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Abstract

The Virasoro problem of string theory is traced back to the non-
intrinsic character of the dynamics of string theory, meaning that the
dynamics depends too much upon the normal directions to the string.
This is the disadvantage of the worldsheet formulation of Polyakov as
well as Nambu and Goto and bcomes particularly clear in the context of
covariant quantum theory.

1 Introduction.

The Virasoro problem in string theory arises most clearly in the covariant quan-
tization where one has hermitian generators Ln with n ∈ Z which have to be
regarded as constraints; that is physical states have to satisfy Ln|Ψ〉 = 0 for
n 6= 0 and L0|Ψ〉 = a|Ψ〉 with a 6= 0. The Virasoro algebra without central
anomalies c(n),

[Ln, Lm] = i(n−m)Ln+m + c(n−m)1

makes this impossible given that

0 = [Ln, L−n] |Ψ〉 = 2inL0|Ψ〉 = 2ina|Ψ〉

which contradicts a 6= 0. The “fix” of the problem is to keep the constraints
Ln|ψ〉 = 0 for n > 0 while dropping the others. This leads to physical opera-
tors changing particle species, spin and angular momentum causing all known
conservation laws of particle physics to fail (but not largely in practice). The
downside is that the geometrical description of the theory is totally lost at the
quantum level even in a Minkowski background and that everything becomes
therefore gauge dependent. This is not expected given that quantum theory
works perfectly fine for flat geometries and we shall trace back the problem
to the non-geometric character of quantum theory itself. In that context, the
worldsheet formulation evaporates and only reparametrisations of the type t′(t)
and s′(s) can be made such that the Virasoro problem dissapears giving rise to
two mutually commuting symmetry algebra’s as the full symmetry algebra.

2 Strings from the viewpoint of covariant quan-
tum theory.

Given a closed string worldsheet γ(t, s), we define two vectorfields V = ∂tγ(t, s)
and Z = ∂sγ(t, s) where t ∈ [0, T ] and s ∈ [0, L] with periodic boundary condi-
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tions; obviously [V,Z] = 0.

The law one is looking for clearly is of the kind

∇VV = F(V,Z,∇ZZ,R(V,Z)V,R(Z,V)Z,h)

where A = ∇ZZ is a kind of acceleration, h the, possibly degenerate, metric on
the string and all Riemann curvature terms involve the intrinsic geometry of the
string. The problem so far is that the velocity field V is randomly chosen and
that therefore it is desirable to impose constraints on ∇VZ. We have basically
two types: (a) one involving the extrinsic geometry and the latter only the
intrinsic geometry. In other words, we have (I)

∇VZ = G(V,Z,∇ZZ,R(V,Z)V,R(Z,V)Z,h)

or (II)
g(∇VZ,V) = P (V,Z,∇ZZ,R(V,Z)V,R(Z,V)Z,h)

whereas a condition of the kind

g(∇VZ,Z) = Q(V,Z,∇ZZ,R(V,Z)V,R(Z,V)Z,h)

is meaningless given that consistency would bring it down to an algebraic con-
dition on g(Z,Z). Such theories are usually empty and therefore not interesting
at all.

One has to demand now that the dynamics preserves the constraint; that is

∇V∇VZ = ∇VG = R(V,Z)V +∇ZF

a consistency condition. Note that

∇Z(R(V,Z)V) = (∇ZR)(V,Z)V −R(G,Z)V + R(V,A)V −R(V,Z)G

which can be reduced to, by means of the second Bianchi identity to

∇Z(R(V,Z)V) = (∇VR)(V,Z)Z + R(Z,G)V + R(V,A)V −R(V,Z)G.

On the other hand, a similar compuation gives that

∇V(R(V,Z)Z) = (∇VR)(V,Z)Z + R(F,Z)Z + R(V,G)Z + R(V,Z)G

where no second Bianchi identity has been used and the other terms do not allow
for comparison between F and G by means of the latter identity. Contractions
with the spacetime metric do allow for further use of the first Bianchi identity
and gives rise to a larger margin to construct stringy laws. Hence, in light of
the conservation law for the constraint,

F(V,Z,∇ZZ,R(V,Z)V,h)

and
G(V,Z,∇ZZ,R(V,Z)Z,h)

with
δF

δR(V,Z)V
=

δG

δR(V,Z)Z
.
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We also have that
δG

δZ
4G +

δG

δV
4F +

δG

δA
4∇VA

=
δF

δR(V,Z)V
4(−R(G,Z)V+R(V,A)V−R(V,Z)G−R(F,Z)Z−R(V,G)Z−R(V,Z)G)

+
δF

δZ
4A− δF

δV
4G +

δF

δA
4∇ZA + R(V,Z)V.

From a generalist point of view, this would suggest

−R(G,Z)V+R(V,A)V−R(V,Z)G−R(F,Z)Z−R(V,G)Z−R(V,Z)G = 0

as well as

δG

δZ
4G+

δG

δV
4F+

δG

δA
4∇VA =

δF

δZ
4A− δF

δV
4G+

δF

δA
4∇ZA+R(V,Z)V.

It is immediately seen that, in general and independent of this ansatz,

δF

δA
= 0

given that higer spatial derivatives do not occur elsewhere in the formula and
therefore

F(V,Z,R(V,Z)V)

given that we have already neglected h. On the other hand

∇VA = R(V,Z)Z +∇ZG

which implies that
δG

δA
= 0

due to consistency given that no algebraic relations are allowed for between
higher spatial derivatives. Hence,

G(V,Z,R(V,Z)Z)

and we conclude from the remaining master equation that only intrinsic con-
tractions of the Riemann tensor with V,Z are allowed for to eliminate the nasty

R(V,A)V

term. This however happens in two different ways g(R(V,A)V,V) = 0 identi-
cally whereas contractions of the kind

g(R(V,Z)V,Z)

require a balancing between

δF

δR(V,Z)V
4R(V,A)V

and
δF

δZ
4A
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in the sense that they have to be equal to one and another due to the first
Bianchi identity. As a conclusion, we further specify that

F = X(V,Z,g(R(V,Z)V,Z))V + Y (V,Z,g(R(V,Z)V,Z))Z

which automatically satifies this requirement by means of symmetries of the
Riemann tensor. This further limits

G = R(V,Z,g(R(V,Z)Z,Z))V + S(V,Z,g(R(V,Z)Z,V))Z

with
δX

δg(R(V,Z)V,Z)
= − δR

δg(R(V,Z)Z,Z)

and
δY

δg(R(V,Z)V,Z)
= − δS

δg(R(V,Z)Z,Z)
.

This shows that ∇ cannot be the Christoffel connection of a Riemannian metric
and R its associated Riemann tensor. Although the Riemann tensor of any con-
nection satisfies the second Bianchi identies, the first Bianchi identies and the
associated symmetries of the Riemann tensor follow from the metric and tor-
sionless character. Therefore, the connection needs torsion for the subsequent
analysis to hold.

Given that one would expect only curvature to occur in the acceleration law of
the string and moreover that the acceleration is of the geodesic type so that the
sring t coordinate is nothing but a rescaling of the geodesic time, reparamen-
trization invariance has to be given up in the light of the fact that no g(Z,Z)
or g(Z,V) terms may occur due to an inappropriate appearance of A in the

δF

δZ
4A

term. Therefore,

∇VV =
c

L3
g(R(V,Z)V,Z)V

where c is the speed of light and L has units of meters. This is the correct
way of looking at it given that the curves are ordinary geodesics again but then
reparametrized in a way as to balance the tidal forces; t can be reparametrized
but generally speaking only one worldline of a point of the circle can have
unit time parametrization. This is a salient feature given that strings will not
induce superluminal effects in this way by means of its nonlocal character. In
particular, we have that if x is a point past to the string and V is a future
pointing timelike vectorfield, then the entire string will remain within I+(x).
Finally,

∇VZ = K(g(V,Z),g(V,V),g(Z,Z))V+

− c

L3
g(R(V,Z)Z,Z))V + L(g(V,Z),g(V,V),g(Z,Z))Z.

The consistency equation has now been reduced to

δG

δZ
4G +

δG

δV
4F =
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− δF

δR(V,Z)V
(R(G,Z)V + R(V,Z)G + R(F,Z)Z + R(V,G)Z + R(V,Z)G)

− δF
δV
4G + R(V,Z)V.

As expected one page ago, this equation can only have solution in case R(V,Z)V
equals its projection on the string worldsheet determined by the V,Z plane
which is in general impossible except for Einstein spaces. Therefore, it might be
possible to develop a type I string theory for Einstein spaces with torsion but
given such restriction it is utterly clear that type II is the only physical case.

Here, we might try to arrive at a theory with equation of motion

∇VV = F

and constraint equations

g(V,∇VZ) = αg(V,G)

g(Ei,∇VZ) = αg(Ei,G)

1

2
g(∇VZ,∇VZ) = αg(∇VZ,G)

where Ei is a n− 2 bein orhogonal to V,Z. In vector language, this gives

∇VZ− αG = W

with W perpendicular to the n− 1 plane defined by V,Ei. Moreover,

g(W − αG,∇VZ) = 0.

Hence,
g(W,W) = α2g(G,G).

The structure of these equations is as such that they are preserved during time
evolution. Time evolution of the first gives

g(F,∇VZ) + g(V,R(V,Z)V) + g(V,∇ZF) =

αg(F,G) + αg(V,∇VG)

which generically leads to

g(F,∇VZ− αG) = 0, g(V,R(V,Z)V +∇ZF− α∇VG) = 0.

The other equations are

g(Ei,R(V,Z)V +∇ZF− α∇VG) = 0

and
g(∇VZ,R(V,Z)V +∇ZF− α∇VG) = 0

supplemented with
g(∇ZF + R(V,Z)V,G) = 0
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which obviously gives the same problems as before. It appears some more
delicate analysis is necessary: clearly, one would like

∇VV = F(V,Z,A,g(R(V,Z)V,Z))

given that Z is chosen according to arc length and evolution should only depend
upon the intrinsic geometry and only as far on the directions perpendicular to
the infinitesimal string surface as the acceleration goes. That is

g(Z,A) = 0

and one would like to preserve this property under evolution, in either keep it
as a constraint. Time evolution gives

g(∇VZ,A) + g(Z,∇Z∇VZ) = 0 = ∇Z(g(Z,∇VZ)).

Therefore, we should add as constraint

g(Z,∇VZ) = ∇Zg(Z,V)− g(A,V) = 0

which follows from
g(Z,V) = g(A,V) = 0.

In ordinary string theory in flat Minkowski F = A for a Lorentzian flat world-
sheet metric and F = −A for a Riemannian worldsheet metric and the former
two conditions give by means of the equation of motion

g(Z,V) = ∇Vg(V,V) = 0.

The first of those is the usual Virasoro constraint

∂tγ.∂sγ = 0

whereas the second equals
∂t(∂tγ.∂tγ) = 0

which is the time derivative of one of the other constraints. Our original con-
straint was

∂s(∂sγ.∂sγ) = 0

which is the space derivative of the last Virasoro constraint. It is now possible
to impose the constraints

g(Z,V) = 0 = g(V,V) = g(A,V)

where we have eliminated one integration function depending upon s only. One
could leave a positive integration constant

g(V,V) = γ

so that strings would move on timelike curves excluding therefore massless par-
ticles in their description. Similarly, we could demand that

g(Z,Z) = 0
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where we have eliminated a space integration constant β arising from

∇Zg(Z,Z) = 2g(A,Z) = 0.

We show now that the remaining three constraints close under time evolution

∇Vg(V,Z) = g(F,Z) + g(V,∇VZ) = g(F,Z)

where we have used the torsionless character of the Levi Civita connection and
the commuting of the coordinate fields. This does not impose any constraints
on the F field given the constraints. Finally

∇Vg(V,V) = 2g(V,F) = 0

for similar reasons and

∇V∇Vg(V,V) = 2∇Vg(F,V) = 2g(∇VF,V) + 2g(F,F) = 0

where the last equality only holds in case

g(κ(g(R(V,Z)V,Z),A)∇VZ,V)+g(δ(g(R(V,Z)V,Z),A)∇VA,V)+δ2(g(R(V,Z)V,Z),A)g(A,A) = 0.

In particular, the equation reduces by means of the torsionless character to

δ(g(R(V,Z)V,Z),A) [g(R(V,Z)Z,V) + g(∇Z∇ZV,V)]+δ2(g(R(V,Z)V,Z),A)g(A,A) = 0

where

g(∇Z∇ZV,V) = −g(∇ZV,∇ZV) = 2g(∇ZV,V)g(∇ZV,K)+2g(∇ZV,Z)g(∇ZV,L)

−
n−4∑
i=1

ηii(g(∇ZV,Ei))
2

where ηij is an n− 4 dimensional Lorentzian vielbein in the remaining orthog-
onal space assuming a spacetime metric with three time directions and linearly
independent V,Z. Obviously, the helicity components only remain in the sense
that

g(∇Z∇ZV,V) = −
n−4∑
i=1

ηii(g(∇ZV,Ei))
2.

There is something extremely important about g(∇Z∇ZV,V) which we expect
to happen and that is that it equals

±g(A,A).

In general, there is a deep connection with the equation of motion so that it is
wise to suggest that

δ(A,g(∇ZV,∇ZV),g(R(V,Z)V,Z))

which we are free to since it does not intervene with our previous analysis. That
is, we have found a consistent theory with constraints

g(Z,Z) = g(V,Z) = g(V,V) = g(F,V) = 0
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supplied with the condition

F(A,g(R(V,Z)V,Z),g(∇ZV,∇ZV)) =
g(R(V,Z)V,Z) + g(∇ZV,∇ZV)

g(A,A)
.

Classically, these equations cannot be solved for in a spacetime with a Lorentzian
signature unless V ∼ Z which is rather boring and actually occurs in “string
theory”. It therefore appears clear that standard string theory would require at
least two independent time directions which would endager the whole edifice of
causality and make no sense at all unless those time directions are compactified
of some sort and far beyond our scale of observation. Hence, a fibre structure
is needed for the spacetime manifold with a four dimensional Lorentzian base
manifold and Lorentzian fibre. In standard quantum theory of the string with
a Lorentzian world sheet and spacetime metric, one solves for right and left
moving strings which should be kept strictly separate to impose the constraints.
Alas, such line of reasoning is inconsistent with the Heisenberg commutation
relations given that V and Z should fluctuate independently; hence, the Virasoro
problem. In our setup, there are two possibilities, either one keeps β < 0 so
that g(Z,Z) = β and therefore Z is always spacelike involving F(V,A) or one
goes over to the higher time formalism such that the projection of Z on the base
manifold is spacelike and varying in case the fibre is one dimensional and the
standard Virasoro picture with a more general force field may hold.

We now discuss these things in the next section. The real reason why in a
general spacetime the left and right moving modes cannot be defined is due to
the dependency of the metric on the string world sheet coordinates and hence
world sheet coordinates must be endowed with a spacetime geometric meaning
which is precisely what happens here. In the standard Minkowski quantization,
this feature does not arise and therefore the standard procedure gives the wrong
results due to the wrong signature of spacetime. Finally, if one would insist upon
one string theory to describe the entire particle spectrum, then it is utterly clear
that the ultrahyperbolic fibre picture with a Riemannian flat world sheet metric
is obliged for. It is this picture we shall further develop in subsequent chapter.

3 Quantization of the string.

In ordinary particle theory, we look for the little group of the momentum vector
which for massive particles equals SO(3) and for massless particles E2, the Eu-
clidean group in two dimensions at least if the spacetime dimension equals four.
To have a similar thing in string theory, we need to go to 7 = 2 + 5 dimensions
where the little group is SO(3)×R3 = E3 taking into account that the helicity
has to be perpendicular to V as well as Z. This provides one with a richer
particle spectrum and suggests that massive particles can travel at the speed of
light in case Z resides exclusively in the fibre. The velocity field, being timelike,
then has the speed of light in the base four dimensional spacetime which is a
contradiction to standard particle theory. In plain words, the string is entirely in
the fibre and behaves as a point particle from the point of view of the observer;
this is a violation to Einstein’s mass formula and in conflict to special relativity.
It is clear that the string veloity needs to have a timelike component in the fi-
bre manifold for a massive particle to arise; clearly, mass quantization can only
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occur when the bulk momenta are quantized which necessitates closed timelike
curves in the fibre. Therefore, mass and in particular the mass gap, are dynam-
ical quantities closely related to the microscopic structure of the timelike fibre
which are in turn determined by the string length which suggests that the fibre
is incapable of blowing up given a fixed string length scale. On the other hand,
given that the fibre winding number cannot increase and the string length is
fixed, formation of singularities of the bulk is excluded unless the string expands
drastically in the base manifold in which case it beoomes extremely heavy as
an ordinary base spacetime particle (the mass increases much more if there are
extra spatial dimensions in the fibre added). Therefore, local mass eigenstates,
in the sense explained below, appear to be stable unless the dynamics forces the
strings to blow up in which case the mass runs astray.

In order to go over to the quantum theory, let us first define the suitable strings
ζ(t, s) where t ∈ R+ and ζ(0, s) ∼ S1. Let R be the projection of Z on the plane
perpendicular to T = ∂tζ(t, s). Such hyperplane is always an n− 1 dimensional
Lorentzian, ultrahyperbolic or of a null-Lorentzian geometry. We propose now
the following dragging law

∇TT = F(T,R,A,g(R(T,Z)Z,T),g(∇ZT,∇ZT))

with

g(V,T) = g(V,A) = g(Z,Z) = g(T,Z) = g(V,V) = g(T,A) = 0

and
∇TV = F(V,R,A,g(R(T,Z)Z,V),g(∇ZT,∇ZV)).

Also, it is necessary to make g(T,T) = λ into a constant with respect to T
and Z. Before we check that these constraints are preserved under evolution
∇T, we must remark that it requires at least a 3 + 5 picture of spacetime or
a four dimensional Lorentzian base space with a three dimensional negative
Lorentzian fibre. This may sound unappealing but it has some potential to
explain the origin of time in our universe as a kind of symmetry breaking due
to small extra time dimensions.

First of all, it is easy to convince oneself that all those constraints are necessary;
in case one chooses the constraint

g(V,T) = 0

to start with, then time derivation gives

g(F(V,R,A,g(R(T,Z)Z,V),g(∇ZT,∇ZV)),T)+g(V,F(T,Z,A,g(R(T,Z)Z,T),g(∇ZT,∇ZT))) = 0

which suggests
g(V,Z) = g(V,A) = 0

and
g(T,A) = 0

as well. To be precise, the string we have so far is a worldsheet ζ(t, s) where
T = ∂tζ(t, s) and Z = ∂sζ(t, s); V is treated as a vectorfield along ζ(t, s) and
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serves to infinitesimally thicken the worldsheet ζ(t, s, r) where the thickening is
a possibly nonholonomic in the sense that V does not need to commute with
T,Z for r ∈ (−ε, ε) and all previous equations only hold for r = 0. We are now
in position to compute the time evolution of g(V,Z) = 0 which results in

g(F(V,R,A,g(R(T,Z)Z,V),g(∇ZT,∇ZV)),Z) + g(V,∇TZ) = 0

which suggests F not to depend upon Z, g(A,Z) = 0 and g(V,∇TZ) = 0. The
preservation in time of the former condition gives

g(∇Z∇TZ,Z) + g(A,∇TZ) = 0

which results again in
∇Zg(∇TZ,Z) = 0.

This constraint is as usual replaced by considering that

g(∇TZ,Z) = 0

giving rise to
g(T,Z) = ρ

which is equivalent to
∇Tg(Z,Z) = 0.

Time evolution of the former constraint gives rise to ρ = 0 or a further func-
tional restriction to F(A,g(R(T,Z)Z,V),g(∇ZT,∇ZV)) and g(T,T) = λ.
This constraint is only preserved only in case g(T,T) = 0 or in case the for-
mer restriction on the force field holds which is the minimal case in a sense.
The former condition is clearly nonsensical so that quantum theory imposes a
restriction on F which was not available classically; that is,

F(A,g(R(T,Z)Z,V),g(∇ZT,∇ZV)).

We shortly remark now that adding g(V,∇TZ) = 0 as a constraint is a hard
thing to do as it is generally not preserved in time t. The crucial remark however
is that we do not really need it if we restrict our force field as previously and
we shall simply add the constraints g(T,Z) = 0 = g(Z,Z) and g(T,T) = λ
to our portofolio instead of g(V,Z) = 0. To verify that time evolution of
g(V,∇TZ) = 0 gives trouble, we remark that

g(F(A,g(R(T,Z)Z,V),g(∇ZT,∇ZV)),∇TZ)+

g(V,R(T,Z)T) + g(V,∇ZF(A,g(R(T,Z)Z,T),g(∇ZT,∇ZT)))

which reduces further to

δ(g(R(T,Z)Z,V),g(∇ZT,∇ZV),A)g(A,∇TZ) + g(V,R(T,Z)T)−

g(∇ZV,A)δ(g(R(T,Z)Z,T),g(∇ZT,∇ZT),A).

It is clear that this constraint on ∇ZV is hard to preserve in time and therefore
the original constraint g(V,Z) = 0 is inadequate.

Remains to further investigate the consistency of the two remaining constraints;
one sees that the preservation of ∇Tg(Z,Z) = 0 in the sense that

∇T∇Tg(Z,Z) = 0
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is equivalent to

∇Tg(T,A) = 0 = δ(g(R(T,Z)Z,T),g(∇ZT,∇ZT),A)g(A,A)+g(T,R(T,Z)Z)+g(T,∇Z∇ZT).

Here,
g(T,∇Z∇ZT) = −g(∇ZT,∇ZT)

leading to

δ(g(R(T,Z)Z,V),g(∇ZT,∇ZV)) =
g(R(T,Z)T,Z) + g(∇TZ,∇TZ)

g(A,A)
.

Finally,
∇Tg(V,A) = 0

is fully equivalent for the defining equation of δ(g(R(T,Z)Z,V),g(∇ZT,∇ZV),A),
namely

δ(g(R(T,Z)Z,V),g(∇ZT,∇ZV),A)g(A,A)+

g(V,∇TA) = 0.

One moreover has that

g(V,∇TA) = g(V,R(T,Z)Z)+g(∇Z∇ZT,V) = −g(Z,R(T,Z)V)−g(∇ZT,∇ZV).

This gives F back its old functional description which shows the adequacy of
our approach.

It is clear that the constraint g(V,T) = 0 and especially its consequence
g(V,Z) = 0 are not be needed at all, but that it is possible to formulate an
alternative theory with constraints

g(Z,Z) = g(V,V) = g(T,Z) = g(T,A) = g(V,A) = 0

as well as g(T,T) = λ. It is easy to see that this theory closes and that it
regards another characterization of string momentum space where the classical
limit T ∼ V is more subtle. Note that this picture can be accomplished in a
2+5 setting and that the little group of a string generally is given by SO(3)×R3.
We now come to the characterization of quantal free string states.

4 Fourier transform for strings in covariant quan-
tum theory.

We shall be brief here and leave further development for subsequent work. It
is clear we have to consider φ(S,VS , S

′), where S is a null string parametrized
with arclength and VS is a null vectorfield defined on the string. Rescalings of
T and VS with a different constant leaves the physics invariant as it should as
occurs for null particles but not massive ones. Clearly, the previous evolution
equations for some T satisfying the appropriate constraints must bring S to S′

and define a transporter one vector, one co-vector bi-field Λ(S, S′) giving rise
to Λ(S, S′)(VS). Clearly, the correct equation is, for example, given by

d

dt
φ(S,VS , S

′; t) = i
κ

L

(∫ L

0

dsg(V(t, s, 0),T(t, s, 0))

)
φ(S,VS , S

′; t)
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with φ(S,VS , S
′; 0) = 1 and φ(S,VS , S

′; 1) = φ(S,VS , S
′). Here, κ is a dimen-

sionless constant and L is the string length which eliminates all affine rescalings
Z→ γZ from the theory. Trying to eliminate it would be a hopeless task since
the natural expression is given by

g(V(t, s, 0),T(t, s, 0))g(V(t, s, 0),Z(t, s, 0))

g(V(t, s, 0),V(t, s, 0))

which involves a division by zero and therefore makes little sense. In the second
quantum mechanical theory, the momentum factor is time independent and
given by ∫ L

0

dsg(V(0, s, 0),T(0, s, 0))

a salient feature completely analogous to the quantum theory of a point particle.
Regarding the first quantum theory, the energy factor vanishes which necessi-
tates further terms in the integral. There is however a term which does not
require a string length and is given by∫ L

0

dsg(∇ZV,T)

at least if the V field is treated in a dimensionless way. This integral can be
computed to be

−
∫ L

0

dsg(V,∇TZ) = −∂t
∫ L

0

dsg(V,Z).

This integral, however, is time dependent as the integrand cannot be written as
a total s derivative; indeed,

∂t

∫ L

0

dsg(V,∇TZ) =

∫ L

0

dsg(F(A,g(R(T,Z)Z,V),g(∇ZT,∇ZV)),∇TZ)

+

∫ L

0

dsg(V,R(T,Z)T)+

∫ L

0

dsg(V,∇ZF(A,g(R(T,Z)Z,T),g(∇ZT,∇ZT))).

This involves as usual ∇ZA which cannot be eliminated by any means and
produces terms which are not total Z derivatives. A salient feature of this
term is that the Fourier wave only depends upon the values of the fields on the
endpoints but somehow, the length of the path is not included. That is,

φ′(S,VS , S
′) = ei(

∫ L
0

ds g(V(1,s,0),Z(1,s,0))−
∫ L
0

ds g(V(0,s,0),Z(0,s,0))).

This term includes nonclassical stringy effects given that, classically, the V and
Z field must be perpendicular to one and another. The quantity measured here
involves “stringy” variations of the T field and are therefore not very important
from the particle perspective albeit they might indicate novel effects beyond the
standard model. To rescue the first string theory, we need another contribution
given that nothing else works. Considering∫ L

0

ds
g(∇ZV,∇ZT)

g(V,Z)

12



we now verify that the classical limit of the integrand makes sense. In particular,

g(∇ZV,∇ZT) = −g(∇T∇ZV,Z) +∇T∇Zg(V,Z)

which can be further computed to be

g(∇ZV,∇ZT) = −g(R(T,Z)V,Z)−g(∇ZF(A,g(R(T,Z)Z,V),g(∇ZT,∇ZV))),Z)+∇T∇Zg(V,Z)

and further

−g(R(T,Z)V,Z)+g(F(A,g(R(T,Z)Z,V),g(∇ZT,∇ZV)),A)+∇T∇Zg(V,Z)

leading to ∇T∇Zg(V,Z) = 0. Further calculation reveals,

−g(∇T∇VZ,Z) = −g(∇V∇TZ,Z)

which leads again to
∇Vg(∇TZ,Z) = 0

assuming that V is integrable at r = 0. It may be utterly clear that this integral
is not preserved in time indicating that the extensiveness of the string imposes
a drag on the phase of the Fourier wave going beyond parallel propagation with
a standard Lorentzian distance factor g(T,T). It appears utterly clear to me
that the second theory is preferred here and gives the most physical results.

5 The free string propagator.

The particular feature about the string propagator is that it involves an in-
finite dimensional integration over momentum space VS and we limit in the
subsequent analysis ourselves to a product manifold M × N where M is a
3 + 1 dimensional Lorentzian base manifold endowed with a 2 + 1 dimensional
Lorentzian fibre which are each for sake of simplicity of conceptuality taken flat
so that a string which is originally completely hidden in the fibre, meaning that
the Z,A field are within N and the T field has been chosen in M (albeit an
addition of the term γ(s)Z is possible), remains so. The T field is as such that
after parameter time one the string S specified above moves into a string S′

with nontrivial projection intoM due to s variations of the T field; that is, the
projection of ∂sT on the base is different from zero. Hence,

D(S, S′) =

∫
VS

dµ(VS)δ(g(VS ,VS))θM(VS)δ(g(VS ,A))φ(S,VS , S
′)

where we have chosen a time direction on M and θM(VS) concerns positivity
of the projection of VS on that time field. The problem here regards the usual
definition of the path integral as a limiting measure and dealing with the ultra
violet modes. Obviously, the approach goes by means of the Fourier transform
and take the limit of the modes to infinity after performing the subsequent real
coefficient integrals over the null modes perpendicular to the respective modes
of the A field.
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