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Abstract—Traditionally, all working modes of a perfect electric 

conductor are classified into resonant modes, inductive modes, 

and capacitive modes, and the resonant modes are further classi-

fied into internal resonant modes and external resonant modes. In 

this paper, the resonant modes are alternatively classified into 

intrinsically resonant modes and non-intrinsically resonant modes, 

and the intrinsically resonant modes are further classified into 

non-radiative intrinsically resonant modes and radiative intrin-

sically resonant modes. Based on the modal expansion corre-

sponding to this new modal classification, an alternative modal 

decomposition method is proposed. In addition, it is also proved 

that: all intrinsically resonant modes and all non-radiative in-

trinsically resonant modes constitute linear spaces respectively, 

but all resonant modes and all radiative intrinsically resonant 

modes cannot constitute spaces respectively. 

 
Index Terms—Characteristic mode (CM), modal classification, 

modal decomposition, modal expansion, radiation, resonance. 

 

 

I. INTRODUCTION 

ESONANCE is an important concept in electromagnetics. 

Based on whether the resonant modes radiate, they are 

classified into internal resonant modes and external resonant 

modes [1], and these two kinds of resonant modes are widely 

applied in electromagnetic (EM) cavities [2] and EM antennas 

[3] respectively. 

The most commonly used mathematical method for re-

searching internal resonant modes is normal eigen-mode theory 

(EMT) [2], [4], and the normal EMT can construct a basis of 

internal resonance space (which is constituted by all internal 

resonant modes [5]), and the basis are called as normal eig-

en-modes. The most commonly used mathematical methods for 

researching external resonant modes are singular EMT [6] and 

characteristic mode theory (CMT) [7], and the “basis” con-

structed by singular EMT and CMT are respectively called as 

singular eigen-modes and radiative characteristic modes (CMs), 

where the quotation mark on “basis” will be explained in Sec. 

IV. Recently, paper [8] generalized the traditional CMT to 

internal resonance problem, and proved that: all non-radiative 
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modes constitute a linear space called as non-radiation space, 

and this space is the same as internal resonance space; all 

non-radiative CMs constitute a basis of non-radiation space and 

internal resonance space, and then they are equivalent to the 

normal eigen-modes from the aspect of modal expansion. 

Based on above observations, the “basis” used to expand 

resonant modes can be classified into four categories internal 

resonant normal eigen-modes, external resonant singular eig-

en-modes, radiative CMs, and non-radiative CMs, and the 

relationships and differences among the first three of these 

“basis” are analyzed in paper [1]. This paper alternatively 

classifies all resonant modes into three categories non-radiative 

intrinsically resonant modes, radiative intrinsically resonant 

modes, and non-intrinsically resonant modes, and discusses the 

relationships and differences among them. By employing the 

modal expansion corresponding to this new modal classifica-

tion, an alternative modal decomposition method is proposed in 

this paper, and at the same time some further conclusions are 

obtained. 

 

 

II. MODAL CLASSIFICATION 

When a field F  incidents on a perfect electric conductor 

(PEC), a current J  will be induced on the PEC. All possible 

working modes J  constitute a linear space called as modal 

space [4]-[8]. If the J  is expanded in terms of independent and 

complete basis functions, there exists a one-to-one corre-

spondence between the J  and its expansion vector a  [5], [7], 

[8], and the linear space constituted by all possible a  is called 

as expansion vector space (where the a  is the vector consti-

tuted by all expansion coefficients). The following parts of this 

paper are discussed in expansion vector space and frequency 

domain. 

In expansion vector space, the complex power P  done by E  

on J  has the matrix form HP a P a   , and then the radiated 

power  ReradP P  and the reactively stored power 

 ImstoP P  can be correspondingly expressed as the matrix 

forms rad H radP a P a    and sto H stoP a P a    [8]. Here, the 

superscript “ H ” represents the transpose conjugate of a matrix 

or vector, and the method to obtain the matrix P  can be found 

in papers [7] and [8], and ( ) 2rad HP P P   and 

( ) 2sto HP P P j   [8]. 

Renzun Lian 

Electromagnetic-Power-based Modal Classification, 

Modal Expansion, and Modal Decomposition for 

Perfect Electric Conductors 

R 



LIAN: EMP-BASED MODAL CLASSIFICATION, EXPANSION, AND DECOMPOSITION FOR PEC 

 

2 

A. Traditional modal classification 

Matrix radP  is positive semi-definite [8], so 0H rada P a    

for any a , and the modes corresponding to 0H rada P a    and 

0H rada P a    are called as radiative modes and non-radiative 

modes respectively. In addition, the semi-definiteness of matrix 
radP  implies that: 0H rada P a    if and only if 0radP a   [9], 

i.e., 

 

0 0 Mode is non- radiativerad H radP a a P a a        (1) 

 

Thus, all non-radiative modes 
non rada 

 constitute a linear space 

(i.e. the null space of radP  [9]) called as non-radiation space 

(which is identical to the internal resonance space [8]), and any 

non rada 
 satisfies the following orthogonality: 

 

  0
HH rad rad

non rad non rada P a a P a        (2) 

 

for any working mode a . 

The matrix stoP  is indefinite [7], [8], so H stoa P a   can be 

zero or positive or negative, and the modes corresponding to 

0H stoa P a   , 0H stoa P a   , and 0H stoa P a    are called as 

resonant modes, inductive modes, and capacitive modes re-

spectively [3], [4], [7], [8]. According to whether the resonant 

modes radiate, the resonant modes are further classified into 

internal resonant modes (which don’t radiate, so this paper 

calls them as non-radiative resonant modes) and external res-

onant modes (which radiate, so this paper calls them as radia-

tive resonant modes) [1], [5], [8]. As demonstrated in [8], the 

non-radiative modes must be resonant, so all inductive and 

capacitive modes must be radiative, and then this paper calls 

them as radiative inductive modes and radiative capacitive 

modes respectively. 

B. New modal classification (An alternative classification for 

resonant modes) 

Besides classifying all modes into resonant modes (including 

non-radiative resonant modes and radiative resonant modes), 

radiative inductive modes, and radiative capacitive modes 

traditionally, an alternative classification for the resonant 

modes is proposed in this sub-section. 

Matrix stoP  is indefinite, so 0H stoa P a    doesn’t imply 

that 0stoP a   [9], though 0stoP a   always implies that 

0H stoa P a   . This is equivalent to saying that 

 

 0stoP a    0 Mode is resonantH stoa P a a     (3) 

 

i.e., the condition 0stoP a   is a stronger condition than the 

condition 0H stoa P a    to guarantee resonance. Based on this, 

the 0stoP a   can be particularly called as intrinsic resonance 

condition, if the 0H stoa P a    is viewed as resonance condition. 

Correspondingly, the modes satisfying 0stoP a   are called 

as intrinsically resonant modes, and the resonant modes not 

satisfying 0stoP a   are called as non-intrinsically resonant 

modes. Obviously, all intrinsically resonant modes constitute a 

linear space, i.e. the null space of stoP , and this space is called 

as intrinsic resonance space. Similarly to (2), any intrinsically 

resonant mode int resa  satisfies the following (4) for any a : 

 

  0
HH sto int res int res stoa P a a P a       (4) 

 

When intrinsically resonant mode int resa  satisfies condition 

( ) 0int res H rad int resa P a   , it is called as non-radiative intrinsi-

cally resonant mode, and correspondingly denoted as int res

non rada 
. 

When intrinsically resonant mode int resa  satisfies condition 

( ) 0int res H rad int resa P a   , it is called as radiative intrinsically 

resonant mode, and correspondingly denoted as int res

rada . As 

demonstrated in paper [8], 0stoP a  , if 0radP a  . This im-

plies that the intrinsic resonance space contains the whole 

non-radiation space. Then, the set constituted by all int res

non rada 
 

must be a linear space, and this space is just the non-radiation 

space; all non-intrinsically resonant modes non int resa   are radia-

tive, and they are particularly denoted as non int res

rada  ; for any 

mode a , the int res

non rada 
 satisfies the following orthogonality: 

 

  0
HH rad int res int res rad

non rad non rada P a a P a        (5.1) 

  0
HH sto int res int res sto

non rad non rada P a a P a        (5.2) 

 

In summary, by introducing the concepts of intrinsic reso-

nance and non-intrinsic resonance, this sub-section alterna-

tively classifies all resonant modes into non-radiative intrinsi-

cally resonant modes int res

non rada 
, radiative intrinsically resonant 

modes int res

rada , and radiative non-intrinsically resonant modes 
non int res

rada  . Because the non-radiative intrinsically resonant 

modes int res

non rada 
 are just the traditional internal resonant modes, 

the introduction of radiative intrinsically resonant modes int res

rada  

and radiative non-intrinsically resonant modes non int res

rada   is 

essentially a subdivision for the traditional external resonant 

modes. 

C. Classification for characteristic modes 

Because both above traditional and new modal classifica-

tions are suitable for whole modal space, they are also valid for 

CM set   . Here, the symbol “  ” is used to represent the 

expansion vector of CM J  in order to be distinguished from 

the expansion vector a  of general mode J . 

Traditional classification for CMs 

Traditionally, CM set    are divided into four sub-sets [1], 

[7], [8]: non-radiative resonant CM set  ;

res

non rad   , radiative 

resonant CM set  ;

res

rad  , radiative inductive CM set  ;

ind

rad  , 

and radiative capacitive CM set  ;

cap

rad  . For the convenience 

of the following parts of this sub-section, the non-radiative and 

radiative resonant CMs are collectively referred to as resonant 

CMs, and the union of sets  ;

res

non rad    and  ;

res

rad   is corre-

spondingly denoted as  res

 , i.e.,      ; ;

res res res

non rad rad     . 

An alternative classification for resonant CMs 

As illustrated in papers [1], [7], and [8], all res

  satisfy the 

characteristic equation 0sto resP   . In fact, this equation is 

just the intrinsic resonance condition introduced in Sec. II-B, so 

all the res

  are intrinsically resonant, and then they are partic-

ularly denoted as int res

 . Correspondingly, the ;

res

non rad    and 

;

res

rad   are particularly denoted as ;

int res

non rad    and ;

int res

rad   
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respectively. 

All int res

  are independent of each other [7], and the rank of 

set  int res

  equals to the rank of the null space of stoP , so they 

constitute a basis of intrinsic resonance space [9], i.e., any 

intrinsically resonant mode int resa  can be uniquely expanded in 

terms of  int res

 . In addition, the  ;

int res

non rad    constitute a basis 

of non-radiation space [8], i.e., any non-radiative mode 
non rada 

 

can be uniquely expanded in terms of  ;

int res

non rad   . 

 

 

III. MODAL EXPANSION 

In this section, a further discussion on the CM-based modal 

expansions for various modes is provided, based on the new 

modal classification proposed in above Sec. II. 

A. Modal expansion for general modes 

Based on the independence property and completeness of 

CM set    [7], [8], any mode a  can be uniquely expanded in 

terms of some non-radiative resonant CMs ;

int res

non rad   , some 

radiative resonant CMs ;

int res

rad  , some radiative inductive CMs 

;

ind

rad  , and some radiative capacitive CMs ;

cap

rad   as follows: 

 

 ; ; ; ; ; ; ; ;

int res int res int res int res ind ind cap cap

non rad non rad rad rad rad rad rad rada c c c c                   

  (6) 

 

where the reason to use “ ” instead of “  ” will be explained in 

Sec. IV. Based on expansion (6), some valuable conclusions 

shown in Fig. 1 can be derived, and they are proved as below.  

• The proof for “1 ” is obvious. 

• The proof for “ 2  ”: It is obvious that 0 0stoP   , so mode 

0  is intrinsically resonant. Thus, if ; ; ; ; 0ind ind cap cap

rad rad rad radc c       , 

then ; ; ; ;

ind ind cap cap

rad rad rad radc c       is intrinsically resonant. 

• The proofs for “ 3 ” and “ 7 ”: It is obvious that the term 

; ; ; ;

int res int res int res int res

non rad non rad rad radc c         is intrinsically resonant. Thus, 

the a  is intrinsically resonant, if and only if the term 

; ; ; ;

ind ind cap cap

rad rad rad radc c       is intrinsically resonant, based on the 

intrinsic resonance condition introduced in Sec. II-B. 

• The proof for “ 4  ” is obvious, because of (3). 

• The proofs for “ 5  ” and “ 6 ”: Because the term 

; ; ; ;

int res int res int res int res

non rad non rad rad radc c         is intrinsically resonant, the 

reactively stored power of a  equals to the reactively stored 

power of term ; ; ; ;

ind ind cap cap

rad rad rad radc c       due to the orthogonal-

ity (4). Thus, both the “ 5  ” and “ 6 ” hold. 

• The proof for “ 8 ”: If ; ; ; ;

ind ind cap cap

rad rad rad radc c       is intrin-

sically resonant, then the a  is intrinsically resonant due to 

“ 3 ”. This implies that the a  can be expanded in terms of 

   ; ;

int res int res

rad non rad     as concluded in Sec. II-C. Because of the 

uniqueness of the CM-based modal expansion for a certain a , 

the coefficients  ;

ind

radc   and  ;

cap

radc   in (6) must be zeros, and 

then both the terms ; ;

ind ind

rad radc    and ; ;

cap cap

rad radc    must be zeros. 

• The proof for “ 9 ” is obvious, because of “ 8 ” and “1 ”. 

B. Modal expansion for general resonant modes 

Obviously, any resonant mode resa  can be expanded as fol-

lows: 

 

 ; ; ; ; ; ; ; ;

res int res int res int res int res ind ind cap cap

non rad non rad rad rad rad rad rad rada c c c c                   

  (7) 

 

where the reason to use “ ” instead of “  ” will be explained in 

Sec. IV. 

C. Modal expansion for intrinsically resonant modes 

The conclusions given in Sec. II-C and Fig. 1 imply that any 

intrinsically resonant mode int resa  can be expanded as follows: 

 

 ; ; ; ;

int res int res int res int res int res

non rad non rad rad rada c c         (8) 

 

i.e., there doesn’t exist any inductive CMs ;

ind

rad   and capacitive 

CMs ;

cap

rad   in the CM-based modal expansion formulation for 

an intrinsically resonant mode int resa . 

As pointed out in Sec. II-C and paper [8], any non-radiative 

intrinsically resonant mode int res

non rada   can be expanded as follows: 

 

 ; ;

int res int res int res

non rad non rad non rada c      (9) 

 

However, it cannot be guaranteed that the non-radiative term 

; ;

int res int res

non rad non radc     in the modal expansion of radiative intrinsi-

cally resonant mode int res

rada  is zero because of the (5), i.e., 

 

 ; ; ; ;

int res int res int res int res int res

rad non rad non rad rad rada c c         (10) 

 

where the reason to use “  ” instead of “  ” will be explained in 

Sec. IV. 

D. Modal expansion for non-intrinsically resonant modes 

If a non-intrinsically resonant mode non int res

rada   is expanded as 

follows: 

 

; ; ; ; ; ; ; ;

non int res int res int res int res int res ind ind cap cap

rad non rad non rad rad rad rad rad rad rada c c c c          

         

  (11) 

 

it can be concluded that 

 

 ; ; ; ; 0ind ind cap cap

rad rad rad radc c        (12) 

 

based on Fig. 1. In fact, it can be further concluded that 

8

; ; ; ;

; ; ; ;

; ; ; ;

, 0

1

0

2 9

is intrinsically resonant

3 7

Mode is intrinsically resonant

4

Mode is resonant

5

ind ind cap cap

rad rad rad rad

ind ind cap cap

rad rad rad rad

ind ind cap cap

rad rad rad rad

c c

c c

c c

a

a

   

   

   

 

 

 





 

 



 



 

 

 

; ; ; ;

6

is resonantind ind cap cap

rad rad rad radc c    

 

 
 

 
Fig. 1. Some “equivalence” relationships related to resonance. 
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 ; ; ; ;, 0ind ind cap cap

rad rad rad radc c        (13) 

 

because: if the inductive/capacitive term is zero and the capac-

itive/inductive term is non-zero, then the reactively stored 

power of non int res

rada   is less/larger than zero due to the orthogo-

nality (4), and this leads to a contradiction; if both the inductive 

term and capacitive term are zeros, then the term 

; ; ; ;

ind ind cap cap

rad rad rad radc c       must be zero, and this leads to a con-

tradiction with (12). 

 

 

IV. MODAL DECOMPOSITION 

If the terms 
; ;

int res int res

non rad non radc    , 
; ;

int res int res

rad radc   , 
; ;

ind ind

rad radc   , 

and 
; ;

cap cap

rad radc    in above-mentioned modal expansion formu-

lations are denoted as int res

non rad 
, int res

rad , ind

rad , and cap

rad  respec-

tively, then the CM-based modal expansions (6)-(11) can be 

alternatively written as follows: 

 

 int res int res ind cap

non rad rad rad rada         (6') 

 

and 

 

 res int res int res ind cap

non rad rad rad rada         (7') 

 int res int res int res

non rad rada     (8') 

 int res int res

non rad non rada  
 (9') 

 int res int res int res

rad non rad rada     (10') 

 non int res int res int res ind cap

rad non rad rad rad rada    

     (11') 

 

where to utilize symbol “  ” is to emphasize that these terms 

are the building block terms in CM-based modal expansions. 

The (6') and (7')-(11') are respectively called as the electro-

magnetic-power-based (EMP-based) modal decompositions for 

general modes and various resonant modes. In fact, the 

EMP-based modal decompositions for any radiative inductive 

mode ind

rada  and any radiative capacitive mode cap

rada  can be sim-

ilarly expressed as follows: 

 

 ind int res int res ind cap

rad non rad rad rad rada         (14) 

 cap int res int res ind cap

rad non rad rad rad rada         (15) 

 

As the continuation of the conclusions given in Secs. II and 

III, the following further conclusions can be derived based on 

above EMP-based modal decompositions. 

▪ In (6'), (8'), and (9'), all the terms in the right-hand sides of 

these expansions can be zero or non-zero. In (7'), the int res

non rad 
 

and int res

rad  can be zero or non-zero, and the ind

rad  and cap

rad  

marked by single underlines can be simultaneously zero or 

simultaneously non-zero. In (11'), the int res

non rad 
 and int res

rad  can be 

zero or non-zero, and the ind

rad  and cap

rad  marked by double 

underlines must be simultaneously non-zero. In (10'), (14), and 

(15), the terms marked by double underlines must be non-zero. 

These above are just the reasons to use “ ”, “ ”, and “  ” in 

(7)-(11), (7')-(11'), (14), and (15). 

▪ Because the term int res

non rad 
 in (10') can be non-zero, then the 

set constituted by all radiative intrinsically resonant modes is 

not closed for addition, so all radiative intrinsically resonant 

modes cannot constitute a linear space [9]. Obviously, similar 

conclusions hold for the sets constituted by all non-intrinsically 

resonant modes, radiative inductive modes, and radiative ca-

pacitive modes, because of (11'), (14), and (15). In addition, all 

resonant modes also cannot constitute a linear space. For ex-

ample: If the reactively stored powers of CMs ;1

ind

rad  and ;1

cap

rad  

are normalized to 1  and 1 , then the modes ;1 ;1

ind cap

rad rada A A    

and ;1 ;1

ind j cap

rad rada A Ae      must be resonant for any ,A   , 

due to the orthogonality of CMs [7]. However, the mode a a  

might be non-resonant, because of the arbitrariness of  . This 

implies that the set constituted by all resonant modes is not 

closed for addition. These are just the reasons to use some 

quotation marks on the “basis” in Sec. I. 

▪ The (7') implies that the resa  might contain the int res

non rad 
, 

ind

rad , and cap

rad  terms; the (8') and (10') imply that the int resa  and 
int res

rada  might contain the int res

non rad 
 term; the (11') implies that the 

non int res

rada   must contain the ind

rad  and cap

rad  terms. In fact, these 

are just the reasons to call the 0stoP a   as intrinsic resonance 

condition and to call the modes satisfying 0stoP a   as intrin-

sically resonant modes. 

The relationships of various modes are illustrated in Fig. 2, 

where the modal classes in boxes are linear spaces.  

 

 

V. CONCLUSIONS 

This paper alternatively proposes an EMP-based modal 

classification. Based on the new modal classification and cor-

responding CM-based modal expansion, an alternative modal 

decomposition method is obtained, i.e., any mode can be ex-

pressed as the superposition of a non-radiative intrinsically 

resonant mode, a radiative intrinsically resonant mode, a radi-

ative inductive mode, and a radiative capacitive mode. In ad-

dition, some conclusions are obtained, for example: all intrin-

sically resonant modes and all non-radiative modes constitute 

linear spaces respectively, but other kinds of resonant modes 

cannot constitute linear spaces respectively. 

 

Non- radiative intrinsically resonant modes Internal resonant modes Non- radiative modes
Intrinsically resonant modes

Resonant modes Radiative intrinsically resonant modes

All modes Non- intrinsically resonant modes whi

  



 

 

 

ch must be radiative

Inductive modes which must be radiative
Radiative non- resonant modes

Capacitive modes which must be radiative

 
 


 
 





 

Radiative resonant modes External resonant modes

Radiative modes

 
 

 




  
Fig. 2. The EMP-based modal classification for all working modes and the relationships among various modal classes. 
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