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Abstract

Frankl’s Conjecture, from 1979, states that any finite union-closed
family, containing at least one non-empty member set, must have an el-
ement which belongs to at least half of the member-sets. In this paper
we show that if the minimum value of ∪A over all counter-examples be q,
then any counter-example family must contain at least 4q + 1 sets. As a
consequence, we show that the minimal counter-example must contain at
least 53 sets.

1 Introduction

A family of sets A is said to be union-closed if the union of any two member
sets is also a member of A. Peter Frankl’s conjecture (or the union-closed sets
conjecture) states that if A is finite, then some element must belong to at least
half of the sets in A, provided at least one member set is non-empty. A detailed
discussion and current standing of the conjecture can be found in [1].

In [2], Ian Roberts and Jamie Simpson showed that if q be the minimum
cardinality of ∪A over all counter-examples, then any counter-example A must
satisfy the inequality |A| ≥ 4q−1. In this paper, we expand the ideas presented
in [2] to find an improved lower bound 4q + 1. In [3], it was proved that the
minimal counter-example must contain at least 13 elements in ∪A. Hence, we
show that the minimal counter-example family must contain at least 53 sets.

2 Main results

2.1 Preliminary Lemmas

Throughout this paper, A will denote the minimal counter-example with ∪A
= q, the minimum number of constituent elements across all counter-examples.
|A| must be odd, because if it is even, we can remove a basis set to generate a
counter-example with |A| − 1. Let, |A|=2n + 1.

We denote the family of sets in A containing an element x as Ax.
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The universal set for A is defined as S := ∪A.

Thus, |S| = q.

We define Ax := {A ∈ A : x /∈ A}.

Let, Cx := ∪Ax.

We define the family containing all such Cx as C.

C := {Cx : x ∈ S}

For any x we define the family Dx as

Dx := Ax \ {S} \ C

Next, we define and distinguish the terms mutually dominant and dominant.

We call 2 elements a and b to be mutually dominating if a and b always
appear together in the member sets of A.

We say a dominates b if Ab ⊂ Aa and |Aa| > |Ab|.

A cannot contain any mutually dominating pair of elements, as they can be
replaced by a single element which in turn would violate the minimality of q.
Therefore, for any a,b ∈ S, if a 6= b, then Ca 6= Cb.

However, A may contain elements which dominate other elements.

We define the sets I and J as

I := {a ∈ S : a is NOT dominated by any other element in S}

J := {b ∈ S : b is dominated by some other element in S}

If an element is present in n sets of A, then it cannot be dominated by any
other element. Hence, they must be present in I. From [4], we know that A
must contain at least 3 elements with abundance n. Thus, |I| ≥ 3.

Note that every set in A must contain at least one element from I.

We now prove the following 2 lemmas, a slightly modified form of which is
presented in [2].

Lemma 1: For any a, I ⊆ Ca if a /∈ I, or I \ {a} ⊆ Ca if a ∈ I.

Proof. When a /∈ I, let y ∈ I. As a cannot dominate y, there must exist a set
containing y but not a. So, y ∈ Ca.

When a ∈ I, let z ∈ I. As a cannot dominate z, there must exist a set
containing z but not a. So, z ∈ Ca. But, a /∈ Ca as ∪Aa cannot contain a.

So, we conclude that if a ∈ I, then it must be present in q − 1 sets of C.

Lemma 2: For any a, Ca cannot be a basis set of A.
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Proof. Let Ca be a basis. So, we can remove Ca to get a new union-closed A′

with |A′| = |A| − 1.
From Lemma 1, if a /∈ I, I ⊆ Ca. As I must contain all elements with

abundance n, removing Ca would generate another counter-example A′ with
|A′| < |A|, a contradiction.

If a ∈ I, I \ {a} ⊆ Ca. Let Ba be a basis set containing a. Removing Ba

and Ca we get A′ with |A′| = |A| − 2 = 2n − 1 and no element contained in
more than n− 1 sets. Hence, A′ is also a counter-example, a contradiction.

Definition: For every element a, we define the sets Ha and La as

Ha := {b ∈ S : b is abundant in Aa}

La := {c ∈ S : c is abundant in Aa}

We now prove a few lemmas which would be repeatedly referenced in the
next sections.

Lemma 3: If a,b ∈ I, b ∈ Ha and Da ∩ Db 6= ∅, then |A| ≥ 4q + 3.

Proof. As b ∈ Ha, it must be present in at least (n + 1)/2 sets of Aa. b ∈ S. b
must be in q − 2 sets of C \ {Ca}. b must also be present in at least one set of
Da, as Da ∩ Db 6= ∅. So, we have

(n + 1)/2 + 1 + (q − 2) + 1 ≤ n,
which yields |A| ≥ 4q + 3.

Lemma 4: If |Ax| = |Ay| = n, x 6= y, then y ∈ Hx or y ∈ Lx.

Proof. Let y /∈ Hx and y /∈ Lx.
When n is even (n = 2k), as y /∈ Lx, |Ax ∩ Ay| ≤ k − 1. As y /∈ Hx, |Ax ∩

Ay| ≤ k. So, |Ay| ≤ k − 1 + k = n− 1, a contradiction.
When n is odd (n = 2k + 1), as y /∈ Lx, |Ax ∩ Ay| ≤ k. As y /∈ Hx, |Ax ∩

Ay| ≤ k. So, |Ay| ≤ k + k = n− 1, a contradiction again.
The case, y ∈ Hx and y ∈ Lx, is not possible as it will render y abundant

in A.

Lemma 5: If |Ax| = |Ay| = n and y ∈ Hx, then x ∈ Hy.

Proof. As y ∈ Hx, y /∈ Lx (from Lemma 4 ). So, x, y cannot be mutually
abundant. So, x /∈ Ly. Thus, from Lemma 4 we have x ∈ Hy.

Definition: For any x, y ∈ S, we define the family Fxy as
Fxy := Ax ∩ Ay

Note that Fxy is union-closed.

Also note that Fxy cannot contain any set from C as Ax ∪ Ay covers C. And
S /∈ Fxy as S must contain both x and y.

We define the set Exy as
Exy := ∪Fxy

Lemma 6: If x, y ∈ I, then Exy /∈ C.
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Proof. If Exy ∈ C, then it must be either Cx, Cy or some Ck where k ∈ I.
Exy cannot be any Ca where a ∈ J , as x or y cannot be dominated by a. If
Exy = Cx, Ax cannot contain y in any of its sets. So, Ay ⊂ Ax. Therefore, x
dominates y. But, y ∈ I, a contradiction. Similarly, Exy cannot be equal to Cy

or any Ck where k ∈ I.

Now, we prove our central result, |A| ≥ 4q+1. To do so, we divide the proof
into the 2 following cases.

2.2 Case when Cx 6= S \ {x} for some x

Theorem 1: If there exists x ∈ I, such that |Ax| < n, then |A| ≥ 4q + 1.

Proof. |Ax| ≥ n+2. There must exist y ∈ I abundant inAx (for if y is dominated
by some z, then z would also be abundant in Ax and we would then choose z
instead of y). Thus, y must be in at least (n + 2)/2 sets of Ax. y must be in
q − 2 sets of C \ {Cx}. y ∈ S. So, we have

(n + 2)/2 + (q − 2) + 1 ≤ n,
which yields |A| ≥ 4q + 1.

Theorem 2: If |Ax| = n for all x ∈ I, then |A| ≥ 4q + 1.

Proof. Let y ∈ I and y ∈ Hx. If Dx ∩ Dy 6= ∅, then we immediately have |A|
≥ 4q + 3 from Lemma 3. So, let Dx ∩ Dy = ∅. So, |Fxy| = q (as |{S}| = 1, |C|
= q, |Dx| = |Dy| = n− q).

As Fxy is union closed, there must exist a z ∈ I abundant in Fxy. We choose
z as the element with maximum abundance in Fxy. If z be present in all q sets
of Fxy, we have |Az| = 2q (as z must be in q sets of C ∪ {S}). This yields |A|
≥ 4q + 1.

So, let z be present in at most q − 1 sets of Fxy. Hence, there must exist s
∈ I present in Fxy \ Az. Therefore there exists Gs ∈ Fxy such that s ∈ Gs and
z /∈ Gs. As z is maximal in Fxy, s must also be present in at most q − 1 sets
of Fxy. So, there must exist Gz ∈ Fxy such that z ∈ Gz and s /∈ Gz. Also, as
Fxy is union-closed there exists Gzs ∈ Fxy such that z ∈ Gzs and s ∈ Gzs. We
summarize this as

z ∈ Gz and s /∈ Gz

s ∈ Gs and z /∈ Gs

s ∈ Gzs and z ∈ Gzs

where Gz, Gs, Gzs ∈ Fxy.

Our set-up is depicted in Figure 1 below.

Based on Lemma 4, we have the following 3 sub-cases:

a) z ∈ Hx:
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Figure 1: Representation of A

We consider the family Fsy. There exists a basis Bx where x ∈ Bx and s /∈
Bx, as s cannot dominate x. As Dx ∩ Dy = ∅, y /∈ Bx. Hence, Bx ∈ Fsy. As
Gz ∈ Fxy, so y /∈ Gz. Also, s /∈ Gz. Therefore, Gz ∈ Fsy.

As, Bx, Gz ∈ Fsy, therefore x, z ∈ Esy. From Lemma 6, Esy /∈ C. Hence,
Esy ∈ Dx ∩ Dz. Thus, as Dx ∩ Dz 6= ∅ and z ∈ Hx, from Lemma 3, we have
|A| ≥ 4q + 3.

b) z ∈ Hy:

We consider the family Fsx. There exists a basis By where y ∈ By and s /∈
By, as s cannot dominate y. As Dx ∩ Dy = ∅, x /∈ By. Hence, By ∈ Fsx. As
Gz ∈ Fxy, so x /∈ Gz. Also, s /∈ Gz. Therefore, Gz ∈ Fsx.

As, By, Gz ∈ Fsx, therefore y, z ∈ Esx. From Lemma 6, Esx /∈ C. Hence,
Esx ∈ Dy ∩ Dz. Thus, as Dy ∩ Dz 6= ∅ and z ∈ Hy, from Lemma 3, we have
|A| ≥ 4q + 3.

c) z ∈ Lx and z ∈ Ly:

z ∈ Lx implies x ∈ Lz as |Ax| = |Az| = n. Similarly, as z ∈ Ly, we have y
∈ Lz. Therefore, from Lemma 4, we have x, y /∈ Hz. As, x, y /∈ Hz, let, r ∈ I
be an element of Hz.

If r be present in any set of Fxy, then we have a set Grz ∈ Fxy containing
both r and z, as Fxy is union-closed. Also, as Grz /∈ C, Grz ∈ Dr ∩ Dz and as
r ∈ Hz we have |A| ≥ 4q + 3 from Lemma 3.

So, let us assume that r is not in any sets of Fxy. So, Dr ⊂ Dx ∪ Dy. As r
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cannot be dominated by s, there must exist a basis Br such that r ∈ Br and s
/∈ Br.
If Br ∈ Dx, then Br ∈ Fsy (because y /∈ Br, since Dx ∩ Dy = ∅). Also, Gz ∈
Fsy (shown in Case a). So, z, r ∈ Esy /∈ C.
If Br ∈ Dy, then Br ∈ Fsx (because x /∈ Br, since Dx ∩ Dy = ∅). Also, Gz ∈
Fsx (shown in Case b). So, z, r ∈ Esx /∈ C.
So, at least one of Esx and Esy must be present in Dr ∩ Dz, and as r ∈ Hz we
have |A| ≥ 4q + 3 from Lemma 3.

2.3 Case when Cx = S \ {x} for all x

In this case, no element can be dominated by any other element. Thus, all
elements must be present in q − 1 sets of C.

Theorem 3: If there exists x such that |Ax| < n, then |A| ≥ 4q + 1.

Proof. The proof is similar to that of Theorem 1. |Ax| ≥ n + 2. Let y ∈ Hx. y
must be in at least (n + 2)/2 sets of Ax. y must be in q− 2 sets of C \ {Cx}. y
∈ S. So,
(n + 2)/2 +(q − 2) + 1 ≤ n, which yields |A| ≥ 4q + 1.

Theorem 4: If for all x, |Ax| = n, then |A| ≥ 4q + 1.

Proof. As |Ax| = n for all x, no element can dominate any other element.
Therefore, I = S. As, in the proof of Theorem 2, we did not consider any
element from J , this just becomes a special case of Theorem 2.

Theorem 5: The minimal counter-example to Frankl’s conjecture must
contain at least 53 sets.

Proof. Combining Theorems 1, 2, 3 and 4, we get |A| ≥ 4q + 1. As it is shown
in [3] that q ≥ 13, we have |A| ≥ 53.

3 Remarks

With more research using the methods exploited in this paper, we may further
improve this lower bound, or even end up proving that the minimal counter-
example cannot exist.
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