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Abstract

We express a problem from visual astronomy in terms of Geometric

(Clifford) Algebra, then solve the problem by deriving expressions for the

sine and cosine of the angle between projections of two vectors upon a

plane. Geometric Algebra enables us to do so without deriving expressions

for the projections themselves.

“Derive expressions for the sine and cosine of the angle of rotation,

β, from the projection of u upon the bivector M̂ to the projection of

v upon M̂.”
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1 Introduction

In this document, we will solve—numerically as well as symbolically—a problem

of a type that can take the following concrete form, with reference to Fig.1:

“At a certain location on the Earth, a vertical pole casts a shadow

on a perfectly flat, horizontal plaza. On that plaza, local residents



Figure 1: A gnomon (vertical pole) casts a shadow on a perfectly flat, level

plaza. The direction of vector s is from the base of the gnomon to the tip of the

shadow. The direction of the Sun’s rays is r̂. Upon the plaza, local inhabitants

have drawn a line pointing in the direction “local north” (n̂L). The unit vector

in the direction of the plane’s normal is ĝ.

who are fans of naked-eye astronomy have traced a north-south

line running through the base of the pole. With respect to a right-

handed orthonormal reference frame with basis vectors â, b̂, and

ĉ, the direction of the Sun’s rays is given by the unit vector r̂ =

âra + b̂rb + ĉrc. The direction of the upward-pointing vector normal

to the plaza is ĝ = âga + b̂gb + ĉgc, and the direction of the Earth’s

rotational axis (i.e., the direction from the center of the Earth to

the North Pole) is n̂L = ânLa + b̂nLb + ĉnLc. What is the angle, β,

between the north-south line and the pole’s shadow?”

2 Formulating the Problem in Geometric-Algebra

(GA) Terms, and Devising a Solution Strategy

2.1 Initial Observations

Let’s begin by making a few observations that might be useful:

1. A vertical pole that is used to cast a shadow on a flat surface for the

purpose of astronomical observations is known as a gnomon. We’ll use

that term in the rest of this document.

2. By saying “the direction of the Sun’s rays is r̂ = âra + b̂rb + ĉrc”, we

assumed that all of the Sun’s rays are parallel. We’ll use that assumption

throughout this document.

3. For our purposes, the Earth can be assumed perfectly spherical.
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Figure 2: The plaza is a plane tangent to the Earth (assumed spherical) at the

point at which the gnomon is embedded .

4. The plaza is a plane tangent to the Earth at the point at which the gnomon

is embedded (Fig. 2).

5. The direction of the shadow is the direction of the perpendicular projection

of r̂ upon the plaza. Fig. 2 shows why: the gnomon is perpendicular to

the plaza, so the shadow is the perpendicular projection some vector λr̂

upon the plaza. Thus, the direction from the base of the gnomon to the

tip of the shadow is the same as the direction of the projection of r̂ upon

the plaza.

6. The direction from south to north, as traced on the plaza by local residents,

is the perpendicular projection of n̂c upon the plaza. As proof of that

assertion, consider Fig. 3. The south-north line on the plaza is tangent to

the great circle that passes through the Earth’s North Geographic Pole,

and that also passes through the base of the gnomon. The plane that

contains that great circle also contains the both ĝ and n̂c. Therefore, that

plane is perpendicular to the plaza. Putting all of these ideas together,

the south-north line on the plaza is the projection of some scalar multiple

µn̂c of the vector n̂c. Thus, that line has the direction of n̂c’s projection

on the plaza.

2.2 Recalling What We’ve Learned from Solving Similar

Problems via GA

Let’s refresh our memory about techniques that we may used to solve other

problems via GA:
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Figure 3: The direction “local north” (i.e., the direction from south to north, as

traced on the plaza by local residents) is the same as that of the perpendicular

projection of n̂c upon the plaza.

1. Problems involving projections onto a plane are usually solved by using

the appropriately-oriented bivector that is parallel to the plane, rather

than by using the vector that is perpendicular to it. The Appendix

(Section 6) shows how to find the required bivector, given said vector. The

conclusion is that for the unit perpendicular vector ê = âea + b̂eb + ĉec,

the appropriately-oriented unit bivector is

M̂ = âb̂ec + b̂ĉea − âĉeb (2.1)

In GA terms, ê is the “dual” of the bivector M̂. We can also see that if

we write M̂ in the form M̂ = âb̂mab + b̂ĉmbc + âĉmac, then

mab = ec, mbc = ea, mac = −eb. (2.2)

2.

Notation: PC (d) is the

projection of d upon C.

The perpendicular projection of a given vector w upon a given unit

bivector, M̂, is (Reference [1], p. 65 , and Ref. [2], p.119):

PM̂ (w) =
(
w · M̂

)
M̂

−1
. (2.3)

3. The inverse
(
M̂

−1
)

of the unit bivector M̂ is −M̂ .

4. For any vector y that is parallel to the bivector A, Ay = −yA.

5. Putting the last three observations, we arrive at

PM̂ (w) = M̂
(
w · M̂

)
. (2.4)
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6. If two vectors p and q are parallel to the bivector M̂, then p̂q̂ = eM̂φ, where

the scalar φ is the angle of rotation from p to q. Therefore, p ·q+p∧q =

cosφ+ M̂ sinφ. The algebraic sign of φ is positive if the direction of that

rotation is the same as the orientation of M̂, and negative if in the opposite

direction.

7. Equating terms of the same grade in the previous item, we find that

cosφ = p̂ · q̂;

sinφ = M̂
−1

(p̂ ∧ q̂) .
(2.5)

8. Macdonald’s definitions (Ref. [2], p. 101) of the inner and outer products

are often useful. Those definitions are, for a multivector A of grade j and

a multivector B of grade k:

Aj ·Bk = 〈AB〉k−j (Note: Aj ·Bk does not exist if j > k);

Aj ∧Bk = 〈AB〉k+j .
(2.6)

2.3 Further Observations, and Identifying a Strategy

We ’ve been discussion how to find the angle between the south-north line and

the gnomon’s shadow. Now, to provide results that will be more generally useful,

we’ll treat two arbitrary vectors u and v (not necessarily unit vectors) and an

arbitrary unit bivector, M̂ (Fig. 4). We wish to find the sine and cosine of β,

the angle of rotation from PM̂ (u) to PM̂ (u).

We could solve the problem by calculating each of those projections according

to Eq. (2.3), then calculating the sine and cosine of the requested angle from Eq.

(2.5). However, our review of GA in the previous section suggests a strategy

that will save us considerable trouble. We’ll begin by using Eq. (2.3) to express

the two projections that interest us:

PM̂ (û) =
(
û · M̂

)
M̂

−1
;

PM̂ (v) =
(
v · M̂

)
M̂

−1
.

Can we now use Eq. (2.5) to calculate cosβ and sinβ? Not yet: although

u and v are unit vectors, their projects upon M̂ may not be. Therefore,

we’ll need to calculate ‖PM̂ (u) ‖ and ‖PM̂ (v) ‖, a detail to which we’ll return

momentarily. First, we need to calculate
[(

u · M̂
)
M̂

−1
]
·
[(

v · M̂
)
M̂

−1
]

and[(
u · M̂

)
M̂

−1
]
∧
[(

v · M̂
)
M̂

−1
]
.

The definitions of the inner and outer products in Eq. (2.6) use the product

AjBk, which in our case (because we want to know the rotation from PM̂ (u) to

PM̂ (u)) is [(
u · M̂

)
M̂

−1
] [(

v · M̂
)
M̂

−1
]
.
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Figure 4: Diagram of the translation, into GA terms, of the more-general type of

problem that was motivated by our consideration of the specific case of shadows

cast upon a flat, horizontal plaza by a vertical pole. We’ll derive expressions for

the sine and cosine of the angle of rotation β from the projection of u upon the

bivector M̂ to the projection of v upon M̂. The vector ê is the dual of M̂, and

is therefore normal to M̂.
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Next, we recognize that v · M̂ is a vector, and is parallel to M̂. Therefore,

using Eq. (2.4), we can write
(
v · M̂

)
M̂

−1
as M̂

(
v · M̂

)
. Using this idea in

the previous equation,[(
u · M̂

)
M̂

−1
] [(

v · M̂
)
M̂

−1
]

=
[(

u · M̂
)
M̂

−1
] [

M̂
(
v · M̂

)]
=
(
u · M̂

)(
v · M̂

)
. (2.7)

We could also find ‖PM̂ (u) ‖
and ‖PM̂ (v) ‖ via a route

similar to that used in deriving

Eq. (2.7). For example,

‖PM̂ (u) ‖ =

√
[PM̂ (u)]2

=
√[(

u · M̂
)
M̂

−1
] [(

u · M̂
)
M̂

−1
]

=

√(
u · M̂

)2
= ‖u · M̂‖.

Now, let’s return to the question of ‖PM̂ (u) ‖ and ‖PM̂ (v) ‖. Because

the vector PM̂ (u) is parallel to the unit bivector M̂,
[
PM̂ (u)

]
M̂ is just a 90◦

rotation of PM̂ (u). Thus, ‖
[
PM̂ (u)

]
M̂‖ = ‖PM̂ (u) ‖. But

[
PM̂ (u)

]
M̂ =(

u · M̂
)
M̂

−1
M̂ = u · M̂. After using similar reasoning for ‖PM̂ (v) ‖, we find

that

‖PM̂ (u) ‖ = ‖u · M̂‖, and

‖PM̂ (v) ‖ = ‖v · M̂‖. (2.8)

Putting all of these ideas together, plus Eq. (2.5), and recognizing that

u · M̂ and v · M̂ are vectors (and therefore are of grade 1),

sinβ =
M̂

−1
〈
(
u · M̂

)(
v · M̂

)
〉2

‖u · M̂‖‖v · M̂‖
, (2.9a)

cosβ =
〈
(
u · M̂

)(
v · M̂

)
〉0

‖u · M̂‖‖v · M̂‖
. (2.9b)

3 Solutions for cos β and sin β

We’ll begin by writing M̂ and the two vectors as

u = âua + b̂ub + ĉuc,

v = âva + b̂vb + ĉvc, and

M̂ = âb̂mab + b̂ĉmbc + âĉmac.

3.1 Expressions for u · M̂ and v · M̂

Vector u is of grade 1, and bivector M̂ is of grade 2, so from Eq. (2.6),

u · M̂ = 〈uM̂〉2−1

= 〈
(
âua + b̂ub + ĉuc

)(
âb̂mab + b̂ĉmbc + âĉmac

)
〉1

= â (−ubmab − ucmac) + b̂ (uamab − ucmbc) + ĉ (uamac + ubmbc) .
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Similarly,

v · M̂ = â (−vbmab − vcmac) + b̂ (vamab − vcmbc) + ĉ (vamac + vbmbc) .

3.2 Expressions for ‖u · M̂‖ and ‖v · M̂‖

Using the expressions that we developed in Section 3.1 , ‖u · M̂‖2 and ‖v · M̂‖,
plus the fact that m2

ab +m2
bc +m2

ac = 1 because M̂ is a unit bivector,

‖u · M̂‖2 = u2a
(
1−m2

bc

)
+ u2b

(
1−m2

ac

)
+ u2c

(
1−m2

ab

)
+ 2uaubmacmbc + 2ubucmabmac − 2uaucmabmbc ,

(3.1a)

and

‖v · M̂‖2 = v2a
(
1−m2

bc

)
+ v2b

(
1−m2

ac

)
+ v2c

(
1−m2

ab

)
+ 2vavbmacmbc + 2vbvcmabmac − 2vavcmabmbc .

(3.1b)

Using the correspondence (Eq. (2.2)) between coefficients in M̂ and ê, we

can also write Eq. (3.1) as

‖u · M̂‖2 = u2a
(
1− e2a

)
+ u2b

(
1− e2b

)
+ u2c

(
1− e2c

)
− 2uaubeaeb − 2ubucebec − 2uauceaec ,

(3.2a)

and

‖v · M̂‖2 = v2a
(
1− e2a

)
+ v2b

(
1− e2b

)
+ v2c

(
1− e2c

)
− 2vavbeaeb − 2vbvcebec − 2vavceaec .

(3.2b)

3.3 Solution for sin β

As you might expect, the expansion of Eq. (2.9)a becomes extensive and messy,

so we’ll do it in several steps.
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3.3.1 Expansion of 〈
(
u · M̂

)(
v · M̂

)
〉2

After considerable simplification, using the expressions developed in Section 3.1

for u · M̂ and v · M̂,

〈
(
u · M̂

)(
v · M̂

)
〉2 = âb̂

[
(uavb − ubva)m2

ab + (ubvc − ucvb)mabmbc

+ (uavc − ucva)mabmac ]

+ b̂ĉ
[
(ubvc − ucvb)m2

bc + (uavb − ubva)mabmbc

+ (uavc − ucva)mbcmac ]

+ âĉ
[
(uavc − ucva)m2

ac + (uavb − ubva)mabmac

+ (ubvc − ucvb)mbcmac ] .

(3.3)

3.3.2 Expansion of M̂
−1
〈
(
u · M̂

)(
v · M̂

)
〉2

Surprisingly, left-multiplying the expression for 〈
(
u · M̂

)(
v · M̂

)
〉2 (Eq. (3.3))

by M̂
−1

gives a comparatively simple result. The inverse of a unit bivector is

just the negative of that bivector, so M̂
−1

= −M̂ = −âb̂mab − b̂ĉmbc − âĉmac.

After expanding, carrying out massive cancellations, and using the fact that

m2
ab +m2

bc +m2
ac = 1,

M̂
−1
〈
(
u · M̂

)(
v · M̂

)
〉2 = (uavb − ubva)mab + (ubvc − ucvb)mbc

+ (uavc − ucva)mac.
(3.4)

Does our answer make sense? The expression on the right-hand side of Eq. (3.4) will be the numerator

of the final expression for sinβ. We should stop here to ask ourselves whether

that expression makes sense. For example, does it behave as it should, given the

physical situation for which it’s been derived? One thing we know is that if the

vectors u and v are reversed, then angle β will remain the same in magnitude,

but will change algebraic sign. The same is true for the right-hand side of Eq.

(3.4), so in this respect, at least, it does make sense.

We also note that if u = v, then the right-hand side of Eq. (3.4) is zero, as

it should be, because when u = v, β = 0.

3.3.3 Final result for sinβ

Using our result from Eq. (3.4)

sinβ =
(uavb − ubva)mab + (ubvc − ucvb)mbc + (uavc − ucva)mac

‖u · M̂‖‖v · M̂‖
, (3.5)
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where ‖u · M̂‖ and ‖v · M̂‖ are the square roots of the expressions on the

right-hand side of Eqs. (3.1). Using the correspondence (Eq. (2.2)) between

coefficients in M̂ and ê, we can also write Eq. (3.5) as

sinβ =
(uavb − ubva) ec + (ubvc − ucvb) ea − (uavc − ucva) eb

‖u · M̂‖‖v · M̂‖
. (3.6)

3.4 Solution for cos β

The work needed to derive the expression for cosβ is much less extensive than

was needed for sinβ, so we will omit many of the details.

The expansion of 〈
(
u · M̂

)(
v · M̂

)
〉0 reduces to

〈
(
u · M̂

)(
v · M̂

)
〉0 = uava

(
1−m2

bc

)
+ ubvb

(
1−m2

ac

)
+ ucvc

(
1−m2

ab

)
− (uavc + ucva)mabmbc

+ (ubvc + ucvb)mabmac + (uavb + ubva)mbcmac.

(3.7)

Then, according to Eq. (2.9), cosβ is the right-hand side of Eq. (3.7), divided

by the product ‖u · M̂‖‖v · M̂‖ (from Eqs. (3.1)). Using the correspondence

(Eq. (2.2)) between coefficients in M̂ and ê, we can also write Eq. (3.7) as

〈
(
u · M̂

)(
v · M̂

)
〉0 = uava

(
1− e2a

)
+ ubvb

(
1− e2b

)
+ ucvc

(
1− e2c

)
− (uavc + ucva) eaec

− (ubvc + ucvb) ebec − (uavb + ubva) eaeb.

(3.8)

Does our answer make sense?Once again, we should ask whether our answer makes sense. For example,

does interchanging the vectors u and v leave the result unchanged, as it should?

Yes.

In addition, if u = v, then
(
u · M̂

)(
v · M̂

)
〉0 reduces to the expression

that we found for ‖u · M̂‖2 (Eqs. (3.1)). This result, too, is as it should be.

We could also, more laboriously, verify that sin2 β + cos2 β = 1.

4 Testing the Formulas that We’ve Derived

Fig. 5 shows an interactive GeoGebra construction (Reference [3]) that compares

the calculated and actual values of sinβ and cosβ.
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Figure 5: An interactive GeoGebra construction (Reference [3]) that tests the

formulas derived herein by comparing the calculated and actual values of sinβ

and cosβ.

5 Conclusions, and Summary of the Formulas

Derived Herein

The key idea in these derivations was that because the vectors
(
u · M̂

)
M̂

−1

and
(
v · M̂

)
M̂

−1
are parallel to M̂, we can calculate the sine and cosine of β

from the product
(
u · M̂

)(
v · M̂

)
, rather than having to calculate them from

the product
[(

u · M̂
)
M̂

−1
] [(

v · M̂
)
M̂

−1
]
.

Writing u, v, and ê, and M̂, as

• u = âua + b̂ub + ĉuc,

• v = âva + b̂vb + ĉvc,

• e = âea + b̂eb + ĉec, and

• M̂ = âb̂mab + b̂ĉmbc + âĉmac

(
= âb̂ec + b̂ĉea − âĉeb

)
,

we found that (Eqs. (3.5) and (3.6))

sinβ =
(uavb − ubva)mab + (ubvc − ucvb)mbc + (uavc − ucva)mac

‖u · M̂‖‖v · M̂‖
,

=
(uavb − ubva) ec + (ubvc − ucvb) ea − (uavc − ucva) eb

‖u · M̂‖‖v · M̂‖
,
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where ‖u · M̂‖ and ‖v · M̂‖ are the square roots of the expressions on the

right-hand side of Eqs. (3.1).

WE also find that (Eqs. (3.7) and (3.8))

cosβ =
〈
(
u · M̂

)(
v · M̂

)
〉0

‖u · M̂‖‖v · M̂‖
,

where

〈
(
u · M̂

)(
v · M̂

)
〉0 = uava

(
1−m2

bc

)
+ ubvb

(
1−m2

ac

)
+ ucvc

(
1−m2

ab

)
− (uavc + ucva)mabmbc

+ (ubvc + ucvb)mabmac + (uavb + ubva)mbcmac,

= uava
(
1− e2a

)
+ ubvb

(
1− e2b

)
+ ucvc

(
1− e2c

)
− (uavc + ucva) eaec

− (ubvc + ucvb) ebec − (uavb + ubva) eaeb.
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6 Appendix: Calculating the Unit Bivector M̂

of a Plane Whose Dual is the Vector ê

As may be inferred from a study of References [1] (p. (56, 63) and [2] (pp.

106-108) , the bivector M̂ that we seek is the one whose dual is ê. That is, M̂

must satisfy the condition

ê = M̂I−1
3 ;

∴ M̂ = êI3. (6.1)

Although we won’t use that fact

here, I−1
3 is I3’s negative:

I−1
3 = −âb̂ĉ.

where I3 is the right-handed pseudoscalar for G3. That pseudoscalar is the

product, written in right-handed order, of our orthonormal reference frame’s
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https://www.geogebra.org/m/Zpsxygxy
http://vixra.org/abs/1610.0054


basis vectors: I3 = âb̂ĉ (and is also b̂ĉâ and ĉâb̂). Therefore, writing M̂ as

M̂ = âea + b̂eb + ĉec,

M̂ = êI3

=
(
âea + b̂eb + ĉec

)
âb̂ĉ

= ââb̂ĉea + b̂âb̂ĉeb + ĉâb̂ĉec

= âb̂ec + b̂ĉea − âĉeb. (6.2)

To make this simplification, we

use the following facts:

• The product of two

perpendicular vectors

(such as â and b̂) is a

bivector;

• Therefore, for any two

perpendicular vectors p

and q, qp = −qp; and

• (Of course) for any unit

vector p̂, p̂p̂ = 1.

See also Ref. [4].

In writing that last result, we’ve followed [2]’s convention (p. 82) of using

âb̂, b̂ĉ, and âĉ as our bivector basis. Examining Eq. (6.2) we can see that if we

write M̂ in the form M̂ = âb̂mab + b̂ĉmbc + âĉmac , then

mab = ec, mbc = ea, mac = −eb. (6.3)
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