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Abstract

Frankl’s Conjecture, from 1979, states that any finite union-closed
family, containing at least one non-empty member set, must have an el-
ement which belongs to at least half of the member-sets. In this paper
we show that if the minimum value of UA over all counter-examples be g,
then any counter-example family must contain at least 4g + 1 sets. As a
consequence, we show that the minimal counter-example must contain at
least 53 sets.

1 Introduction

A family of sets A is said to be union-closed if the union of any two member
sets is also a member of A. Peter Frankl’s conjecture (or the union-closed sets
conjecture) states that if A is finite, then some element must belong to at least
half of the sets in A, provided at least one member set is non-empty. A detailed
discussion and current standing of the conjecture can be found in [1].

In [2], Ian Roberts and Jamie Simpson showed that if ¢ be the minimum
cardinality of UA over all counter-examples, then any counter-example A must
satisfy the inequality |A| > 4¢ — 1. In this paper, we expand the ideas presented
in [2] to find an improved lower bound 4¢q 4+ 1. In [3], it was proved that the
minimal counter-example must contain at least 13 elements in U.A. Hence, we
show that the minimal counter-example family must contain at least 53 sets.

2 Main results

2.1 Preliminary Lemmas

Throughout this paper, A will denote the minimal counter-example with UA
= ¢, the minimum number of constituent elements across all counter-examples.
| A| must be odd, because if it is even, we can remove a basis set to generate a
counter-example with |A| — 1. Let, |A|=2n+ 1.

We denote the family of sets in A containing an element = as A,.



The universal set for A is defined as S := UA.

Thus, |S| = ¢.
We define Az == {A € A: x ¢ A}.
Let, Cm = U.Aj

We define the family containing all such C, as C.
C:={C,:z€S5}
For any x we define the family D, as
D, = A \ {S}\C
Next, we define and distinguish the terms mutually dominant and dominant.

We call 2 elements a and b to be mutually dominating if a and b always
appear together in the member sets of A.

We say a dominates b if Ay C A, and |Ag| > |Apl.

A cannot contain any mutually dominating pair of elements, as they can be
replaced by a single element which in turn would violate the minimality of q.
Therefore, for any a,b € S, if a # b, then C, # Cj.

However, A may contain elements which dominate other elements.
We define the sets I and J as
I:={a€S: ais NOT dominated by any other element in S}
J:={be S: bis dominated by some other element in S}

If an element is present in n sets of A, then it cannot be dominated by any
other element. Hence, they must be present in I. From [4], we know that A
must contain at least 3 elements with abundance n. Thus, |I| > 3.

Note that every set in .4 must contain at least one element from I.

We now prove the following 2 lemmas, a slightly modified form of which is
presented in [2].

Lemma 1: Forany a, I C Cpifa ¢ I,or I \ {a} CC,ifa €I

Proof. When a ¢ I, let y € I. As a cannot dominate y, there must exist a set
containing y but not a. So, y € C,.

When a € I, let z € I. As a cannot dominate z, there must exist a set
containing z but not a. So, z € C,. But, a ¢ C, as UAz cannot contain a. O

So, we conclude that if a € I, then it must be present in ¢ — 1 sets of C.

Lemma 2: For any a, C, cannot be a basis set of A.



Proof. Let C, be a basis. So, we can remove C, to get a new union-closed A’
with |A'| = |A| — 1.

From Lemma 1, if a ¢ I, I C C,. As I must contain all elements with
abundance n, removing C, would generate another counter-example A" with
|A'] < |A], a contradiction.

Ifael I\ {a} CC,. Let B, be a basis set containing a. Removing B,
and C, we get A" with |[A'| = |[A] — 2 = 2n — 1 and no element contained in
more than n — 1 sets. Hence, A’ is also a counter-example, a contradiction. [

Definition: For every element a, we define the sets H, and L, as
H, :={b € S : bis abundant in Az}
L, :={c€e S: cis abundant in A,}

We now prove a few lemmas which would be repeatedly referenced in the
next sections.

Lemma 8: Ifab €I, b€ H, and D, N Dy, # ), then |A| > 4q + 3.

Proof. As b € H,, it must be present in at least (n + 1)/2 sets of Az. b€ S. b
must be in ¢ — 2 sets of C \ {C,}. b must also be present in at least one set of
D., as D, N Dy, # 0. So, we have

n+1)/2+14+(@—-2)+1<n,
which yields |A| > 4¢ + 3. O

Lemma 4: If |A,| =|Ay| =n, 2 # y,theny € Hy ory € L,.

Proof. Lety ¢ H, and y ¢ L,.

When n is even (n =2k), asy ¢ Ly, |[Az N Ay| <k —1. Asy ¢ H,, |Az N
Ayl < k. So, |Ay| < k—14k =n—1, a contradiction.

When nisodd (n =2k+1),as y ¢ L, Az N Ay| < k. Asy & H, |[Az N
Ayl < k. So, |Ay] < k+k=n—1,a contradiction again.

The case, y € H, and y € L,, is not possible as it will render y abundant
in A. O

Lemma 5: If |A,| = |Ay| = nand y € H,, then z € H,,.

Proof. As y € H,, y ¢ L, (from Lemma 4). So, z, y cannot be mutually
abundant. So, z ¢ L,. Thus, from Lemma 4 we have x € H,. O

Definition: For any x, y € S, we define the family F,, as
fmy = .Aj N Ay

Note that F,, is union-closed.

Also note that F,, cannot contain any set from C as A, U Ay covers C. And
S ¢ Fry as S must contain both z and y.

We define the set F, as
By = UF,y

Lemma 6: If z, y € I, then E,,, ¢ C.



Proof. If E,, € C, then it must be either C,, Cy or some C} where k € I.
E,, cannot be any C, where a € J, as x or y cannot be dominated by a. If
E,, = C;, Az cannot contain y in any of its sets. So, A, C A,. Therefore,
dominates y. But, y € I, a contradiction. Similarly, F;, cannot be equal to C
or any C} where k € . O

Now, we prove our central result, |A| > 4¢g+ 1. To do so, we divide the proof
into the 2 following cases.

2.2 Case when C, # S \ {z} for some z

Theorem 1: If there exists © € I, such that |A;| < n, then |A|] > 4¢ + 1.

Proof. | Az| > n+2. There must exist y € I abundant in Az (for if y is dominated
by some z, then z would also be abundant in Az and we would then choose z
instead of y). Thus, y must be in at least (n + 2)/2 sets of Az. y must be in
qg—2setsof C\ {Cy}. y € S. So, we have

(n+2)/2+ (q-2)+1<n,
which yields [A| > 4q + 1. O

Theorem 2: If |A,| = n for all z € I, then |A| > 4¢ + 1.

Proof. Let y € I and y € H,. If D, N D, # (), then we immediately have |A|
> 4q + 3 from Lemma 3. So, let D, N Dy = (. So, |Fypy| = ¢ (as [{S} =1, |C|
— g, D, = D] =n —q).

As F,, is union closed, there must exist a z € I abundant in F,,. We choose
z as the element with mazimum abundance in Fu,. If 2z be present in all ¢ sets
of Fgy, we have |A,| = 2q (as z must be in g sets of C U {S}). This yields |A]
> 4q+ 1.

So, let z be present in at most ¢ — 1 sets of F,,. Hence, there must exist s
€ I present in F,, \ A,. Therefore there exists G5 € F, such that s € G5 and
z ¢ Gs. As z is maximal in Fg,,, s must also be present in at most ¢ — 1 sets
of Fuy. So, there must exist G, € F,, such that z € G, and s ¢ G,. Also, as
Fzy is union-closed there exists G, € Fuy such that z € G, and s € G,,. We
summarize this as

z€G,and s ¢ G,

s € Gy and z ¢ G,

s € G, and z € G4
where G, Gy, G5 € Fyy.

Our set-up is depicted in Figure 1 below.

Based on Lemma 4, we have the following 3 sub-cases:

a) z € Hy:



cu{s}

Figure 1: Representation of A

We consider the family Fs,. There exists a basis B, where € B, and s ¢
B,, as s cannot dominate z. As D, N D, = 0, y ¢ B,. Hence, B, € Fs,. As
G, € Fuy, 50y ¢ G,. Also, s ¢ G,. Therefore, G, € Fy,.

As, By, G, € Fgy, therefore x, z € E;,. From Lemma 6, Esy ¢ C. Hence,
E,y € Dy N D,. Thus, as D, N D, # 0 and z € H,, from Lemma 3, we have
|A] > 4q + 3.

b) z € Hy:

We consider the family F,,. There exists a basis B, where y € B, and s ¢
B,, as s cannot dominate y. As D, N D, = 0, v ¢ B,. Hence, B, € Fy,. As
G, € Fuy, 50 ¢ G,. Also, s ¢ G,. Therefore, G, € Fg,.

As, By, G, € Fsy, therefore y, z € E,. From Lemma 6, Eg, ¢ C. Hence,
Es, € Dy, N D,. Thus, as Dy, N D, # 0 and z € Hy, from Lemma 3, we have
|A] > 4q + 3.

c)z€ Ly and z € Ly:

z € Ly implies € L, as |A;| = |A.| = n. Similarly, as z € L,, we have y
€ L,. Therefore, from Lemma 4, we have z, y ¢ H,. As, x,y ¢ H,, let,r € I
be an element of H,.

If r be present in any set of F,,, then we have a set G, € Fyy containing
both r and z, as F, is union-closed. Also, as G,. ¢ C, G,. € D, N D, and as
r € H, we have |A| > 4q + 3 from Lemma 3.

So, let us assume that r is not in any sets of F,,. So, D, C D, UD,. Asr



cannot be dominated by s, there must exist a basis B, such that » € B, and s
¢ B,.
If B, € D,, then B, € F,, (because y ¢ B,, since D, N D, = 0). Also, G, €
Fsy (shown in Case a). So, z, r € Egy ¢ C.
If B, € Dy, then B, € F, (because x ¢ B,, since D, N D, = 0). Also, G, €
Fsz (shown in Case b). So, z, r € Eg, ¢ C.
So, at least one of E,, and E,, must be present in D, N D,, and as r € H, we
have |A| > 4q + 3 from Lemma 3.

O

2.3 Case when C, = S \ {z} for all

In this case, no element can be dominated by any other element. Thus, all
elements must be present in ¢ — 1 sets of C.

Theorem 3: If there exists x such that |A;| < n, then |A| > 4¢ + 1.

Proof. The proof is similar to that of Theorem 1. |Az| > n+2. Lety € H,. y
must be in at least (n + 2)/2 sets of Az. y must be in ¢ — 2 sets of C \ {C,}. y
€ S. So,

(n+2)/2 +(¢ — 2) + 1 < n, which yields |A| > 4¢ + 1.

O

Theorem 4: If for all z, |A,| = n, then |A| > 4q + 1.

Proof. As |Ay| = n for all z, no element can dominate any other element.
Therefore, I = S. As, in the proof of Theorem 2, we did not consider any
element from J, this just becomes a special case of Theorem 2. O

Theorem 5: The minimal counter-example to Frankl’s conjecture must
contain at least 53 sets.

Proof. Combining Theorems 1, 2, 3 and 4, we get |A| > 4¢+ 1. As it is shown
in [3] that ¢ > 13, we have |A| > 53. O

3 Remarks

With more research using the methods exploited in this paper, we may further
improve this lower bound, or even end up proving that the minimal counter-
example cannot exist.
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