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Crowding is a phenomenon where the identification of objects in peripheral vision
is deteriorated by the presence of nearby targets. Crowding therefore reduces the
extent of visual span, i.e. information intake during a single eye fixation. It is, thus, a
limiting factor of many everyday tasks, such as reading. The phenomenon is due to
wide area feature integration in the higher levels of visual processing. Despite the
critical role of the phenomenon, complex natural images have so far not been used in
the research of crowding. The purpose of the present study was to determine how the
crowding effect affects object recognition in complex natural images, and whether
the magnitude of the crowding could be modelled using methods introduced below.

The actual magnitude of the crowding effect was determined experimentally by
measuring contrast thresholds for letter targets of different sizes on various natural
image backgrounds. The results of the experiments were analyzed to evaluate the
developed methods. The methods are based on image statistics and clutter modelling.
Clutter models assess the complexity in the image. The image statistics and the clutter
models were combined with basic knowledge of the crowding effect. In addition, an
early visual system model was incorporated to assess the role of the visual acuity
across the visual field.

The developed models predicted the induced crowding effect in an arbitrary natural
image. The model of the visual system contributed to the results, as well. The
differences between the methods for assessing the image properties were, however,
negligible. Contrast energy, the simplest measure, can be regarded as the most
efficient.

Natural images can cause very strong crowding effects. The conclusion is that
predicting quantitative dimensions of the crowding effect in an arbitrary image is
viable. However further research of the subject is necessary for developing the
models. Computational assessment of the crowding effect potentially can be applied
to e.g. user interface design, assessing information visualization techniques, and the
development of augmented reality applications.

Keywords: Crowding, Visual system, Image statistics, Clutter, Natural images,
Modelling.
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Tekijä: Lauri Ahonen
Koulutusohjelma: Tietoliikennetekniikan koulutusohjelma
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Ärsyketungos on ilmiö, jonka vuoksi ääreisnäössä olevien kohteiden tunnistus heikke-
nee, mikäli kohteen läheisyydessä on häiriöärsykkeitä. Ärsyketungos on siis havain-
tokentän, eli yhdellä fiksaatiolla havaittavan kohdemäärän, kokoa rajoittava tekijä.
Tämä johtuu näköjärjestelmän korkeammilla tasoilla tapahtuvasta laajasta piirrein-
tegraatiosta kohteen ympäristössä. Kriittisestä roolistaan huolimatta ärsyketungos-
ilmiötä ei ole tutkittu monimutkaisilla luonnollisilla kuvilla (mikä tahansa valokuva).
Tässä tutkimuksessa tutkittiin, kuinka ärsyketungos vaikuttaa kohteen havaitsemiseen
monimutkaisissa luonnollisissa kuvissa. Lisäksi haluttiin selvittää voidaanko ilmiön
voimakkuutta ennustaa näköjärjestelmä malleja ja kuvien tilastollisia ominaisuuksia
käyttäen.

Ärsyketungos-ilmiön voimakkuus määritettiin kokeellisesti, mittaamalla kontrasti
kynnyksiä erikokoisille kirjainkohteille, jotka sijaitsivat luonnollisen kuvan päällä.
Kokeellisen osan tuloksilla validoitiin kehitettyjä metodeja. Metodit perustuivat
kuvan tilastollisiin ominaisuuksiin ja ‘clutter-malleihin’. Tilastolliset ominaisuudet
ja ‘clutter-mallit’ yhdistettiin sekä tutkimustietoon ärsyketungoksen ominaisuuksista,
että näköjärjestelmän tunnettuihin ominaisuuksiin. Näköjärjestelmä huomioimalla
pyrittiin arvioimaan spatiaalisesta näöntarkkuuden vaihtelusta aiheutuvia muutoksia
kuvan tilastollisiin ominaisuuksiin.

Kehitetyt metodit ennustivat mielivaltaisen kuvan aiheuttaman ärsyketungos-ilmiön
voimakkuuden. Myös näköjärjestelmän malli vaikutti tuloksiin. Erot eri laskenta-
mallien välillä olivat kuitenkin merkityksettömiä. Täten yksinkertaisinta metodia,
jossa laskettiin kontrastienergiaa, voidaan pitää tehokkaimpana.

Luonnolliset kuvat voivat aiheuttaa voimakkaan ärsyketungos-ilmiön. Pääteltiin,
että ilmiö voidaan ennustaa kohtuullisella tarkkuudella jo nykyisellä tietämyksellä,
mutta lisätuntemus ilmiön syistä ja mekanismeista mahdollistaisi tarkempien mallien
kehittämisen. Tällaisilla malleilla on sovellutuskohteita esimerkiksi käyttöliittymien
suunnitellussa, informaation visualisoinnin arvioinnissa ja lisätyn todellisuuden
sovellusten kehityksessä.

Avainsanat: Ärsyketungos, Näköjärjestelmä, Kuvan tilastolliset ominaisuudet, Lu-
onnolliset kuvat, Mallintaminen.
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CHAPTER

ONE

INTRODUCTION

The terms ‘vista’ and ‘hearsay’ are an example that emphasizes the fundamental role of
vision in the acquiring of information. Of all the senses, vision is considered as “the
window to reality”. This, however, is not entirely true. Vision is rather a process in which
a model of the environment is created using information in ambient light.

In reality, a tiny fraction of the information provided by the light in the environment is
processed by the visual system, and the observer becomes aware of even tinier fraction.
The incompleteness of the visual system creates an illusion, that we are, at all times, fully
visually aware of our surroundings. However, the structure and complexity of what is
perceived largely determines which part of the visual information one becomes aware of.

Visual perception consists of fairly well understood processes of feature detection and al-
most completely obscure processes of feature integration. In these processes the conception
of the surrounding reality is created. The detection processes decompose the information
and integration processes lead to object recognition and awareness of spatial positioning of
objects.

Feature integration combines and compresses the information provided by feature detec-
tion. The compression leads to partial unawareness about ambient objects. The feature
integration processes are largely unknown, but few exceptions exist. An example of early
feature integration is the formation of illusory contours. Illusory contours are perceived in
locations of apparent contours and can be detected with fMRI in the visual areas of the
brain [1].
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INTRODUCTION

The purpose of the present work is to study one of the most important by-products of the
feature integration processes: the crowding effect. The crowding effect is a phenomenon
that deteriorates peripheral vision. Because of crowding effect, the identification of e.g.
a letter in peripheral view is much harder in the presence of nearby objects, although the
ability to detect the letter is unmodulated [2]. The preservation of the ability to detect the
target, suggests that the effect is purely due to feature integration processes and not due
to feature detection inability. There are several studies about the nature of the crowding
effect and how it is related to feature integration processes of the brain.

The crowding effect has been suggested to be the restricting phenomenon for object
recognition. It is a real-world phenomenon with which designers of advertisements, people
working with information visualizations, and user-interfaces struggle. The phenomenon
is for example a determining factor for the saccade, i.e. the eye movement, frequency in
reading [3].

The characteristics that differentiate crowding from other masking effects in human vision
are

• Crowding preserves the ability to detect a target

• The distracters can be non-overlapping

• Crowding depends on eccentricity of a target

The crowding effect was first quantified by Bouma [4]. Bouma suggested that the effect
is related to the eccentricity of the target, i.e. how far in the peripheral vision the target
is located. He stated that flanking objects closer than d < 0.5φ modulate the ability to
identify the target, where φ is the distance of the target from the fovea, i.e. the most
accurate part of vision, expressed in visual angle.

Because crowding is a higher-level phenomenon in visual processing it also includes
many unsolved aspects. One of the main questions is the definition of an object. How is
the distinction between figure and ground made e.g. in natural images, i.e. images one
encounters in everyday life. Studies show that the crowding effect is largely determined
by the complexity of the visual pattern (target and flankers) [5]. Thus, if the target and
the flankers together produce an entity, the feature integration process is different and
crowding may be suppressed.

Another important aspect in the study of the crowding effect is its relation to perceptual
span. Perceptual span is the area of information intake with one glance. Perceptual span
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is closely related to crowding examined in the peripheral vision [6]. Also, the relation to
attention is under intensive debate [7].

Previous research has studied the crowding effect using a plain background with distinct
flanking objects. The present study was established to examine the crowding effect caused
by natural images. Examining the phenomenon in real complex imagery is crucial due to
the fundamental role of the effect in object recognition. The protocol of the study consists
of the evaluation of the crowding effect and outlining the influence of the early visual
system on the effect.

Computational models are incorporated in the research of visual processing to simulate and
evaluate the findings of psychophysical and physiological study. Computational modelling
have revealed unforeseen relations and facts of the neural basis of the processing. In the
present study, elementary models for assessing the influence of the crowding effect on
natural images were developed. The models are not neuronal but based on image statistics.
However, there is a certain degree of “bio-inspiration” in some of the elementary models.
In these models the features, i.e. the low-level image properties, are extracted from the
image in a similar manner to the early visual system. In addition to the feature extraction
the models also integrate the psychophysical results of the characteristics of the crowding
effect.

The extracted features were local contrast, contour orientation and entropy in the area
around the target. With the feature extraction, an assessment of the information intensity
of the image patch was generated. The information intensity that deteriorates the visual
perception is referred to as clutter. Clutter is an important concept in visual perception.
Rosenholtz et al. [8] define clutter as an excess of objects leading to degradation of
performance in visual perception.

The concept of clutter is adapted here to measure the crowding effect. The connection
between the concepts of crowding and clutter is not very simple. However the results show
coarse but congruent correlation between basic image properties and the intensity of the
crowding effect.

The structure of the thesis is as follows: The second chapter presents the literature of the
related subjects, i.e. the crowding effect, clutter and early visual system in general. The
third chapter introduces the methods used and the experimental part of the study. The
methods are the mathematical procedures used to resolve the image statistics and the
experiment is the psychophysical paradigm used. The results are presented in chapter four.
The main findings are discussed and the conclusions are presented in chapter five. The
program used in this study is presented in Appendix A.
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CHAPTER

TWO

REVIEW OF THE LITERATURE

This chapter reviews literature on the applicable parts of the wide field of vision science
essential to the purpose of the study. The physiology of the human visual system is
reviewed and related aspects of modelling are presented, in particular the phenomenon of
crowding.

2.1 Physiology of the Visual System

The human visual system consists of the eyes and a considerably large part of the central
nervous system that is linked to them. The system can be divided into following functional
parts: the optics of the eye, the retina in the fundus, the intermediate segments before
the visual cortex (LGN and superior colliculus) and, finally, a diversity of parts of the
neo-cortex, for example the areas called V1, V2, MT, and IT.

2.1.1 Optics of the Eye

The term ‘visible light’ refers to a certain energy range of electromagnetic radiation. Light
travels to the neural parts of the visual system via the optical system of the eye. The optical
system causes aberrations in the travelling light [9]. The optical system is, however, quite
efficient and retains most of the information unlike the latter parts of the visual system, in
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particular at locations outside the central visual field [10]. Thus, the optical system and its
transfer function can be omitted when considering the peripheral vision. However, optics
play an important role e.g. in preventing aliasing in the peripheral vision that is due to the
low sampling density of receptor cells [11].

The optical system of the eye includes the cornea, the lens, and the vitreum. The vitreum
fills the interiors of the eye around and behind the lens. The purpose of the parts of
the optical system is to refract the incoming light wave to form a sharp, focused, image
on the retina. Most of the refraction is caused by the difference in optical density and
associated refractory indices between air and the anterior surface of the cornea. In a
normally functioning eye the ability to accommodate to nearby objects is provided by
the lens. The refracting power of the lens is adjusted by the small ciliary muscle located
around the lens. The refraction properties are about 40D for the cornea and up to 17D for
the lens. The parts of the eye are presented in figure 2.1.

Pupil
Iris

Posterior chamber

Cornea

Anterior chamber
(aqueous humour)

Ciliary muscle

Vitreous
humour

Retina

Optic disc

Optic nerve Fovea

Vitreous
humour

Lens

Figure 2.1: The primary features of the eye. Figure modified from [12]
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2.1.2 Retina

The first neural component of the visual system is the retina. The retina consists of 60
to 80 cell types: 3−4 receptor cell types, circa 40−50 types of interneurons, and circa
15−20 ganglion cell types plus supporting and connecting tissue [13]. The anatomical
arrangement of the retina is reversed as compared to the neuronal signalling chain of the
visual system. On the anterior surface of the retina are the ganglion cells, and below the
ganglions the interneurons and receptors, respectively.

Photons with energy in the range of visible light cause a photochemical reaction cascade
called phototransduction when absorbed into the pigment molecules in the receptor cells
of the retina. Phototransduction takes place in the upper cell levels (interneurons) as well,
but it supports other functions of the eye, adjustment of the circadian rhythm among other
things. Phototransduction causes changes in the chemical consistence of a receptor cell due
to the transformation of the pigment molecules and reactions that follow the transformation.
Hence voltage-gated channels in the membrane are closed and the sodium-potassium
balance is disturbed. This alters electrochemical currents between the inner and the outer
segments of the cell finally causing a change in polarization. This complex reaction chain
is highly non-linear as well as the other electrochemical phenomena in the latter parts of
the visual system [14]. However, the problem can be (partly) linearized considering firing
rates, i.e. the frequency of polarizations, instead of potentials [13].

The photoreceptor cells consist of two segments: the inner and the outer segment. In a
non-stimulated state, i.e. in darkness, the photoreceptor cell maintains a steady electrical
current from the outer segment to the inner segment. When stimulated, the gated ion
channels of the cell close and the ‘dark current’ ceases to hyperpolarize the cell. Thus
compared to other neurons, the activation of a photoreceptor cell is reversed.

There are two main classes of receptor cells in the fundus. The first class, called the cones,
has three (in pathological cases one, two, or four) subclasses with different absorption
properties. The classes are named S, M, and L cone cells, referring to the wavelength
of light they absorb. Each class is activated by photons of different energies, initiating
the colour coding of the visual system. The second class is called the rods. The rods
act in dimmer conditions, providing more sensitivity to light intensity. The density of
the receptor cells and the division into the mentioned classes greatly varies depending
on the eccentricity, i.e. the distance from the fovea. It also varies considerably between
individuals. On average, each human eye contains 4.6 million cones and 92 million rods
[15].

In the fovea, the most accurate area of the retina corresponding to the midpoint of the
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visual field, there are 199,000 cones/mm2 on average. There are no rods in the fovea and also
the postreceptor cells are bent sidewards to provide the incoming light a direct interaction
with the cones. The diameter of the fovea is 0.35mm (corresponding to 1.25◦ of visual
angle) on average. The density of the cones decreases towards the periphery of the visual
field. The rod density is highest around the optic disk, a small elliptical region at the origin
of the optic nerve and declines slowly to the far periphery. In the periphery the rods are in
majority. On the junction of the optic nerve and retina, there are no receptor cells and it is
thus also known as the blind spot. The decline of the receptor cells is anisotropic, thinning
out faster in the vertical direction, for both receptor cell types. In the far nasal periphery
the cone density even increases slightly. [16]

The changes in the potentials of the receptor cells are detected by the next cell layers, also
located in the retina. These layers contain cells called interneurons. The interneurons
include bipolar cells, amacrine cells, and horizontal cells. A single cell in these layers
gathers and modulates the signals of a number of receptor cells. These groups of receptors
differ in spatial configuration and size. From the interneurons the receptive field signals
are conducted to the last cell layer in the retina: the retinal ganglion cells (or ganglion
cells). The term receptive field (RF) refers to the spatial and functional configuration of
the receptor cells connected to each ganglion cell. Receptive fields are discussed in detail
below.

The ganglion layer concludes the visual processing in the retina. The amount of ganglion
cells per eye varies from 0.7 to 1.5 million and on average, the cone cell to ganglion
cell ratio is from 2.9 to 7.5. The amount of receptor cells linked to one ganglion cell
varies greatly depending on the location in the retina. In the foveal parts, there is a low
convergence to prevent information loss, whereas in the peripheral parts, the receptor
signals converge from wider regions. In other words, there is a similar thin-out effect as for
receptor cells, nevertheless, the effects are not correlated. It is also noteworthy that, due to
the interneurons, the organization is not purely convergent: one bipolar cell is connected
to more than one ganglion cell. The anisotropy in the distribution of ganglion cells is
inherited from the receptors as well. The anisotropy is even more profuse in ganglion cells:
there are 3 to 1 ganglion cells in the nasal side compared to the temporal side and almost 2
to 1 in the superior compared to the inferior side. This anisotropy suggests performance
differences between directions in visual field. These differences are recorded in a number
of studies, e.g. in a work by Intriligator and Cavanagh [17]. [16]
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2.1.3 Receptive Fields

The receptive cells are linked to the ganglion cells with a specific pattern. This pattern
forms one basic concept of vision modelling: the receptive field (RF). This physiological
relation between cell layers was first observed in the retina of the cat [18]. In the retina,
the functioning of an RF is described by a centre-surround organization. The organization
is depicted in figure 2.2a. RFs have two regions called ON and OFF regions. If light hits
the ON region an excitatory signal is fed to the ganglion cell, whereas the light hitting the
OFF region causes an inhibitory signal to the ganglion cell. The regions have historically
misleadingly been called “excitatory” and “inhibitory” regions [19], however, these regions
do not provide simple synaptic excitatory or inhibitory stimulus to post-synaptic cells
(PSC). For example a dark stimulus in the OFF region delivers a substantial excitatory
stimulus to the PSC. Thus the maximal response is delivered if the spatial distribution
of the light stimulus is exactly the shape of the ON region and the intensity of light is
sufficient. There are similar receptive field structures to enhance colour vision [20].

However, it must be acknowledged that the RFs in the form described above are only a
concept for modelling and the real structure is much more detailed. It has been obvious
since the days of discovering the concept of the RF that the isolated RF structure is an
oxymoron due to the anatomical structure of the neuronal network in the retina. In early
days these effects from outside of the classical RF (cRF) were called “the periphery effects”.
In more modern publications this effect of horizontal connections in the retina and beyond
are included in the concept of the total RF (tRF). [22]

One example of applying the concept of RF excessively straight-forward is the Hermann
grid illusion (see figure 2.3).The illusion was once interpreted with RFs of retinal ganglion
cells. The explanation claimed that the illusive dots in the intersections were due to
milder OFF region stimuli, and hence the intersections are perceived darker. However, the
persistent illusion, even if the grid size and shape are varied, proved the explanation wrong.
The explanation for the illusory effect requires higher feature integration models. One
theory is provided by Schiller and Carvey [23].

2.1.4 Lateral Geniculate Nucleus

The ganglion cell axons conduct the neural responses from the retina deeper in the central
nervous system. The axons form the optic nerve, which after a formation named the optic
chiasm (or the chiasma), is called the optic tract. In the chiasma the axons of the optic
nerve are redistributed to gather the axons concerning the same side of the visual field
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Figure 2.2: On the left side: receptive fields shapes. On the right side: activa-
tions of the cells with corresponding receptive field. The stimuli
is depicted below the abscissa. (a) Receptive field of the retinal
ganglion cell or LGN neuron. (b) Receptive field of a simple cell
in the primary visual cortex. Figure adapted from Carandini et al.
[21].

from both eyes to different sides of the central nervous system: the right hemisphere of
the visual field to the left and the left hemisphere of the visual field to the right. From the
chiasma most of the axons convey the impulses to a subcortical nucleus named the lateral
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Figure 2.3: Hermann grid illusion.

geniculate nucleus (LGN) of the thalamus.

The LGN further processes the neural presentation of the visual field. It has a similar
retinotopic structure and similar receptive fields as the earlier parts [24]. The colour
processing in the LGN differs from the one done by the retina [25]. The optic nerve
consists of three pathways conveying information to different layers of the LGN. The
pathways are called the M-pathway, the P-pathway and the koniocellular pathway. The M-
pathway projects to the magnocellular part of the LGN. These cells provide fast response
and high contrast sensitivity but do not convey small details. The P-pathway projects to
the parvocellular part of the LGN and provides information about spatial details but has
slower responses [26]. The colour coding is also isolated to the detailed P-pathway [20].
The function of the koniocellular pathway is poorly known.

This simplified description of the visual system may induce an image of simple cell relay
that modifies the signal on its way towards the final ‘grandmother-cell’. It is clear that the
visual system is much more complex. The visual system is a sophisticated network of cells.
Lateral connections in each stage and feedback connections between the cortical levels
and even to the LGN (showed in the feline visual system) form the fundamental basis of
the system besides the basic feedforward connections between adjacent layers. In the LGN
the feedback loops from the cortical areas affect what signals are transferred when to the
cortical areas via the feedforward connections [27].

A small part of the ganglion cell axons do not project to the LGN but to the pulvinar, a
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nucleus of the thalamus, via the superior colliculus in the midbrain. These axons form the
extra geniculo-cortical pathway. It is very fast and thus important for guiding attention to
salient stimuli [28].

2.1.5 Cortical Regions of Vision

The synapses from the LGN finally lead the modulated signal to the primary visual cortex,
i.e. V1. It is located around the calcarine sulcus in the occipital lobe. Beyond the V1 the
signal is spread widely around the cortical areas, where visual processing is occupying large
parts, possibly even one fourth, of the neocortex [29]. From V1 the signal is conducted
to V2 and forward to V4, MT, to mention few. Some areas are depicted in 2.4. Despite
extensive research the exact nature and functioning of most of the areas remain unclear.

After V2 the visual system is divided into two large pathways called the dorsal and
ventral streams. The function of these streams, sometimes also referred to as the “where”
and “what” streams, was presented by Mishkin et al. [31] and was demonstrated in
human experiments by Haxby et al. [32]. The theory divides the processing according to
behavioural significance: the ventral stream deals with object recognition and leads close
to areas involved to memory functioning, as the dorsal stream processes motion and spatial
location aspects of perception, e.g. human motor activities [33] and thus leads towards the
sensory and motor cortices.

The coding methods of the early cortical regions are relatively well understood and studies
have even been made to determine the image shown to subjects solely by assessment of
the cortical activation patterns or the activation in LGN caused by the image [34, 35]. One
essential feature found in study of early cortical coding is retinotopy, i.e. the preservation
of spatial relations of the environment [36].

The revelation of the V1 code was started by the influential work of Hubel and Wiesel
[19]. Their work led to a consensus that the V1 processes visual information in terms
of local contrasts, e.g. the edges in a perceived image are strongly represented. The V1
is anatomically arranged in neuronal columns, called hypercolumns. The hypercolumn
consist of six distinct layers. In these layers one single location in the visual field is
analyzed in all orientations and many spatial scales of contrast variation. These columns
ultimately combine the common information gathered by both eyes. Anatomically, the
primary visual cortex is bounded by a striping, visible to a bare eye that consists of the
myelinated axons from the lateral geniculate body terminating in layer 4 of the neuronal
columns. It is, thus, occasionally referred to as the ‘striate cortex’. It has been estimated
that the striate cortex contains about 140 million neurons. [37]
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Figure 2.4: Examples of brain areas that process visual information. The upper
part (a) of the figure presents the lateral right hemisphere and the
lower part (b) the medial view of the right hemisphere. Most of the
brain matter involved in early cortical processing of vision is in the
calcarine sulcus. Image adapted from Tootell et al. [30].
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The V1 cells have receptive fields as well. The receptive fields, however, differ considerably
from the ones earlier in the processing chain. These RFs are elongated and hence selective
to stimulus orientation. The existence of these RFs was first recorded by the pioneers
Hubel and Wiesel in the feline cortex [19]. They found two distinct cell types that respond
to stimuli with a small differences: the first class, i.e. the simple cells, are selective to
orientation, magnitude, direction, size, and phase, whereas the other class, the complex
cells have similar responses to all phases. The RFs and the activation are depicted in figure
2.2b for the simple cell. The activation of a complex cell is illustrated in figure 2.5

+
--

+

+

-

Figure 2.5: Actviation pattern for complex cell. Complex cell can be thought
of as a sum of simple cells with quadrature phase-shift. Figure
adapted from Carandini et al. [21].

Here, as well, the concept of RF is a very simplified tool for describing the functioning
of the system. The RF explains only the effect of the feedforward synaptic links from the
lower cortices, LGN, and retina. The lateral connections from the cortex per se, or feedback
connections from higher parts of the system are not modelled by cRF. However the signals
outside the cRFs are common and have a major influence on the way we perceive objects
and scenes [38].

One interesting phenomenon stemming from the lateral and feedback connections of the
visual system is illusory contour detection. Illusory contours are very powerful illusions
appearing in areas that should or very likely could contain contours. Examples are given
in figure 2.6. One can notice the apparent contours in figure 2.6. This raises the question
of the meaning of being illusory. There has been a debate about the lowest level in the
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visual system in which the contours exist. In the past the illusory activity was thought to
be located at V2 and above. More recently evidence of “illusory activity” in as early as the
striatal cortex, i.e. the first cortical area of visual processes, has been found by Lee and
Nguyen [1]. The experiment was done with rhesus monkeys but there is similar evidence
from human fMRI experiments [39].

Figure 2.6: Examples of the illusory contours. On the left is the famous
Kaniza’s triangle. On the right, viewer can find an s-shaped line
between the parts of the shape.

Even though the illusory contours are not ‘an illusion’ even in the striatal cortex, they
affect apparently in as high as the infero-temporal cortex (IT) [40]. This is often regarded
as one of the final destinations of the dorsal pathway. Lesions in these areas cease the
perception of illusory contours, suggesting that illusory contours are fundamentally related
to object recognition.

The neural origin of visual phenomena of higher level is generally poorly understood.
However, fMRI studies have proposed that e.g. the crowding effect takes place largely
in a bottom-up manner in the visual system somewhere in the processing chain from V1
to V3. In these studies the brain functioning shows differences between crowded and
non-crowded situations in V4 [41].

The descriptions in this section may give an excessively precise and simplistic image of
the visual system. However, there is a vast amount of variability between individuals in
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the quantitative and possibly even in the qualitative facts listed above. This complicates
the modelling of this already very complex system.

2.2 Modelling Human Vision

Modelling of human vision can be divided into two categories: neuronal and behavioural.
The approach using a neuronal basis is further divided into two modelling approaches with
distinct aspects. These are descriptive and normative modelling. Descriptive modelling
explains properties of the visual system using mathematical methods, whereas normative
modelling utilizes mathematics to reason why the system works in a certain manner.
Because of the aim of this work, the focus here is on descriptive modelling.

The behavioural modelling category is historically very significant, but the focus of the cur-
rent research is on neuronal networks and neural signalling. However, neuronal functioning
in high-level processes in human vision is not generally understood. Models for these
phenomena are, thus, more or less process descriptions, i.e. behavioural models. These
models appear in psychological and psychophysical contexts. The current models with
neuronal basis are located to lower levels of vision than the models with weaker neuronal
nexus describe, as for example the object recognition phenomena.

2.2.1 Descriptive models

Most models employ the concept of the linear RF. In fact the model for the RF is the
beginning of computational modelling of vision. Current models have many modifications
of the model of the RF presented in section 2.1. Mathematically the RF is described as a
two-dimensional filter. This signal is modulated with the RF filter to model the response
of the corresponding physiological system. Linear filters are generally utilized in signal
processing using convolution.

g(x,y) = f (x,y)∗h(x,y) = ∑
ψ

∑
χ

f (χ,ψ) ·h(x−χ,y−ψ) (2.1)

Equation 2.1 shows the denotation and mathematical description of the discrete convolution
in two-dimensional space, the χ and ψ are the samples in the signal, f is the signal, and h
is the filter. The inverted filter is multiplied with the signal in every sample location of the
signal.
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The outputs of the filters are generally modified to resemble the firing rate of a cell. This
means half-way rectifying (negative firing is generally not possible) and saturating the
response in high stimulus intensities. This can be done mathematically or logically.

f (α) = min(d,max(0,α− c)) (2.2)

f (α) = d
α2

a+α2 (2.3)

In equations 2.2 and 2.3 the d is the maximum response, c is the threshold, i.e. the minimum
stimulus to elicit a response and α is the magnitude of the stimulus. In equation 2.3 a is
another constant that defines the saturation behaviour of the function. Often, if the purpose
is not to model the behaviour of a single simple neuron the half-way rectification can be
substituted with the ‘energy model’ [42]. Physiologically the energy model describes the
functioning of the V1 complex cells. Mathematically it is a complex function that is used
to model the signal of a complex cell or a number of simple cells by taking the square of
the modulus of the function.

2.2.2 Modelling of the Retina

Many of the models of the pre-cortical parts of the visual system discuss the neural
properties of the retina and especially the output of the retinal cell complex. These models
describe the non-linear behaviour in synaptic signalling [43, 44]. However, earlier parts of
the neural visual system can be modelled with simplified linear filters as well [45]. The
linear systems consider the retina as a holistic structure rather than a cell network, still
counting in a large part of the properties of the retina.

The cell system of the retina can be described adequately for purposes of defining the in-
formation loss with difference of Gaussians (DoG), which are Gaussian filter systems. The
parameters for the DoG filters must change with position when the retinal inhomogeneity
is modelled. Additional components are used in some models to count in e.g. neural
high-pass properties of the retinal system. This is a coarse simplification of the complex
network of the retinal, receptor-interneuron-ganglion cell structure.

The DoG filters, sometimes called Mexican hat filters, are composed of a sum of two
Gaussian envelopes with differing deviation and polarity.

DoG = Gσ1−Gσ2 =
1√
2π

(
a

σ1
e−(x2+y2)/2σ2

1 − b
σ2

e−(x2+y2)/2σ2
2 ) (2.4)
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In the equation the Gσ1 and Gσ2 are simple two dimensional Gaussian envelopes with
deviations of σ1 and σ2 respectively. Now, setting the deviations to alter over space, and
convolving this function with the signal, the main property of retina, i.e. location dependent
band-pass attenuation, is modelled. functional features of the RFs are modelled.

σ1 = ασ1 · f (x,y) (2.5)
σ2 = ασ2 · f (x,y) (2.6)

f (x,y) =
√

(x− x0)2 +(y− y0)2 (2.7)

Where x0 and y0 are the coordinates of the centre of the fovea.

The DoG filter mimics the RF structure of a retinal ganglion cell. The RFs of retinal
ganglion cells are larger and the density of the receptors is lower in the peripheral parts of
the visual field. Thus the DoG filters are tuned to gather information from larger areas in
parts that present the peripheral visual field.

To facilitate the computations it is possible to make coarse approximations, called two-
dimensional Gaussian kernels. The Gaussian kernels are discrete matrices that represent
Gaussian envelopes. Alternative, more sophisticated method, to perform the actions
described above is to transform the signal and the filter function to the frequency space
using the Fourier transformation. The Fourier transform decomposes the function in a
linear sum of harmonic functions (sinusoids) [46]. Any function can be divided into such
components. Moreover, there are computationally cheap methods to perform the Fourier
transformation, Fast Fourier transform (FFT) for example.

F(x,y) = ∑∑e−i(ωxx−ωyy) f (x,y) (2.8)

Equation 2.8 gives the discrete Fourier transform (F(x,y)) of an arbitrary discrete two-
dimensional signal, i.e. of an image. The spatial frequencies in the x and y-directions are
denoted by ωx and ωy, respectively.

In two-dimensional space the result of the Fourier transform is a topographical frequency
map. The map represents all spatial frequencies that the signal contains, sorted, in polar
coordinates. The direction from the centre point of the map represents the direction of the
spatial oscillation and the distance from the centre point represents the frequency of the
oscillation.

Now, taking piecewise inverse transforms of narrow rings of the map results an approxima-
tion for different spatial frequencies in the image. To model the retina the approximations
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are weighted depending on the frequency and the distance from the point representing the
fovea.

Some of the parameters for these filter systems are estimated indirectly. The sizes of
the retinal RFs are suggested to correlate with the cortical representation, that each RF
occupies equal size in the V1. This correlation is presented in the concept of the cortical
magnification factor [47]. The cortical magnification resembles the relation between sizes
in the retina, i.e. in the environment, and in the V1 cortex. Because of lesser convergence,
the central areas of the retina have a bigger representation in the cortex. Depending
on the source the cortical magnification factor has dozens of values. There has been a
debate regarding the magnitude of the factor, but no consensus has been reached [48–50].
The definition of the magnitude of the cortical magnification is, hence, not unambiguous.
However, σ(x,y) in the DoG is inversely proportional to this factor.

The other parameters of the system: the spatially dependent amplitude of the system (a and
b in equation 2.4) and the neural high-pass modulation are easier to define. Determining the
values a and b as a function of the location in the visual field is done using a psychophysical
test. In the test the spatial dependence of the contrast threshold [51] was determined with
psychophysical experiment. The human vision model may also include a neural high-
pass component in addition to the spatially altering low-pass component. The proposed
high-pass component is suggested to have a value that is related to the spatial frequency
measured in cycles per degree [45]. This relation is linear with a slope value of 1.

The system concerning these properties is not the most comprehensive model of the retina,
but it describes rather well the information loss due to the properties of the retina. The
form of the proceeded information (the retinal code) is often irrelevant albeit the retinal
processing is suggested to start the attention modulation, according to Thorpe et al. [52].
In their model the temporal pattern of the spikes, i.e. the action potentials of the neurons,
contain information.

However, due to the poor current knowledge of the processes in phenomena such as
crowding, detailed neural models are impossible to utilize. The models developed for the
quantification of crowding use either the signal modulated by the retinal DoG model or the
plain image signal as their input.

Taking into account the LGN is rare. This is because its functions are quite poorly under-
stood at the neural level. In general, the research on the LGN is focused on revealing the
functional role of the nucleus. There is, however, little modelling on its neural functioning.
For example there is a model in which the LGN divides information by statistical features
of an image [53].
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2.2.3 Models of Cortical Actions

The function family that is used to model the responses of V1 cells is called Gabor wavelets
or Gabor functions. The idea of Gabor functions was developed in mid-twentieth century
[54] and it was introduced to vision modelling in the same year by Marcelja and Daugman
[55, 56]. The Gabor wavelet models all the critical properties of the V1 cell. It is tuned, i.e.
sensitive, to orientation, frequency phase and size. Thus the complex shape of the RF of
the V1 cells is reduced to a small number of parameters.

h(x,y) = w(x,y)cos(ωxx+ωyy) (2.9)

Equation 2.9 represents a product of a weight (w) and a harmonic function (cos), i.e. a
two-dimensional Gaussian function and a sinusoidal grating. The dimensions are noted
by x and y and the spatial frequency by ω . The envelope spatially localizes the harmonic
function. Without the weight the harmonic function would apply to the whole signal and
would thus be an ordinary Fourier component (explained in detail in section 2.1.2) of the
signal. Thereby the Gabor transformation is generally referred to as localized spectral
analysis. In complex form the Gabor filter can be written using the Euler formula:

hσx,σy,ω,φ (x,y) = e
−
(

x2

σ2x
+ y2

σ2y

)
eiωx (2.10)

Now the response a system is a function of the size of the spatial localization (σx and σy),
and the spatial frequency of the oscillation (ω). The orientation (α) can be modelled by
introducing new coordinate systems (xnew,ynew):

x = xnew cosα + ynew sinα (2.11)
y = ynew cosα− xnew sinα (2.12)

These equations may be substituted into equation 2.10.

There are many modifications of the original Gabor wavelet. The modifications are
generally referred to as wavelet transforms. A model named Berkeley Wavelet Transform
(BWT) [57] is specifically designed to represent the properties of V1 functioning as a local
contrast detector. BWT preserves an approximation of all the features of the original Gabor
functions but are computationally inexpensive.

The BWT model consist of eight mother wavelets, four odd and four even, with the
orientations 0◦, 45◦, 90◦, and 135◦. The mother wavelets can be produced mathematically
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with a unit step function, and the equations are found in the paper by Willmore et al.
[57]. The mother wavelets are illustrated in figure 2.7. The mother wavelets are scaled
and translated to produce daughter wavelets. The wavelets have spatial frequencies and
orientation bandwidths that are comparable to biological values.

β
0°,odd

β
0°,even

β
45°,odd

β
45°,even

β
90°,odd

β
90°,even

β
135°,odd

β
135°,even

Figure 2.7: Mother wavelets of the BWT basis. The upper row shows the
odd and the lower the even wavelets. The figure is adapted from,
Willmore et al. [57]

β
m,n,s
θ ,φ =

1
s2 βθ ,φ (3s(x−m),3s(y−n)) (2.13)

In equation 2.13 β
m,n,s
θ ,φ is the daughter wavelet and βθ ,φ the mother wavelet with orientation

φ and parity θ that determines whether the wavelet is odd or even. The indices m and n
determine the position and s denotes the scale. As can be seen the wavelets are scaled by
the power of 3. This restricts the signal, i.e. the image, size to multiples of the wavelet size
(3s) and it causes the size of RFs to expand heavily in large s values.

The base of the BWT is self-inverting and reconstruction of the image is thus accomplished
using
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I(x,y) = ∑
θ ,φ

∑
m,n,s

wθ ,φ
m,n,sβθ ,φ (3s(x−m),3s(y−n)) (2.14)

Where wθ ,φ
m,n,s are the coefficients of each wavelet in the particular signal. The wavelets

have zero mean and thus the DC term (β0) must be added to the inverse transform.

2.2.4 Normative Models

To explain the features of the wavelets and other filters described above normative mod-
elling is needed. Normative modelling explains a structure as being optimized to perform
a certain function. Thus it presumes the system is evolved to be ecologically valid. It
describes the functioning of a system by coding the input signal in ‘quasi-optimal’ terms.
In vision modelling this code is often referred to as the sensory code.

Normative modelling gives an explanation as to the way the visual system analyses the
signals in terms of localized spatial frequencies. The statistical properties of the common
stimuli have favoured certain coding methods. The common stimuli for a visual system are,
of course, natural images, i.e. the scenes we encounter in everyday life. These properties
are detected using mathematical methodology, e.g. employing frequency analysis on an
image.

The frequency analysis, for example, is a very simple method but it reveals interesting
facts [58]. Firstly it shows that the natural images have a lot more vertical and horizontal
frequencies compared to the intermediate ones. Secondly, by analysing the frequency
representation of an image, it is possible to place images in a space describing the location
of the image in terms of it being outdoor-indoor and wide scene - close-up..

However, the statistical properties analyzed are usually of higher degree. These properties
of natural stimuli have revealed other existing structures in natural images. The natural
images are ‘sparse distributed’ and coded in in the sensory system according the same
‘sparsity’. The ‘sparse distribution’ refers to high kurtosis value of the signals [59]. The
high kurtosis in natural images stems from the universality of plain surfaces and rather
sharp contours in borders of these surfaces. Research on these properties of natural images
has revealed the purpose of the receptive field structure in work of Olshausen and Field
[60].
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2.2.5 Clutter Models

Beyond the descriptive and normative models are the models for psychophysically or
psychologically exhibited phenomena in vision. This research yields important knowledge
about the processes in visual perception and explains of the formation of perception.
Moreover, the models contribute to the current development of artificial visual systems in
more concrete ways than the models of the early visual system.

The basis of the perceptual models is on image processing. The perceptual models explain
which properties in the pixel or dot groups in the image form objects and how the objects
are processed further. Visual clutter is an important concept for the assessment of image
properties by its perceptual workload.

Rosenholtz et al. [8] define visual clutter as a state in which excess items, or their rep-
resentation or organization, lead to a degradation of performance in some (visual) task.
Apparently there is no unambiguous definition about features, attributes, and factors that
determine the amount of clutter, and about the mutual weighting of them. The models
of visual clutter, however, attempt to define techniques that could assess the clutter in an
image.

There are several models and techniques to assess clutter in an arbitrary image. The
techniques include for example spatial information density assessment [61] and assessing
how different image properties relate to subjective complexity estimate [62]. The models
have evolved greatly from the historical measures of perceptual workload, such as set size
or line count [63]. However, the methods for assessing the tendency of an image to cause
perceptive workload are still quite naı̈ve and ineffective.

One method in particular is of interest of this study. It is the clutter assessment toolkit
by Rosenholtz et al. [8]. The methods of Rosenholtz et al. tries to derive and implement
measures of visual clutter. The measures are Feature Congestion, Sub-band Entropy and
Edge Density. All these techniques generate a map of the image to indicate the cluttered
regions. The map is two-dimensional as the image.

Feature Congestion assesses spatial variations of colour, intensity and the edge orientation
in an image. Sub-band Entropy estimates the information content of the image. These
measures and techniques have very little to do with human physiology or neurology. There
are, however, remarkable results on the correlation of Feature Congestion with subjective
complexity, i.e. clutter rankings [64].

Despite the fact that the models lack a neural nexus they generate a feasible approximation
of the result of the human perception. Certainly, modelling the construction of perception
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is not the purpose of the clutter models; these models try to predict the result of the whole
perceptual system. In the clutter models all possible deteriorating factors converge to one
final measure of visual clutter.

The models embed various physiologically demonstrated processes such as crowding,
masking, and deterioration of object recognition. The corrupting effects in visual search
and other actions related to task are included as well.

The phenomena presented above have been more or less excessively studied separately.
Knowledge on these subjects varies greatly, for example object recognition is a widely
theorized and extensive subject, whereas the masking effect is well understood. Crowding
effect that is the focus of this study, is discussed in detail below.

2.2.6 Saliency Models

A property in an image that attracts attention is saliency. Saliency modelling examines the
attention transfer (attention route) over visual perceptions. Saliency models have a lot in
common with the clutter models. Saliency can be thought of as an opposite of clutter. The
saliency models use low-order features of the image to create a two-dimensional map to
address the points in the images that pop out the most. In addition, a part of the saliency
models include other parameters to be able to predict the probable route of attention on the
image [65].

Albeit saliency and clutter maps share many features they have one fundamental distinction.
Clutter maps assess the content globally while ranks in saliency maps are dependent on the
environment. The saliency is always assessed locally, in relation to the flanking locations.
The saliency of a region cannot, thus, be sorted globally without the context.

Apparently models that take low-level image features as their only input are incapable
of modelling the top-down functioning of attention. However, few of the models define
themselves as ‘biologically inspired’. Biologically inspired refers to the extraction methods
of the features from the image. Biologically inspired models treat the image similar to the
early visual system and thus their extracted features are thought to be more accountable
than features that are obtained with different filters. The other models in general are,
however, quite efficient, as well.

Nevertheless, the features of saliency models are simple and low-level. For example the
famous model by Itti et al. [66] takes colour, intensity, and orientation centre-surround
differences as an input. Another model by Barth et al. [67] that defines the pre-attentive
texture discrimination model is based on statistical studies [68] of eye movements on a
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natural image. It uses higher-order statistical figures that define e.g. corners and junctions
in the image.

The goal of assessing how attention is modulated in an arbitrary image is certainly a task of
very complex mathematical modelling that comprises e.g. the top-down influences, i.e. the
intentional aspects, the visual search protocols, effects of learning, etc. Despite the effect of
top-down influences a study by Elazary and Itti [69] shows that the attention and regions-of-
interest on natural images can be defined using saliency models that are based on low-level
features. In the study the subjects were asked to mark the most interesting location in
an arbitrary image. The study included a huge number of responses and the statistics
of responses showed significant congruence with the saliency model of Itti et al. [66].
Although the study was only a statistical comparison, there are hallmarks of bottom-up
saliency very early (V1) in the visual system [70].

One very apparent problem for attention guiding is eye movements. The attention can be
guided to different parts of the visual field without eye movements (covert attention), but
normally the eyes are directed towards the region of interest (overt attention). The saliency
maps represent covert attention, i.e. the static situation in which the most salient regions
attract attention, and thus gaze turn there. In other words, to model overt attention the eye
location must be presented as a sequence of a covert saliency maps.

The pioneers Itti and Koch have modelled visual search as a sequence of saliency maps
with an additional parameter called the inhibition of return [65]. Visual search is a studied
subject as well. Studies have shown that human performance in visual search is very near
to an ideal observer [71, 72].

Visual search is related to clutter as well as to saliency maps. The concept of clutter models
must include the visual search strategies in the future to extend the usage of the concept of
clutter to situations including eye movements. In current models, the clutter is related to a
search task vice versa, the amount of clutter is assessed using the search performance as
measure [64, 73].

2.2.7 Crowding Effect and Modelling

The models presented above are efficient in modelling the outcome of the visual system.
The system and its mechanisms are, thus, not elucidated. For modelling the intermediate
phenomena inside the system different methods and protocols are needed. The research on
the actions inside the visual system is essential for improving the ‘biologically inspired’
measures and catching the details in the data processing chain.
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The most crucial ‘intermediate’ phenomenon in the visual system is probably crowding.
Its locus in the neural system is defined, but its causes are still unclear. Studies suggest that
it defines the limits for face recognition [74], reading rate [3], and other recognition tasks
[75]. Thus it is a ubiquitous effect for visual processing that requires object recognition.

Crowding is generally defined as the deleterious influence of flanking objects for identifying
a target object. Bouma discovered in the 1970’s that the spatial extent of the crowding
effect is approximately linearly dependent on the eccentricity of the target [4]. The effect
itself was discovered earlier.

Because crowding impairs the identification in clutter and it is the limit of e.g. reading
rate, one could argue that it is the root cause of clutter. However, some essential factors of
the holistic concept of clutter need other explanations. For example the pop out effect of a
flickering target is not restricted by crowding.

In general, crowding is distinct from ordinary masking by its relation to detection. The
crowding effect does not influence detection tasks. This means that after adding the
crowding effect to perception every object will still remain visible but identification is
deteriorated. Thus, crowding does not reduce the apparent contrast but rather the feature
integration exceeds the detail resolution required for object identification.

There are a number of simple feature integration and other feature processing, suggested to
be related to crowding, e.g. segmentation, contour integration, feature bonding, etc. May
and Hess [76] has proposed that crowding is due to the overlapping of the “association
fields”. This “association field” would help the contour integration, similar to the illusory
contours. All this applies well to the determined locus of the crowding phenomenon, V4:
The anisotropy of its receptive fields is in line with the experimental anisotropy of the
crowding effect. Physiological studies show that it is the area that combines the different
features described above [77].

The area in which the flanking objects affect the recognition of the target object is called
critical spacing. Bouma quantified it as a round area around the target object with a size of
0.5φ◦, φ◦ being the eccentricity of the target. Toet and Levi [78] have later specified that
the area is elongated in the radial direction, being an ellipse described by the equation

s =
s0 +bϕ√

1+(ε2−1)ϕ2
V

ϕ2

(2.15)

The modified version of equation 2.15 is provided by Pelli et al. [3]:
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s = s0 +
bϕ√

1+(ε2−1)ϕ2
V

ϕ2

(2.16)

This modification improves the fit to experimental data. In equations 2.15 and 2.16 s0
refers to the zero component of critical spacing, i.e. critical spacing in 0◦ eccentricity. It is
circa 0.06◦ of visual angle. The constant b is a factor for the length of the minor axis of
the ellipse and is circa 0.25−0.3. The constant ε is the ellipticity, Toet and Levi estimated
it as equal to 2−3. The radial eccentricity and the vertical component of eccentricity, are
ϕ and ϕV , respectively.

The estimate by Toet and Levi [78] for the crowding area is about twice as long in the
radial direction than in the tangential direction, according to the model. With this model,
the distance between the target and the flankers is suggested to be the centre-to-centre
distance between elements [2].

An interesting phenomenon, which is not included in the model, is the anisotropy of the
crowding effect. The crowding effect is shown to depend on the direction in which the
target is located [17]. The effect is moderately strong, the advantage for the lower visual
field compared to the upper field being 17% with tangential flankers and up to 50% with
radial flankers. These anisotropies suggest that the crowding is strongly correlated to the
underlying physiology, i.e. the cortical representation of the visual field.

Crowding is inward-outward anisotropic as well. Flankers inward from the target disrupt
identification more than flankers outward from the target. Motter and Simoni [79] suggest
a simple solution; in cortical representation ‘outward flankers’ are closer to the target
than flankers inwards from the target. Another problem that arises from the cortical
representation is that at the level at which crowding occurs the remaining retinotopy is
minor and the features dominate the representation. Thus the features most probably affect
to the critical spacing [2, 17, 75].

Other important aspects that are left out of the model are the higher-level effects on
crowding. Higher-level effects are for example the effect of the pattern formed by the
target and the flankers. The complexity of the pattern is shown to affect the strength of the
crowding effect. A number of property differences affect to crowding as well, e.g. shape,
size and orientation [80]. The combination effect, i.e. the larger scale features the target
and flankers form, is, as well, shown to influence the crowding effect [5]

Another higher-level aspect is the influence of attention. The influence of attention is
controversial and under an intensive debate [7]. There is no consensus as to whether
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attention is related to the magnitude of the crowding effect.

Considering the diversity of details in the crowding effect, the model described above
is only a tentative approximation for the problem. Crowding is, however, an essential
phenomenon in vision. It has real life relevance because of its limiting nature in object
recognition. It is the restrictive “window” through which one perceives the environment. It
limits information intake and is the limiting factor for visual search as well [81].
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THREE

METHODS

This chapter describes the computational and experimental methods used in this thesis. The
computational methods were derived from the literature on information content, complexity
and clutter in images. The existing models were further processed to incorporate the special
features of the crowding effect.

The computations were performed using software developed for this thesis. A psychophys-
ical experiment was conducted to evaluate the validity of the computational methods. The
experiment was also to assess the crowding effect in natural images.

3.1 The Computations

The software was developed to model the information loss in the early visual system and
to establish a model for the estimation of the crowding effect in an arbitrary image. The
image is used as an input and an estimate of crowding is returned. The estimate contains
both total crowding within the assessed area and a map containing crowding values for
each location. Furthermore, the software allows the illustration of the filtering properties in
the early visual system in the image. The information loss in the retina and local contrast
detecting properties of early cortical areas, can be depicted using the illustration feature.

The program was written in the Python [82] programming language using the SciPy library
[83]. The SciPy library contains tools necessary for scientific computations. In this section
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the mathematical models constructed in this thesis are described in detail. For general
descriptions of the software architecture refer to appendix A.

3.1.1 Pre-processing

The image file fed to the program was read in as an array. This array contains the greyscale
values for each pixel in the image. The images were converted to greyscale by summation
of the colour channels. The equation is as follows:

I(x,y) = 0.23IR(x,y)+0.71IG(x,y)+0.06IB(x,y) (3.1)

The numerical constants in equation 3.1 are the measured and calculated ratios and
Ic(x,y),c ∈ R,G,B, is the display sub-channel for a one of the colours red, green or
blue. The result was calculated by measuring the luminance of each pure colour channel
with full intensity on the display used in the experiment. The measurements were made
with a Minolta Chroma Meter CS-100.

3.1.2 Retinal Model

The retina function of the program mimics the filtering by retinal receptive fields (RF), in-
cluding ‘neural high-pass filtering’ [45]. The filtering is performed in the spatial frequency
domain. The concept is described in section 2.2.2. An example of the results of the retinal
filtering is given in figure 3.1. Figure 3.1 illustrates only low-pass features of the retina
function. The high-pass component is not illustrated due to the distrubting effect (it adds
greyness to the image) but it is added to the computations of the crowding effect.

3.1.3 Sub-band Entropy

The image is first transformed to the frequency domain using an FFT algorithm. The
frequency presentation is divided to narrow bands with high-degree Butterworth filters
(20). Ideal filters were not used to prevent the ringing effect. The first part is extracted
with a low-pass filter and the higher frequency bands using band-pass filters. The limits
of the bands were selected to be fractions of octaves. Hence, the higher frequencies were
analyzed in wider bands. The number of bands was set to 20. The bands approximate the
receptive field distribution in the retina.
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The extracted band was transformed to the spatial domain using an inverse FFT algorithm.
The band-pass filtered image was attenuated with a modulator to model the retinal RF
structure. The equations for the modulator is,

A(x,y, fband) = e−Md(x,y) f̃bandα (3.2)

d(x,y) =
√

(x− xfovea)2 +(y− yfovea)2 (3.3)

Equation 3.2 consists of the factor (α) which is achieved by fitting a linear model to the
measurements by Campbell et al. [51] on contrast sensitivity around the visual space, and
the approximative cortical magnification factor (M). The constants are multiplied with
the median frequency of the band ( f̃band) and the distance from the fovea (d(x,y)). The
contrast sensitivity attenuation (A(x,y)) is calculated by weighting the product with an
exponential function. All the x and y values refer to indices of the pixels of the image,
unless mentioned otherwise. The attenuation modulator is subsequently multiplied by the
neural high-pass component and the modulated signal is thus

S(x,y, fband) = H( fband) · I(x,y, fband) ·A(x,y, fband) (3.4)

= f̃bandI(x,y, fband)e−Md(x,y) f̃bandα (3.5)

In equation 3.4 H( fband) is the high-pass component of the retinal transfer function and
I(x,y, fband) is the band-pass filtered input image.

All the bands are treated in a similar manner and the results are summed. The sum is scaled
to have the original contrast in the foveal location.

3.1.4 V1 Model

The V1 model was implemented using the Berkeley wavelet transform (BWT). The BWT
basis is introduced in section 2.2.3. The V1 model consist of an orthonormal set of wavelets
representing the V1 RFs. The result represents the contrast detection functionality of the
primary visual cortex. It was implemented due to requirements of the feature congestion
measure presented below.

A pyramid representation of the input image is first built. The anti-aliasing for the lower
resolution levels was made by averaging. The levels of the pyramid were convolved
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with the wavelet basis to represent different scales of the RFs. The product was squared
according to the ‘energy model’ (see section 2.2.1 and the paper by Hyvärinen et al. [42]).
The BWT basis requires that the steps in the image pyramid reduce the size by the power
of 3.

Ifiltered = ∑
s

∑
w

(BWT(w)∗ Ipyramid(s))2Bspline(s) (3.6)

Equation 3.6 represents the procedure of applying the BWT. Each level (s) of the pyramid
image (I) is convolved with all wavelets (w). Spline interpolation was used to rescale the
images in the pyramid. After rescaling all the convolutions were summed to obtain all the
BWT coefficients.

3.1.5 Critical Spacing

The area in which the cluttering properties of an image were assessed is defined in the
critical spacing model. In the model the crowding effect is caused only by the image area
spatially nearby the target. The model is explained in section 2.2.7.

The area influencing crowding is defined as an ellipse around the target. The location of
the target is defined manually and the critical spacing represents the “spot-light” area of
covert attention around the target. The ellipse is elongated in the radial direction and has a
minor axis to major axis ratio of 2 to 1. The length of the major axis is linearly dependent
on the distance between the target and the fovea. The area can, thus, be defined by the
following inequalities:

x < xtarget +dtarget cos(τ)cos(ϕtarget)−0.5dtarget sin(τ)sin(ϕtarget) (3.7)
y < ytarget +dtarget sin(τ)cos(ϕtarget)−0.5dtarget cos(τ)sin(ϕtarget) (3.8)

−π < τ < π (3.9)

In equations 3.7 and 3.8 xtarget and ytarget are the target coordinates and dtarget is the target
distance from the fovea. The parameter ϕtarget is the radial direction of the target from
the fovea. The length of the major axis is the distance between the target and the fovea.
The area, thus, extends halfways to the eccentricity of the target (0.5φtarget). This is the
spatial extent of crowding in the models presented below. The critical spacing procedure
and retinal filtering are illustrated in figure 3.2
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3.1.6 Sub-band Entropy

The first clutter assessment model implemented was the sub-band entropy measure used
by Rosenholtz et al. [8]. The sub-band entropy computation utilizes the wavelet transform
of the V1 model (see section 3.1.4) and the Shannon entropy. Equation for each wavelet
can, thus, be written,

Ew,s = ∑
i
−pi log pi (3.10)

In the critical spacing area each scale (s in eq. 3.10) and each wavelet (w in eq. 3.10)
coefficients are binned to construct an approximative histogram of the contrast coefficient
distribution (p in eq. 3.10). The entropies (Ew,s in eq. 3.10) are summed over the wavelets
and scales to obtain the clutter measure used in the prediction of crowding.

3.1.7 Feature Congestion Measure

A more sophisticated clutter tool by Rosenholtz et al. [8] utilized in this thesis was the
feature congestion model. The feature congestion assesses the variance and covariance of
certain image properties regionally. The properties used were the contour orientations and
the contrast. These measures were applied to the critical spacing area only, similar to the
sub-band entropy model.

The properties were computed using algorithms adapted from Rosenholtz et al. [8] The
contrast was computed using the image pyramid (adapted from the V1 model in section
3.1.4) and a DoG filter. The obtained contrast was assessed regionally by filtering the
image using an average filter. Approximate kernels for Gaussians were utilized to present
the following filters.

Gfilter(x,y) =
1
σI

e−(x2+y2)/2σ2
I − 1

σO
e−(x2+y2)/2σ2

O (3.11)

Gaverage(x,y) =
1

σB
e−(x2+y2)/2σ2

B (3.12)

The deviations for equations 3.11 and 3.12 were adapted from the estimates of Rosenholtz
et al. [8]; σI = 1.42, σO = 2.28, and σB = 6.0. Finally the contrast variation of the
regionally averaged results was computed as
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varcontrast = E[I2]−E[I]2 (3.13)

The contrast variation (varcontrast in eq. 3.13) was computed for each scale in the image
pyramid and the results were combined by taking the maximum value in each location
over the scales.

The contour orientation was obtained in a similar manner. The wavelet model was utilized
for contour calculations at each scale of the image pyramid. Again, the wavelet coefficients
(i.e. the convolution results) were averaged using a Gaussian kernel (σ = 3.5) for each
wavelet and scale. The orientation clutter was computed by taking the difference of the
orthogonal wavelet coefficients, i.e. the vertical wavelet was subtracted from the horizontal
wavelet and the 45◦ diagonal from the 135◦ diagonal wavelet.

The differences were then regionally averaged similarly to the contrast case (σ = 4.6). The
covariance matrix of the two averaged differences was formed and the determinant taken,
giving the clutter estimate:

varcardinal = E[w2
s,0◦−90◦]−E[ws,0◦−90◦]2 (3.14)

vardiagonal = E[w2
s,45◦−135◦]−E[ws,45◦−135◦]2 (3.15)

cov = E[ws,0◦−90◦ ·ws,45◦−135◦ ]−E[ws,0◦−90◦] ·E[ws,45◦−135◦ ] (3.16)

Vcntr
s =

∣∣∣∣ varcardinal cov
cov vardiagonal

∣∣∣∣ (3.17)

In equations 3.14, 3.15, and 3.16 w is the wavelet coefficient set averaged with Gaverage of
scale s and denoted orientation. The fourth root of the determinant values are combined
over the scales in a similar manner to the contrast case, i.e. by taking the maximum value
in each location over all scales. The combined information contains the orientation clutter
map.

The orientation and contrast clutter maps are combined into a feature congestion clutter
map as follows:

VFC =
Vcontrast

0.0660
+

Vorientation

0.0269
(3.18)

The coefficients in equation 3.18 do not sum to one because of the missing colour measure.
The final measure was reduced to a scalar by calculating the mean of the final map. The
clutter maps are very similar to figure 3.2b.
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3.1.8 Contrast Energy

In addition to the clutter estimates, crowding was assessed using a simple contrast energy
measure in the critical spacing area. The contrast energy is a reasonably good complexity
measure in restricted situations. It was implemented here because of the relatively small
area of assessment, i.e. the critical spacing. The (Weber) contrast energy is computed by
the equation

Cenergy = ∑
y

∑
x

(
I(x,y)− I

I

)2

(3.19)

In equation 3.19 I(x,y) is the value of the pixel and I is the mean value of the pixels in the
area.

3.1.9 Complexity Measure

The last tool for crowding estimation is a complexity measure for simple stimulus images
adapted from Näsänen et al. [84]. The complexity measure evaluates the spatial deviation
of the contrast energy within the critical spacing area and weights the result with the
median frequency of the area.

The median frequency of the area was obtained by transforming the image into the fre-
quency domain and then constructing a histogram of the image frequencies. Before
transformation to frequency domain the mean was subtracted to prevent the edges of the
critical area from causing distortions to the frequency representation.

The spatial spread for the contrast energy was computed by first evaluating the centre of
the contrast energy by weighting the coordinates with the contrast values over the area:

px =
∑x x

(
I(x,y)−I

I

)2

∑x

(
I(x,y)−I

I

)2 (3.20)

py =
∑y y

(
I(x,y)−I

I

)2

∑y

(
I(x,y)−I

I

)2 (3.21)

In equation 3.20 I, is the mean value over the image and I(x,y) the value of the pixel
with coordinates (x,y). The contrast of the image is then weighted with the distance from
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the centre of gravity. The contrast energy of the weighted contrast map is subsequently
computed and it is finally weighted with the mean frequency of the area. Thus the equation
is

ccomplexity = ∑
y

∑
x

dp(x,y)
(

I(x,y)− I
I

)2

· f̃ (3.22)

In the equation dp(x,y) is the distance from the centre of contrast energy and f̃ is the
median frequency of the critical area.

3.2 The Experiment

The psychophysical experiment measured contrast sensitivity for the letter object presented
on natural image backgrounds in peripheral vision. The aim of the experiment was to
induce the crowding effect and to validate the computational results. A novel technique, in
this context, was used to present a letter stimulus with a varying contrast on natural image
background.

3.2.1 Subjects

Four subjects (three males, age 25-58) participated in the experiment. All the subjects were
employees of the Finnish Institute of Occupational Health at the time of the experiment.
All subjects had normal or corrected to normal vision. The contrast sensitivity was tested
and all the subjects exceeded 1.80 in the Pelli-Robson contrast sensitivity test performed
in 6500◦K white-light so that the luminance at the test chart was 90 cd/m2.

3.2.2 Apparatus

The stimuli was generated using a Hewlett-Packard dc7100 CMT desktop computer with
an ATI Radeon HD 2600 Pro graphics card and was presented on an Eizo FlexScan
S2100 LCD-monitor. The declared pixel amount was 1600×1200 and the vertical and
horizontal scanning frequencies 59Hz and 61Hz respectively. The declared pixel size
was 0.270×0.270mm. To evaluate the gamma correction needed, the luminance of the
display was measured from an axis perpendicular to the image plane and 5◦ down-10◦
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right (same as the target location) at twelve different RGB values. The measurements were
made with a Minolta Chroma Meter CS-100. A linear model was fitted to the measured
data in logarithmic scale to obtain the gamma correction. The gamma correction value was
1.97. The computed and measured luminance values are presented in figure 3.3.

The software used for stimulus presentation was Psycho 1.0, a psychophysical stimulus pre-
sentation platform by Risto Näsänen. It uses a staircase algorithm to define psychophysical
thresholds.

3.2.3 Stimuli

The software utilized in the experiment presents a 1024×1024pixel (13.8◦ of visual angle
to the horizontal and vertical directions (distance was set to 57 cm)) greyscale natural
image on an interstimulus mid-grey (RGB value of 127 i.e. 128.5 cd/m2) background. A
fixation cross was constantly visible at the centre of the display. The target letter was
presented on the background image in the top-left visual field when fixating the fixation
cross. The centre of the target was at an eccentricity 9.3◦ of visual angle (7.9◦ and 4.9◦

in horizontal and vertical directions, respectively). The targets were capital letters of the
Courier New typeface.

There were seven background image conditions. Six conditions contained a natural outdoor
image in various urban environments. The last image contained a plain mid-grey image
(RGB value of 127). The images were presented in greyscale. Five letter sizes were used.
The height of the letters varied from 1.19◦ to 3.56◦ of visual angle.

The stimuli were presented for 500ms. The stimulus consisted of a background image and
target letter chosen at random. The contrast of the target letter changed according to the
specifications of the staircase algorithm. The specifications were set as follows: Three
right answers were required to decrease the contrast of the letter with a factor of 1.41 while
one wrong answer increased the contrast with factor of 1.41. A threshold was defined as
the mean of six turning points (reversals).

A special protocol was needed in order to present the varying contrast of a natural image
background. The contrast value on the letter had to be independent of the background grey
level, and thus, the luminance. The protocol was developed by Risto Näsänen, the author
of the stimulus software. In the protocol, the contrast was varied in accordance with the
transparency of the target. The transparency levels for the letter were obtained using the
transformation
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T∗ = cWeberT0− cWeber +1 (3.23)

cWeber =
Lmax−Lmin

Lmax
(3.24)

In equation 3.23, T0 is the letter contrast if the letter is on a plain white background.
Lmin is the letter greyscale value and Lmax the greyscale value of the background. The
transformation T∗ preserves the background signal and the contrast level of the target
letter is set to 1− cWeber. Instead of summing the greyscale values of the letter and the
background, a product is taken to achieve all possible contrasts for the transformed letter:

S(x,y) = B(x,y)T∗(x,y) (3.25)

In equation 3.25, B(x,y) is the background. Presented on the signal S(x,y), the semi-
transparent letter now has the same contrast as the corresponding greyscale letter on a plain
(equal to unity) background. Examples are given in figure 3.4

3.2.4 Procedure

The experiment took place in a dark room with the only source of illumination being the
display. The subject was seated in front of the display, eyes in line with the fixation cross
in the centre of the display. The distance of the forehead from the display was set to 57cm
and was held constant with a headrest. Using a distance of 57cm, one centimetre on the
display approximately corresponds to one degree of visual angle when the angle is small.
An illustration of the experimental set-up is given in figure 3.5

The task was to identify the letter displayed. The gaze was constantly held on the fixation
cross. The target was thus perceived in the peripheral vision. No feedback was given
regarding the correctness of the response. There was no protocol for observing the gaze
but a repeat button could be pressed if doubts about the eye movements emerged, after
which the last trial was repeated using a new target.

The experiment was repeated three times on different days for each subject. One experiment
lasted for approximately 40min. The subjects were encouraged to take breaks at appropriate
occasions, i.e. when a threshold was determined. In one experiment each combination
for all of the letter sizes and the background images was tested. The total number of the
conditions was hence 35.
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(a)

(b)

Figure 3.1: Illustration of the filtering procedure that mimics the low-pass
features of the retina. The images are scaled and, thus, the filtering
appears steep. (a) An example of an unfiltered background image
(Kamppi) (b) A filtered background image.
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(a)

(b)

Figure 3.2: Illustration of the filtering and critical spacing procedures. (a) An
example of an unfiltered background image (Tuomiokirkko) (b) A
critical spacing area of the background image. The image is filtered
using the retinal model.
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measured in front of the display and at the target angle values used
in the experiment.
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(a)

(b)

Figure 3.4: Illustration of the experimental situation: Background image (Es-
planadi) and stimulus with varying contrast. (The stimulus letters
were not encircled in the experiment.) (a) A letter with full contrast
and (b) a letter with a contrast of one third.
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Figure 3.5: Illustration of the experimental set-up. The background image is in
question is the Westminster.
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CHAPTER

FOUR

RESULTS

This chapter presents the computational and experimental results. The main question
was whether there is a simple way to quantitatively predict the crowding effect using
computational methods. It was found that the crowding effect in natural images is clear.
The computational prediction of the magnitude of the crowding effect in natural images is
promising, as well.

The first part of the chapter presents the results of the psychophysical experiment and the
latter part reports the relation between the computational models and the experimental
results.

4.1 Experimental results

The experimental results show significant congruence across the participants. The results
are roughly independent of the target stimulus size and hence, only a function of the
background image. Figures 4.1a and 4.1b show the similarity of the results between the
size categories. The three categories not illustrated gave similar results.

There is a minor cut-off effect in the smallest size category (letter height 1.19◦ of visual
angle). However, all the results show a sigmoidal shape at contrast thresholds arranged
in ascending order. The variance between the subjects is negligible. The effect of the
background images is, thus, similar for each subject.
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4.2 Results of the Models

Relations between the experimental results and the computational results were compared in
different filtering settings. The different settings were compared using correlation tests and
qualitative differences are presented in charts. The charts present the relations between the
experimental results and computations categorized according to the background images.

Although the computations implemented to assess the intensity of the crowding effect
(see chapter 3.1) were simplistic and based on image properties, the results achieved were
promising. Table 4.1 shows correlation test results from Spearman’s rank correlation test
(Spearman’s ρ). The null hypothesis was that the correlation between the experimental
results and the predictive computations is positive.

The correlations show a clear relation between the psychophysical results and three out
of four of the computed measures. Spearman’s ρ also shows that with more complex
measures, the best results are achieved with the unfiltered images. The contrast energy
computations work best when using the full early visual system filter model. However,
despite the high correlation, some measures show controversial effects in the qualitative
assessment. The complexity measure fails to show a relation with the psychophysical
experiment and the computed values.

Table 4.2 shows the linear dependence between the experimental results and the computa-
tions (assessed with Pearson’s correlation). The strongest correlation was found between
the simplest models (contrast energy and sub-band entropy) and the experimental results.
The correlations were computed over all experimental data. The standard deviations

Table 4.1: Correlation calculated between the experimental results and the used
computational methods using the Spearman’s ρ . The correlations
are categorized according to the applied visual system filters (RF
filtering represents the low pass functioning of the retina). Only the
results for a letter size of 2.96◦ of visual angle are presented. Other
stimulus size categories gave similar results. (* means p < 0.001
and ** stands for not significant.)

Computational tool No filtering RF filtering RF and neural high-pass filtering

Contrast Energy 0.72 * 0.82 * 0.78 *
Sub-band Entropy 0.86 * 0.71 * 0.69 *
Feature Congestion 0.75 * 0.66 * 0.71 *
Complexity Measure -0.74 ** 0.04 ** -0.72 **
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(sd), thus, depict the deviations between the size categories. The deviations appear to be
moderately small.

Despite the very similar correlation coefficients in the three measures (contrast energy,
sub-band entropy, and feature congestion) there are qualitative differences between them.
Figures 4.2 and 4.3 illustrate the differences between the contrast energy measure and
the feature congestion measure in a situation with no pre-filtering in condition with letter
height 2.96◦ of visual angle. Other size categories showed similar results.

The filtering settings greatly affect the results as well. Figures 4.4 and 4.5 show the
experimental results as a function of contrast energy and feature congestion with full early
visual system model. If these results are compared to the ones in figures 4.2 and 4.3
one can notice the effect of pre-filtering. The pre-filtering enhances the upward trend in
the contrast energy model and amplify the margin between the backgound images in the
feature congestion model.

Despite the highest correlation coefficient (see table 4.1), the sub-band entropy measure
bears little relevance to the crowding effect intensity if the image is pre-processed with the
visual system filters. This is exemplified by the difference of figures 4.6 and 4.7. Figure
4.6 shows no upward trend .

Table 4.2: Pearson product-moment correlation coefficients between the exper-
imental results and used computational method. The correlations are
categorized according to the used visual system filters (RF filtering
represents the low pass functioning of the retina). The correlations
are computed over all size categories. The standard deviation is
denoted with sd.

Computational tool No filtering RF filtering RF and neural high-pass filtering

Contrast Energy 0.92 (sd 0.01) 0.87 (sd 0.01) 0.90 (sd 0.01)
Sub-band Entropy 0.92 (sd 0.02) 0.92 (sd 0.02) 0.92 (sd 0.02)
Feature Congestion 0.91 (sd 0.01) 0.84 (sd 0.01) 0.87 (sd 0.03)
Complexity Measure -0.69 (sd 0.01) 0.22 (sd 0.05) -0.73 (sd 0.01)
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Figure 4.1: Results of the psychophysical experiment. Contrast thresholds
for letter sizes of (a) 1.19◦ and (b) 2.37◦ of visual angle. Black
bullets (•) mark the median of the turning points in the threshold
algorithm. Blue bullets (•) denote the outliers. The outliers are
defined as reversals farther than 1.5 times the range between the
second and fourth quartiles. The ends of the boxes denote the
second and fourth quartile and the whiskers denote the minimum
and maximum of the data.
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Log(Contrast Energy without Early Visual System Model)
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Figure 4.2: The logarithm of the experimental contrast thresholds as a function
of the logarithm of the local contrast energy in the critical spacing
area. The image was not filtered before computation of the local
contrast energy. Only results of a letter size of 2.96◦ of visual angle
are presented. The results were similar for the other size categories.
Subjects are jittered along the x-axis to prevent overlap.
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Log(Feature Congestion without Early Visual System Model)
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Figure 4.3: The logarithm of the experimental contrast thresholds as a function
of the logarithm of the local feature congestion measure in the
critical spacing area. The image was not filtered before computation
of the feature congestion value. Only results of a letter size of 2.96◦

of visual angle are presented. The results were similar for the other
size categories. Subjects are jittered along the x-axis to prevent
overlap.
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Log(Contrast Energy with Early Visual System Model)
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Figure 4.4: The logarithm of the experimental contrast thresholds as a function
of the logarithm of the local contrast energy in the critical spacing
area. The image was filtered with the early visual system model
before computation of the local contrast energy. Only results of a
letter size of 2.96◦ of visual angle are presented. The results were
similar for the other size categories. Subjects are jittered along the
x-axis to prevent overlap.
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Log(Feature Congestion with Early Visual System Model)

Lo
g(

C
on

tr
as

t T
hr

es
ho

ld
)

●
●

●●

●

●

●

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

−3.1 −3.0 −2.9 −2.8 −2.7 −2.6

Condition
● Westminster

● Tuomiokirkko

● Royal−Cafe

● Mid−Grey

● London

● Kamppi

● Esplanadi

Subject

RN

RM

MV

● LA

Figure 4.5: The logarithm of the experimental contrast thresholds as a function
of the logarithm of the local feature congestion measure in the
critical spacing area. The image was filtered with the full early
visual system model before computation of the feature congestion
value. Only results of a letter size of 2.96◦ of visual angle are
presented. The results were similar for the other size categories.
Subjects are jittered along the x-axis to prevent overlap.
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Log(Sub−band Entropy with Early Visual System Model)
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Figure 4.6: The logarithm of the experimental contrast thresholds as a function
of the logarithm of the local sub-band entropy sum in the critical
spacing area. The image was not filtered before computation of
the sub-band entropy sum. Only results of a letter size of 2.96◦ of
visual angle are presented. The results were similar for the other
size categories. Subjects are jittered along the x-axis to prevent
overlap.
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Log(Sub−band Entropy without Early Visual System Model)
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Figure 4.7: The logarithm of the experimental contrast thresholds as a function
of the logarithm of the local sub-band entropy sum in the critical
spacing area. The image was not filtered before computation of
the sub-band entropy sum. Only results of a letter size of 2.96◦ of
visual angle are presented. The results were similar for the other
size categories. Subjects are jittered along the x-axis to prevent
overlap.
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CHAPTER

FIVE

DISCUSSION AND CONCLUSION

The study showed that the effect of crowding is apparent in natural images. The influence
of basic image properties on the crowding effect was assessed. The results show a strong
correlation between simple image statistics such as the local contrast energy and the
experimental contrast thresholds in cluttered environments.

On the basis of the presented experimental and theoretical findings the methods developed
in this thesis can be used to predict the crowding effect in an arbitrary image. The methods
generate a crowding map based on the luminance information of the image. The map
presents the locations of high crowding. The software developed is thus useful as an
assessment tool e.g. for designers of desktop environments or augmented reality.

The primitive image statistics are coarse measures of the crowding effect. However,
developing more sophisticated methods for the estimation of crowding magnitude would
require more detailed information about the mechanisms of the phenomenon itself.

Below the main findings of the study are discussed. The experimental findings are exam-
ined, and comparisons with findings from previous studies are made. Future possibilities
for the computational modelling of the crowding effect are also presented.
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5.1 Result Remarks

The contrast thresholds of the target letter stimuli varied significantly depending on the
background. The thresholds correlated with the local amount of specific features in the
image. The features assessed were simple statistical properties of the image.

The varying contrast threshold itself showed congruent results among the participants. The
change in threshold became saturated for each subject with an increase in the amount
of local features in the image. The sigmoidal behaviour found in the peripheral contrast
thresholds in complex natural backgrounds agree with previous research. An earlier study
by Pelli et al. [2] showed similar saturation for letter targets on plain backgrounds and
distracting letters with varying contrast. It can, thus, be argued that the crowding effect is
apparent in natural backgrounds.

The study also implies that it is important to consider the effects of the early visual system.
The results show significant differences in crowding prediction, depending on the visual
system filtering. It is most probable that the significance of the early visual system is
high in the crowding effect. The present study outlined the boundary conditions for the
functioning of the visual system. Further research is needed to specifically elucidate the
role of the early visual system in relation to visual stimuli and cortical activation.

5.2 Relevance of the Results

To the best knowledge of the author, there are no studies on the crowding effect in complex
natural images. The study by Rosenholtz et al. [8] is the only study concerning natural im-
ages that also mentions the crowding effect. However, the clutter approach is significantly
different and does not cover the crowding effect details.

The approach of the present study is quite different compared to the earlier research. Most
of the research on the crowding effect attempts to discriminate the distinct factors for the
crowding effect. This experiment is kept excessively simple to determine the main cause
and the overall deterioration in visual perception in the peripheral vision. In this study the
stimulus is chosen from everyday life. The method does not elucidate the mechanisms
of the crowding effect but rather investigates the effect in a natural environment and
searches for the relations between image statistics and the physiological restrictions of
the perception. The methods do not consider the possibility that there might be differing
amounts of ordinary masking or other phenomena involved. However, the findings showing
the saturation in the most complex situations and the negligible effect of the stimulus size
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indicate, that crowding is the main cause of the deterioration of the identification.

A specification of the individual factors causing the crowding effect was not possible in
this study, due to the complexity of natural images. Assessing the effect of every image
property separately would require enormous amounts of data and computations. The
averaging over the local image patch around the stimulus was introduced to overcome this
limitation. The average was computed to achieve general properties of images that could
be used to quantify the tendency of image patches to cause crowding.

An in-depth study is required to resolve the interaction mechanisms of the features in
natural images. It is beyond the scope of this study to define which features in the images
jumble.

The averaged computational measures around the target patch correlated well with the
experimental contrast thresholds. Computational measures assessed a group of features
in the image patch. There were no significant differences in the results of three out of
four of the implemented measures, although the complexity of the measures varied greatly.
The most complex measure was feature congestion. It utilizes methods of early visual
processing to assess image statistics. The sub-band entropy measures the information
content and its distribution in separate spatial frequency bands. However, the best and the
simplest measure was the sum of the contrast energy in the image patch. It gives a very
simple description of the image content and worked very well in this study.

All the measures correlated with the contrast thresholds but all were quite coarse, as
well. The contrast energy showed the most robust results. The contrast energy correlation
coefficient was high in every condition (Spearman’s ρ as high as 0.82), whereas the sub-
band entropy showed quite good results merely in images with no early visual system
filtering and the feature congestion showed good results only in the situation that involved
the early visual system filtering.

5.3 Future Work

This study initiated the investigation of the crowding effect in complex natural images. A
lot of research is still needed before the distinct features in natural images can be associated
with the crowding effect. For the simplicity and the seminal nature of the research, the
factors were kept minimal in the study. Only luminance was considered and the crowding
was assessed in a single location only, for the sake of parsimony.

The chroma axis could be added to improved version of the crowding assessment protocol.
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The inspirational models by Itti et al. [66] and Rosenholtz et al. [8] include colour assess-
ment. A more detailed model of the early visual system and the crowding phenomenon
could be produced as well. A research paradigm consisting of multiple target positions
should be introduced with a more accurate model of the visual system.

The stationarity in the experimental results suggest that more accurate computational
models could be developed for the crowding effect prediction tools. However, a clarification
of the mechanisms causing the crowding effects is needed before the models describing
the crowding effect can be improved.

A specific neuronal description of the phenomena causing the crowding effect would
greatly contribute to the modelling of the crowding effect. This, however, requires a
massive basic research on feature integration in the human visual system.

Nevertheless, development of the models for crowding is possible without excessive
neuronal knowledge. The presented models ignore many details that the study on the
crowding effect and the visual system in general have discovered. For example, the
anisotropy in the crowding effect described in chapter 2, or the dependence on the pattern
of the background could be constructed without additional research on neural mechanisms.

The essential target for further development of the crowding effect is the critical spacing
model (see chapter 3 for details). The current model lacks the methods for assessing the
feature integration in the surroundings of the target. According to the results of previous
studies, it is most probable that feature integration affects the shape of the critical spacing
area strongly. Subsequent studies in the field of assessing the crowding effect should, thus,
consider these features in particular, possibly by transforming the whole process into a
spatially limited feature space.
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[5] Endel Põder. Crowding with detection and coarse discrimination of simple vi-
sual features. J Vis, 8(4):24.1–24.6, 2008. doi: 10.1167/8.4.24. URL
http://dx.doi.org/10.1167/8.4.24.
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APPENDIX

A

THE SOFTWARE

The Python software was developed according to the principles of model-view-controller
(MVC) design pattern. The program architecture separates the functionalities and consists
of three classes.

1. Graphical user interface (GUI)

2. Mathematical computation

3. Image presentation and marking

In the current version, the GUI class includes help and guidance functions and the software
is hence not usable without the GUI. The software has, however, been designed to allow
the implementation of non-GUI (command line) applications. The mathematical core of
the software tool is therefore fully separated from the GUI, facilitating command line
usage.

The GUI class consist of the guide and input/output functions. A lot of attention is paid to
the readability of the code. The functions are grouped so that the data and building functions
are separated. The protocol is illustrated in listing A.1. The input/output functioning of the
GUI class is separated similarly.

Listing A.1: Example of the code in the GUI class
# c i v s g u i . py
program name= ’CiVS ’
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p r o g r a m v e r s i o n = ’ 0 . 8 ’
# ########################################
# Main t e r m i n a l window c l a s s f o r image
# a n a l y s i s program CiVS
# Program a n a l y z e s c l u t t e r and mimics
# a human v i s u a l s y s t e m
#
# Author : L a u r i Ahonen
# F i n n i s h I n s t i t u t e o f
# O c c u p a t i o n a l Hea l t h
# ########################################
import wx
import os
import c i v s m o t o r
import c i v s i l l u

## T e r m in a l window c l a s s ================
c l a s s mainWindow ( wx . Frame ) :

# I n i t i a l A c t i o n s −−−−−−−−−−−−−−−−−−−
def i n i t ( s e l f , p a r e n t , i d ) :

s e l f . ACTIVE CHILD = None
wx . Frame . i n i t ( s e l f , p a r e n t , id , program name , s i z e =(640 , 480) )
s e l f . m a n i p u l a t o r = c i v s m o t o r . M a n i p u l a t e ( p a r e n t = s e l f )
i c o n = wx . I con ( ’ i c o . i c o ’ , wx . BITMAP TYPE ICO )
s e l f . S e t I c o n ( i c o n )
s e l f . p a n e l = s e l f . makeTermina lPane l ( )
s e l f . Bind ( wx . EVT CLOSE , s e l f . onCloseWindow )
s e l f . makeMenuBar ( )
s e l f . makeToolBar ( )
s e l f . makeS ta tu sBa r ( )
s e l f . i n i t W r i t e T e r m i n a l ( )

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# S e t s t h e c u r r e n t f rame ( image t h e u s e r wants t o o p e r a t e )
def s e t A c t i v e C h i l d ( s e l f , a c t i v e ) :

s e l f . ACTIVE CHILD = a c t i v e
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Menu bar i s c r e a t e d f i r s t −−−−−−−−−
def menuData ( s e l f ) :

re turn ( ( ”&F i l e ” ,
( ”&Open” , ”Open an e x i s t i n g image ” , s e l f . onOpen ) ,
( ”E&x i t ” , ” T e r m i n a t e t h e program ” , s e l f . onCloseWindow ) ) ,

( ”&F i l t e r ” ,
( ” O p t i c and R e t i n a l ” ,

” O p t i c a l f e a t u r e s and r e t i n a l p h y s i o l o g y mimicking f i l t e r i n g . ” , s e l f .
onOpt ) ,

( ” A l l p a r t s o f LGN” ,
” Combined L a t e r a l G e n i c u l a t e Nuc leus p r e s e n t a t i o n ” , s e l f . onLGN) ,

( ” S t r i a t e c o r t e x ” , ” I l l u s t r a t i o n o f t h e image coded by V1” , s e l f . onV1 ) ,
( ” ” , ” ” , ” ” ) ,
( ” Complex i ty e v a l u a t i o n ( Ruth R o s e n h o l t z ) ” ,

” Q u a n t i f i e d c o m p l e x i t y i n t e r m s of R o s e n h o l t z ” , s e l f . onRuthComp ) ,
( ” Complex i ty e v a l u a t i o n ( R i s t o Nasanen ) ” ,

” Q u a n t i f i e d c o m p l e x i t y i n t e r m s of R i s t o ” , s e l f . onRistoComp ) ) ,
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( ”&Help ” ,
( ” About ” , ” P r o d u c t I n f o r m a t i o n ” , s e l f . o n I n f o D i a l o g ) ) )

def makeMenuBar ( s e l f ) :
menuB = wx . MenuBar ( )
f o r each in s e l f . menuData ( ) :

l a b e l = each [ 0 ]
i t e m s = each [ 1 : ]
menuB . Append ( s e l f . makeMenu ( i t e m s ) , l a b e l )
s e l f . SetMenuBar ( menuB )

The image presentation class handles the illustration of the filter effects and displaying the
images in frames. The functional purpose of the image presentation class is to register
the user-provided information about the fixation and target positions on the image. The
information is saved by the image frame object. Example of the code for this functionality
is presented in listing A.2.

Listing A.2: Example of the code in the illustration class
# Drawing t h e image and t h e f i x a t i o n mark

def OnPain t ( s e l f , e v e n t ) :
s e l f . dc = wx . PaintDC ( s e l f )
s e l f . dc . Se tPen ( wx . TRANSPARENT PEN)
s e l f . dc . DrawBitmap ( wx . BitmapFromImage ( s e l f . image ) , 0 , 0 )
s e l f . dc . S e tB r u s h ( wx . RED BRUSH)
i f s e l f . f i x x or s e l f . f i x y i s not None :

s e l f . dc . DrawCi rc l e ( s e l f . f i x x , s e l f . f i x y , 3 )
s e l f . dc . S e tB r u s h ( wx . GREEN BRUSH)
i f s e l f . t a r x or s e l f . t a r y i s not None :

s e l f . dc . DrawCi rc l e ( s e l f . t a r x , s e l f . t a r y , 3 )
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# S e t mark on f i x a t i o n and t a r g e t p o i n t s −−−−−−−−
def drawImg ( s e l f , pos , s ) :

i f s i s 0 :
s e l f . f i x x = pos . x
s e l f . f i x y = pos . y

e l s e :
s e l f . t a r x = pos . x
s e l f . t a r y = pos . y

s e l f . dc . C l e a r ( )
s e l f . dc . DrawBitmap ( wx . BitmapFromImage ( s e l f . image ) , 0 , 0 )
i f s e l f . f i x x or s e l f . f i x y i s not None :

s e l f . dc . S e tB r u s h ( wx . RED BRUSH)
s e l f . dc . DrawCi rc l e ( s e l f . f i x x , s e l f . f i x y , 3 )

i f s e l f . t a r x or s e l f . t a r y i s not None :
s e l f . dc . S e tB r u s h ( wx . GREEN BRUSH)
s e l f . dc . DrawCi rc l e ( s e l f . t a r x , s e l f . t a r y , 3 )

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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The computational properties of the program are provided by the computations class.
This class utilizes packages for scientific computing (scipy.signal, scipy.ndimage and
scipy.fftpack) and implements the algorithms presented in chapter 3. In the current version
the experimental conditions must also be set here. There is readiness for the computations
to run in stand-alone console-mode.

In addition to the methods presented in chapter 3 the class implements optical features that
is not in use in the current version. It is implemented to model the optical features of the
eye but omitted due to the reasons presented in chapter 2.

Example code is printed in listing A.3

Listing A.3: Example of the code in the mathematical class
# User c h a n g e a b l e p a r a m e t e r s i n t h e b e g i n n i n g

def e x p e r i m e n t C o n d i t i o n s ( s e l f ) :
””” P h y s i c a l p a r a m e t e r s o f t e s t c o n d i t i o n s ”””

re turn { ’ p i x e l s i z e ’ : 0 . 2 7 1 , # mm
’ d i s p l a y d i s t a n c e ’ : 5 7 0 , # mm
’ 0 . 5 d e g r e e s i n r a d i a n s ’ : 0 . 0 0 8 7 2 6 6 4 6 2 5 9 9 7 ,
’ r a d i a n i n d e g r e e s ’ : 5 7 . 2 9 5 7 7 9 5 ,
’ o b l a t e n e s s o f s i m p l e c e l l s ’ : 0 . 7 5 , # h e i g h t−w i d t h r a t i o
’ pyramide l e v e l s ’ :4}

””” − − − − − − − − − − − − − − − − − − − ”””
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# B e r k e l e y w a v e l e t t r a n s f o r m −w a v e l e t s
””” e . g .

[ 0 −1 1]
A∗[ 1 0 −1] / A i s n o r m a l i z i n g c o n s t a n t ( make t o sum t o u n i t y )

[−1 1 0]
”””

def mamaWavelets ( s e l f ) :
re turn ( ( ’ 0o ’ , ( 1 / numpy . s q r t ( 6 ) ) ∗numpy . a r r a y ( [ [ −1 , 0 , 1 ] , [ −1 , 0 , 1 ] , [ −1 , 0 , 1 ] ] ) ) ,

( ’ 0 e ’ , ( 1 / numpy . s q r t ( 1 8 ) ) ∗numpy . a r r a y ( [ [−1 ,2 ,−1] , [−1 ,2 ,−1] , [−1 ,2 ,−1]] ) ) ,
( ’ 45o ’ , ( 1 / numpy . s q r t ( 6 ) ) ∗numpy . a r r a y ( [ [ −1 , 1 , 0 ] , [ 1 , 0 , −1 ] , [ 0 , −1 , 1 ] ] ) ) ,
( ’ 45 e ’ , ( 1 / numpy . s q r t ( 1 8 ) ) ∗numpy . a r r a y ( [ [−1 ,−1 ,2] , [−1 ,2 ,−1] , [2 ,−1 ,−1]] ) ) ,
( ’ 90o ’ , ( 1 / numpy . s q r t ( 6 ) ) ∗numpy . a r r a y ( [ [ −1 , −1 , −1 ] , [ 0 , 0 , 0 ] , [ 1 , 1 , 1 ] ] ) ) ,
( ’ 90 e ’ , ( 1 / numpy . s q r t ( 1 8 ) ) ∗numpy . a r r a y ( [ [−1 ,−1 ,−1] , [2 ,2 ,2] , [−1 ,−1 ,−1]] ) ) ,
( ’ 135o ’ , ( 1 / numpy . s q r t ( 6 ) ) ∗numpy . a r r a y ( [ [ 0 , −1 , 1 ] , [ 1 , 0 , −1 ] , [ −1 , 1 , 0 ] ] ) ) ,
( ’ 135 e ’ , ( 1 / numpy . s q r t ( 1 8 ) ) ∗numpy . a r r a y ( [ [2 ,−1 ,−1] , [−1 ,2 ,−1] , [−1 ,−1 ,2] ] ) ) )

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# T r a n s l a t e wx . Image −o b j e c t t o numer ic m a t r i x s t r u c t u r e
def image2mtx ( s e l f , image ) :

wid th = image . GetWidth ( )
h e i g h t = image . Ge tHe igh t ( )
rgb = numpy . f r o m s t r i n g ( image . GetData ( ) , numpy . u i n t 8 )
l e n g t h = rgb . s i z e
R = rgb [ r a n g e ( 0 , l e n g t h , 3 ) ]
G = rgb [ r a n g e ( 1 , l e n g t h , 3 ) ]
B = rgb [ r a n g e ( 2 , l e n g t h , 3 ) ]
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g ray = 0 .23∗R + 0.71∗G + 0.06∗B
normLuminance = gray / g r ay . max ( )
mtx = normLuminance . r e s h a p e ( h e i g h t , w id th )

re turn mtx
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Conver t m a t r i x s t r u c t u r e t o wx . Image −o b j e c t
def mtx2image ( s e l f , f i l t e r e d M t x , gamma=None ) :

imgLayer = f i l t e r e d M t x . f l a t t e n ( )
i f gamma != None : # Gamma c o r r e c t i o n i f needed

imgLayer = numpy . s q r t ( ( imgLayer−imgLayer . min ( ) ) ∗ imgLayer . max ( ) )
normLayer = numpy . u i n t 8 ( ( imgLayer−imgLayer . min ( ) ) ∗ ( 2 2 0 / imgLayer . max ( ) ) )
l l l = numpy . r e p e a t ( normLayer , 3 )
f i l t e r e d I m g = wx . EmptyImage ( f i l t e r e d M t x . shape [ 1 ] , f i l t e r e d M t x . shape [ 0 ] )
f i l t e r e d I m g . S e t D a t a ( l l l . t o s t r i n g ( ) )

re turn f i l t e r e d I m g
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# R e t i n a l f i l t e r i n g f o r image −−−−−−−
def r e t i n a l ( s e l f , image , name , f i x p o s , t a r g p o s =0) :

# − − − − − − − − − − − − − − − −
mtx = s e l f . image2mtx ( image )
# − − − − − − − − − − − − − − − −

h e i g h t = numpy . f l o a t 3 2 ( mtx . shape [ 0 ] )
wid th = numpy . f l o a t 3 2 ( mtx . shape [ 1 ] )
f i x x = ( f i x p o s . x−wid th / 2 ) / wid th
f i x y = ( f i x p o s . y−h e i g h t / 2 ) / h e i g h t

# V i s u a l a n g l e d e t e r m i n a t i o n − −
c o n d i t i o n s = s e l f . e x p e r i m e n t C o n d i t i o n s ( )
p i x e l S i z e = c o n d i t i o n s [ ’ p i x e l s i z e ’ ]
d i s t a n c e T o D i s p l a y = c o n d i t i o n s [ ’ d i s p l a y d i s t a n c e ’ ]
r a d s = c o n d i t i o n s [ ’ 0 . 5 d e g r e e s i n r a d i a n s ’ ]
degs = c o n d i t i o n s [ ’ r a d i a n i n d e g r e e s ’ ]
o b l = c o n d i t i o n s [ ’ o b l a t e n e s s o f s i m p l e c e l l s ’ ]
aH = 2∗numpy . a r c t a n ( 0 . 5∗ h e i g h t ∗ p i x e l S i z e / d i s t a n c e T o D i s p l a y ) ∗degs
aW = 2∗numpy . a r c t a n ( 0 . 5∗ wid th∗ p i x e l S i z e / d i s t a n c e T o D i s p l a y ) ∗degs
# Maximum f r e q u e n c y i n image : amount o f p i x e l p a i r s i n v i s u a l d eg re e
maxFreq = ( numpy . t a n ( r a d s ) ∗ d i s t a n c e T o D i s p l a y ) / p i x e l S i z e
# − − − − − − − − − − − − − − − −

# Trans form t o f r e q u e n c y space −
f o u r i e r = s c i p y . f f t p a c k . f f t 2 ( mtx )
zeroComp = f o u r i e r [ 0 , 0 ]
f o u r i e r [ 0 , 0 ] = 0
f o u r i e r = s c i p y . f f t p a c k . f f t s h i f t ( f o u r i e r )
# − − − − − − − − − − − − − − − −

# F i l t e r and a modu la tor g r i d s −
g r i d = numpy . f l o a t 6 4 ( numpy . mgrid [− h e i g h t / 2 : h e i g h t /2 ,−wid th / 2 : wid th / 2 ] )
# N o r m a l i z a t i o n
nGrid = g r i d [ 0 ] / g r i d [ 0 ] . shape [ 0 ] , g r i d [ 1 ] / g r i d [ 1 ] . shape [ 1 ]
# Radius f o r B u t t e r w o r t h f i l t e r
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r a d i u s = numpy . hypo t ( normGrid [ 0 ] , normGrid [ 1 ] )
# − − − − − − − − − − − − − − − −

# C o r t i c a l m a g n i f i c a t i o n f a c t o r ( f i t t e d v a l u e )
M = 1
# E l l i p s e f o r s p a t i a l m o d u l a t i o n ( e l l i p s e d i m e n s i o n s from Wertheim 1891)
e l l i p s e = numpy . hypo t (M∗aH∗ ( abs ( nGr id [0]− f i x y ) ) ,M∗ o b l ∗aW∗ ( abs ( nGr id [1]− f i x x ) ) )
# − − − − − − − − − − − − − − − − −

# O p t i c a l f e a t u r e s o f eye ( n o t i n use )
#A1 = 0 .1743
#A2 = 0 .0392
#B1 = 0 .0362
#B2 = 0 .0172
#C1 = 0 .215
#C2 = 0.00294
# cosGr id = numpy . cos ( numpy . p i ∗nGrid [ 0 ] ) , numpy . cos ( numpy . p i ∗nGrid [ 1 ] )
# modula ted =( (1 − C1 + C2∗ cosGr id [ 0 ] ) ∗ numpy . exp (−A1 ∗ numpy . exp ( A2 ∗ cosGr id

[ 0 ] ) )
# + ( C1 − C2∗ cosGr id [ 1 ] ) ∗ numpy . exp (−B1 ∗ numpy . exp ( B2 ∗ cosGr id

[ 1 ] ) ) )

# Bands ( o c t a v e f r a c t i o n s ) i n which t h e image f r e q u e n c i e s are t r e a t e d
o c t a v e s = numpy . l o g s p a c e (−10 ,−1 ,num=20 , ba se =2)
# − − − − − − − − − − − − − − − − −

# Loop t o f i l t e r each band s e p a r a t e l y
p rev = 0
f o r band in o c t a v e s :

# C a l c u l a t i n g t h e band
i f p rev == 0 :

t r t B a n d = numpy . f l o a t 6 4 ( ( 1 / ( 1 . 0 + ( r a d i u s / band ) ∗∗ (40 ) ) ) )
e l s e :

t r t B a n d = numpy . f l o a t 6 4 ( ( 1 / ( 1 . 0 + ( r a d i u s / band ) ∗∗ (40 ) ) )
−(1 / ( 1 . 0 + ( r a d i u s / p r ev ) ∗∗ (40 ) ) ) )

# The d e f i n e d band i n t h e image t o s p a t i a l space
c u r r e n t B a n d = s c i p y . f f t p a c k . i f f t 2 ( s c i p y . f f t p a c k . i f f t s h i f t ( t r t B a n d ∗ f o u r i e r ) )
# S p a t i a l m o d u l a t i o n f o r t h e band o f image
midFreq = numpy . mean ( ( band , p r ev ) ) ∗maxFreq
# C o n s t a n t t o a d j u s t t h e power o f f i l t e r ( c o a r s e a s s e s s m e n t from
a l p h a = 0 . 1
# Demo f i l t e r i n g w i t h o u t n e u r a l high−pass
i f t a r g p o s != 0 : # | | i f NEURAL HP−FILTERING GIVES BAD RESULTS

m o d u l a t o r = numpy . exp(−numpy . abs ( e l l i p s e ) ∗midFreq∗ a l p h a )
# ” Real case ” s i m u l a t i o n w i t h e q u a t i o n :
e l s e :

nHP = midFreq # Neura l h igh pas s ( Rovamo e t a l . )
m o d u l a t o r = nHP∗numpy . exp(−numpy . abs ( e l l i p s e ) ∗midFreq∗ a l p h a )
# Demo

i f p rev == 0 :
a l l B a n d s = m o d u l a t o r ∗ c u r r e n t B a n d . r e a l # Smal l i m a g i n a r y p a r t s

e l s e :
a l l B a n d s += m o d u l a t o r ∗ c u r r e n t B a n d . r e a l

p r ev = band

# Add F o u r i e r t r a n s f o r m z e r o component ( a0 )
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f i l t M t x = a l l B a n d s + numpy . abs ( zeroComp ) / mtx . s i z e
# − − − − − − − − − − − − − − − − −
f i l t e r e d = s e l f . mtx2image ( f i l t M t x )
# − − − − − − − − − − − − − − − − −
s e l f . mama . d i spOnTermina l ( ’ r e t i n a l ’ , name )
# − − − − − − − − − − − − − − − − −
re turn f i l t e r e d , f i l t M t x

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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