EXISTENCE OF PRIME NUMBERS IN SUBSETS OF THE OPPERMANN'S INTERVALS

ANIRILASY Méleste

ABSTRACT. We suggest that there exists, at least, one prime number in four intervals between n^2 *and* $(n+1)^2$ *for any integer* $n \ge 2$ *such that* :

- *- all intervals are half-open;*
- *- the excluded endpoints are multiples of n;*
- *- the number of elements in each interval is equal to the least even upper bound for the biggest prime number strictly less than n.*

This conjecture is a strong form of Oppermann's one.

MSC : 11N05

Mathematical statement : conjecture

Keywords: prime numbers, Legendre's conjecture, Oppermann's conjecture.

Right : CC-BY

1. INTRODUCTION

For every positive integer n, Legendre's conjecture [1] states that there is, at least, one prime number between n^2 and $(n+1)^2$. We note that any integer strictly less than n has, at least, two multiples in that interval.

Oppermann's conjecture [2] is a strong form of Legendre's conjecture because there would be, at least, two prime numbers between n^2 and $(n+1)^2$. We also note that any integer strictly less than n has, at least, one multiple between n^2 and $n(n+1)$ and another one between $n(n+1)$ and $n(n+2)$.

In this paper, we consider as reference interval the Legendre's one by separating it into subsets in which any prime number strictly less than n has, at least, one multiple and we suggest the conjecture mentioned below . We then verified the proposed conjecture below 1,193,806,024.

2. RESULTS

We tested the statement and the result shows that the statement holds to $n = 1,700$. Then, by using a table of maximal gaps, the conjecture is verified for all n up to 1,193,806,024.

Examples 2.2.

For $n = 5$: $m = 3$ and the first interval is $(25, 29)$ which contains the prime 29. For $n = 8$: $m = 7$ and the second interval is [64;72] which contains the primes 67 and 71. For $n = 9$: $m = 7$ and the third interval is [90;98] which contains the prime 97. For $n = 10$: $m = 7$ and the fourth interval is [112;120[which contains the prime 113.

Remark 2.3. The value of n has to be strictly greater than 2 because no prime number is strictly less than 2.

Remark 2.4. p_1 and p_2 may not be necessarily distinct because the intersection of their sets is not empty.

Proof. According to the Bertrand-Chebyshev theorem [3] :

 $\frac{n}{2}$ < m < n ⇒ $n^2 + \frac{n}{2}$ < $n^2 + m$ < $n^2 + n$ with $n^2 + n = n(n+1)$ ⇔ $n^2 + \frac{n}{2}$ < $n^2 + m$ < $n^2 + (m+1)$ < $n(n+1)$ By analogy : $\frac{n}{2}$ < m < n \Rightarrow -n < -m < - $\frac{n}{2}$ ⇒ n(n+1) - n < n(n+1) - m < n(n+1) - $\frac{n}{2}$ ⇔ n^2 < n(n+1) - m < n(n+1) - $\frac{n}{2}$ ⇔ n² < n(n+1) - (m+1) < n(n+1) - m < n(n+1) - $\frac{n}{2}$ Since $n(n+1) - \frac{n}{2} = n^2 + n - \frac{n}{2} = n^2 + \frac{n}{2}$, $\overline{2}$ *n* $\overline{2}$ *n* then $n^2 < n(n+1) - (m+1) < n^2 + \frac{n}{2} < n^2 + (m+1) < n(n+1)$

Remark 2.5. p_3 and p_4 may be the same prime number. This can be proved by the same way we prove that p_1 and p_2 may be the same prime numbers.

3. REFERENCES

[1] *J. R. Chen, ''On the distribution of almost primes in an interval", Sci. Sinica, vol. 18, no 5, 1975, p. 611-627*

[2] *L.Oppermann,"Om vor Kundskab om Primtallenes Mængde mellem givne Grændser", Oversigt over det Kongelige Danske Videnskabernes Selskabs Forhandlinger og dets Medlemmers Arbejder, 1882, p. 169–179, 1882.*

[3] *M.J.Bertrand, "Mémoire sur le nombre de valeurs que peut prendre une fonction quand on y permute les lettres qu'elle renferme", Journal de l'École royale polytechnique, vol. 18, cahier 30, 1845, p. 123-140.*

E-mail : meleste1@hotmail.com