,1O  by using the vector-

spinor correspondence.  
 We present some of the properties and structure of this significant advancement in developing a 
unified force theory for the electromagnetic and gravitational fields which can be related to the twistor 

algebra. In addition to the general coordinate transformations of the four coordinates x , the preferred 
coordinate system permits the group relation, 
 

          432155 ,,, xxxxfxx  .      (4) 
 

Using this condition and the 4D cylindrical metric or ki
ik dxdxds 2  yields the form  

 

        



 dxdxgdxdxds 

2

5
52     (5) 

 
where the second term is the usual 4-space metric. The quantity 5  in the above equation, transforms 

like a gauge [7]  
 

          
x

f




 55          (6) 

 
where the function f  is introduced as an arbitrary function. Returning to our 4D metrical form in its 
5-compact form and 4D and 5D form gives, 
 
          55    g .       (7) 

 

 Proceeding from the metrical form in a "cylindrical" space, ki
ik dxdxds 2  where indices ki,  run 

1 to 5, we introduce the condition of cylindricity which can be described in a coordinate system in which 

the ik  are independent of 5x or  

 

               05 



x
ik .        (8)  

 
 Kaluza and Klein assumed 155   or the positive sign 055   for the condition of the 5th dimension 

to ensure that the 5th dimension is metrically space-like. In geometric terms, one can interpret 5x  as an 

angle variable, so that all values of 5x  differ by an integral multiple of 2  corresponding to the same 

point of the 5D space, if the values of the x  are the same. Greek indices ,  run from 1 to 4, and 

Latin indices ki,  run from 1 to 5 and for this specific case, each point of the 5D space passes exactly 
one geodesic curve which returns to the same point. In this case, there always exists a perpendicular 
coordinate system in which 155   and  

 

           0
5

5 



x


.           (9) 
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It follows from those properties that g  and ik  can be made analogous so that ikg    then  

 

        55
55 1 

          (10a) 

 
(also see Eq. (7)) and  
 

          5
5


  g .            (10b) 

 
The gauge-like form alone is analogous to the gauge group, which suggests the identification of 5  

with the electromagnetic potential,  . We can write an expression for an antisymmetric tensor, 

 

         



 

f
xx









 55         (11)  

 
which is an invariant with respect to the "gauge transformation". (Chap. 8)  

 We now use the independence of ik  of 5x  or 05  xik . The geodesics of the metric in five-

space can be interpreted by the expression  
 

       C
ds

dx

ds

dx




 5

5

          (12) 

 
where C  is a constant and s  is a distance parameter. If we consider the generalized 5D curvature 
tensor, and using the form for f  we can express it in terms of F , the electromagnetic field strength, 

 

           


F
c

G
f 4

16
          (13)  

 

where 
F

cG 14   where F  is the quantized force introduced by Rauscher [3,8-10] 

which relates to the driving force for the perceived expansion of the universe. This is the Rauscher force 
term that appears in the stress energy term in Einstein’s field equations [11]. Then we can write, 
 

              
4

16
5 c

G
 .        (14) 

 
The integration constant, above, can be identified as proportional to the ratio me  of charge to mass of 

a particle traveling geodesics in the Kaluza-Klein space [1-3]. 
 Under the specific conditions of the conformal mappings in the complex Minkowski space, one can 
represent twistors in terms of spinors. The spinor is said to "represent" the twistor. The twistor is 
described as a complex two-plane in the complex Minkowski space (see Section 3 and [3] for references 
on twistor theory and the spinor calculus. Twistors and spinors can be easily related by the general 
Lorentz conditions in such a manner as to retain the condition that all signals are luminal in real 4-space. 
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The conformal invariance of the tensor field, which can be Hermitian, can be defined in terms of twistors 
and these fields can be identified with particles [11,12]. 
 It is through the representation of spinors as twistors in complex Minkowski space that we can relate 
the complex eight-space model to the Kaluza-Klein geometries and to the grand unification or GUT 
theory. See Chap. 13. In the 5D Kaluza-Klein geometries, the XD is considered to be a spatial rotational 
dimension in terms of 5  . The Hanson-Newman [6], and Rauscher [4,5] complex Minkowski space 

has introduced with it an angular momentum or helix or spiral dimension called a twistor which is 
expressed in terms of spinors [7].  
 The spinor formalism was used by Dirac to define the Schrödinger equation in a relativistic invariant 
form so that the complex scalar time dependent field of Schrödinger is in terms of a two-component 
spinor field. Using this formalism Dirac obtained a 2-valued solution which predicted the observed 
electron and positron pair. The spinor field or spinor variable, utilized in the Kaluza-Klein geometry, 
directly relates to the spin degrees of freedom that are observed by the Zeeman Effect in atomic spectra. 
The spin degrees of freedom appear to be fundamental to quantum theory and to relativity and are a 
good starting point to treat spin in a fundamental manner. The Lorentz four-space representation of 
relativity can be reduced to the direct product of two two-dimensional complex representations. The 
spinor variable is the most fundamental representation of a relativistically invariant theory and spin 
degrees of freedom may be formulated relativistically and, hence, also in a possible "quantum gravity" 
picture which applies to the Dirac equation. This approach may be applicable to the Penrose twistor 
(Chap. 12). 
 This approach appears to fit well with the spinor approach in the Dirac formalism in the quantum 
domain, that is, that the Lorentz conditions applied by Einstein in relativity may be the origin of the 
spinor and, hence, be the fundamental theory that yields the spinor formalism and the role of spin. Other 
implications of the relationship between the Penrose twistor formalism and the complex Minkowski 
space, which includes anticipatory systems related to causality and spatial and temporal nonlocality, are 
given in references [12-18]. 
 
 
3. The Penrose Twistor, Harmonic Sequencing and Particle Spin 
 
Interest in the twistor program has been in the form of quantizing gravity in order to unify the physics 
of the micro- and macro-cosmos in 1971 and 2005. Such a procedure has been taken by Penrose, et al 
and is based on the concept of a more general theory that has limits in the quantum theory and the 
relativistic theory [15]. In addition, there have been approaches to the underlying structure of spacetime 
in the quantum [11] and structural regime [8]. A structured and/or quantized spacetime [1] may allow 
a formalism that unequally relates the electromagnetic fields with the gravitational metric [9]. Feynman 
[13] and Penrose graphs [11,12] may overcome the divergences of such an approach. In order to 
translate the equations of motion and Lagrangians from spinors to twistors, one can use the 
eigenfunctions of the Casimir operators of the Lie algebra of  2,2U . 

 For the simplest case of a zero rest mass field (photon-like) for 2n  spin for 0n , we can write  
 

        0...  
NA

AA            (15) 
 

for NA,....,  written in terms of N  indices, and for 1N , we have the Dirac equation for massless 
particles. For a spin zero field, we have the Klein-Gordon equation  
  

        0 
 AA

AA         (16) 
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and in Eq. (15) for 2n , we have the source-free Maxwell equation □ 0F  for spin 1 or 1U  fields, 

and for 4n , we have the spin free Einstein field equations, 0R . The indices   and   run 0 to 

3. For a system with charge, then □ 
 JJF   , or this can be written as 




J

x

F



 and then we 

can write 

           



 J

x

F





 .         (17) 

 
 In this section, we outline a program to relate the twistor topology to the spinor space and specifically 
to the Dirac spinors. Both Fermi-Dirac and Bose-Einstein statistics are considered. The relationship 
between twistor  theory and the Dirac “string trick” model is further discussed in our chapter on the 
complexification of the Dirac equation (Chap. 12).The Penrose spin approach is designed to facilitate 
the calculation of angular momentum states for SL(2). The spinor formalism, in the Dirac equation, 
established spinors within quantum theory. The twistor formalisms are related to the structure of 
spacetime and the relation of the spinors and twistors is also of interest because it identifies a 
relationship between quantum mechanics and relativity [11,12,18,19]. 
 Twistor theory has been related to conformal field theory and string theory [20]. Also, twistor theory 
has been related to quaternions and complex quaternionic manifolds [21,22]. The projective twistor 

space, PT, corresponds to two copies of the associated complex projective space of 3CP  or 33 CPCP 
. It is through the conformal geometry of surfaces in 4S , utilizing the fact that 3CP  is an 2S  bundle 

over 4S , that quaternions can be related to twistors [23]. 
 We can demonstrate a useful relationship between the complex eight-space and the Penrose 
twistor topology; the twistor is derived from the imaginary part of the spinor field. The Kerr 
Theorem results naturally from this approach in which twisting is shear free in the limit of 
asymptotic flat space. The twistor is described as a two-plane in complex Minkowski space, 

4M . Twistors define the conformal invariance of the tensor field, which can be identified with 

spin or spinless particles. For particles with a specific intrinsic spin, s , we have s2 
 , 

and for zero spin, such as the photon, 0 
  where   is the Hermitian conjugate of  , 

and   and   can be regarded as canonical variables such as x , p  in the quantum theory 

phase space analysis. The twist free conditions, 
  , hold precisely when   is a null 

twistor. The upper case Latin indices are used for spinors, and the Greek indices for twistors. 
The spinor field of a twistor is conformally invariant and independent of the choice of origin 
[24]. For the spinor, the indexes A  and A  take on values 1, 2 [11,12]). We briefly follow 
along the lines of Hanson and Newman in the formalism relating the complex Minkowski space 
to the twistor algebra. 
 Penrose states regarding the Robinson congruence: 
 

I had, earlier, worked out the geometry of a general Robinson congruence: in each time-slice t = 
constant of M, the projections of the null directions into the slice are the tangents to a twisting family 
of linked circles (stereographically projected Clifford parallels on S4 – a picture with which I was 
well familiar), and the configuration moves with the speed of light in the (negative) direction of the 
one straight line among the circles.  
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Figure 1 A Penrose twistor known as the Robinson congruence representing the propagation of a photon or  a 
time-slice (t = 0) of a Robinson congruence. Redrawn from [11]. 
  

I decided that the time had come to count the number of dimensions of the space R of Robinson 
congruences. I was surprised to find, by examining the freedom involved that the number of real 
dimensions was only six (so of only three complex dimensions) whereas the special Robinson 
congruences, being determined by single rays, had five real dimensions. The general Robinson 
congruences must twist either right-handedly or left-handedly, so R had two disconnected 
components R+ and R-, these having a common five-dimensional boundary S representing the 
special Robinson congruences. The complex 3-space of Robinson congruences was indeed divided 
into two halves R+ and R- by S. 

I had found my space! The points of S indeed had a very direct and satisfyingly relevant physical 
interpretation as “rays”, i.e. as the classical paths of massless particles. And the “complexification” 
of these rays led, as I had decided that I required, to the adding merely of one extra real dimension 
to S, yielding the complex 3-manifold PT = S U R- U R+ [11]. 

 
 Twistors and spinors are related by the general Lorentz conditions in such a manner as to 
retain the fact that all signals are luminal in the real four-space, which does not preclude 
superluminal signals in an 4Dn   space. The twistor   can be expressed in terms of a pair 
of spinors, A  and A , which are said to represent the twistor. We write  
 

         A
A

  ,             (18) 

 

where A
AAA ri 
   

 Every twistor   is associated with a point in complex Minkowski space, which yields an associated 

spinor, A , A . The spinor is associated with a tensor which can be Hermitian or not. The spinor can 

be written equivalently as a bivector forming antisymmetry. In terms of spinors A  and A , they are 
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said to represent the twistor   as  A
A

  ,  (see Eq. (18)). In terms of components of the twistor 

space in Hermitian form,   for AAAA   , we have, 

 

        13023120        (19)  

 

where the   index runs 0 to 3. The components of   are 3210 ,,,   and are identifiable with a 

pair of spinors, A  and A , so that  

 

      1 , 2
0  , 3

1          (20) 

so that we have  
 

    
10

010
0

'1


  .      (21)  

 

Note that the spinor A  is the more general case of A . This approach ensures that the transformations 
on the spin space preserve the linear transformations on twistor space, which preserves the Hermitian 
form, . 

 The underlying concept of twistor theory is that of conformal invariance or the invariance of certain 
fields under different scalings of the metric g . Related to the Kerr theorem, for asymptotic shear-free 

null flat space, the analytic functions in the complex space of twistors may be considered a twisting of 
shear-free geodesics. In certain specific cases, shear inclusive geodesics can be accommodated. 
 Twistors are formally connected to the topology of certain surfaces in complex Minkowski space, 

4M . This space, the complex space, 4C , is the cover space of 4R , the 4D Riemannian space. On the 
Riemann surface, one can interpret spinors as roots of the conformal tangent plane of a Riemann surface 

into 3R . This approach is significant because it ensures the diffeomorphism of the manifold. 

Complexification is formulated as 
ImRe XX  , which constitutes the complexification of the 

Minkowski space, 4M . The usual form Minkowski space is a submanifold of complex Minkowski 
space. Twistors are spacetime structures in Minkowski space, which is based upon the representation 
of twistors in terms of a pair of spinors as we have shown [4,14]. Twistors provide a unique formulation 
of complexification. The interpretation of twistors in terms of asymptotic continuation accommodate 
curved spacetime. One feature of this approach to quantum theory in twistor space leads to a quantum 
gravity theory [14].  
 This spinor representation of a twistor makes it possible to interpret a twistor as a two-plane in 

complex Minkowski space, 4M . Then we can relate A  and B  so that AA   is a solution as 

 

         B
BAA i 
            (22) 

 

for the position vector BA   in the complex Minkowski space. We can also consider the relationship of 
AA   and A to a complex position vector as  

 
 

            AAAAAA              (23) 
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where A  is a variable spinor. Just as in the conformal group on Minkowski space, spin space forms a 
two-valued representation of the Lorentz group. Note that 2SU  is the four-value covering group of C

 2,1 , the conformal group of Minkowski space. The element of a 4D space can be carried over to the 
complex eight-space. 
 For spin, n  the Dirac spinor space is a covering group of nSO  where this cohomology theory will 

allow us to admit spin structure and can be related to the 2SU  Lie group. Now let us consider the spin 

conditions associated with the Dirac equation and further formulate the manner in which the Dirac 
"string trick" relates to the electron path having chirality. For a spin, 2

1s  particle, the spin vector 

 pu  is written as 







0

1
 for spin up and 








1

0
 for spin down for momentum, p. For a particle with mass 

we have for 1c ,  
 

      02 














 


 mc
x

ci         (24) 

 
for the time independent equation, and we can divide Eq. (24) by ci  and have, 
 

                  0

















 
mc

x
        (25) 

 
where  mck   and   ci  where indices   run 0 to 3. The time dependent Dirac equation is 

given as, 
 

       02 



















t

i
mc

x
ci




 
 .     (26) 

 
The solution to the Dirac equation is in terms of spin  pu  as  
 

           exp
i

u p p x Et      
       (27) 

 
the Dirac spin matrices   ci . The spinor calculus is related to twistor algebra, which relates a 

2-space to an associated complex 8-space [25].  
 An example of the usefulness of spinors is in the Dirac equation. For example, we have the Dirac 

spin matrices, 



 




 i









0

0
 where terms such as  51     come into the electroweak 

vector-axial vector formalism. The three Dirac spinors (also called Pauli spin matrices) are given as 
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01

10
x , 

0

0

i

i
y


  and 

10

01


z       (28) 

 

where indices 1,2,3 stand for x, y, z and 3210
32105  ii   for  0  is given as, 

 

         
























1000

0100

0010

0001

0           (29) 

 
for trace, tr 0  , that is, Eq. (29) can be written as, 
 

          










2

2
0 0

0

I

I
          (30)  

 

where we have the 22  spin matrix as 
10

01
2 I  where 2tr 2I  . Note that the Dirac spinors are 

the standard generators of the Lie algebra of 2SU .  

 The commutation relations of the Dirac spin matrices is given as  
 

         
~

, Iig   


      (31) 

 

and  gdetdet   where g  is the metric tensor. The Dirac spin matrices come into use in the 

electroweak vector-axial vector model as  51     for 5  as, 

 

           3210
32105  ii         (32) 

 
where indices run 0 to 3. 
 We can also write, 

              





n

inxn exxx
5

,5 



          (33) 

 
which expresses some of the properties of a 5D space having 32,10 ,,   and 5 . Note that 5  is 

associated with a 5D metric tensor. This 5D space passes exactly one geodesic curve which returns to 
the same point with a continuous direction. Note that this is a similar formalism to that of the Dirac 

string trick 720 path which appears to demand a hyperdimensional n > 4 space in analogy to the 
Mobius strip from dimension 2D   3D and the Klein bottle from 3D   4D. 
 A connection can also be made to the electromagnetic potential; and the metric of the Kaluza-Klein 
geometry. We can express 5  in terms of a potential   so that  
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           25            (34)  

 

where F
 8  and where G

cF
4

  or the quantized cosmological force [8-10] (also see Eq. (34)). 

Then we have a 5-space vector as, 
 

          

























1

0

0

0

0

5 .          (35)  

 
 Through this approach, we can relate covariance and gauge invariance [14]. Using Poisson's 
equation,  
 

          0
4

2

1  c          (36) 

 

where again F
 8  as above. The electromagnetic field, F , can be expressed as, 

 

           







xx

F







         (37) 

 
which yields an interesting relation of the gravitational metric to the electromagnetic field. Also the 

Lagrangian is given as 
 FFL

2

1
  so that gL L  for the metric g . Note dgL  , where 

d  represents a 4-space. Now we return to our discussion of twistor algebra and relate it to the spinor 
calculus. The Penrose twistor space also yields a 5D formalism as is also formulated by the Kaluza-
Klein theory. 
 Both projective and non-projective twistors are considered as images in a complex Riemannian 
manifold in its strong conformal field condition. Duality, analytic continuation, unitary and other 
symmetry principles can be incorporated by using appropriate (Bose-Einstein or Fermi-Dirac) spin 
statistics in analogy to the Hartree-Fock spaces or Fock space (Chap. 3). Particles can be considered as 
states as the Fock space elements or the "end" of each disconnected portion of the boundary of the 
manifold. The quanta are associated with a quantum field of particles that carry both momentum and 
energy. The total energy Hamiltonian can be defined in terms of a number of simple phonon states 

which can be expressed in terms of 
na creation and na  destruction operator states. Since all creation 

operators commute, these states are completely symmetric and satisfy Bose-Einstein statistics. Such 
phonon states, having a definite number of phonons, are called Fock states, which is the vector sum of 

the momentum of each of the photons in the state. The ground state 0  can be considered the photon 

vacuum state or Fock state where the photon is taken as a phonon state. The creation and destruction 

operators commute as   nnnn aa 
  ,  for the delta function, nn   [26]. 
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 In this picture, we can consider an n -function as a "twistor wave" function for a state of n -particles. 
Penrose [11] considers a set of n -massless particles as a first order approximation. We form a series 
on a complex manifold as elements of the space nC  as 

 

             ...,,,,,,, 3210
 xyzfyzfzff      (38) 

 
which are, respectively, the 0th function, 1st function, 2nd function, and 3rd function, etc. of the twistor 
space, which are also elements of nC . We can also consider ....,,,, 3210 ffff  as the functions of 

several nested twistors in which 0f  is the central term of the wave of the twistor space. The nf  could 

represent nested tori that can act as a recursive sequence.  
 Penrose [11,12] suggests that, to a first approximation, 1f  corresponds to the amplitude of a 

massless, spin 1 particle, 2f  to a lepton spin ½ particle, and 3f  to hadron particle states, and 4f  to 

higher energy and exotic hadron particle states. Mass results from the breaking of conformal invariances 
for nf  for 2n  or greater; similar to the S matrix approach [27]. The harmonic functions nf  form 

a harmonic sequence, where nf  for 2n  form the Fermion states, and nf  for 3n  form the Hadron 

twistor states. Essentially, in the twistor space, we have a center state 0f  around which ...,, 21 ff  

occur. Each of these sequences of waves forms a torus, hence, 1f  and 2f  form a double nested tori set 

consistent with both spin 1 and spin ½ particle states where all n  states are elements of the twistor, z
, as n z . 
 In the specific case of a massless particle with spin for 1f , the 2-surface in complex Minkowski 

space corresponding to the twistor represents the center of mass of the system so that the surface does 
not intersect the real Minkowski space. This reflects the system's intrinsic spin. We see an analogy to 
the 3-torus Calabi-Yau M-Theory [28]. Calabi-Yau manifolds (a form of Kahler manifold) preserve the 
correct supersymmetry for the theory to reproduce the features of the standard model. This form of M-
Theory, which features a 3-cycle toroidal symmetry is one of the better M-Theories with 101000 or 
(10googolplex as sometimes called)1 possible candidates for the string vacuum. In fact utilizing the 
continuous-state hypothesis we have been able to derive a unique candidate for the string vacuum [29]. 

The higher order nf  may describe higher order string modes or oscillations of 0
 ZZ  or 0f . This 

occurs for the case using ,, 21 ff and 3f  and, hence, all known particle states.  

 We can consider the topology of three Penrose projective twistor states which are PT , PT , and 
PT . The PT , and PT  are meant to represent the domain of PT  where we denote these two states 

in which  1)(-1, are elements of t where   is small. We denote two line elements which are denoted 

in terms of twistors as a surface on the sphere 3S  as PT  which corresponds to 0
 tt

ZZ 


 and 

0
tt

ZZ 


 for 1t  for PT , and PT  gives 11  t . These two branches correspond 

to a transformation matrix, 
 

                                                 
1 Googolplex: a googolplex cannot be written out since a googol of '0's will not fit into the observable universe 
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

















100

010

010

001

t

t

t

t

.        (39) 

 
This gives us a translation formulation for vectors into the states of spinors in terms of t , in terms of 
the spinors 
 

       







































































1

0

1

0
1

1

0

1

0

1

100

010

010

001














t

t

t

t

t

t

t

t

        (40) 

 

which is 
tZ  and 1~ t  since   is small. Then in terms of twistors,  

 

            
B

ABAA f







ˆ          (41) 

 

for AA   ̂  where   and   are orthogonal spinors. The term 
B

AB f







 is small compared to A  

and A  since   is small. The unit spinors or vectors are A̂  and A̂  for both 2,1, BA . 

 The projective twistor space, PT , corresponds to two copies of 3CP , which has an associated 
complex projective space. The PT  space is the space which yields the torus topology of the Riemann 
surface of genus, 1g . The genus-1 topology contains one "hole" or singularity, genus-2, two holes, 
etc. The two-hole system is a continuous manifold which can represent two connected tori or a double 
torus producing an equatorial planar membrane. This topology is related to the high-energy plasma 
dynamics found around black hole ergospheres and their equatorial accretion disks. It is, as well, 
observed in stars, and gas and dust circulation within galactic disks and halos. Observation of double 
tori topology at the cosmological level may, as well, be evidence of a structured polarized vacuum 
interacting with the high energy plasma dynamics at these scales. Haramein and Rauscher utilize torus 
topology to describe astrophysical objects such as supernovas and astrophysical plasmas [30]. 
 
 
11.4 Penrose Twistor Fields, Particles and Nested Tori 
 
We explore some unique features of the torus topology (Recall that one of the popular forms of Calabi-
Yau space is a form of dual 3-torus) We consider the relationship between the 11 UUT   group and 

the 2S  group. An example of the n - dimensional manifold, which is not a product of n -one-

dimensional manifolds, is given by the sphere, nS . When one deals with two or more real or complex 
variables, there is usually a manifold, M , on which these functions are definable. The surface of a 

sphere of unit radius 3D Euclidian space, 2S , can be triangulated on the boundary of a tetrahedron. For 
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the torus, T , its triangulation, K , consists of seven 0-simplexes and fourteen 2-simplexes. The 
contractible 1D sub-polyhedron of K  contains all vertices of K . The two generators commute so that 
the torus group is generated by the two commuting generators Z Z (see Section 5). 

 The manifold nT  is the n D torus. If 2n , then 112 SST   defines a torus. The torus is a subset 

of 3R , where R  is the topology on the real numbers. The sets X  and Y  are called the topological 
space. If X is a set as a discrete topology, then Y can be a collection of all subsets of X , i.e., the set 

x2 . Any finite or infinite subcollection  Z  of the X  has the property that  iZ Y  , or the union 

of iZ  are elements of Y . The torus is a subset of 3R , and 112 SST   is the Cartesian product of 

two subsets of 2R  so that it is at least a subset of 422 RRR  . The torus, which is in 3R , is not flat, 

but the torus 11 SS   in 4R  can be considered flat. The topology of the dual tori are the same, which 
has to do with the precise definition of flatness and curvature [31]. 
 The definition of curvature depends on the specification of a Riemannian metric [32]. Once we 

specify the Riemannian metric, then we can define our flatness of  2T . This entails the specification of 

the metric g  or   which allows us to specify the restrictions that the points in 3R  lie on the torus. 

Then, with respect to the metric,   we have a curved space torus. For 112 SST  , which defines 

two points  yx,  and  yx ,  in 2T , the difference is expressed as      2
122 yyxx   for the 

usual g .See Chap. 2. For this metric, 2T  is flat and does not lie on 3R . The reason for this condition 

is that for a 2D compact connected surface to lie in 3R , it must have at least one non-zero curvature, 
where R3  is the topology of real numbers [30,31]. 

 In defining a vector space on a sphere, 2S , or torus T , we consider a simple observation of a 2D 

surface in 3R . For example, a disk 222 ayx   for 0z  has a top side and a bottom side, or a 

sphere 2S  has an inside and an outside, as does the torus 2T . These 2-sided surfaces are defined as 
orientable since we can use their two-sided properties to define directions or orientations of vectors 

projected from their surfaces in 3R . Hence, we have two normals at each point, an inward, or outward 
pointing normal vector, n̂ . We are guaranteed, in general, a diffeomorphic manifold for a torus in 
curved space, but not in general, for a spherical topology. Therefore, for any non-Euclidian space, 
diffeomorphism holds for the torus topology. Hence the Penrose topology is diffeomorphic.   
 
 
11.5. Quaternions, Groups, and Allowable Spatial Structures 
 
The complexified rotational dimensionality of quaternions may be the most appropriate approach to the 
description of twistor space in the context of a fundamental rotational force embedded in the structure 
of spacetime itself. We explore some of their interesting and related properties in this section. 

 
  

5.1 THE QUATERNION FORMALISM AND SIMPLE TOPOLOGICAL SPACES 
 
The quaternion group is isomorphic to the group with elements kkji  ,,,,1,1 , and 

1222  kji  and jkiijkkij  ,, . These properties operate similar to complex numbers 

where 1i  and 1i . In the case of the quaternions, kji ,,  can represent orthogonal dimensions 
in three-space. The isomorphism condition states that the group elements of two groups can have a one-



Richard L Amoroso & Elizabeth A Rauscher - Spinors, Twistors, Quaternions, and Complex Space 
 

15 
 

to-one correspondence, which is preserved under combinations of elements. Then one can construct a 
group table as a square array; this is only necessary for higher order groups. Quaternion groups have 

2SU  or 3SU  subgroups and can be related to 3O .  

 Symmetric groups such as the quaternion group, which is a two-dimensional unimodular unitary 
group, are simply reducible groups. Following Hamilton, we identify Euclidian four-space with the 

space of quaternions so that  }zkyixiH    where 4,,, Rzyxo   are elements of the 

Riemannian space 4R . The Euclidian three-space is the subset of imaginary quaternion, 

 }zkyixiH im   where 3,, Rzyx   (see Section 3). 

 
 

5.2 QUATERNIONS AND QUANTUM THEORY 
 
The key is that the Dirac string trick represents the properties of the symmetric group which is 2SU . 

The 2SU  is isomorphic with the unit length of the quaternion in 5D space. Quaternions, constructed 

by Hamilton, can represent rotations in three-space, which can be performed without matrices. They 
also obey non-Abelian algebra. Furthermore, correspondence of quaternions can be made to vectors and 
tensors. Quaternions are a viable algebra for understanding rotations in 3D and 4D space. Due to 
symmetry considerations in the Dirac electron theory, a 720o twist is required for the electron to return 
to the exact same quaternion state, where a 360o rotation will not and must be doubled.  
 Quaternions are a complex number system with properties similar to the Rauscher [4] and Newman 
[5] complex eight-space. In the usual notation, we start from any complex number, iba   where a  
and b  are real, where aa 1  and ib  is imaginary. The quaternion is written as kcjbiat   

where ,,, bat  and c  are real and they are multiples of a real unit 1 and imaginary units ,, ji and k . 
The following conditions, 
 

        ikjjk             (42a) 
 
        jikki             (42b) 
 
        kjiij             (42c) 

and  

          1222  kji            (42d) 

and  
           1ijk            (42e) 
also  

         1222  ijkkji            (42f) 
 
which yields a set of recursive relationships.  
 Quaternions also have multiplicative properties similar to the complex Minkowski eight-space. Let 

kcjbiatw   , then the conjugate of w  is w  and is given as kcjbiatw  , and the 

modulus is given as, ww  or, 
 

               2222 cbatww  .             (43) 
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 In fact, quaternions contain all the properties of complex numbers except for commutivity and thus 
comprise a non-Abelian algebra such as in the quantum theory. Note that we have used a slightly 
different notation from Hamilton; that is, we write ,, jbia etc., instead of bjai, , etc. Quaternions are 
comprehensively explored by Kauffman [31] and Rowlands [32].  
 If 0t , then we have a pure imaginary quaternion or  

 
        kcjbiau           (44a) 

and then  

            2222 cbau             (44b) 

and are of a unit length  

          1222  cba            (45) 
 

so that 12 u . Also for two pure imaginary quaternions 
 
            vuvuuv           (46) 
 
as the dot and cross product of vector-like quantities in three-space. The addition of the scalar 
component connotates a coordinate in the fourth dimension and hence we see the analogy of quaternions 
to the 4D Minkowski space, where t  is time, and a  corresponds to x , b  to y , and c  to z . What is 

unique then about the quaternionic "space" is that we have, for example, the permutation relations from 
Eqs. (42a) to (42f), and thus quaternions form a non-Euclidian set with the properties for pure 
quaternions uv  in Eq. (46). We can form a set of pure quaternions on a 2D sphere of -1 in each of the 
three quaternion directions kji ,, . Note that the complex Minkowski space is formed by one imaginary 

component i , multiplied by ,, yx  and z . Now consider A  and B  real numbers and u  is a unit length 

of a pure quaternion, then 12 u  and the powers of BuA  occupy the same form as powers of 

complex numbers. That is, u  is indistinguishable from any other i1 .  
 Let us now relate the quaternions to a complex number uBAZ  which we can write as 

 sincos RZ   or, in general,  
 

            unRnRZ nnn  sincos  .      (47)  
 

We can proceed with mapping of the thn roots of the quaternions. Consider a space of 1n   dimensions 
in which we represent 1n   space in the form of BuA , where A  is a scalar and B  is a real number. 

Now u  is a limit vector in an N space represented as NR  which is a Euclidian N space. The 

vector-like quantity u  belongs to the unit sphere, 1NS  about the origin, NR  and is taken to have 

squares equal to minus one, or 12 u  for all vectors 1NS . In general, uv is not defined in a HD 
geometry such as the 8D Minkowski space of Rauscher [4] and Newman [5]. We can, however, create 

power maps of the form KZ n   where K  is a vector in 1NR  and BuAZ   for 12 u  for all 

u in 1NS . With this approach, we can form classes of hypercomplex iterative processes with incursion 
in any arbitrary dimensional space. This is the key to Kauffman's ability to relate the hypercomplex 
interactions formed from quaternions to define HD fractal sets [33].  
 One of the basic principles of the quaternion twist holds for the Dirac string trick for 720o degree 
rotation. A half cycle of twist, or 360 degrees, is expressed in terms of quaternions as 1ijk . To 
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return to +1, another twist through 360o must occur. Spin must involve a preferred geometry in space 
[33]. The geometry of a preferred direction can be constructed by the magnitude of total electron 
transfer. The Penrose spin approach is utilized to calculate angular momentum and  2SL  . 

 In terms of complex analysis involving quaternions, a single 180 degree turn is an instance of 

1i  where 12 i  and represents a 360 degree right- or left-handed turn. The case for ii 3  is 

a non-trivial rotation and 14 i  returns the rotation of the electron and observer to their original states, 

through the 720 degree rotation – hence, the interpretation of the quaternionic formalism of one square 
root of 1  for every direction in three-dimensional space. The electron moves on the bounded space to 
have contiguous surfaces at the equatorial plane. In order for the electron to pass through a 720 degree 
rotation and return the spin and chirality to its original state, the electron path must be different than 
that of a sphere. 
 In quantum theory, the symmetry group is the 2SU  group rather than the 3D space rotation group 

such as 
3O . The 2SU group is isomorphic with the quaternions of unit length in 4D space. In [33], 

the group theoretic approach that relates spinors, twistors, and quaternions is detailed. A spinor is a 
vector in two complex variables. Antisymmetric conditions lead to the second twist involving the 
quaternions to create the cycle of the electron to its original state. The antisymmetric conditions utilizing 
spin calculations can be conducted with Clebsch-Gordan coefficients, j3  and j6  symbols and other 
components of angular momentum [34,35]. Through these means, one can calculate the correct spin 
interactions involving multi-particle quaternion states. Suffice it to say that the iterative properties, 
formulated here, have a variety of applications such as scalable inclusive relations from the quantum 
domain to astrophysical and cosmological systems [10].  
 
 
6. Conclusion 
 
We have demonstrated a unique relationship of the spinor calculus, twistor algebra, the quaternionic 
formalism and the complex 8-Space. This topology appears to be ubiquitous in Nature. The twistor 
formalism appears to also occupy a role in unification models through the 8E  group utilized in 

supersymmetry models. 
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