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ABSTRACT. 
 
This work presents for the first time a solution to the 1821 unsolved Sawa Masayoshi´s problem, giving an explicit and 
algebraically exact solution for the symmetric case (particular case b = c, i.e., �ABC ≡ right-angled isosceles triangle), 
see (1.60) and (1.61). 
 
Despite the isosceles triangle restriction is not necessary, in view of the complexity of the explicit algebraic solution for the 
symmetric case, one can guessing the impossibility of achieving an explicit relationship for the asymmetric case (the more 
general case: �ABC ≡ right-angled scalene triangle). For this case is given a proof of existence and uniqueness of solution 
and a proof of the impossibility of getting such a relationship, even implicitly, if the sextic equation (2.54) it isn´t solvable. 
Nevertheless, in (2.56) – (2.58) it is shown the way to solve the asymmetric case under the condition that (2.54) be solvable. 
 
Furthermore, it is proved that with a slight modification in the final set of variables (F ), it is still possible to establish a 
relation between them, see (2.59) and (2.61), which provides a bridge that connects the primitive relationship by means of 
numerical methods, for every given right-angled triangle �ABC.  
 
And as the attempt to solve Fermat's conjecture (or Fermat's last theorem), culminated more than three centuries later by 
Andrew Wiles, led to the development of powerful theories of more general scope, the attempt to solve the Masayoshi´s 
problem has led to the development of the Theory of Overlapping Polynomials (TOP), whose application to this problem 
reveals a great potential that might be extrapolated to other frameworks. 
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Introdution. 
 
Proposed by the Nippon mathematician Sawa Masayoshi in 1821, this problem remained unsolved.  
 
As shown in the picture below, an ellipse E is inscribed in �ABC, right-angled triangle at A, with its major axis parallel to 
the hypotenuse a of �ABC. Within the ellipse are inscribed two circumferences of radius r, C2 and C3 , that are tangent to 
the ellipse and each other at the center of the ellipse. Inside-tangent to the sides b and c of the right angle A and outside-
tangent to the ellipse, there is another circumference, C1 , with the same radius r. 
Challenge: find a relationship between a, b, c and r. 
 

 

 

 

 

 

 

 

 

 

 

 
 
The Travel Diary of Mathematician Yamaguchi Kanzan. “I have arrived at Tatsuno, city near Himeji, and visited the Syosya temple to record a sangaku proposed by 
Sawa in 1821. In the evening, visited me and he showed me an unsolved problem and two sangaku problems of the Syosya temple. I have written them down in my 
diary as follows: . . .”From the book “Sacred Mathematics. Japanese Temple Geometry”, by Fukagawa Hidetoshi and Tony Rothman. 
 
According to the brilliant mathematician Paul Erdös, “A math problem that takes more than a century to be solved, it is a number theory problem”. And I would add: 
“If a seemingly simple mathematical problem, because it hides an underlying extreme complexity, takes more than a century to be solved, most likely it is that it 
will be a number theory problem... or a geometric Sangaku problem, and only an exhaustive analysis could lead to its solution”. Jesús Álvarez Lobo. 

 
The Masayoshi´s problem kept a surprise: the explicit relationship between the length of one side of �ABC and the radius of 
the circumferences or is so extensive and intricate that it cannot be written without fragmentation, or both the path to prove 
the impossibility of getting a relationship for the asymmetric case and the equations for the alternative case are huge and of 
an bewildering complexity, despite the valuable aid provided by the TOP. Everybody can believe in the existence of more 
simply relationships, (that´s easy!), but the reality is that, up today, the ones presented here are the unique known. 
 
Some approaches, cut-off paths and other collateral interesting results found through the surveying, has been moved to final 
appendixes, in order to lighten the reading. 
 
In spite of the proofs are carefully developed, some steps have been omitted for brevity. However, it isn´t hard to follow the 
exhaustive evolving of the work.   
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§0. Theory of Overlapped Polynomials. 
 
0.1. Definitions. 
 

Definition 1.  Class ( )n x r µ−O of Overlapped Polynomials: Set of all polynomials of degree n in the variable x which 

have the root x = r with multiplicity not lower than µ. 
 
Definition 2.  Monic Transformed of a Polynomial: 
 

 
(0.01) 

 
 
0.2. Lemma of Overlapped Polynomials 1 (LOP1).  
 
The difference of the monic transforms of two overlapped polynomials of degree n in the variable x, that share the root r 
with multiplicity not lower than µ , it is a polynomial of degree m < n that keeps the root r with multiplicity at leastµ : 

 
(0.02) 

 
 

Proof. 
 

 
(0.03) 

 
 
where s and t are monic polynomials of degree n − µ , 
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Be noted that, by Viète-Girard formula, the degree of S(x) - T(x) is less than n - 1 iff the sum of the roots of s(x) 
is equal to the sum of the roots of t(x), the degree of S(x) - T(x) is less than n - 2 iff also the sum of the binary 
products of the roots of s(x) is equal to the sum of the binary products of the roots of t(x), and so on... 
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0.3. Lemma of Overlapped Polynomials 2 (LOP2).  
 

 
(0.08) 

 
denoting ( 1 ( 1,  µ µ− −S T  the derivatives of order µ - 1 of S and T, respectively.  
 
Proof. 
 
S(x) and T(x) can be factored as in (0.03), ( ) ( - ) ( ), ( ) ( - ) ( ),µ µ= =x x r s x x x r t xS  T  where s and t are the monic 
polynomials defined in (0.03). 
 
Applying the Leibniz´s formula for the µ − 1 - th derivative of the product to S(x), 
  
 

(0.09) 
 
 

and similarly for T(x), 
 

 
(0.10) 

 
 
It is straightforward that the terms of the sums (0.10) and (0.11) are all of degree n −µ +1 and contain the powers of x− r 
with integer exponents between 1 and µ, so, 
 

(0.11) 
 
 

where p and q are polynomials of degree n − µ , 
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But the summations of (0.15) are monic polynomials of degree n - µ, therefore, applying the LOP1, 
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0.4. Theorem of Overlapped Polynomials (TOP). 
 
 

 
This theorem is an extension of LOP2, removing the restriction of equal degree of the overlapped polynomials involved. Therefore, the TOP represents the widest 
generalization of the Theory of Overlapped Polynomials. 

 
The theorem is stated as follows:  
 
 
 

(0.17) 
 
 
 
 

Proof. 
 
 
 

(0.18) 
 
 
 
where the inclusion relationship are due to the nested characterization stated in the definition of the overlapped classes of 
polynomials. Hence, applying the LOP2, 
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0.4. Applications of the TOP.  
 
In the Masayoshi´s problem, to relate the radius of the circumferences inscribed in the ellipse with the radius of the outside 
tangent circle to the ellipse, is necessary to calculate the coordinates of the tangent point T as a function only of b, c and r, 
but the equations that determine it are complete quartics of a extreme complexity. On the other hand, as should be shown 
below, it is possible to define three independent quartics in the abscise xT of  T. At first glance, it could look like superfluous 
to state three different condition for the same purpose, but amazingly it is possible to get advantage of this circumstance, 
what can be crucial in certain conditions.   
 
In general, there may be several possibilities, depending on the degree of multiplicity of the root shared and on the depth 
(order of the derivative) at which the theorem be applied. 
 
The tangent point T of two curves is twofold and this reasoning led to the development of the Theory of Overlapping 
Polynomials in the generalized form in which it is presented, i.e., considering multiplicities of the roots. However, we must 
consider that multiplicity cannot be inferred from the mere consideration of the geometry of the problem (Algebra is 
generous and often gives more than is asked!), since in the transformation of rationalization (squaring) strange solutions 
can be introduced. At this problem the TOP has been implemented in its simplest form (considering simple roots), but even 
so a unit reduction in the degree of an equation can be crucial to achieve a solution, and will always represent a substantial 
simplification of the calculations and the solution. 

{ }

{ } { }1 ( 1 ( 1 1

( )

( )
( ) ( ) ,  

min ,

n

m

ST k

S x r

T x r
S x T x r k n

n m

σ

τ
µ µ δ µ µ

δ

µ σ τ

− − −

∈ −


∈ − 
⇒ ∆ ≡ − ∈ − ≤ −

≡ − ∈ 
≡ 

ℕ

O

O
OM M

{ }

( )

( ) ( )( )

( ) ( ) ( )

min ,

n

n nm

m n n

S x r

S x r x rT x r

n m x T x r x r x r

σ

µ στ

δ µ µ τ
δδ

µ σ τ
+

∈ −


 ∈ − ⊆ −∈ −  
⇒ 

≡ − ∈ ∈ − = − ⊆ − 
≡ 

ℕ

O

O OO

O O O

{ } { }1 ( 1 ( 1 1,  ( ) ( ) ( ) ,  n ST kS x T x r S x T x r k nδ µ µ µ δ µ µ− − −∈ − ⇒ ∆ ≡ − ∈ − ≤ −O OM M



A solution for the unsolved Sawa Masayoshi´s problem (1821)  From a Sangaku of the Syosya temple 

Jesús Álvarez Lobo  Oviedo  Asturias  SPAIN 

Moreover, the TOP can be applied repeatedly, thereby achieving further reductions in the degree of the equations. For 
instance, from three polynomial equations of any degree bigger than 2 that share a root x = r, by successive applications of 
the TOP, is possible to reduce the degree of the polynomial equation of least degree in two units.  
 
For example, suppose you have two equations of 6th degree and one of 5th degree for the determination of a certain magnitude 
s. At first, the problem should be algebraically unsolvable, but it might go beyond the limits of Algebra by applying the TOP: 
with a first application, it is we obtained a quintic from the two sextics, and then, applied to the two quintics gives a quartic 
which is already solvable algebraically. 
 
Suppose now that you have three equations of 6th grade for the determination of a certain magnitude s. Since the sextics are, 
in general, algebraically unsolvable, it looks like that the problem hasn´t algebraic solution, but it possible trespass the 
limits of Algebra by applying the TOP: applied at a pair of sextics (for instance, to the first a second) we get a quintic, and 
applied to other pair of sextics (for example, first and third) we get another quintic. Finally, the application of the TOP to the 
pair of quintics derived from the sextics gives us a quartic that is always solvable by radicals. 
 
It is not particularly unusual to find different equations for the determination of a value of a variable under certain 
conditions, as problems often lets different approaches leading to different equations. Usually the equation will be of the 
same degree as they have to contain all the necessary information to define the problem, but even if they have different 
degrees it is possible to apply the TOP. 
 
Let´s see a concrete example to clarify the way the TOP is applied. 
 
Suppose you have three polynomials,  
 

(0.20) 
 

(0.21) 
 

(0.22) 
 

that share certain unknown root, x = r. 
 
Applying the TOP to u and v, 
 
 

 
(0.23) 

 
 
 
i.e., 
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Now we have three polynomials of 5th degree that share the root x = r, and applying the TOP to the three pairs of quintic 
equations we will obtain three quartic equations that preserves the same common root. 
 
Let us denote with u•w the quintic inherited by means of the TOP from the sextic u and the quintic w. 
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Now we have three polynomials of 4th degree that share the root x = r, and applying the TOP to the three pairs of quartic 
equations we will obtain three cubic equations that preserves the root x = r, 
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If we would try to implement now the TOP to any pair of the above cubic equations, for instance, 
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we would get the null polynomial because the three equations are equivalent. So, it is impossible to further reduce the 
degree of the equations. 
 
Solving any of the cubic equations, for instance, get, 
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one of whose roots is that which is shared by the three initial equations.  
 
To determine which of the three roots is what is seeking is necessary to use some criteria inferred from the conditions of the 
problem. In this case, the root shared is x = 1/3.   
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§1. Symmetric case: b = c. 
 
In the orthonormal Cartesian reference system provided in the form shown in the figure below, the equation of the ellipse is 
reduced to its canonical form and geometric configuration has axial symmetry on the coordinate axes. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Equation of the ellipse in canonical form (center at the origin and major-axis of the ellipse coincident with the x-axis): 
 

(1.01) 
 

 

Let t be the straight line defined by A and C:                     
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From the intersection of t and the ellipse E : 
 
 
 
that can be written as, 
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However, the necessary and sufficient condition for t to be tangent to E at T is that the last equation has twofold roots, or, 
equivalently, discriminant null: 
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and for the positive semi-ellipse, 
 

(1.04) 
 
 
Furthermore, straight by simple observation of the picture are obtained the coordinates of A, 
 
 
 

as
1AC is the diagonal of a square of side r. Hence, 

 
(1.05) 

 
 
The pair of equations (1.04) and (1.05), that arises in a fortunate choice of the reference system, will be crucial to the 
resolution of the problem. Equating these two expressions of Ay ,

 
we have: 

 
 
 

that can be expressed as 
 

(1.06) 
 

 
In order to compact the expression, let us denote                                   
 

(1.07) 
 

 
Then, (1.06) is written as, 
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and from this one, 
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Intersection of CCCC2 and EEEE    :  
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Now, taking into account that, by definition, the eccentricity of the ellipse is  
 

 
(1.11) 

 
the equation (1.10) can be expressed as, 
 

(1.12) 
 
Moreover, the condition of tangency between the circle with center at C2 and the ellipse is that the contact occurs only 
between two points of equal abscissa, what will happen iff the discriminant of (1.12), as a quadratic equation in x, is null, 
and this condition is translated in the following relationship: 
 
  
that implies, 
 

(1.13) 
 
 

However, should be noted that the maximum radius of the circles inscribed in the semi-ellipse of semi-major axis α  is α/2. 
Whereas as a constant, r can be expressed as function of ε  as the only variable:  
 
  
 
 
but in the context of the problem, 
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The left end of the domain of ( )εr  coincides with the minimum value of the eccentricity for which the radius of the circles 
inscribed in the semi-ellipse reaches a maximum. This limit value can also be determined as follows: 
 
 
 
i.e., 
 

(1.18) 
 
biquadratic equation whose unique real and positive root is 1

2
.ε =             

 

The circle with center at C2 inscribed in the right semi-ellipse has maximum radius 2
α=r  for 1

2
ε ≤ , as it only has 

contact with the ellipse at the right apex (point of tangency). If ε = 1 the ellipse is degenerated in a segment. 
 
 In short, 
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Discarding the negative root, that has no sense in this context, 
 

 
(1.21) 

 
and from (1.21), we obtain: 
 
 
 
 
Consequently, the solution of the problem, unique due the monotony of ( ),εr  is confined to the domain of ( ),εr  
established in (1.17). 
 
Now, eliminating r in (1.09) through the relationship (1.13), which links the radius of the inside the ellipse circunferences 
with the semi-major axis of the ellipse and its eccentricity, we obtain: 
 
 
 
 
from which it is obtained the complete quartic equation in ε, 
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By the lineal Tschirnhausen transformation, 
 

(1.23) 

 
is eliminated the term of third grade in (1.22) and, after replacing p by its value (1.07) and simplifying, we get the 
depressed quartic: 
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And denoting the coefficients of this equation by 
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(1.27) 

( )( )2

1 2 1 1 1α= − + −r

( ) ( ) ( ) ( )2 2 2

1 2 3

1 1 1 1
1 1 2 1 1 ( 1) 1 ( 1) 1 .

2 2 2 2 2

α
α α α α α< + − < + + − = + − = + − = = =r r r

2
2 2 2

2 2 2 2 2 22 2
2 2

2
2 2 (1 ) (1 ) ,

r
p p r

p p p p

r

β
β β

ε ε ε ε ε εα α
α α

βε


= + 

⇒ = + ⇔ = − + −
= 

4 3 2 2
2 2 0p p pε ε ε ε+ − − + =

pε ξ≡ − 2

( )4 211 33 5
3 2 4 2 6 2 0

2 16 4
ξ ξ ξ + − + − + − = 

 

11 33 5
3 2 ,  4 2 6,  2

2 16 4
≡ − ≡ − ≡ −C D E

4 2
0C D Eξ ξ ξ+ + + =

4 2 4 2 2 2 2
0 2 ,ξ ξ ξ ξ ξ ξ ξ+ + + = ⇔ + + = − + −C D E C C C D C E

2 2 2 2
( )C C D C Eξ ξ ξ+ = − + −



A solution for the unsolved Sawa Masayoshi´s problem (1821)  From a Sangaku of the Syosya temple 

Jesús Álvarez Lobo  Oviedo  Asturias  SPAIN 

Let us transform (1.27) by introducing the variable ζ thus, 
 
 

(1.28) 
 
 

This is the crucial trick, since for some ζ ∈ R the right side of (1.28), which is quadratic in ξ, will be a perfect square, 

and the necessary and sufficient condition for this is that the discriminant of 
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cubic equation in ζ : 
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To solve (1.38), let us make the change, 
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If we choose u, v so that γ  + 3uv = 0, we get two equations: 
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Equations that give us the sum and product, respectively, of the cubes of u and v, which allows us to construct a quadratic 
equation whose roots are these cubes: 
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(1.49) 

 
 
For the value of ζ given by (1.49) the quadratic equation (1.29) has a double root (since its discriminant vanishes). 
Therefore, (1.28) can be expressed as, 
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Extracting the square root of both sides of (1.50) and simplifying the right side, 
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(1.52) 

 
 

(1.53) 
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where the values of C, δ, ∆ and ζ  are given by (1.25), (1.37), (1.47) and (1.49), respectively. 
 
Obviously, in the context of the problem the last two roots has no sense, and the second, by the discussion made above, it is 
not valid. So, the only acceptable solution is the first, i.e., ε= = ⇔ =1 2 3 0.94766204...r r r  
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Straight from the above picture, we get the height AM  of the triangle △CAB : 
 

(1.58) 
 
 
Since �AMC is an isosceles right triangle, the Pythagorean Theorem gives: 
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Therefore, an explicit and algebraically exact relation between b and r is 
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For a geometrically exactly representation of the circle inscribed in the right semi-ellipse, its radius can be determined as 
shown in the above drawing, where R is the intersection point of the circle with center at the midpoint of OV and diameter α 
and the circle with center at V and diameter β. Then, 
 
 

(1.62) 
 
 

Indeed, △VRO is rectangle in R, and verified: 
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Approximate value of the ratio       with 3000 decimal digits: 
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            1023878174854651640468456996687068973239665149295906421075063249576063491593420540113369980768041554
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§2. Asymmetric case: b ≠≠≠≠ c.  
 
2.1. Existence and uniqueness of solution. 
 
By observation of the below picture can be seen straightforward that the solution is unique in each quadrant, since the radius 
of the circles inscribed in the ellipse decreases as the eccentricity of the ellipse increases, according to (1.15) and (1.17), 
while the radius of the outside circle grows. Therefore, can only be a value of the eccentricity for which the radius of the 

three circles are equal. Hence, there is a bijection ε ↔ r.  

 
On the other hand, the eccentricity increases when decreasing the angle ϕ  and, consequently, the radius r increases as ϕ  

increases. There is, therefore, also a bijection ϕ ↔ r,  that applies (90°, 0) ↔ (rmax, 0). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The radius for the three circles inscribed reaches a maximum when the value of eccentricity is the one obtained for the 
particular case studied before (ϕ = 90° ⇒ �ABC is a right-angled isosceles triangle). 
 
But now the �ABC has no axial symmetry, so it is expected a significant complication in the calculations. The outline of 
several approaches (shown in appendixes B, C, D and F) from which outcrops an intractable complexity, allows glimpsing the 
impossibility of obtaining an explicit algebraic solution.  
 
Despite that the extremely complexity of the relationship gotten for the symmetric case, doesn´t represents a mathematical 
proof of the impossibility of getting relationships for the asymmetric case, indeed it is a proof for the intuition and common 
sense: the asymmetry increases the complication, both in the outlines as in the difficult of the equations. Nevertheless, the 
aforementioned impossibility will be rigorously translated to an algebraic condition: the solubility of a sextic, (2.33). 
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2.2. Outlining the path to the solution: What we need for defining algebraically the geometric conditions?. 
 
First of all, we must see the problem in a bird view, looking for the necessary equations for translate the geometric picture 
into an algebraic description. 
 
In the study of the symmetric case we had yet determined the equation (1.13), that describe the condition of tangency 
imposed to the circumferences C2 and C3 , and this relationship is also valid for the asymmetric case, since it doesn´t depend 
on �ABC. 
 
Other condition is that the ellipse E has to be tangent to the three sides of �ABC. The condition of tangency among E and 
the hypotenuse a is trivial for being parallel to a the major axis of E. The condition of tangency among E and the other two 
sides, b and c, will be determine cutting E with the lines that contains b and c, and imposing that the intersection verifies in 
a single point (the intersection of a line and an ellipse is determined by a quadratic equation, and the condition of tangency 
implies that its discriminant is null). 
 
The condition of tangency between C1 and b and c is given simply imposing that the center C1 of C1 belongs to the bisector 
line of the right-angle A. 
 

The condition of tangency between C1 and E can be given imposing that, at an undefined point T of C1 and E, both curves 
share the tangent line, and this will occur iff the derivatives of C1 and E take the same value at T (i.e., tangents equal slope).  
 
The equation of E involves two parameters, α and β, and the relationship (1.13) a third parameter, ε. Therefore, we need, 
at least, four independent equations for removing these three parameters. But by the definition of eccentricity of the ellipse 
we have an additional relationship between the three parameters involved, and by mean of this one and (1.13) the remaining 
equation can be easily reduced to a mono - parametric form, for instance, to an ε - parametric for. It is necessary to find a 
third relationship, an ε - parametric equation independent of the coordinates of T, for expressing ε in the set of the final 
variables, F = { a, b, c , r }. Let´s denote this hypothetic relationship as εF . 
 
Substituting now εF into the equation derived of the condition of tangency between C1 and E, we´ll find an expression for 
one coordinate of T, (for instance, the abscise xT) in terms of the FVs, and using the equation of C1 we could find the other 
coordinate of T (for instance, the ordinate yT) in terms of the FVs.  
 
Finally, equaling to r the distance between C1 and T, we would find the searched relationship among the variables of F. 
 

Nevertheless, we´ll see that the hardest difficulty is to find an explicit relationship εF , that would be the key for the door to 
the solution, but, as it will be shown later, εF is, in fact, the key for proving that it is impossible to find a relation in the set 
F = { a, b, c, r }, neither explicit nor implicit, since the equation relating r to ε is of 6th grade in ε, without any especial 
relation of symmetry in its coefficients, so unsolvable by radicals.  
 
However, taking as final set of variables F´= { a, b, c, ε }, it is indeed possible establish a relationship, because the 
equation relating r to ε is of 4th grade in r, therefore solvable algebraically. Getting a relationship in F´= { a, b, c, ε } 
allows to get another one in F = { a, b, c, r } for a given right-angled triangle �ABC, by means of numeric methods.    
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2.3. Switching the reference system. 
 
The previous reference system provides the simplest expression for the equation of the ellipse (reduced to its canonical 
form), but instead, the equations for the remaining elements result too complex (in appendix B we show its expressions). Let 
us take now the Cartesian reference system showed in the figure below, obtained from the previous one by a rotation and a 
translation of axes: rotation of 180º (keeping the parallelism of the coordinate’s axes with respect to the axis of the ellipse) 
and translation of the origin to the vertex A. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
2.3. Equations in the new reference system. 
 

To relate the new coordinates with the old, just switch x by −x + h, and the primitives coordinates of C1 with the new 
ones. The slope m is invariant under the transformation performed (180 degree turn and translation). In this new scenery, 
the equation of the bisector of A, and the equations for the coordinates of C1, are significantly simplify. 
 

The slope of the bisector of A is, 
 
 
 
 
where tanω is the slope of the side AB. Setting, 
 
 

(2.01) 
 

the equation of the bisector of A is as simply as 
 
 
 

(2.02) 

 
The new coordinates of C1 can be obtained as intersection of a circumference with center at the origin and radius equal to the 
diagonal of a square of side r. Assuming m > 0, 
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and expressing m as a function of the sides of �ABC, 
 

 
(2.04) 

 
 
2.4. Centre of the ellipse: analytic and geometric determination. 
 
The equation of the ellipse with center at E(x0, y0) is, 
 
 

(2.05) 
 

 

and the equation of the line determined by the vertex of A and B, 
 

(2.06) 
 

The intersection of this line and the ellipse is given by, 
 
 
 
or, 
 

(2.07) 
 
but the line (2.06) will be tangent to the ellipse (2.05) iff the discriminant of the quadratic equation in x (2.07) is null,  
 

 
(2.08) 

 

and simplifying, 
 

(2.09) 
 

Substituting in (2.09) m by -1/m we obtain a similar expression for the condition of tangency of the line determined by the 
vertices A and C with the ellipse (2.05): 
 

(2.10) 

 
Adding equations (2.09) and (2.10) side by side, and factoring, we have, 
 

(2.11) 
 
that implies, 
 

(2.12) 
 
 
This condition is also obtained considering that the vertex A belongs to the director circumference (see Appendix B). 
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From (2.12), 
 

(2.13) 
 

and substituting α  in (2.09) or (2.10) by the right side of (2.13),  
 

(2.14) 
 
 

Into this equation hides an interesting geometric relationship, which comes to light when expressed thus, 
 

 
(2.15) 

 
since, 
 

(2.16) 
 
 
Using (2.16) and writing right now (2.14) in the shape, 
 

 
(2.17) 

 
 

follows a useful geometrical construction to determine the center of the ellipse in terms of β : 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

(2.18) 
 

 
 

But �OBM´ and �OCM´ are isosceles because both triangles have two equals angles; hence, M is the middle point of the 
hypotenuse of �ABC, and the vertex H of the ellipse is simply the intersection of AM´ with the parallel to BC by G, where 

β=GL 2  and M´ is the projection of M over the major axis of the ellipse.  
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From (2.17), taking into account that y0 + β  is the height of �ABC relative to its hypotenuse, and can be expressed as, 
 

 
(2.19) 

 

since m is the slope of c in �ABC and .bm B
c

= tan =ɵ  
 

Solving for x0 in (2.17) and replacing y0 + β  by the value given by (2.19), since tan ω = b/c,  
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Let´s denote, 
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Theorem.  The locus of the centers of the ellipses with minor semi-axis of length β inscribed in a right-angled triangle 
�ABC, with major-axis parallel to the hypotenuse, in a Cartesian reference system with origin at the vertex A of the right-
angle β and abscissa axis below the hypotenuse and parallel to it, belong to the hyperbole,  
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Removing y0  in (2.20) by means of (2.19), we obtain the ββββ - parametric equations of the center of the ellipse: 
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and by eliminating β  through (1.13) we get the εεεε - parametric equations of the center of the ellipse: 
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2.5. Coordinates of the tangent point T between CCCC1 and EEEE. 
 
For determining the point of tangency between the C1 and E, as shown below, it is possible to raise three independent equations. At first glance, defining in three 
different ways the same object (unknown xT) might seem unnecessary work, and therefore superfluous. However, is quite the opposite, since the implementation of the 
TOP (which displays here some of its potential) reduces the three quartic to a simple quadratic equation which preserves the root of interest (the abscissa of T) shared 
by the three quartics. The TOP acts synergistically on the equations, so that the joint action of the equations is much more effective than just the sum of their 
individual actions. Below are defined the three quartics. 

 
2.5.1. Quartic for xT derived from the intersection of CCCC1 and EEEE. 
 

 
 
 
 
 
Taking into account that the contact take place between the lower semi-ellipse and the upper semi-circumference, the signs 
of the radicals must be – in the equation of the ellipse and + in the equation of the circumference: 
 

 
(2.26) 

 
 
Streamlining, developing and collecting terms (used the DERIVE computer algebra system), there arises a quartic equation, 
that we denote by u(x) = 0, showing the following dissuasive-looking: (2.27) 
 

 

 
2.5.2. Quartic for xT which is obtained by equating the derivatives of CCCC1 and EEEE. in its explicit form. 
 
Derivatives of the upper canonic semi-ellipse EEEE  and the lower semi-circumference CCCC1 : 
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(2.29) 

 
 
 

the derivatives of both curves at the tangent point T represent the slope of the common tangent line; hence, they have to be 
equals: 
 
 
 
 
 

 
(2.30) 

 
 

where α 2 can be expressed in terms of r and ε , 
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From (2.30) and (2.31), 
 

 
 
 
or,  
 

(2.32) 
 
 
Developing and collecting terms in x we obtain the following quartic denoted v(x) = 0: (2.33) 
 

 
 
2.5.3. Quartic for xT got by equating the derivatives of CCCC1 and EEEE. in its implicit form. 
 
Deriving implicitly the equations of both curves, 
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But C1 and E share the tangent line at T, hence, their derivatives (slope of the tangent line) take the same value at T:  
 
 

(2.36) 
 
 

Parameterizing (2.36) in ε, eliminating denominators and expressing it in explicit form, 
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Replacing by means of (2.38) the variable y in the equation of CCCC1 , 
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(2.40) 
 
after a long chain of operations and simplifications, we get the following quartic that we denote by w(x) = 0, (2.41) 
 

 
 

or, more compact, (2.42) 
 

 
 
The quartic equations (2.27), (2.33) and (2.41) have to share the real root x = xT  at the tangent point T. This property can 
be exploited applying the Theorem of Overlapped Polynomials (TOP), very useful for dealing with the enormous complexity 
of these equations. By applying the TOP three times, we get a quadratic from three quartics. First, applying the TOP to the 
quartics u an v it is obtained a cubic, denoted ∆uv, then, applying it to the quartics v an w it is obtained other cubic, denoted 
∆vw. Finally, the application of the TOP to this pair of cubic equations it is obtained a quadratic equation, denoted ∆uvw. The 
algorithm can be schematized as follow: (2.43) 
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where ∆uvw is a quadratic equation one of whose roots is the abscissa x = xT of the tangent point T, inherited from the three 
quartics that shared it, by means of three overlapping monic polynomial transformations. 
 
Developing the algorithm, after doing heavy calculations derived from the enormous complexity of the polynomials involved, 
from the overwhelming ocean of numbers and letters emerges the following expression for the quadratic equation ∆uvw that 
gives the abscissa of the tangent point T: (2.44) 
 

 
 

or in a more compact form, (2.45) 
 

 
 
But the equation (2.27) must have a double root, as the tangency point is the limit to which tend both points of intersection 
of the circle and the ellipse. Therefore, we can replace the quartic (2.27) by its derivative, which is a cubic: (2.46) 
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Using (2.46) instead of (2.27), the algorithm to obtain the quadratic equation by iteration of the TOP would be: (2.47) 
 

  
 
 
 
 
Thus, we have the abscise xT as a function of a, b, c, r, ε. Replacing xT in the equation of C1 it is obtained the corresponding 
ordinate yT , also as a function of a, b, c, r, ε. 
 
2.6. Defining the problem. 
 
Let´s gather now a complete set of independent equations to define the problem, translating geometrical meanings to algebraic descriptions. 

 
� Condition of tangency of CCCC2 and CCCC3 with each other and with EEEE.  Fusing (1.13) and (1.17): 
 

  
(2.48) 

 
 
� Condition of tangency among the ellipse EEEE and the sides a, b and c of ����ABC. Unifying (2.12) and (2.24):  
 

 
(2.49) 

  

 
 

where h and k are constants that depend only of a, b, c according to (2.21) and (2.22). 
 
� Condition of tangency among the outside-circumference CCCC1 and the ellipse EEEE. 

 

There are three ways of setting this condition, imposing that: C1 and E share the tangent point T, or the normal line at 
T contains the center C1 of C1 , or CCCC1 and EEEE share the tangent line at T. It will be use (2.44) and the equation of CCCC1. 

 
� Condition of tangency between the outside-circumference CCCC1 and the sides b and c of ����ABC. 
 

 
(2.04) 

 

 
� Condition of that the distance between the center C1 of CCCC1 and the tangent point T is r. 
 

(2.50) 
 

 
	 Relationship among the 3 parameters involved in the problem (lengths of the semi-axis of EEEE and its eccentricity): 
 

 
(1.11) 

 

 
The condition of equal radius for the three circumferences it is yet included implicitly in the above equations since are used the same variable r for all them. 
 

This is the simplest system of equations for describing the Masayoshi´s problem, but subjacent to its apparent simplicity is hidden an extremely complexity that 
outcrops when trying to removing the involved parameters, as shown below. 
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2.7. Removing the parameters. 
 
From (1.11) and (2.48), 
 

(2.51) 
 
 

and from (2.48), 
 

(2.52) 
 
 
Now only remains to eliminate the parameter ε, and there is just a way to try it: by means of (2.49), (2.51) and (2.52). 
Removing α and β in (2.12) by means of (2.49) and (2.51), and applying (2.24) to the right side of (2.12), 

 
 

(2.53) 
 
 

and after a tedious series of operations, expanding and simplifying by means of (2.21), (2.22) and (2.25), it is obtained, 
 

 
 

(2.54) 
 
 

 
 
Here it is, eureka!: the asymmetric case is solvable iff the sextic (2.54) is solvable algebraically. 
 
There is no further way to eliminate ε, since there are no more independent equations that interrelate these parameters than 
those that have been used yet. It is, therefore, likely impossible to eliminate the parameter ε and, consequently, therefore, it 
is most likely that nor be possible to get a relationship between the variables a, b, c and r that doesn´t involve any of the 
parameters, α, β or ε. 
 
See appendix C for the analysis of solubility of this equation. 
 
2.8. Final relationship between a, b, c and r. 
 
If would be possible to solve the sextic (2.54), denoting the right root (that corresponding to the eccentricity of EEEE    ) by 
 

(2.55) 
 
the coordinates of T would be also functions of a, b, c, r, and (2.50) would state an implicit relationship among r and a, b, c: 

 
(2.56) 

 
 
where xT is one of the two roots of (2.44), yT is the function obtained substituting xT in the equation of CCCC1 , x1 and y1 the 
functions defined in (2.04). 
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2.9. Approximate solution by iteration. 
 
Writing (2.56) in the form,  
 

(2.57) 
 
 

the algorithm for n iterations would be, 
 
 

 
 

(2.58) 
 
 
 
where r0 is an initial value, arbitrarily chosen, but in the range of convergence of the algorithm. The value of n depends on 
the desired accuracy and the algorithm terminates when the values of r become stable for a certain number of digits. 
 
Obviously, if is known the value of r it is trivial to define one (or any number) relationships between the sides of the triangle 
and r. 
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2.9. An alternative way. 
 
However, by rearranging the equation (2.54) according to the powers of r, we get a complete quartic in r,  
 
 

 
 
 

(2.59) 
 
 
 

 
 
 
 

equation which always has algebraic solution. It would, therefore, be necessary to slightly modify the conditions of the 
statement so that the problem had a solution, simply by changing the variable r by the parameter ε. 
 
Applying the formula (A.02) given in the appendix A, its roots have the following explicit algebraic expression: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Substituting in (A.02) the generic coefficients of the quartic by the specifics ones given by (2.59), 
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And after some boring simplifications, we obtain as value of the constants A, B, ..., F,  

 
 
 
 
 
 
 

(2.61) 
 
 
 
 
 
 
 

 
2.10. A numeric example. 
 
Given the following lengths for the sides of �ABC, 
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the values for the remaining parameters involved in the problem, with a 4-decimal precision, are: 
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Appendix A. 
 
An alternative representation for the explicit relationship given by (1.60) and (1.61). Expressing (1.22) as, 
 

(A.01) 
 
  its roots have the following explicit algebraic expression, (A.02): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Substituting the generic coefficients of the quartic by the specifics ones of our equation, we obtain the value of the constants 
A, B, ..., as a function of the constant p defined by (1.07): 
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Substituting the values given by (1.61) into the explicit expressions for the solutions of the quartic, (1.59), we obtain: 
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and, 
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To shorten the writing of this formula (whose length exceeds the width of this page for a font size readable), have been split into A, B, ..., F parts. This 
not only represents a greater compactness of the expression but also an economy of calculations because some of these parts is repeated within the 
expression. Otherwise, writing this steps fully requires too much typing, so it is skipped, but it can be easily verified.  
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Appendix B. 
 
Developing the equations for the asymmetric case in the reference system used in the symmetric case. 
 
Let´s consider the same reference system used in the solution of the symmetric case, as shown in the pictures below. 
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B.1. Explicit equation of the tangent to the ellipse with slope m and ordinate at the origin n. 
 
Let t y mx n≡ = +  a line that intersects the ellipse e, (1.01): 
 
 
 
 

 

i.e., 
 

(B.01) 
 
 

The necessary and sufficient condition for t to be tangent to the ellipse is that there is only one point of contact between the 
line and the curve, which is equivalent to equation (B.01) has only a root (double), ie, its discriminant must be zero: 

 
(B.02) 

 
 
Operating and simplifying (B.02), we obtain: 
 

(B.03) 
 
 

Thus, the equation of the tangent of slope m to the ellipse (1.01), for y > 0 (positive semi-ellipse), is 
 

(B.04) 
 

 
B.2. Locus of intersection points of pairs of orthogonal tangents: director circle. 
 
Let us consider a couple of tangents to the positive semi-ellipse in canonical form, generic and orthogonal each other, (B.04) 
and 
  

(B.05) 
 
 
Intersection point of (B.04) and (B.05): 
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Multiplying by m the numerator and denominator of (B.06), we have:  
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Let us compact the notation through the variable changes, 2 2 2 2 2 2, ,u m v mα β α β≡ + ≡ +  and calculate the sum 

of the squares of the coordinates of A, given by (B.07) and (B.08): 
 
 
 
 

and undoing the variable changes, 
 
 
 
 

i.e., 
 

(B.09) 
 

 

The locus of the points from which can be drawn pairs of orthogonal tangents to the canonical ellipse is the circle centered 

at the origin of coordinates and radius 2 2 .R α β= + This circle is called the director circle. 

 
B.3. Coordinates of the tangent point TC of the line with slope m and the ellipse. 
 
Solving the equation (B.01), under the tangency condition established in (B.02) and the value of n according to (B.04), we get 
the abscissa Tx  of the tangent point TC :  

 
 
 
 
 

or, 
 
 

By replacing Tx
 

into t y mx n≡ = + , we obtain,  

 
Gathering the above results, we have the following expression for the coordinates of TC : 
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And from (1.11), as a function of the eccentricity of the ellipse, 
 
 

(B.11) 

2 2

2 2 2 2 2 2
T ,

m

m m

α β

α β α β

 
 −
 + + 

2 2 2 2

A Ax y α β+ = +

2 2 2 2 2 2

21
A

m m m
y

m

α β α β+ + +
=

+

2 2 2

2 2

2 2

(1 )

1 1

+− +   + = + =   + +   
A A

mu mv mu v
x y

m m

2 2

2 2

( )

(1 )

+

+

u v

m

2 2

2
,

1

+
=

+
u v

m

( ) ( )
2 2

2 2 2 2 2 2
22 2

2 2

2 2

(1 )

1 1

α β α β+ + + ++
+ = = =

+ +A A

m m mu v
x y

m m

2 2

2

( )

1

α β+

+ m
,

2 2 2 2 2 2 2 2

2 2 2 2

2 2 2

2 2 2

( ) 2 ( ) 0
2

0 ,
2( )

T

m x mn x n
m m

x
m

n m

α β α α β
α α β

α β
α β

+ + + − =
 − +

∆ = ⇒ =
+

= + 
2

2 2 2
.

T

m
x

m

α

α β

−
=

+
2 2 2

2 2 2

2 2 2 2 2 2
.

T

m
y m

m m

α β
α β

α β α β

−
= + + =

+ +

T T2 2 2

2 2

,  
1

1 1
1 1

m r r
x y

m mε
ε ε

ε ε

= − ⋅ =
−

+ +
− −



A solution for the unsolved Sawa Masayoshi´s problem (1821)  From a Sangaku of the Syosya temple 

Jesús Álvarez Lobo  Oviedo  Asturias  SPAIN 

B.4. Equation of the bisector of the right angle A. 

 

 

 
 
 
 
 
 
 
For A in the first quadrant its bisector has positive slope, so its implicit equation is, 
 
 
and explicitly, 
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Another way to deduce the equation of the bisector. 
 
The slope of the bisector is 
 
 
 
 

Hence, the equation of the bisector is: 
 
 

 
Substituting Ax  by the expression (B.07) and Ay by the right side of (B.04), taking into account that A ∈ t,  
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B.5. Coordinates of C1. 

 
C1 is determined by the intersection of the bisector of A, (2.12), and the circunference with center A and radius 2 :r   
 
 
 
 
 
or, 
 
 
hence, 
 
 
 

from which, 
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and substituting this expression for 1x  into (B.12), 
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Replacing in (B.15) and (2.16) the coordinates of A given by (B.07) and (B.08), respectively,  
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or, as a function of the eccentricity of the ellipse: 
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Appendix C. Analysis of the solubility of the sextic (2.54). 
 
As is well known, [3] and [4]. by means of a Tschirnhausen transformation the general sextic, 
 

(C.01) 
 
 

can be reduced to the form, 
 

(C.02) 
 

 
Thus, via Tschirnhausen transformation, the sextic (2.54) can be reduced to the form, 
 
 

(C.03) 
 
 

All equations of degree ≤ 4 are algebraically solvable over the complex number field C, but from the work of Ruffini, Abel 

and Galois it is now well-known that all quintic equations do not [2]. 
 
In [1] are stated the necessary and sufficient conditions for the quintic factor of (C.03), a Bring-Jerrard form or principal 
quintic for the general quintic, be solvable by radicals: the existence of three rational numbers, ∊ = ± 1, p > 0 and q ≠ 0, 
such that, applied to our specific values,  
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where r is the radius common to the three circumferences and h the height relative to the hypotenuse of �ABC. 
 
In [4] are given explicit formulas to get the roots for this irreducible particular form of quintic when it is algebraically 
solvable: 
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with, 
 

 
(C.09) 

 
 

(C.10) 
 
 
Furthermore, any irreducible equation with rational coefficients is solvable by radicals if and only if its Galois group G is a 
subgroup of one of the two transitive subgroups of S6: J = S2 # S3 and K = S3 # Z2, denoting the wreath product of two 
groups by #, [5]. 
 
At first glance, the lack of the first-degree term in (2.54) might seem to facilitate the analysis of solvability of the equation, 
but is just the opposite because the resolvent equation of (C.02) is of the form [1], 
 

(C.11) 
 
and (C.02) is solvable by radicals and its Galois group is a subgroup of J iff (G.11) has a rational root, but it is straightforward 
that this happens if the constant term vanishes because then z = 0, i.e., if 
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and taking, for instance, a2 = ½, we find that the Galois group of the irreducible polynomial 36z6 + 36z2 + 18z + 5 is a 
subgroup of J and solvable. But in our case, a1 = 0, and so (C.02) is reducible, therefore this theorem is not applicable. 
 
Moreover, the second condition of (C.04) involves a relationship between b, c and r, which is the final goal of the problem, so 
this condition neither is implementable. 
 
But, according to Dummit’s analysis [3], solvable irreducible quintic equations are rare, hence, it is reasonable to expect that solvable irreducible sextics are also rare. 
 
Through the exhaustive analysis carried out we have seen that the insurmountable barrier to solving the asymmetric case is the sextic in ε (2.54), the only way to 
eliminate the parameter ε.  

  

2 2 2 2
21 3 3 4 2 1 4 25 5 5 5

1 2 3 42 2 2 2
, , , , 1

v v v v v v v v
u u u u p≡ ≡ ≡ ≡ ∆ ≡ +

∆ ∆ ∆ ∆

1 2 3 4, , ,v v v v≡ ∆ + ∆ − ∆ ≡ − ∆ − ∆ + ∆ ≡ − ∆ + ∆ + ∆ ≡ ∆ − ∆ − ∆∊ ∊ ∊ ∊

15 2 13 3 12 2 4 15 2

1 1 1 1 2 2 1 26 (42 3) (144 32 3) 0z a z a a z a a a a a− − + + + − − =⋯

4

2
1 2

2

32 3

144

a
a

a

+
=



A solution for the unsolved Sawa Masayoshi´s problem (1821)  From a Sangaku of the Syosya temple 

Jesús Álvarez Lobo  Oviedo  Asturias  SPAIN 

Appendix D. Warnings about the polynomial 6th degree equation (2.54). 
 
One of the roots of  the sextic (2.54), expressed in its most compact form, 
 

 
 
 
 
 
 

 
 

(D.01) 
 
 
 
 
 
 
 
 
 

is the eccentricity ε of the ellipse, in terms of a, b, c and r, but this equation could be unsolvable by radicals.  
 
As a “warning to sailors”, it can be useful to reproduce the following chain of thoughts: we know that (D.01) has to have, at 
least, one real solution, and taking into account that not real roots appear only in pairs of conjugate complex, necessarily, the 
number of real roots have to be even, and by the uniqueness of the solution discussed before, we´d can think (wrongly) that 
the unique real solution of this equation has to have multiplicity 2, 4 or 6, and, therefore, the derivative of this polynomial 
should preserve the same real root, allowing the substitution of the before equation by the following: 
 

(D.02) 
 

 
But c1 = 0, therefore, (D.02) can be written as, 
 

(F.03) 
 

 
At this point, we would think that the lack of the first grade term in ε  in the equation (D.01) should be the key for the door 
to the solution, since it allow to get down one grade more by elimination of the common factor ε  in (D.03) (it has been 
proved yet that the solution ε = 0 it isn´t admissible), getting finally the following quartic:  
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Unfortunately, the hypothesis that the equation (F.01) has one unique manifold real root can´t be proved, hence, it isn´t 
warranted to reach the solution trough this path. Indeed, for the numerical example presented in 2.11, the six roots of (2.54) 
are all real and different. 
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Appendix E. 
 
Exploring another ways. 
 
The transformation by inversion, the most widely-used method in Sangaku 
challenges, applied to the ellipse, transform its canonical equation into a 
quartic equation which is much more complicated. 
 
For instance, the curves on the right picture arise from the mapping 
 
 

 

by inversion on the unit circle, that transforms the ellipse 
 
 
into the quartic 
 

 
 
It is neither possible to simplify the problem trough affine transformations, since an affinity that transform the ellipse into a 
circumference, it also will transform, at the same time, the circumferences into ellipses.  
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Sujatha Ramdorai: Tell us a little about yourself.

Tony Rothman: I’m a theoretical physicist who has 
specialised in general relativity and cosmology. Most of 
my research has concerned the very early universe and 
black holes. I am just finishing a six-year appointment 
in the physics department at Princeton University and 
will be teaching at The College of New Jersey in the fall. 
I’ve also done a fair amount of writing for the general 
public (sometimes I hesitate to call it “popular”). Quite 
recently I published my tenth book, Firebird, which is 
a novel set in a fusion-research laboratory. I think it is 
unusual in that it isn’t science fiction, but an attempt 
to base a novel on real science. To the best of my abili-
ties the science is totally accurate and, unfortunately, 
the politics too. I’ve also just drafted a play about the 
famous sixteenth-century Cardano–Tartaglia feud over 
the cubic equation. It’s been fun, but difficult. One 
question has been how “accurate” to make it. Much of 
what is written about it in the semi-popular literature 
is nothing more than fairy tales. Several recent books 
have Tartaglia causing Cardano’s arrest for heresy —  
13 years after Tartaglia died! At any rate, it’s something 
that I needed to get done.

Interview with Tony Rothman
Sujatha Ramdorai

Tony Rothman

SR: What appealed to you in the Sangaku story and 
Hidetoshi’s work that you decided to collaborate on 
the book?

TR: While in high school my favourite math subject was 
certainly geometry. I think mathematicians have either 
algebraic imaginations or geometric imaginations. I 
don’t consider myself a terribly creative mathemati-
cian — like most physicists I use mathematics to solve 
problems — but my own imagination is certainly 
geometric. I suspect this is one reason I fell in love with 
relativity, which is a very geometric subject. My contact 
with Sangaku came about during a very specific space-
time event. One day, as I recall, in winter 1989–1990, I 
stopped by Freeman Dyson’s office at the Institute for 
Advanced Study in Princeton. We were probably just 
planning to have lunch. As soon as Freeman raised his 
hand to say hello, he said, “Take a look at this,” and 
handed me the Sangaku-problem book Hidetoshi had 
just published with Dan Pedoe, who had been Free-
man’s math teacher long ago in England. I had abso-
lutely no idea of what “Sangaku” or “temple geometry” 
meant. As I leafed through the book with dropped jaw, 
Freeman stood there laughing. I found the problems 
visually striking, quite different from anything I had 
seen in school — they even looked Japanese. But the 
main impression was how damn difficult they were. 
For all my love of geometry, I quickly realised to my 
embarrassment that I hadn’t the faintest idea of how 
to solve most of them. The fact that they were found 
in temples and had evidently been largely created by 
farmers and peasants was an additional embarrassment, 
not to mention extremely intriguing. I bought a copy of 
the book for myself, worked on some of the problems 
and eventually contacted Hidetoshi about a possible 
Scientific American article, which I wrote with his 
assistance. The article sat at the magazine for three years 
before it was published — even though I had been an 
editor there. When it finally appeared, it proved fairly 
influential — I think it was the first major piece in the 
West about Sangaku — and it helped make temple 
geometry part of the world heritage of mathematics. 
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So I am happy about that. I hadn’t initially intended to 
write an entire book about temple geometry. I prefer 
to write fiction, actually, but it has become almost 
impossible to get fiction published. And so, around 
2005, when all my fiction projects had collapsed, I 
contacted Princeton University Press about doing a 
book on Sangaku and the editor there, Vickie Kearn, 
quickly agreed (literally within about twenty minutes, 
although it was actually the second time I approached 
them; a previous editor had expected me to pay for it!) 
I did all this without even telling Hidetoshi, but he was 
quite glad to hear the news.

SR: One of the things that strikes the reader — and 
which you comment yourself — is the aesthetic side of 
the Sangaku. What are your thoughts on this.

TR: As I said, I found the problems quite beautiful — 
miniature Japanese works of art. Like most scientists, I 
suspect, I am drawn to “clean” artwork — I am always 
struck by how many of my colleagues have collections 
of African art, and I do as well. Japanese art certainly 
fits the bill. In fact, I think the Japanese are incapable 
of creating anything ugly. I was also struck by the 
asymmetry in many of the problems, compared to the 
Greek-inspired problems we all face in high school. 
From Daisetz Suzuki’s books on Zen, it seems that 
asymmetry is a characteristic feature of Japanese art. So 
I suspect that the whole aesthetic of Sangaku evolved 
from the Japanese artistic aesthetic. I’m certain that 
many of the problems evolved from everyday situa-
tions and objects — like fans, which are really sectors 
of circles, and origami designs. The tablets themselves 
are also beautiful, brightly coloured, and in one case, 
surrounded by a striking dragon frame.

SR: Can you tell us more about the whole collaborative 
process?

TR: It wasn’t easy. To this day, Hidetoshi and I have 
never met. I don’t speak any Japanese and his English, 
although it’s improved over the years, is far from 
his native language. The whole thing was done by 
email. Over the two years we worked on it, I’d guess 
we exchanged about a thousand emails. Luckily, 
mathematical terminology is limited and, usually, 
well defined, but sometimes we would exchange ten 
emails just to clarify one sentence.  Hidetoshi is the 
expert on Sangaku; my role was basically editorial. He 
would send me the raw material and I would check 
it for errors and rewrite the problem statements into 

respectable English. The intro chapters I wrote pretty 
much from scratch. Also, I wanted the book to appeal to 
non-mathematicians, so I tried to avoid technical terms 
when possible, even when they might have made things 
clearer to geometers. We had some organisational issues 
as well. Hidetoshi wanted to organise the book by tablet, 
but this resulted in very easy problems being placed side 
by side with nearly impossible problems, and I felt that 
this would discourage a lot of readers, not to mention 
make presentation of solutions extremely difficult. So 
I reordered everything, placing easy problems first 
and harder problems later. Most of the solutions were 
either traditional or Hidetoshi’s, but I also contributed 
a few and did all the line drawings, mainly because 
Hidetoshi’s drawing software wasn’t compatible with 
anything I had. The whole thing ended up being a 
gigantic jigsaw puzzle. From a design perspective, it 
was certainly the most complicated book I’ve worked 
on. The Princeton University Press art director, Dimitri 
Karetnikov, was very helpful in this regard.

SR: Has working on this project led you to explore 
other areas of “Japanese Science” or other forms of 
Japanese knowledge or culture, especially from that 
period or earlier?

TR: I am not a scholar of Japanese culture — and 
don’t speak Japanese — so I haven’t plunged far into 
related areas, but I am intrigued by certain aspects 
of Japanese mathematical history, which seem to 
me not well understood. For instance, the feudal 
Japanese mathematicians didn’t know calculus — at 
least what we regard as calculus — and we don’t know 
anything about how they handled differentiation. Yet 
some Sangaku problems seem to require differential 
calculus for their solution. It is a mystery to me how 
the Japanese solved them. Also, there is a whole field 
known as “Rangaku”, literally “Dutch Learning”, which 
concerns foreign knowledge that seeped into Japan 
during the period of national isolation through the 
Dutch trading post on Deshima island. There seems 
to be quite a debate among scholars about just what 
the Japanese knew of foreign science and when they 
knew it, but the Wikipedia article on Rangaku, for 
example, isn’t very satisfactory. I would be interested 
in learning more about Japanese knowledge of foreign 
developments in mathematics. Finally, my Scientific 
American article and the book seem to have given 
people the impression that everybody in Edo-period 
Japan was creating Sangaku. It is difficult to estimate 
the number of original tablets, but even if there were 
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50,000, that would only be about 150 a year over three 
centuries, and that is surely an upper limit. Since many 
of the problems on different Sangaku are duplicates, I 
suspect that we have most of the problems that were 
created — only several thousand. So it may not have 
been such a widespread cultural phenomenon. One 
or two other Sangaku investigators have written to me 
about such matters and perhaps they should all get 
together and try to sort them out.

SR: The book is well publicised in the West. What have 
the reactions been to what one might call a “Coffee 
Table” book on mathematics?

TR: It was my intent from the start to create exactly 
the first coffee-table math book; I even called it that 
and I guess it has been received as such, although I 
don’t know of too many people who bought it just to 
look at the pictures. (Given the available resources, 
Princeton University Press did a good job. The book 
would have been even more beautiful if Abrams had 
published it, but it would have cost $100.) Most of the 
feedback I’ve gotten has been from mathematics faculty 
members at various universities who are planning a 
trip to Japan and would like to see a Sangaku in the 
flesh. I pass them on to Hidetoshi, who knows where 
they all are. (I should say that most of the original 
Sangaku have been removed from the temples and are 
either in museums or in temple storehouses, where you 
need prior permission to view them.) One interesting 
outcome is that an artist in Santa Fe, Jean Constant, 
has based a whole series of his and his students’ works 
on Sangaku. They’re quite striking. A furniture maker 
has also created a “sangaku” line. I’m always glad when 
science or math inspires artists, even if their creations 
are metaphorical. Nevertheless, in this case most of my 
mail has come from mathematics people.

SR: Tell us a little about your experience in this whole 
transcultural, mathematical journey that straddles 
two civilisations.

TR: I think I’ve already given some idea about that. In 
general I believe in culture shock — it keeps you on 
your toes. Certainly, to interact with someone from a 
different culture whom you’ve never met — especially 
by email — takes a lot of patience. The whole situation 
is a minefield for misunderstanding, and sometimes 
I think Hidetoshi and I blew each other up. When I 
taught in Korea a few years ago and would hang out with 
the students, the long silences made me uncomfortable, 

until they told me that silence was admired in their 
culture. Luckily, mathematics itself is universal. The 
problems were basically Euclidean geometry problems, 
and although the Japanese often attacked them with 
methods that wouldn’t have occurred to me, I was 
nevertheless able to understand what they were doing. 
I do feel that I wasn’t the ideal person to collaborate 
with on the book. A mathematician fluent in Japanese 
and versed in Japanese history would have been a better 
choice. My only qualification was that I stepped up to 
the plate.

SR: When did you actually first see a Sangaku in 
reality?

TR: Believe it or not, I never have. I’ve travelled widely 
around the world, and have lived for many years abroad, 
but for some reason have never been to Japan. As I just 
said, I wasn’t the ideal person to do this book. I hope 
someday to get there and then Hidetoshi will show 
me some.

SR: Did you notice anything different in the way the 
problems were posed and answered, compared to your 
own training in the West?

TR: Sure. The repeated, intricate use of the Pythagorean 
theorem was really ingenious, if at times cumber-
some. It’s amazing how much you can do with just the 
Pythagorean theorem. One eye-opener was the Japa-
nese way of dealing with ellipses, which is quite different 
from ours. The Japanese mathematicians viewed an 
ellipse as a slice through a right circular cylinder, not 
as a conic section. A circle inscribed in the ellipse was 
the projection of a sphere in the cylinder onto the 
slice. They could then use the Pythagorean theorem to 
connect the various important lengths involved. This 
“3-D” approach allows you to solve some really difficult 
problems, which I never would have been able to do 
using the usual equation for an ellipse. In fact, you don’t 
even need the usual equation for an ellipse.

I did find some of the problems ill-posed. Hidetoshi 
tells me this is a feature of traditional Japanese math-
ematics. For instance, take problem 7.12 in the book, 
which is an unsolved problem in which you are asked 
to find the radius of three identical circles, two of which 
are inscribed in an ellipse, which is itself inscribed in 
a right triangle along with the third circle. It wasn’t at 
all clear to me at first that there even was an analytic 
solution. Recently Jesu Alvarez Lobo from Spain has 
sent me his solution. I haven’t worked through it, 
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but it seems to be a tour-de-force, over thirty pages 
(arXiv:1110.1299). He does find an analytic, closed 
solution for an isosceles right triangle, but for the 
general case he can only get an implicit solution. Some 
of the traditional solutions are from another galaxy. 
We are often taught to draw auxiliary lines in high 
school geometry courses to solve problems. In at least 
one Sangaku problem (6.3), the author of the solution 
introduces an entire auxiliary circle, which at first seems 
to have nothing to do with the problem whatsoever. 
I doubt I’d ever have thought of that solution. And 
again, it wasn’t entirely obvious to me that there even 
was one. Lobo showed that the solution exists only for 
a particular base angle of the isoceles triangle involved 
in the problem. Also, many of the solutions, especially 
by Yoshida Tameyuki, assume rather sophisticated 
lemmas or other steps, which aren’t stated. I don’t know 
whether Yoshida just assumed everyone knew them or 
what, but I doubt I’d ever present a proof with so many 
important details missing. One thing I learnt, is that 
to solve these intricate Sangaku problems, you have to 
make a really good drawing, not just a sketch. And in 
proving things about triangles you should never draw 
a 45-degree line.

SR: There were algebraic, arithmetic as well as 
geometric problems that were posed, though geometry 
seems to have been the most popular. Some of the 
problems, as you observe in the book have appeared 
in other guises in other cultures. Why do you think 
Geometry was more popular?

TR: Many problems, both algebraic and geometric, 
pop up in different cultures, just as most scientific 
discoveries are made multiple times. I don’t know 
whether the duplication of the math problems was 
due to cross-fertilisation by “word of mouth” over the 
centuries, or whether they cropped up independently. 
Certainly every time I do something in physics, no 
matter how obscure it seems, somebody else always 
claims to have done it first! If geometry problems have 
been more popular, it must be because of the visual 
appeal, and in some sense geometry is easier than 
algebra. Even if you are algebraically challenged, as I 
often am, you can often solve problems geometrically, 
and many of the basic geometric theorems regarding 
angles and so forth are pretty self-evident, so you don’t 
really have to prove them before solving a problem. 
In writing this play about Tartaglia and Cardano, I 
was looking at the Tartaglia–Cardano solution to the 
depressed cubic equation. They did this before modern 

algebraic notation existed and so you might think it 
really hard. But to find the cubic formula is actually 
really easy if you think geometrically and remember 
that a cubic equation must give the volume of a cube. 
If you slice up the cube as those fellows did, the cubic 
formula falls out almost immediately. It’s a good lesson. 
Nowadays we have algebratised geometry to such an 
extent that we’ve often make things more complicated 
than they really are.

SR: “Sacred Math”, “Temple Geometry”.... In the West 
it would almost be anachronistic to juxtapose science 
and the spiritual in this manner, yet this appears 
natural in the East. Especially the thought of the 
problems and solutions being offerings to the divine! 
What are your thoughts on this....

TR: The idea that mathematical tablets were presented 
as religious offerings is very appealing to me, but 
of course, the Buddhist idea of God, or the divine, 
is much more abstract than Western ideas. Some 
readers of our book have suggested that our use of the 
word “God” in the translation of some of the tablet 
inscriptions may not be accurate. Unfortunately, since 
I don’t know Japanese, I am unable to say. Russians 
often speak of “lighting a candle to God”, whether they 
are talking about creating a work of art or solving a 
scientific problem. That’s more or less how I feel about 
it, although in my case “God” may be even vaguer than 
it is for the average Buddhist. I think, though, that 
Sangaku served several purposes. Since hanging tablets 
in temples and shrines was a long-established tradition 
in Japan before the advent of Sangaku, one can’t rule out 
the possibility that many people were just doing it for 
“fun”, or maybe with about as much religious fervour as 
most Americans celebrate Christmas. Some tablets were 
apparently created by classes at small schools, called 
Jyuku, and almost certainly these were hung in the 
temples as advertisements for the school. In any case, 
since the Sangaku almost always contain an answer, 
but rarely the solution, they were pretty clearly issued 
as challenges to other “worshippers”.

SR: Any lessons you have learnt or any other related 
thoughts you might want to share?

TR: It’s become clear to me that geometry education has 
declined considerably, at least in the US. To write Sacred 
Mathematics, I consulted a number of textbooks that 
are currently used in high schools, but they were totally 
inadequate to solve most Sangaku problems. To write 
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the chapter on inversion, I needed to go back to texts 
that were literally a century old, e.g. Clement Durrell’s 
geometry. Inversion simply isn’t taught anymore, except 
in some advanced college math courses. And it’s not 
even that hard!

SR: Thanks very much for taking the time for the 
interview.
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