EXISTENCE OF PRIME NUMBERS IN SUBSETS OF THE OPPERMANN'S INTERVALS

ANIRILASY Méleste

ABSTRACT. We suggest that there exists, at least, one prime number in four intervals between n^2 and $(n+1)^2$ for any integer $n \ge 2$ such that :

- all intervals are half-open;
- the excluded endpoints are multiples of n;
- the number of elements in each interval is equal to the least even upper bound for the biggest prime number strictly less than n.

This conjecture is a strong form of Oppermann's one.

MSC: 11N05

Mathematical statement : conjecture

Keywords: prime numbers, Legendre's conjecture, Oppermann's conjecture.

Right : CC-BY

1. INTRODUCTION

For every positive integer n, Legendre's conjecture [1] states that there is, at least, one prime number between n^2 and $(n+1)^2$. We note that any integer strictly less than n has, at least, two multiples in that interval.

Oppermann's conjecture [2] is a strong form of Legendre's conjecture because there would be, at least, two prime numbers between n^2 and $(n+1)^2$. We also note that any integer strictly less than n has, at least, one multiple between n^2 and n(n+1) and another one between n(n+1) and n(n+2).

In this paper, we consider as reference interval the Legendre's one by separating it into subsets in which any prime number strictly less than n has, at least, one multiple and we suggest the conjecture mentioned below . We then verified the proposed conjecture below 1,193,806,024.

2. RESULTS

Conjecture 2.1. Let m be the biggest prime number strictly less than n. Then		
$\forall n > 2$, $\exists p_1, p_2, p_3, p_4$ primes	/ $n^2 < p_1 \le n^2 + (m^2 + m^2)$	+1) [first interval]
and	n(n+1) - (m+1) ≤p₂ < n(n+1)	[second interval]
and	$n(n+1) < p_3 \le n(n+1)$	+ (m+1) [third interval]
and	$n(n+2) - (m+1) \le p_4 < n(n+2)$	[fourth interval]

We tested the statement and the result shows that the statement holds to n = 1,700. Then, by using a table of maximal gaps, the conjecture is verified for all n up to 1,193,806,024.

Examples 2.2.

For n = 5: m = 3 and the first interval is [25;29] which contains the prime 29. For n = 8: m = 7 and the second interval is [64;72[which contains the primes 67 and 71. For n = 9: m = 7 and the third interval is]90;98] which contains the prime 97. For n = 10: m = 7 and the fourth interval is [112;120] which contains the prime 113.

Remark 2.3. The value of n has to be strictly greater than 2 because no prime number is strictly less than 2.

Remark 2.4. p_1 and p_2 may not be necessarily distinct because the intersection of their sets is not empty.

Proof. According to the Bertrand-Chebyshev theorem [3]:

 $\frac{n}{2} < m < n$ $\Rightarrow n^{2} + \frac{n}{2} < n^{2} + m < n^{2} + n \quad \text{with } n^{2} + n = n(n+1)$ $\Leftrightarrow n^{2} + \frac{n}{2} < n^{2} + m < n^{2} + (m+1) < n(n+1)$ By analogy : $\frac{n}{2} < m < n$ $\Rightarrow -n < -m < -\frac{n}{2}$ $\Rightarrow n(n+1) - n < n(n+1) - m < n(n+1) - \frac{n}{2}$ $\Leftrightarrow n^{2} < n(n+1) - m < n(n+1) - \frac{n}{2}$ $\Leftrightarrow n^{2} < n(n+1) - (m+1) < n(n+1) - m < n(n+1) - \frac{n}{2}$ Since $n(n+1) - \frac{n}{2} = n^{2} + n - \frac{n}{2} = n^{2} + \frac{n}{2}$,

then $n^2 < n(n+1) - (m+1) < n^2 + \frac{n}{2} < n^2 + (m+1) < n(n+1)$

Remark 2.5. p_3 and p_4 may be the same prime number. This can be proved by the same way we prove that p_1 and p_2 may be the same prime numbers.

3. REFERENCES

[1] J. R. Chen, "On the distribution of almost primes in an interval", Sci. Sinica, vol. 18, no 5, 1975, p. 611-627

[2] L.Oppermann, "Om vor Kundskab om Primtallenes Mængde mellem givne Grændser", Oversigt over det Kongelige Danske Videnskabernes Selskabs Forhandlinger og dets Medlemmers Arbejder, 1882, p. 169–179, 1882.

[3] M.J.Bertrand, "Mémoire sur le nombre de valeurs que peut prendre une fonction quand on y permute les lettres qu'elle renferme", Journal de l'École royale polytechnique, vol. 18, cahier 30, 1845, p. 123-140.

E-mail : meleste1@hotmail.com