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Preface 
 

This monograph is devoted to an interpretation of non-relativistic quantum mechanics. 

 

The ideas in it came by degrees after I discovered the work of E. T. Jaynes, first various 

conference papers of his and then his book ‘Probability Theory –The Logic of Science’ 

published in 2003 shortly after his death. In my opinion Jaynes’ contribution to 

probability theory has been immense. He demonstrated the power of the rational 

Bayesian interpretation which makes probability an extension of logic allowing for 

degrees of believe given limited knowledge. So probability it seems is rational degree of 

belief given limited knowledge - not (as most physicists seem to think) relative frequency 

(in repeated trials) under specified physical conditions.*  

 

Another great source of inspiration was the work of R. P. Feynman regarding the 

interpretation of quantum mechanics: especially in the presentation of the subject in 

Volume III of ‘The Feynman Lectures on Physics’ and in the book written with A. R. 

Hibbs entitled ‘Quantum Mechanics and Path Integrals’. As is well known, Feynman 

worked with ‘probability amplitudes’ and noted that these were related to each other in a 

way similar to the way ordinary probabilities are related. But he stopped short of 

interpreting probability amplitudes directly as probabilities because they were complex-

valued rather than real and positive, and because he adopted a frequency interpretation of 

probability rather than a Bayesian one.  

 

But if probabilities are not relative frequencies but degrees of belief is it not possible that 

the probability of an event might be represented by a complex number?† Also, viewed 

from a rational Bayesian perspective, might not the laws of probability have to change on 

account of the uncertainty principle – i.e. on account of the fact that acquisition of 

knowledge of a quantum process generally affects it physically and we are unable to hold 

knowledge of incompatible physical properties simultaneously? It was roughly with these 

thoughts that I started (in 2002) on the road that has led to this monograph.  

 

This monograph presents my best attempt so far to turn ‘probability amplitudes’ into 

actual (complex valued) probabilities obeying a new complex-valued probability calculus 

that takes account (in a general way) of the uncontrollable physical interaction 

accompanying acquisition of knowledge and is consistent with the existing quantum 

mechanical formalism. The result is a new logic of science, and using it we are free to 

postulate new physical laws that are purely objective. It does not matter how strange 

these laws may have to be so long as they are consistent and conceivably true and of 

course so long as they lead (through the new probability calculus) to the usual predictions 

of quantum mechanics. With a certain choice of such new physical laws, application of 

the new probability calculus including its rules for forming prior probability distributions 

(extensions of the principle of indifference, the method of transformation groups, etc.), 

                                                 
* Of course probability is sometimes numerically equal to expected relative frequency under specified 

physical conditions. 
† with the modulus squared of this number, rather than the number itself, sometimes equal to the expected 

relative frequency of the event in repeated trials 
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leads to the usual forms of the Schrödinger equation and to the usual relations between 

wave functions in different representations and so on.* 

 

It is possible the interpretation contains hidden ambiguities or inconsistencies. Many have 

arisen during its construction but a natural way of avoiding them has each time been 

found with the result that the theory is better than before. This process of constant 

adjustment may have reached an end now. The interpretation may now be free from 

ambiguity and contradiction. But even if it is not yet right or complete it may provide 

ideas for the formulation of the correct interpretation. 

 

Only non-relativistic quantum theory is considered.† It is surely necessary first to fully 

interpret the non-relativistic theory before going on to consider the relativistic theory. 

Non-relativistic quantum theory is complete in itself and easier to interpret than 

relativistic quantum theory. The lessons to be learnt are hard enough without relativistic 

complications. But of course the real gains of the approach may come in its application to 

the relativistic case when perhaps much bigger changes in ideas will be necessary.  

 

J.H. ‡ 

 

 

 

                                                 
* The present theory may therefore at least come close to achieving the objective advocated by Jaynes when 

he says: “We believe that to achieve a rational picture of the world it is necessary to set up another clear 

division of labour within theoretical physics; it is the job of the laws of physics to describe physical 

causation at the level of ontology, and the job of probability theory to describe human inferences at the 

level of epistemology. The Copenhagen theory scrambles these very different functions into a nasty 

omelette in which the distinction between reality and our knowledge of reality is lost.” See ‘Clearing up 

Mysteries – The Original Goal’ by E. T. Jaynes in ‘Maximum Entropy and Bayesian Methods’ Ed. J. 

Skilling, Cambridge England, 1988, Kluwer Academic Publishers. 
† Certain parts of the non-relativistic theory are not covered in this monograph (e.g. non-relativistic second 

quantisation). But enough is covered here I think to make the case for the general interpretation. 
‡ Before retirement in 2002, the author was a senior lecturer in the School of Engineering, Cranfield 

University, Bedfordshire, UK. He is presently a Member of Common Room at Wolfson College, Oxford, 

UK. 
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Introduction 
 

1. The meaning of probability 

 

For the purpose of interpreting quantum mechanics and for changing the laws of 

probability to take account of quantum mechanical uncertainty we adopt the rational 

Bayesian interpretation of probability as advocated, for example by Jaynes [2] and many 

before him such as Laplace, Maxwell, Keynes and Jeffreys so when we speak of 

‘probability’ we will always mean probability in a rational Bayesian sense. We thus take 

probability theory to be an extension of logic, to take account of and to quantify 

uncertainty in our beliefs given our knowledge. We agree with Jaynes (and others) that 

this is the true nature of probability and that probability is not a measure of frequency or 

propensity. 

 

The interpretation of probability adopted is thus the more subjective of the two 

interpretations of what is sometimes called the ‘logical theory of probability’*. We will 

thus talk of probability as quantifying our ‘rational state of belief given our (actual or 

supposed) knowledge’. This interpretation is objective in so much as the probabilities 

(correctly) calculated by different people (given the same information) are always the 

same. In adopting this Bayesian interpretation of probability rather than the usual 

frequency interpretation we free ourselves from the need for probabilities to be 

represented by real positive numbers. We suppose instead each probability is represented 

by a complex number. The squared modulus of this complex number will be a measure of 

our degree of belief and its argument will be called our ‘phase of belief’. Two real 

numbers will therefore be required to fully quantify our rational state of belief in a 

proposition given our (actual or supposed) knowledge. 

 

It may be as well to point out here that ‘our (actual or supposed) knowledge’ will be 

expressed by propositions of three kinds; propositions claiming relevant general 

knowledge (the laws of quantum mechanics and of probability theory), propositions 

claiming certain unchanging properties of the physical processes under study, and 

propositions claiming specific dynamical properties of the physical processes (in the 

macro-world or in the micro-world)†. Only knowledge expressed by propositions of the 

latter kind is subject to the uncertainty principle. 

                                                 
*According to one interpretation of the logical theory of probability (see pp29-33 of [1]) probability is 

described as being the ‘degree of corroboration (or of partial entailment) of one proposition by another’. 

According to the other it is ‘the degree of belief we should rationally hold in one proposition given we 

know another to be true’. In classical probability used with classical physics there is not much difference 

between these interpretations because we can always suppose we know of the truth of a (conditional) 

proposition on which a probability depends, and then ‘degree of belief’ and ‘degree of partial entailment’ 

can surely be assumed equal. The acquisition of knowledge is not problematic in classical physics. But in 

quantum physics it is problematic because of the uncertainty principle. It is for this reason that a definite 

choice has to be made regarding the two interpretations of the logical theory of probability. As we wish to 

calculate probabilities on the basis of knowledge acquired and to take into account the possible physical 

effects of acquiring that knowledge we have to choose the second interpretation. 
† In the macro-world these include propositions about the readings of measuring apparatus. In the micro-

world these are propositions about the dynamical properties of atomic or molecular systems whose truth or 
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We will not be trying to calculate probabilities conditional on propositions claiming 

unverified dynamical properties of the micro-world (such as through which slit a particle 

is supposed to have passed in a double slit experiment). These propositions do not 

constitute (actual or supposed) knowledge. We will be trying to calculate probabilities 

conditional on propositions claiming we know certain dynamical properties of the micro-

world (such as which slit a particle passed through).* 

 

 

2. The present interpretation of quantum mechanics and its relation to the normal 

interpretation  

 

2.1 Wave functions and properties 

 

In the usual interpretation of quantum mechanics it is denied that systems possess 

dynamical properties. For example a single quantum mechanical particle is not said to 

possess properties like position, momentum, …etc. Instead it is claimed only that a 

particle can interact with macroscopic measuring apparatus to give macroscopic 

outcomes that can be referred to as ‘measurements of position, momentum, … etc’. But 

research into the foundations of quantum mechanics has shown that ordinary possession 

of properties can be consistent with the quantum formalism at least if restriction is made 

to possession of properties that are represented by complete sets of commuting 

observables in Hilbert space. This way the Kochen-Specker paradox can be avoided (see 

page 134 of [4]). In connection with a single system we too will avoid claiming that every 

observable represents a property and we too will assume that complete sets of commuting 

observables represent properties possessed by the system. (Of course, any function of a 

complete set of commuting observables also represents a possessed property going with 

that complete set. For example, one component (say the x  component) of momentum of 

a particle is a property going with the (vector) momentum, the three Cartesian 

components of which together form a complete set in regard to the motion of a single 

particle system. And the kinetic energy of a free particle, defined as the sum of the 

squares of the three Cartesian components of momentum divided by twice the particle 

mass, is a property going with the three Cartesian components of momentum.)  

 

When the tensor product of Hilbert spaces is taken to represent the states of two or more 

systems (in interaction or not), the complete sets of commuting observables in the 

component Hilbert spaces cease to be complete sets in the product space but this 

particular case does not, it seems, lead to a Kochen-Specker type Paradox (see page 140 

of [4]), i.e. complete sets in the component Hilbert spaces can still represent properties 

possessed by the whole system and we too assume this is so. 

                                                                                                                                                 
falsity may sometimes be inferred (with the help of our general knowledge) from the (directly observable) 

readings of our measuring apparatus. 
* If one is not a convinced and practiced Bayesian already it is quite a struggle to convert oneself to the 

Bayesian philosophy. One must constantly remember to make all probabilities (whether classical or 

complex-valued) conditional on the (actual or supposed) knowledge of the reasoner and not on the (actual 

or supposed) physical conditions present. It is not physical conditions that determine probabilities but 

knowledge. 
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In the quantum mechanical formalism, the projections (at any one time) of the 

(normalised) state vector in Hilbert space onto the eigenvectors of a complete set of 

commuting observables gives a set of complex numbers called a wave function. In this 

monograph the state vector represents our knowledge regarding the motion of the system 

in question. And we take each wave function to be the (complex-valued) probability 

distribution we should adopt over the possible values of the complete set of observables 

in question given that knowledge.  

 

In the normal interpretation of quantum mechanics a wave function is taken to represent 

the momentary physical state of a system. This leads to the well known problem of wave 

function collapse - a physical process operating outside the dynamical laws of quantum 

mechanics. But it has been noted before (see for example [3]) that by supposing (as we 

do in this monograph) that a wave function is an expression only of our knowledge of the 

physical state, this problem is avoided. ‘Collapse of the wave function’ is then just a 

mental process resulting from the acquisition of new knowledge. 

 

 

2.2 The uncertainty principle 

 

In the usual interpretation of quantum mechanics the uncertainty principle expresses the 

general law that simultaneous measurement of incompatible properties (like position and 

momentum) is problematic because measurement of one might unpredictably alter the 

value of the other. This claim is backed up by physical arguments (as for example in [5] 

and [8]) based on assumed possession of the properties by the system. But the argument 

is usually taken further, i.e. the further claim is made that therefore properties (like 

position and momentum) are generally speaking not actually possessed by a system. In 

this monograph this further claim of the non-possession of key dynamical properties is 

regarded as a mind projection fallacy and is not made.* But the difficulty in principle of 

us acquiring simultaneous knowledge of incompatible properties (like the exact position 

and exact momentum of a particle in the present or at a time in the future) is granted and 

plays a fundamental role.  

 

 

2.3 Pure states 

 

In place of the possibility (in principle) of knowing all about a classical process we 

suppose the possibility (in principle) of preparing a quantum process in a ‘pure state’. In 

the present interpretation ‘pure state’ does not refer to a physical state of the process but 

rather to a pure state of our knowledge regarding the process. Whenever the term ‘pure 

state’ is employed in this monograph ‘pure state of knowledge’ will be meant. As soon as 

a process is prepared in a ‘pure state’ (for example by measurement of one dynamical 

property of the system at a certain time) we have a pure state of knowledge Y  of the 

process as it freely evolves thereafter and, with regard to future properties of the process, 

                                                 
* Like Feynman and Hibbs (see section 1.3 of [16]), rather than blurring the possession of dynamical 

properties we seek instead to alter the laws of probability. 
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all previous knowledge about the process becomes redundant. We are then, in a sense, on 

the boundary of possible knowledge of the process. The acquisition of any further 

knowledge of the process is problematic because it carries with it the possibility of 

causing unpredictable changes in the process whose likely magnitude cannot be made 

arbitrarily small even in principle. But new information A  may be obtained through 

‘harmless conditioning’ (a filtration or null measurement). After harmless conditioning 

we gain more precise knowledge of some dynamical property of the process without 

affecting that property, but lose information about another, and, with regard to the future, 

some or all previous information becomes redundant but a new pure state is established 

associated with knowledge denoted by AY  (i.e. by the conjunction of the propositions A  

and Y ) or just by A  if all previous information becomes redundant. In particular, a null 

measurement of particle position* at a specified time can succeed in instantaneously 

sharpening our knowledge of the particle’s position at that time producing a new pure 

state ‘harmlessly’ with regard to position, i.e. without affecting particle position at the 

time in question; but such a measurement might affect the particle’s momentum at the 

time in question and it might affect its position at later times, and as a result it generally 

renders less precise our knowledge regarding the particle’s momentum at the time in 

question and our knowledge regarding its position at a later time.  

 

 

2.4 The calculation of probabilities 

 

In classical (Bayesian) probability used with classical physics it is often possible by 

logical reasoning to deduce degrees of belief we should rationally hold in various 

propositions given our knowledge. This can be done using for example the principle of 

indifference or the principle of maximum entropy or the method of transformation 

groups. Jaynes [2] has carefully formulated the various principles and methods currently 

available for doing this. But the probabilities of some propositions given our knowledge 

are simply non-existent.† And although it may be true that research into the general 

problem of deducing rational (prior) probabilities from relevant knowledge is not yet 

over, it also seems likely that the probabilities of certain propositions given certain 

knowledge (while stated to be formally existent) cannot in principle be calculated; the 

knowledge may be insufficient or of the wrong kind.‡ There remain of course plenty of 

propositions whose probabilities can be deduced or calculated; enough to ensure the great 

utility of classical Bayesian probability and its superiority over other interpretations of 

probability. 

 

                                                 
* i.e. failure to find the particle in a certain region of space 
† For example it is sometimes impossible to define a measure over all the subsets of a set   so, treating 

  as a sample space and a subset as an ‘event’, not all propositions claiming events can (consistently) 

have probabilities.   
‡ For example, it would seem that the classical (prior) probability distribution )(xf  where x  is a 

(continuous) real variable is indeterminate given that x  lies between 0  and 1  and there is no natural 

measure over the interval 10  x . A function )(xf  is calculable for each postulated natural measure, 

but if we know there is no natural measure )(xf  becomes indeterminate. 
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In the new (complex-valued) probability theory (including in its application to quantum 

mechanical systems), it will be possible to apply certain logical principles for calculating 

probabilities or establishing the form of prior distributions, but it will not be possible to 

deduce the (complex-valued) probabilities we should hold in any propositions given our 

knowledge. Some probabilities may be simply non-existent, like the probabilities in a 

joint probability distribution over the position and momentum of a particle under any 

pure knowledge of the particle’s orbital motion.*  

 

If our knowledge of a quantum mechanical system is pure it will be possible to determine 

the moduli and at least the relative phases of the (complex-valued) probabilities in certain 

important probability distributions. But under pure knowledge it can be that the phases of 

some probabilities whose moduli are calculable are indeterminate. This is generally the 

case for the probabilities of disjunctions of mutually exclusive propositions whose 

complex-valued probabilities may themselves be fully determinate.† And the absolute 

phases of the probabilities in the above mentioned important probability distributions are 

often incalculable (i.e. indeterminate) under pure knowledge, and their relative phases 

may be incalculable if our knowledge falls short of being pure. Those relative phases are 

then indeterminate, but it may well be possible to calculate the moduli of the probabilities 

given our knowledge.‡  

 

For the purpose of calculating (complex-valued) probabilities under pure states of 

knowledge we place particular propositions about the physical world into certain 

categories (‘complete sample spaces’ of propositions and ‘basic sets’ of propositions 

within them) and lay down certain general laws of probability (sum rule, product rule, 

and laws of extreme values of probability) and certain general laws of logical implication 

(since implication now carries a phase). We also formulate certain rules for deducing 

prior probability distributions (extensions of the classical principles of indifference, 

transformation groups etc.). In some of these rules we allow, in a general way, for the 

possibility (on account of the uncertainty principle) that acquisition of knowledge may 

(unavoidably) change the truth values of propositions claiming physical properties. The 

uncertainty principle is thus built into the theory of probability itself. This reflects the 

                                                 
* Such probabilities, if they existed, could never be tested by determining the relative frequencies of 

measurement results because the uncertainty principle renders the necessary measurements impossible. 

And this is in keeping with the probabilities in question being non-existent. 
† See the sum rule (section 2.3 of Chapter I). 
‡ Quantum mechanics with indeterminate phases can be compared with the statics of statically-

indeterminate pin-jointed frameworks. It may be that the phases of some probabilities in a quantum 

mechanical application (or the tensions or compressions in some of the members of a pin-jointed 

framework) cannot be determined theoretically. But indeterminacy of some parameters of a theory need not 

render the theory useless. For we may (without leading to contradiction) employ unevaluated parameters 

(i.e. algebraic symbols) to represent the indeterminate phases in the complex-valued probability application 

(or the indeterminate tensions or compressions in the pin-jointed framework). Then, using the laws of 

probability (or the laws of statics) other parameters in the quantum mechanical application (or in the theory 

of the pin-jointed framework) may be perfectly well and usefully calculated. There is then always the 

possibility of assigning, to within a certain freedom of choice, representative values to the indeterminate 

parameters such that all theoretically required relations between parameters are satisfied. Of course we 

cannot then claim our chosen parameter values are correct, they represent only a ‘possibility’. 
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way the world is and our place in it. In order to make sense of the world this is how 

probability, as an extension of logic, must be formulated.* 

 

The new theory of probability demonstratively reduces to the classical theory of 

probability under conditions in which we are prepared to work experimentally at an 

accuracy low enough to ensure the uncertainty principle does not have to play a 

significant part in our reasoning. 

 

 

2.5 The laws of quantum mechanics in the present interpretation 

 

The laws of quantum mechanics proposed in this work are of two sorts. There are laws 

concerning (i) the logical character of propositions about the physical world, and (ii) 

properties of the motion of quantum mechanical systems. 

 

Laws of the second sort are natural laws of the kind claimed in classical physics. They 

establish certain definite relations between dynamical variables. Or they lay down general 

principles like the homogeneity and isotropy of space, the possibility of time reversal etc. 

But they do not amount to a system of deterministic laws like we have in classical 

mechanics. They are not as ‘complete’ as that and this seems naturally to reflect our 

inability (on account of the uncertainty principle) to confirm any proposed deterministic 

theory by measurement of all dynamical variables. But although our natural laws will not 

be ‘complete’ we must allow at least partial specification of phases of implication in 

these laws (see section 2.2.1 of Chapter I). 

 

Laws of the first sort are needed to identify which propositions (about the physical 

process under study) fall into the various logical categories laid down in our theory of 

probability (see section 3.1 of Chapter I for example). 

 

 

2.6 Derivation of the usual equations of quantum mechanics 

 

Under the new (complex-valued) probability theory there is no uncertainty in the physical 

world itself. Everything there (every physical property) is supposed to be definite. But 

our knowledge of what is there can never be complete. 

 

In the modelling of a quantum mechanical process we are free to propose laws of the two 

sorts described in section 2.5, i.e. to put certain propositions about the process into the 

established logical categories and to lay down physical laws making definite claims about 

properties of the process. But this cannot of course be done in just any way. It must be 

                                                 
* The inevitability of the historical variation of logic (or the laws of thought) was noted by Frederick 

Engels: ‘In every epoch … theoretical thought is a historical product, which at different times assumes very 

different forms … And this is of importance also for the practical application of thought in empirical fields. 

Because in the first place the theory of the laws of thought is by no means an “eternal truth” established 

once and for all, as philistine reasoning imagines to be the case with the word ‘logic’. Formal logic … has 

[after all] been the arena of violent controversy from the time of Aristotle …’ (p 44 of [17]). 
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done in a way that (on the basis of the complex-valued probability theory) agrees with the 

usual mathematical formalism of quantum mechanics. 

 

It turns out, as we have already indicated, that in order to reproduce the usual 

mathematical formalism of quantum mechanics (i.e. the Schrödinger equations and the 

transformation functions etc.) we will not need a complete set of deterministic laws 

governing particle motions but will instead need to claim only certain general properties 

of those motions (including for example that orbital motions are continuous and that 

orbital motions in the present are never affected by the values of inter-particle potentials 

in the future). Assuming only such general properties we will find that the usual 

Schrödinger equations and the usual transformation functions (like those connecting 

wave functions in the position and momentum representations) can be deduced using the 

new probability theory.* 

 

Taking the usual quantum mechanical equations as a guide we are thus led to formulate 

(the simplest possible) physical laws (and the simplest possible laws of complex-valued 

probability theory) which will give those same equations. In one sense nothing new is 

achieved – no new testable predictions will be given in this work. But a clear distinction 

will be drawn between the physical world and our knowledge of it, and physical laws will 

be revealed that previously lay hidden. Our interpretation of quantum mechanics may 

therefore seem clearer than previous interpretations.  

 

                                                 
* Note however that the usually arbitrary constant phase factors in transformation functions sometimes have 

definite (known) values in our theory. 
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CHAPTER I  

 

THE LAWS OF COMPLEX-VALUED PROBABILITY 
 

 

1. Knowledge and observation 

 

In quantum mechanics measurements designed to reveal the truth values of particular 

propositions claiming dynamical properties of the physical world may change the truth 

values of other such propositions and do so in a way that (by the uncertainty principle) 

cannot always be controlled or predicted.*  

 However, a measurement may leave unchanged the truth values of some 

propositions claiming dynamical properties. We shall say that such a measurement is 

‘harmless’ with regard to those properties and with regard to the propositions claiming 

them.  

 Preparation of a quantum mechanical system may be conducted to ensure that a 

specified physical property of that system is present. But as a result of such preparation it 

may sometimes be that other physical properties necessarily come to be present also even 

though these properties need not naturally occur along with the property we prepared. 

This is another way in which the uncertainty principle prevents us from preparing or 

knowingly realising any possible physical state of a quantum mechanical system. 

 In formulating quantum mechanics we will be building a kit for constructing 

models (mental images) of processes in the physical world. But, because of the 

uncertainty principle, it will be necessary also to model our states of knowledge of 

dynamical properties and we will need to formulate the possible states of this knowledge 

over time.† 

 Henceforth, unless otherwise stated, we will mean by ‘the physical world’ our 

model of any process in it and by ‘knowledge’ knowledge supposed to be held in relation 

to the ‘physical world’ which will always include a model of the quantum mechanical 

system under study and may sometimes include a model of measuring or detecting 

apparatus occasionally in interaction with the quantum mechanical system. 

 

                                                 
* With regard to any quantum mechanical system under consideration during a time period we will assume 

we are aware of all processes of observation of that system and the times they are carried out so we will not 

have to consider the possibility and probability of other observers conducting measurements without our 

knowledge. We will not necessarily need to know the results of the measurements conducted but we will 

always suppose we know the exact nature and time of the measurements.  
† This differs from the situation in classical physics (including relativity) where acquisition of knowledge 

ideally has no physical effects and the exact values of any combination of dynamical properties are 

assumed to be harmlessly observable in principle (even if exactly how this could be done is often not 

immediately obvious).  Later, when the present interpretation of quantum mechanics is developed to a 

certain degree, we will be able to model measurements - processes that lead to (directly observable) 

macroscopic images of microscopic aspects - and so demonstrate the possibility of acquiring knowledge of 

certain dynamical properties of the quantum world in a manner entirely consistent with the claims of the 

quantum theory itself (see Chapter XIII). 
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 In our theory of probability and its applications the propositions we employ are of 

three types. Those of type 1 claim specific dynamical properties of the physical world.* 

Those of type 2 claim unchanging properties of the physical world.† Those of type 3 

claim laws of quantum mechanics, laws of the (new) probability theory etc. 

 Any knowledge is expressed by marking certain propositions as true. We will thus 

speak of knowledge of three kinds according respectively to the type of propositions used 

to express it. Our whole knowledge will be a combination of knowledge of all three 

kinds. Only knowledge of the first kind is subject to the uncertainty principle.  

 We will often denote by X  (but sometimes by A  or B , etc) a proposition whose 

probability is sought. This will always be a proposition of the first type because the 

probabilities of dynamical properties are the main thing to be calculated in quantum 

mechanics.‡ 

 We will denote most often by Y  a proposition representing our knowledge of the 

first kind (our knowledge of dynamical properties of the physical world). 

 We will denote by G  a (very long!) proposition representing our ‘general 

knowledge’. This includes our knowledge of the third kind (our knowledge of the laws of 

quantum mechanics and of the probability theory etc) and our knowledge of the second 

kind (our knowledge of the unchanging properties of the physical world). 

 We denote the probability of X  knowing Y  and G  by )( YGX  (the product 

YG  representing the conjunction of Y  and G ). 

 

 

2. General rules of probability and propositional logic  

 

2.1 Complex-valued probabilities 

 

When a probability )( YGX  exists, its squared modulus 
2

)( YGX  is our degree of 

belief in X  knowing Y  and G , and its argument or phase )( YGX  (defined modulo 

2 ) is our ‘phase of belief’ in X  knowing Y  and G . Both degrees of belief and phases 

of belief are dimensionless. If only the modulus )( YGX  of a probability )( YGX  is 

calculable we say the probability is ‘determinate to within a phase’ or that its phase is 

‘indeterminate’. 

 Henceforth our general knowledge G  (when common to all knowledge with 

respect to which probabilities are calculated and common to all reasoning) will always be 

assumed but not referred to explicitly in the algebra. For example we will denote our 

                                                 
* E.g. that the particles in our model lie in specified regions of space at a particular time. 
† E.g. that the particles taking part in our model have certain masses (perhaps large or theoretically infinite 

in the case of the particles employed in our modelling of any macroscopic apparatus) and that a certain 

formula for the inter-particle potential energy of the particles applies. (Knowledge of this kind is not 

subject to the uncertainty principle.) 
‡ The probability theory developed here could (perhaps with little or no modification) be applied to the 

calculation of probabilities of propositions of the second type also when we are uncertain of some 

unchanging properties of the physical world (e.g. the number of particles making up a system). However in 

the interest of simplicity of the formulation of the theory we do not discuss such applications in the present 

monograph. 
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knowledge as Y  not as YG , we will write )( YGX  simply as )( YX , and XYG  

simply as XY  . The symbols  ,   and   are always used in this monograph to 

indicate implication by reasoning. They and not used merely to indicate pure logic 

relations between the truth values of propositions. However, we will explain soon how 

implication in the sense we use it will generally need to be quantified by a phase.  

 

Starting with supposed knowledge Y  of the dynamical properties of a quantum 

mechanical system, further knowledge A  might be learnt (by measurement) without 

invalidating our original knowledge Y . Having acquired such further knowledge A , our 

probability for a proposition X  claiming a dynamical property of the quantum 

mechanical system generally changes from )( YX  to )( AYX , where the conjunction  

AY  expresses our new state of knowledge. With regard to the future, the effect of 

acquiring knowledge A  may be to render redundant all or part of our original knowledge 

Y . The acquisition of the further knowledge A  might be accomplished without changing 

the truth values of propositions iX  claiming certain dynamical properties of the quantum 

mechanical system.* It may nonetheless affect our probabilities for the iX  just as new 

knowledge does in classical Bayesian probability theory and it may of course affect the 

truth or falsity of other propositions on account of the uncertainty principle.  

 

Dynamical properties may be physically compatible with one another (i.e. all be present) 

but be nonetheless termed ‘compatible’ or ‘incompatible’ according to the possibility or 

impossibility (on account of the uncertainty principle) of us knowing of the presence of 

them all. 

 Because of the uncertainty principle we cannot know the truth or falsity of a 

proposition claiming ‘incompatible’ dynamical properties.† And, while we are in a state 

of knowledge (pure or not), we cannot speak of probabilities of propositions making 

claims relating to two or more ‘incompatible’ dynamical properties‡; such probabilities 

do not exist.§ 

 In contrast, the uncertainty principle never in itself prevents us from knowing the 

truth or falsity of propositions claiming ‘compatible’ dynamical properties. And we can 

                                                 
* The subscript i  (not to be confused with 1 ) denotes a parameter (taking one of a number of possible 

values e.g. one or other integer ni ,...1 ) used to label the propositions of a certain class. This convention 

(with the use of various subscripts ,..., ji ) applies throughout the monograph. 
† For example we cannot know the truth of a proposition claiming a precise position and a precise 

momentum of a particle in the present or at some future time because those properties are ‘incompatible’. 

(Note however that retrospective knowledge of the truth or falsity of a proposition claiming such properties 

is sometimes a possibility -see section 2.3 of Chapter XV.) 
‡ So, for example, because precise position and precise momentum of a particle are ‘incompatible’ 

properties, there are no joint probability distributions pertaining to those properties in the present or in the 

future. 
§ But if a probability of a proposition X  (claiming dynamical properties) exists, this does not guarantee 

that the truth or falsity of X  could in principle be known. We may not be able to acquire knowledge of the 

truth (or falsity) of X  for some reason unconnected with the uncertainty principle. For example, X  might 

be a proposition of an ‘improper basis’ (see section 1 of Chapter X).  
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always speak of probabilities of such propositions based on our knowledge (pure of not). 

Even though those probabilities may be wholly or partly indeterminate, they do exist.  

 The distinction between compatible and incompatible properties will play an 

important part in our interpretation of quantum mechanics. 

 

 

2.2 Laws concerning implication, characteristic phases and extreme values of probability 

 

2.2.1 Implication and characteristic phases 

 

The nature of implication in quantum mechanics and complex-valued probability is 

somewhat different from its nature in classical physics and classical probability. An 

implication is now quantified by a ‘phase’, by a (dimensionless) number denoted  ,   or 

 …etc, taking a real value defined modulo 2 . With regard to any propositions A  and 

B  claiming dynamical properties of the physical world, if under our general knowledge 

G  alone proposition A  implies proposition B , i.e. if the truth of A  entails the truth of 

B  we may write this as BA   meaning A  implies B  with phase  . When 

consideration of the phase is unimportant we simply write BA . 

 A relation between phases of implication and phases of belief will be postulated in 

section 2.2.2. This relation will (by the laws of probability) give or suggest general rules 

for phases of implication.* There is therefore no need to formulate all these rules 

independently. We claim the general rule 

 

AA 0          (2.2.1.1) 

 

i.e. that any proposition implies itself with zero phase of implication, and the general rule 

of phase addition, that 

 

if BA   and CB   then CA  .     (2.2.1.2) 

 

 Phases of implication (like phases of belief) may be calculable or may be 

indeterminate. 

 We say A  and B  are ‘equivalent’ (written BA  or more fully as BA   ) 

if (under knowledge G ) BA   and AB   whether the phase of implication   is 

determinate or not and if determinate whatever it may be.† So 

 

BA  is the same as { BA   and AB  }.     (2.2.1.3) 

 

We say A  and B  are ‘fully equivalent’ (denoted BA   or BA 00 ) if and only if the 

phases of implication are zero. So 

                                                 
* For example rules (2.2.1.2), (2.2.1.3) and the first of (2.2.1.7) are suggested by results (10.1.11), (10.1.10) 

and (10.3.1) of Chapter II respectively. 
† On account of (2.2.1.1) and (2.2.1.2), under equivalence, the phase with which A  implies B  must 

clearly be equal and opposite to that with which B  implies A . 
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BA   is the same as { BA 0  and AB 0 }.     (2.2.1.4) 

 

 The existence of phases of implication generalises the character of natural laws in 

that we might now include a form of natural law in which possession of one property 

implies possession of another with a specified phase  .* However, although it would 

simplify the derivation of some transformation functions, we do not adopt this 

generalisation in its full form as there seems to be no actual need for it. In the formulation 

of natural laws we will however often specify that one property implies another with a 

phase of implication equal to (or expressly unequal to) zero.† 

 Any two propositions A  and B  that plainly claim states that are physically 

identical on account of our general knowledge imply one another with zero phases of 

implication.‡§ 

 The usual logical laws of idempotence, commutation, association, distribution, 

duality and double negation are taken to hold in the sense that for any propositions 

CBA ,,  and D :** 

 




























AA

BADBADBACABC

CABABCAACABCBA

CBACBACABBCA

ABBABAAB

AAAAAA

;  then    if and  ,  then    If

);)((    ,)(

;)()(     ,)()(

;      ,

;      ,

 (2.2.1.5) 

 

                                                 
* This generalisation seems possible at least if the phases are specified only to within an indeterminate sign 

i.e. specified as   with   given; the possibility of wave function conjugation (see section 8) being then 

maintained. 
† See, for example, the law of constancy of momentum under coordinate displacement (section 1 of Chapter 

VI). 
‡ For example if A = ‘particle is at r  in O ’ and B = ‘particle is at r   in O  ’ ( O  and O  being fixed 

coordinate frames and r  and r  position vectors in those frames representing the same point P  in fixed 

space, then BA 00 . On the other hand if A  and B  claim equal values of different dynamical 

properties (that are only dimensionally the same) then it might be that BA    where 0 . 

Sameness and equality are after all quite different things. 
§ Note that if propositions A  and B  claim things that are physically identical it is still possible that they 

are not fully equivalent. This can happen when those propositions are expressed in different (but 

equivalent) logical ways. If for example BA 00  then because A  and AA  may not be fully equivalent 

AA  and B  may not be fully equivalent (and AAA   and B  may not be fully equivalent either). This is 

why we state that  BA 00  when A  and B  plainly claim things that are physically identical. The term 

plainly indicates that the propositions do not involve unnecessary conjunctions and disjunctions. Unless 

otherwise stated we will assume propositions are always stated plainly. 
** When we write a conjunction (such as AB  or )( CBA  , …etc.) we imply that the conjunction exists, 

i.e. that the members of the conjunction are not mutually exclusive. 
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where (as in [2])   denotes disjunction, a simple product denotes conjunction and a bar 

denotes negation. But the equivalence in these laws is not always full equivalence. The 

cases in which full equivalence always applies are: 
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;exclusivemutually  are  and ,  when )()(

,)()(

;      ,

;

00

00

00

0000

00

AA

CBACBACBA

CABBCA

ABBABAAB

AAA

 (2.2.1.6) 

 

Note the qualification in the last but one case of (2.2.1.6). 

 In addition to (2.2.1.1) and (2.2.1.2)  we also claim the following rules of phases 

of implication under conjunction and disjunction: 

 















DCBADBCA

CDABDBCA

  then    and    If

,  then    and    If
    (2.2.1.7) 

 

where the phase of implication   is generally indeterminate. 

 Note that with regard to our general knowledge (which includes knowledge of the 

unchanging properties of the physical world) if G  and G   are propositional expressions 

of all (or a part) of that general knowledge and if GG   then GG  0
 always holds, 

and if G  and G   are equivalent, they are always fully equivalent, i.e. GG  00 . 

 

In our new probability theory and new propositional logic, as well as phases of belief and 

phases of implication, there are (generally indeterminate) characteristic phases. 

 In relation to any proposition A  claiming a dynamical property of the physical 

world and any other such proposition Y  which could represent a state of knowledge of 

the physical world, there corresponds a phase, denoted )(ch YGA , characteristic of A  

under knowledge YG , and corresponding to Y  there is a phase, denoted )(ch YG , 

characteristic of knowledge YG . As usual, when our general knowledge G  is common to 

all our reasoning we will avoid reference to it and just as we write )( YGX  as )( YX  

we will write )(ch YGA  as )(ch YA , and )(ch YG  as )(ch Y . Any probability )( YA  can 

always be written as  

 

)(2

)()( kieYAYA         (2.2.1.8) 

 

where 
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   )(ch

)(ch

Yk

YA
         (2.2.1.9) 

 

So our phase of belief in A  knowing Y  is the difference k  between the phase 

characteristic of A  under knowledge Y  and the phase characteristic of knowledge Y . 

And we claim that   remains the same under an equivalence transformation of Y , i.e.  

 

)(ch)(ch YAYA     whenever   YY   .    (2.2.1.10) 

 

 In the special case Y  represents no knowledge whatsoever of the dynamical 

properties of the physical world (we denote this knowledge by 0Y  and under it we have 

knowledge (in G ) only of the unchanging properties of the physical world) the phase 

characteristic of our knowledge is zero, i.e. 

 

0)(ch 0 Y .         (2.2.1.11) 

 

Then, in (2.2.1.8), 0k , and our phase of belief in A  equals   (or )(ch 0YA ) and is the 

phase )(ch GA  characteristic of A  under knowledge G  alone. So we can write )( 0YA  

as 

 

)(ch2

0 )()()(
GAi

eGAGAGYA       (2.2.1.12) 

 

 If G
~

 is any proposition claiming a dynamical property of the physical world but 

one necessarily true under our general knowledge G ,* and if our knowledge Y  of 

dynamical properties is expressed as YG
~

, then the phase characteristic of knowledge YG
~

 

is the same as that of Y , and YG
~

 and Y  are fully equivalent: 

 

)(ch)
~

(ch YYG  ,        (2.2.1.13) 

 

YYG 00~
          (2.2.1.14) 

 

Also, we claim 

 

0)
~

(ch G          (2.2.1.15) 

 

and  

 

                                                 
* For example G

~
 might claim that at a particular time a particle occupies one or other of the infinitesimal 

volume elements filling all space. 
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0)
~

(ch YG .         (2.2.1.16) 

 

And because of (2.2.1.16) we have from (2.2.1.8) that 

 
ikeYG  )

~
(          (2.2.1.17) 

       

where k  is the phase characteristic of knowledge Y . 

 

We note some further rules as follows. 

 As noted already in (2.2.1.6) we assume, for any proposition A , that 

 

AAA 00          (2.2.1.18) 

 

but in the undoubtedly true equation 

 

AAA            (2.2.1.19) 

 

  is generally different from zero. 

 And if, under our general knowledge G , YA  and Y  represents a possible 

state of knowledge of dynamical properties of the physical world then (under G ) we 

claim 

 

AYA kk          (2.2.1.20) 

 

where k  is the phase characteristic of knowledge Y .* And we claim the unidirectional 

implication  

 

AAY k          (2.2.1.21) 

 

is valid generally (with k  equal to the phase characteristic of knowledge Y ) whether or 

not YA . 

 We also claim the following law: 

 

Constancy of the phase of implication between disjunctions of similarly equivalent but 

not exhaustive propositions 

 

 If propositions A , B ,… are not exhaustive and no two are equivalent, and if 

propositions ,..., BA   are related to them through the same phase   of 

implication (so that ,AA 
 ,...BB 

), then the phase of equivalence of 

... BA  and ... BA  is also  , (i.e. ......   BABA ).  

 

                                                 
* This rule is employed in the derivation of a wave function after harmless conditioning (section 4 of 

Chapter II). 



I. The laws of complex-valued probability 

 

 9 

 Finally we claim the following law of substitution, that if, under our general 

knowledge, BA 00 , then in any logical formula involving A  (e.g. CDA  ) B  

may be substituted for A  (giving in our example CDB  ) and the formula will 

remain as valid as it was before. 

 

In Appendix I we set up an (extended) Venn diagram to visualise propositions, phases of 

implication and phases characteristic of knowledge by relating them to geometrical 

features in the diagram. This helps us to appreciate the feasibility of these concepts and 

the consistency of the purely logical laws claimed in relation to them, upon which the 

present theory of complex-valued probability (with the concepts of degrees of belief, 

phases of belief and phases characteristic of propositions under knowledge) is developed. 

 

 

2.2.2 Extreme values of probability and ‘logical expectation’ 

 

In the following three laws concerning extreme values of a probability )( YGX , 

propositions X  and Y  are, as usual, propositions claiming dynamical properties of the 

physical world, G  is our general knowledge and X  stands for ‘not X ’. The laws are 

more involved than the laws of extreme values in classical probability because of the 

existence of phases of implication.  

 

First law If (under G ) proposition Y  implies proposition X  (i.e. if XY  ) 

with a determinate or indeterminate phase  , then  ieYX )( . If (under 

G ) only the acquisition of knowledge Y  is known to physically bring 

about or ensure the truth of X  then  ieYX )(  where   is an 

indeterminate phase. Conversely, if 
 ieYX )(  where   is a 

determinate phase we can claim XY   (so X  is a necessary 

consequence of Y  whether or not we hold knowledge of the truth of Y ).* 

But if 
 ieYX )(  where   is an indeterminate phase we can claim only 

that we expect X  to be true under knowledge Y . 

 

So if (under G ) Y  implies X  with some phase of implication, our degree of belief in X  

under knowledge Y  is equal to 1  and our phase of belief in X  under knowledge Y  is 

always equal to the phase of implication of X  by Y . In particular, since any proposition 

implies itself with zero phase of implication we always have 1)(  YY . But given 

 ieYX )(  where   is indeterminate we are led only to expect the truth of X ; it may 

be (i) that XY   (i.e. that X  is a necessary consequence of Y  whether or not we hold 

knowledge of the truth of Y ) or (ii) only the uncontrollable physical effect of the 

                                                 
* Note that probabilities are not the same as truth values so a probability 

 ieYX )(  is not the truth 

value of X  knowing Y . The (pure logic) law of bivalence (or the principle of the excluded middle) is not 

therefore contradicted here on account of the variety of possible values of  .  
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acquisition of knowledge Y  brings about or ensures the truth of X . Without further 

information we cannot tell if (i) or (ii) applies. And it may be that neither do, in which 

case  ieYX )(  (  indeterminate) does not indicate the certainty of X  under 

knowledge Y  but (iii) only the logical expectation of X  under knowledge Y .* 

 

Second law If (under G ) XY   with a determinate or indeterminate phase, or if we 

know that acquisition of knowledge Y  physically brings about or ensures 

the falsity of X , then 0)(  YX . Conversely given 0)(  YX , we 

may claim only that we expect X  to be false under knowledge Y .  

 

So given 0)(  YX  it might be (i) that XY   (i.e. that X  is a necessarily false on 

account of Y  whether or not we hold knowledge of the truth of Y ) or (ii) it is the 

physical acquisition of knowledge Y  that brings about or ensures the falsity of X . 

Without further information we cannot tell if (i) or (ii) applies. And it may be that neither 

do, in which case 0)(  YX  does not indicate the certainty that X  is false under 

knowledge Y  but only the logical expectation that X  is false under knowledge Y .† 

 

Third law If we expect the truth (or the falsity) of X  knowing Y , or if we are certain 

of the truth (or the falsity) of X  knowing Y , then 1)(
2

 YX  (or 

0)(
2

 YX ). In all other cases 1)(0
2

 YX . 

 

 

With regard to logical expectation we claim the following law in which proposition Y  

represents our state of knowledge and the propositions iX  ...2,1i  claim dynamical 

properties existing at times after the time of acquisition of our knowledge Y . 

 

Law of logical expectation of a conjunction and disjunction 

 

Suppose under knowledge Y  (pure or not) we logically expect the truth of 1X  and 

we logically expect the truth of 2X . Then so long as 1X  and 2X  refer to 

compatible properties we can claim to logically expect the truth of both the 

                                                 
* So when we ‘expect X  to be true’ (i), (ii) or (iii) applies.  But note that in our new logic there is a 

difference between certainty (as in cases (i) and (ii)) and logical expectation (as in case (iii)). Certainty 

implies logical implication or physical causation. But logical expectation is unsubstantiated belief. 

Importantly (and remarkably) however, it seems to be the case that expectations under pure knowledge are 

borne out in quantum mechanics virtually every time they are tested experimentally even when we are sure 

that logical implication and/or physical causation are not the reason. (If the truth of X  is only ensured by 

the acquisition of knowledge Y  or if the truth of X  is only expected under knowledge Y  we do not write 

XY  . We reserve  ,   and   for implications which apply (by the laws of nature or of logic) 

independently of any knowledge we may hold of the dynamical properties of the physical world.) 

† That we cannot claim for certain (under knowledge Y ) that X  is false just because 0)(  YX  seems 

to be related to the fact that the phase of the complex number zero is indeterminate. 
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disjunction 21 XX   and the conjunction 21XX . But if 1X  and 2X  refer to 

incompatible properties we can claim to logically expect the truth of the 

disjunction 21 XX   but we cannot claim to logically expect the truth of the 

conjunction 21XX .* 

 

 

2.2.3 The variability of the absolute phase of probabilities under given knowledge 

 

Because of the existence of phases of implication we need to give consideration to the 

form of the proposition Y  representing our knowledge of dynamical properties of the 

physical world. If Y  and Y   express essentially the same state of knowledge because 

they are equivalent, i.e. if YY   under G , the probabilities )( YX  and )( YX   

for a proposition X  claiming a dynamical property of the physical world generally differ 

in phase. But we assume, as a general law, that the phase of )( YX   differs from the 

phase of )( YX  by the same amount whatever the proposition X . Letting jX  stand for 

the general proposition about a dynamical property we therefore have 

 
 i

jj eYXYX )()(        (2.2.3.1) 

 

where   is independent of j . 

 On putting YX j  , (2.2.3.1) gives 
 ieYY )(  since 1)(  YY . Similarly on 

putting YX j
  in (2.2.3.1) we obtain  ieYY )( . Therefore, by the first law of 

extreme values of probability, the phase   in (2.2.3.1) is 1  times the phase of 

implication   in the supposed relation YY  ; i.e.  . 

 Thus the relative phases of the )( YX j  remain unchanged under an equivalence 

transformation of Y  and it is these relative phases and the absolute values of the moduli 

)( YX j  that characterise the probabilities of the jX  in relation to one another. The 

absolute phases are indicative of the manner in which we express the knowledge upon 

which we base our probabilities. 

 

 

                                                 
* This is related to the fact that joint probabilities (like )( 21 YXX ) of the propositions 1X  and 2X  

claiming incompatible properties under knowledge Y  do not exist (see toward the ends of sections 2.1 and 

3.2). So we may calculate that 
 ieYX )( 1  (  indeterminate) and that 

 ieYX )( 2  (  

indeterminate), but be unable to show that 
 ieYXX )( 21  (   indeterminate) because )( 21 YXX  

does not exist. (Note that the product rule (2.4.1) cannot give us a value for )( 21 YXX  because a 

necessary condition for applying that rule (namely that 1X  and 2X  claim compatible dynamic properties) 

is not met.) The law of expectation of a conjunction and disjunction will be of use in resolving paradoxes 

arising from Bell type theorems (see sections 2 and 3 of Chapter XV).  
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2.3 The sum rule of probability 

 

The sum rule for the probability of disjunctions of propositions claiming dynamical 

properties of the physical world under knowledge Y  is as follows. 

 

Sum rule Under knowledge Y , if propositions A  and B  are mutually exclusive, the 

probability of their disjunction is always given by 

 

22)( )()()( YBYAeYBA ki      (2.3.1) 

 

where k  is the phase characteristic of knowledge Y  and   the phase 

characteristic of the disjunction BA  under knowledge Y . Generally k  

is indeterminate and   is indeterminate. And   cannot be expressed as a 

universal function of the individual phases characteristic of A  and B  

under knowledge Y . 

 

But, as in classical probability, our degree of belief in ‘ A  or B ’ (when A  and B  are 

mutually exclusive) is evidently the sum of our degrees of belief in A  and B  separately. 

 Note that (2.3.1) generalises to  

 

...)()()...(
22)(   YBYAeYBA ki     (2.3.2) 

 

for any finite number m  of mutually exclusive propositions A , B ,… ; k  being the phase 

characteristic of knowledge Y , and   the phase characteristic of the disjunction 

... BA  under knowledge Y  (  being generally indeterminate, and not a universal 

function of the individual phases characteristic of A , B ,… under knowledge Y ).  

 Now nXXG  ...1  whenever propositions iX  ( ni ,...,1 ) claiming 

dynamical properties are mutually exclusive and exhaustive under our general knowledge 

G . Then, by (2.2.1.16) or (2.2.1.17) it must be that in (2.3.2) (with ,..., BA  replaced by 

nXXX ,..., 21 ) the characteristic phase   is zero, so we have  

 

1)(       and       ,)...(
1

2

1  



n

i

i

ik

n YXeYXX    (2.3.3) 

 

whenever nXXX ,..., 21  are mutually exclusive and exhaustive. 

 

 

2.4 The product rule of probability 

 

There is also a product rule for the probability of conjunctions of propositions claiming 

dynamical properties of the physical world. It contains a qualification to guard against the 

uncertainty principle.  
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Product rule  The probability of a conjunction AB  is given by 

 
)()()()(  kieAYBYAYAB    (2.4.1) 

 

where k  and   are the phases characteristic of knowledge Y  and 

of knowledge A  respectively and are generally indeterminate. But 

(2.4.1) holds only when A  and B  claim compatible properties and 

when A  is a possible state of knowledge that can be held on its 

own or in combination with knowledge Y .* 

 

 

 So, under the right conditions we have, as in classical probability, that under any 

knowledge Y  our degree of belief in AB  is the product of our degree of belief in A  

under knowledge Y  and our degree of belief in B  under knowledge AY . 

 We note that (2.4.1) generalises to 

  

)...)2()1()1((

11213121321

121.                                 

)...()...()()()...(





mmmmki

mmm

e

YAAAYAAAYAAYAYAAAA
  

                …(2.4.2) 

 

where 121 ,...,,  mk  are the phases characteristic of knowledge 21,, AAY ,…, 1mA  

respectively (and are generally indeterminate), 21, AA ,…, mA  claim compatible 

properties, and 21, AA ,…, 1mA  are possible states of knowledge that can be held on their 

own or in combination with knowledge Y . 

 And with regard to phases characteristic of knowledge we assume the following 

general rule: 

 

First addition rule for phases characteristic of knowledge 

 

 If  1Y , … nY  are n  propositions representing n  possible and compatible states of  

knowledge, then the phase   characteristic of the state of knowledge nYY ...1  is the 

sum of the phases 1 ,… n  respectively characteristic of 1Y , … nY . 

 

                                                 
* Note that in classical probability applied to classical mechanics, as long as 0)(  YA  the conjunction 

AY of propositions claiming dynamical properties always represents a possible state of knowledge  

unambiguously. But in complex-valued probability applied to quantum mechanics this is not generally so 

because knowledge of A  and knowledge of Y  may be incompatible on account of the uncertainty 

principle. Note also that (2.4.1) is formally correct even when 0)(  YA  i.e. even when, under Y , 

proposition A  is expected to be false. For although )( AYB  may now be indeterminate (since 

AY may not now represent a possible state of knowledge) the RHS of (2.4.1) is zero and the LHS is zero 

also since A  (and therefore AB ) is expected to be false under knowledge Y .  
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2.5 Independence 

 

There are three ways in which the first of two propositions A  and B  claiming dynamical 

properties of the physical world can be independent of the second. 

 

Causal independence 

 

 A  is ‘causally independent’ of B  when the truth value of B  (whatever it is) does 

not determine the truth value of A  through direct physical causality.* 

 

Cognitive independence 

 

 A  is ‘cognitively independent’ of B  when we can acquire (by measurement) the 

truth value of B  without affecting the truth value of A .†  

 

Logical independence 

 

 A  is ‘logically independent’ of B  under knowledge Y  if and only if  

 
ikeYBYAYAB )()()(         (2.5.1) 

 

where k  is the (generally indeterminate) phase characteristic of knowledge Y . It follows 

that if A  is ‘logically independent’ of B  under knowledge Y  then B  is ‘logically 

independent’ of A  under knowledge Y . 

 The definition of logical independence generalises in the following way. Any 

finite number m  of propositions 21, AA , …, mA  are ‘logically independent of each other’ 

under knowledge Y  if and only if 

 
)1(

2121 )()...()()...(  mik

mm eYAYAYAYAAA     (2.5.2) 

 

where k  is the phase characteristic of knowledge Y . And whenever 21, AA , …, mA  are 

logically independent of each other under knowledge Y , any conjunction of them (e.g. 

)( 21AA ) is logically independent (under knowledge Y ) of any of the remaining iA  and of 

any conjunction formed from them. 

 

Causal and logical independence are thus defined in a manner the same as or very similar 

to the way they are defined in classical probability. But cognitive independence is new – 

special to complex-valued probability on account of the uncertainty principle. In the 

classical limit, i.e. under conditions in which classical and complex-valued probability 

                                                 
* If the truth value of A  and the truth value of B  are only related indirectly through a common cause, A  

and B  are still causally independent of one another. 
† It is of course nonsensical to claim A  is cognitively independent of B  when acquisition of the 

knowledge of the truth or falsity of B  is not possible. 
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theory coexist (see section 6) cognitive independence is always present – it holds for any 

pair of propositions. 

 Causal (or cognitive) independence is present or not present as a matter of fact 

regardless of the specific knowledge Y  we may hold of dynamical properties. But logical 

independence may be present under some states of knowledge Y  and not present under 

others.  

 The three kinds of independence are quite different. Knowledge of one kind of 

independence does not generally imply knowledge of another.*  

 

 

2.6 Sample spaces 

 

We will use the term ‘sample space’ to denote a set of propositions claiming dynamical 

properties of part of the physical world over a period of time. These include atomistic 

propositions†, disjunctions of them, (non-empty) conjunctions of the disjunctions and 

negations, all representable in a Venn diagram‡. Though we may not know which, one of 

the atomistic propositions of a sample space is supposed to be true while all the others are 

false. 

 Knowledge in relation to a sample space S  need not be knowledge of the truth of 

a proposition of S , it can be knowledge of the truth of any proposition which can 

influence our assignment of probabilities to the propositions of S . 

 As in classical probability theory, a proposition can be a member of more than 

one sample space but it can only have one probability given our knowledge. 

 Sample spaces that have no propositions in common will be called ‘separate’. 

  

Independent sample spaces 

 

 Sample spaces may be independent of each other in three different ways.§ They 

must first of all be separate and then they are ‘causally’, ‘cognitively’ or (under certain 

knowledge) ‘logically’ independent according as all the propositions of any one of the 

sample spaces are causally, cognitively or logically independent of all the propositions** 

of the others. 

                                                 
*It may be that logical independence is not possible without cognitive independence. But we will see, for 

example, that the propositions ‘
2

1
 ’ and ‘

2

1
 ’ claiming particular values of the z  components of 

spin   and   of an electron in fixed coordinate systems O  and O  whose z  axes are not parallel, are 

causally independent but not cognitively independent.  

   In the case of coexistence of classical and complex-valued probability (see section 6) we know cognitive 

independence is always present but this does not imply knowledge of causal or logical independence and 

knowledge of causal independence does not imply knowledge of logical independence or vice versa (see 

page 92 of [2]). 
† those that cannot be expressed as disjunctions of propositions of the sample space 
‡ We mean here a classical Venn diagram. (We are not referring to the extended Venn diagram set up in 

Appendix I). 
§ In applications, which sample spaces qualify as independent (or dependent) in any one of the three ways 

listed will sometimes be declared (axiomatically) as being part of our general knowledge. 
** For the purpose of defining cognitive independence of sample spaces we need refer only to those 

propositions of the sample spaces whose truth or falsity could in principle be learnt. 
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Combinations of sample spaces 

 

 Suppose we have two separate sample spaces 
)1(S  and 

)2(S . Then, as in classical 

probability theory, we can consider them combined together as one sample space 
(2))1( SS  

( (2))1( SS  and (1))2( SS  being equivalent). Each atomistic proposition of (2))1( SS  is, as usual, 

the conjunction of an atomistic proposition of 
)1(S  and an atomistic proposition of 

)2(S . 

This can be repeated any number of times to form sample spaces 
(3)(2))1( SSS , 

(4)(3)(2))1( SSSS , etc.  

 

 

3. Probability rules under knowledge known to be pure  

 

3.1 Complete sample spaces and basic sets of propositions  

 

Some sample spaces qualify as being ‘complete’. The propositions of a complete sample 

space S  are all the propositions referring to a qualifying set* of intrinsic dynamical 

properties of some quantum mechanical system S  during a specified period of time (e.g. 

from 0t  to 1t  inclusive).† Each atomistic proposition of a complete sample space S  is a 

claim of an entire history of the nominated dynamical properties of S  over the time 

period covered by S . Any less specific claim about the nominated dynamical properties 

of S  can clearly be expressed as a disjunction of these atomistic propositions.  

 Out of all the propositions of a complete sample space S  there are ‘basic sets’ 

(denoted x , y ,…) of mutually exclusive and exhaustive propositions. These special sets 

are of fundamental importance with regard to pure states of knowledge.‡ 

 The members of a basic set of propositions of S  (also called a ‘basis’ or 

‘propositional basis’ in S ) are propositions claiming that one or other of the allowed 

values of a dynamical property P  of S  applies at one particular time. They will be 

distinguished by the value of a single parameter (e.g. by i ). So ix , jy ,… will denote the 

propositions in the bases x , y ,… respectively generally referring to different times. The 

basic general dynamical property to which a basis y  refers will be denoted by yP  and the 

                                                 
* Which sets qualify for the purpose of forming a complete sample space will be known from our general 

knowledge G .  
† By a ‘quantum mechanical system S ’ we may sometimes mean a part or separate aspect of a (larger) 

quantum mechanical system. With regard to a single (quantum mechanical) particle, all propositions about 

certain dynamical properties of the orbital motion of the particle from time  0t  to 1t , e.g. all propositions 

about its position (or about its position and momentum) during that time period (but not, say, about its 

distance from another quantum mechanical particle, which distance is not an intrinsic property) constitute a 

complete sample space. So do all propositions about certain dynamical properties of the spinning motion of 

the particle from time  0t  to 1t  (e.g. all propositions about the (discrete) z  components of spin relative to 

any number of fixed coordinate systems). The orbital and spinning motions of the particle are ‘separate 

aspects’ of its total intrinsic dynamics.  
‡ Whether or not particular knowledge is pure will be known from our general knowledge. 
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particular (quantified) dynamical property to which 
jy  refers will be denoted by 

jyP . We 

will say dynamical property yP  serves as a basis in S . We may think of i  and j  etc as 

integer parameters in the range N,...2,1  so the sets of propositions ix , jy  etc are sets 

with an equal number N  of members. We call N  the ‘order’ of S  and it is generally 

dependent on the nature of the quantum mechanical system S . In the end however, we 

may have to allow N  to tend to infinity so that i  and j  etc can range over a finite or 

countably infinite set of real numbers, or become real continuously variable parameters*. 

They may actually have to stand for a number of real parameters used to enumerate the 

members of the basis. Being mutually exclusive and exhaustive, just one of the N  

propositions ix  of a basis x  must be actually true while the others are all false. 

Consequently any basis represents a partitioning of S .† 

 Let 
(1)S  and 

(2)S  be two complete sample spaces of propositions referring to 

different systems 
(1)

S  and 
(2)

S  from time 0t  to time 1t  or to separate aspects 
(1)

S  and 
(2)

S  of the same system from time 0t  to time 1t . They are necessarily separate sample 

spaces (i.e. they have no propositions in common) because systems 
(1)

S  and 
(2)

S  have no 

intrinsic dynamical properties in common. Then the sample space combination 
(2)(1)SS  

referring to the combined system 
(2)(1) SS  is always complete. And provided the systems 

contain no indistinguishable identical particles the following rule regarding bases holds 

true: 

 

Rule for combining bases If the propositions )1(

ix  Ni ,...1  (referring to time t ) form 

a basis in 
(1)S  and the propositions 

)2(

jx  Mj ,...1  

(referring to the same time t ) form a basis in 
(2)S  then the 

                                                 
* The case of an infinite countable set of integers or of continuous variation should, as we have said, be 

regarded as a limiting case as the number N  of propositions tends to infinity. When taking this limit, the 

domain of a continuous parameter should be divided into parts of equal natural measure (as in ordinary 

probability theory), then the principle of indifference (section 5.2) and the principle of maximum entropy 

(section 7) can be applied unambiguously. 
† In applications, sets of propositions that constitute bases will have to be declared as part of our general 

knowledge. For example, in the complete sample space relating to the position and momentum of a single 

particle in the time period 0t  to 1t  we have a basis x  with propositions ix   where i  stands for a volume 

element 
id )( 3r  - one of an infinite number of equal volume elements filling all space – with ix  claiming 

the particle occupies 
id )( 3r  at time t  (where 10 ttt  ). We also have a basis y  with propositions 

jy   where j  stands for a volume element jd )( 3
p  - one of an infinite number of equal elements filling all 

momentum space – with jy  claiming the tip of the particle momentum vector occupies jd )( 3
p  at time t . 

Bases referring to the same dynamical property at different times (we call these ‘time-dependent bases’) 

will be distinguished by treating them as functions of time; for example the basis ix  claiming a particle 

occupies one or other of the volume elements 
id )( 3r  at a specified time t  may be written as )(txi  to 

make explicit (and to generalise) the time to which ix  refers. 
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set of conjunctions )2()1(

ji xx  Ni ,...1  Mj ,...1  form a 

basis in (2)(1)SS  referring to time t . And the number of 

propositions of this basis, and therefore the order of 
(2)(1)SS , 

is NM . 

 

This generalises naturally to the case of any number of contemporary, complete and 

separate sample spaces. So for example if (3)S  is a third complete sample space referring 

to 
(3)

S  (distinct from 
(1)

S  and 
(2)

S ) and contemporary with 
(1)S  and 

(2)S , and )3(

kx  

Lk ,...1  is a basis in 
(3)S  (referring to time t ), then 

(3)(2)(1) SSS  is a complete sample 

space (order NML ) and the )3()2()1(

kji xxx  (for all ji,  and k ) form a basis in 
(3)(2)(1) SSS .* 

 

 

3.2 Closed sample spaces, pure states of knowledge and the uncertainty principle 

 

Sample spaces can be ‘closed’. Such sample spaces are always separate from one another 

and complete and in addition they are causally and cognitively independent of one 

another.† If they cover the same time period they are ‘contemporary’ otherwise they are 

‘non-contemporary’. The parts of a system S  to which a closed sample space S  refers 

are generally not in interaction with and are clearly distinguishable from the parts of any 

other system during the time period covered by S .‡ Whenever we say a sample space S  

is closed we will imply it is a complete sample space, and whenever we say we have pure 

knowledge with regard to (or in relation to) a sample space S  we will imply that S  is 

closed and we have pure knowledge of the system S  over the time period covered by S . 

As we explain soon, any state of pure knowledge is expressible as a probability 

distribution over certain propositions of a closed sample space. 

 If ,...S,S (2)(1)  are closed contemporary sample spaces referring to distinct systems 

,..., (2)(1)
SS  their combination ...SSS (2)(1)  is always a closed sample space referring of 

course to the combined system ...(2)(1) SSS   . 

 Now whenever knowledge Y  in relation to a closed sample space S  is pure, it is 

based on measurements conducted before the time period to which S  relates. Under pure 

knowledge Y  the propositions of any basis in S  have calculable probabilities with 

determinate relative phases. For example, the ix  of a basis x  in S  have calculable 

probabilities )( Yxi  Ni ,...1  with determinate relative phases. In relation to S , and on 

                                                 
* We stress that this rule for constructing bases in a combination of complete sample spaces safely holds 

only when, as we have said, the component systems and their combinations do not contain identical 

particles. The question of bases in the case of systems containing identical particles will be considered 

separately in Chapter X. 
† Which separate and complete sample spaces are closed will be known from our general knowledge. 

Causal and cognitive independence are of course not necessarily present if the sample spaces are merely 

separate and complete. 
‡ As an example, S  is closed when the propositions of S  refer to the motion between times 0t  and 1t of a 

single particle that (between those times) occupies its own region of space far away from other particles 

and is therefore distinguishable from all other particles and not in interaction with them.  
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account of the uncertainty principle no significant knowledge in addition to knowledge Y  

can possibly be held before the time period covered by S . So in relation to S , previous 

knowledge becomes redundant. We refer here to previous knowledge bearing upon 

dynamical properties of the system S  before the measurements that led to knowledge Y  

were conducted.* But it is also true that, in relation to S , any general knowledge 

concerning the properties of the system S  at times before the time period covered by S  

becomes redundant.† 

 If in addition to pure knowledge Y  we hold knowledge about the state of the 

system S  acquired after the period covered by S ,‡ our knowledge in relation to S  ceases 

to be pure and the probabilities over most bases in S  seemingly become indeterminate or 

at least have indeterminate relative phases. 

 We suppose there is, in principle, the possibility of acquiring at the beginning of, 

or before the time period covered by S , knowledge of the truth of any one proposition 

jy  of any basis y  in S .§ When so acquired, knowledge jy  of basis y  always 

constitutes pure knowledge in relation to S . 

 Except in special cases, we cannot acquire, at the beginning of or before the time 

period covered by S , knowledge of the truth of the conjunction ji yx  of two propositions 

ix , jy  from different bases x  and y  in S .** And accordingly (except in the special 

                                                 
* At most, such previous knowledge when included in Y  can affect only the unimportant absolute phase of 

the probability distribution )( Yxi  Ni ,...1 . 

† E.g. the formula for the potential energy of the particles of the system at times before the time period 

covered by S  
‡ This is possible if, at the end of the time period covered by S , we measure a quantity that we know has 

remained constant (though previously unknown) during the time period covered by S . See section 2.3 of 

Chapter XV. 

§ This assumption is needed in order that transformation functions )( ji yx  (introduced in section 3.4) 

have meaning and exist for any basis y  of S  and for any value of the suffix j . So if S  covers times 0t  to 

1t  and y  refers to time t  ( 10 ttt  )  we assume it is possible to know the value jy  of y  that occurs at 

time t  even before time 0t . For example, to know jy  might mean that we know (at or before time 0t ) the 

position a particle will have at time t . By Schrödinger’s equation, this amounts to knowing the particle 

wave function (over position at time 0t ) that leads to a delta wave function at time t . So if we assume (as 

we do) that pure knowledge at time 0t  represented by any wave function is essentially a possibility, the 

possibility of knowing the truth of jy  at time t  is also granted. Under knowledge that particle potential is 

infinite in some regions of space a law applies that states that the particle may not occupy any volume 

element of space in those regions and in that case we cannot learn the truth of jy  if this proposition claims 

such a location for the particle. In such cases a limiting approach to the value of the potential has to be 

taken at any stage of which the truth of any of the jy  could in principle be known. 

** Special cases arise when x  and y  are ‘equivalent’ bases (see section 3.10), then (for particular values 

of i  and j ) jy  implies ix  and vice versa. Then we could know the truth of ji yx  and there is more than 

one way we could. We might acquire knowledge of jy  by system preparation and then we automatically 
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cases) the probabilities of conjunctions ji yx  do not exist. Therefore there are generally 

no pure state joint probability distributions of the kind )( Yyx ji  ( Ni ,...1 , Nj ,...1 ). 

The same limitations apply to three or more propositions ,...,, kji zyx drawn from three or 

more different bases ,...,, zyx in S . Therefore under pure knowledge in a complete 

sample space by no means all the propositions of the sample space have probabilities.* 

 On account of the second of (2.3.3) we have, for any basis y , the normalisation 

rule 

 

1)(
1

2




N

j

j Yy .        (3.2.1) 

 

This must of course hold whether knowledge Y  is pure or not.  

 

 

3.3 Representation of pure states  

 

When knowledge Y  in relation to S  is pure, we can, as we have said, always derive by 

logical argument based on the physical laws of quantum mechanics and (complex-valued) 

                                                                                                                                                  

have knowledge of ix  (and therefore of ji yx ) or we might acquire knowledge of ix  by preparation and 

then we automatically have knowledge of jy  (and therefore of ji yx ). (The methods used in acquiring 

knowledge of jy  or of ix  are physically different, and might leave the part of the world under 

investigation in different physical conditions.) In general, ix  and jy  claim incompatible properties and, 

we can in no way learn the truth of ji yx  beforehand. For having acquired knowledge of say jy  

beforehand we would need to acquire knowledge of ix  beforehand and, by the uncertainty principle, we 

would then no longer be sure of the truth of jy . (In a special case of another kind (where ix  and jy  

claim incompatible properties), we could learn the truth of ji yx  in relation to S  if for example ix  

referred to time 0t  and jy  to time 1t  ( 0t  and 1t  being the earliest and latest times in the time period 

covered by S ), and jy  was a primary basis representing a property demonstratively constant during the 

time period covered by S . This does not however give rise to a pure state of knowledge in S  and it 

requires acquisition of knowledge (of jy ) at time 1t , i.e. at the end of the time period covered by S  as 

well as acquisition of knowledge (of ix ) at the beginning.) 

* These restrictions on existent probabilities are only claimed under conditions of the perfect accuracy 

associated with pure states. If approximations are allowed things are more open. We know for example that 

in the classical limit of quantum mechanics properties like the position and momentum of a particle are 

simultaneously knowable (to classical accuracy) and joint probability distributions over them are 

sometimes determinate in the classical context (see end of section 10 of Chapter XIV). Under pure 

knowledge though, the only existent probabilities are those of the propositions belonging to any basis 

(including any improper or pseudo basis to be defined later) and the disjunctions of the propositions 

belonging to any one basis. Of course, a proposition that is equivalent to any one of these also has a 

probability under pure knowledge. 
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probability theory, a probability distribution over the propositions of any basis of S . This 

distribution always has determinate relative phases and sometimes even has determinate 

absolute phases. If we choose a basis y , the probability distribution going with the pure 

knowledge in relation to S , i.e. )( Yyi , is said to express that knowledge ‘in the y  

representation’ or to be ‘our wave function in the y  representation’. If we choose another 

basis x , we have an alternative probability distribution (or wave function) )( Yxi  

representing the same pure state of knowledge. This provides a complementary 

representation of our knowledge Y . 

 To assist us in the derivation of wave functions from pure states of knowledge we 

claim that wave functions may not be just any distributions with determinate relative or 

absolute phases. There are generally restrictions imposed on them by physical or logical 

laws. For example they have logically to be single-valued and continuous differentiable 

functions of any continuous variables specifying the propositions of the basis in question* 

and they may have to be functions that vanish for some values of those variables because 

some physical law renders these particular propositions false.† Also wave functions must 

logically be continuous differentiable functions of any continuous parameters that may 

be needed to quantify the pure state of knowledge in question.‡ 

 A wave function can therefore only be an allowed probability distribution in the 

sense that all these physical or logical requirements must be satisfied by it.  

 If, with respect to any basis x , two or more states of knowledge ,...,YY   result in 

wave functions )( Yxi , )( Yxi
 ,… the same except for constant phase factors, those 

states of knowledge amount to one and the same pure state of knowledge of the 

dynamical properties of the system. To within a constant phase factor, there is a 1-1 

correspondence between wave functions and pure states of knowledge of a system’s 

dynamics. And any allowed wave function for a system can be reached, at least to within 

a constant phase factor, by the acquisition of an appropriate pure state of knowledge.§  

 

 

3.4 Transformation functions between bases  

 

Let ix  and jy  be the general propositions of bases x  and y  of a complete sample space 

S  of order N . Then there is always the possibility that we know jy  is true. There is 

therefore a calculable set of wave functions )( ji yx  which we call ‘transformation 

functions’ or more specifically ‘transformation functions from y  to x ’ associated with 

these bases. These transformation functions are calculable at least to within an 

                                                 
* An exception (to continuity) arises in the case of wave functions over a proper basis for a system of 

identical fermions (see section 6.1 of Chapter X). 
† For example, as we have said before, a particle may not occupy a region of infinite potential, so the wave 

function over position must vanish in such a region. 
‡ This law is used in section 8.1 in connection with the extension of the similarity principle. Unless 

otherwise stated, wave functions are always assumed to be normalised as in (3.2.1). 
§ An explicit example of the generality of wave functions and pure states of knowledge is given in section 6 

of Chapter VII. 
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indeterminate constant phase factor 
ie  independent of i  and j .* In the calculation of 

transformation functions use can be made of the following general laws of probability (as 

well as the principles of probability assignments in section 5). 

 

Law of reciprocity of transformation functions 

 

Transformation functions are related reciprocally, i.e. (with the star denoting the 

complex conjugate) 

 

  )()( jiij yxxy       (3.4.1) 

 

for all i  and j .  

 

Law of unit determinant (in case the bases are discrete and of finite dimension) 

 

If the bases, i.e. the labels i  and j , are discrete, finite in number, and have a 

natural order, the determinate of )( ji yx  regarded as a square matrix )]([ ji yx  

is equal to 1, i.e. 

 

1)](det[  ji yx        (3.4.2) 

 

the matrix being defined so the order of the rows from top to bottom coincides 

with the natural order of the i  values and the order of the columns from left to 

right coincides with the natural order of the j  values.  

 

We will refer to (3.4.2) as ‘Feynman phase normalisation’ (see p.6-5 of [7]).  

 

Law of orthonormality of transformation functions 

 

Viewed as probability distributions over the variable i  for the various values of 

j , transformation functions )( ji yx  are, always orthonormal, i.e. always both 

normalised and mutually orthogonal†: 

                                                 
* If the )( ji yx  contained a phase factor 

ji
e


 indeterminate and different for each value of j , then a 

wave function )( Yxi  derived using Feynman’s law (3.5.1)  would have indeterminate relative moduli 

for different i  contrary to the rules of quantum mechanics. (We will see in fact that many transformation 

functions )( ji yx  have fully determinate phases.) 

† Therefore when i  and j  are discrete and finite in number (3.4.1) and (3.4.3) alone imply  

1]det[)](det[)](det[)](det[
2

 ijjijiik yxyxxy  or 
 i

ji eyx )](det[ , where 

 20 , and this shows the possibility of Feynman phase normalisation by division of all (pre-phase-

normalised) elements )( ji yx  by 
Nie 

 where N  is the number of i  (or j ) values i.e. the order of the 
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  kj

N

i

jiki yxyx 




1

)()( .      (3.4.3) 

 

Law of completeness of transformation functions 

 

Any set of transformation functions )( ji yx  are ‘complete’ in the sense that any 

wave function )( Yxi  (i.e. any probability distribution over the basis x  under 

pure knowledge Y ) can be expressed as a linear combination of the )( ji yx : 

 





N

j

jiji yxaYx
1

)()(       (3.4.4) 

 

where the ja  are complex constants. 

 

Sum rule for transformation functions 

 

The general sum rule (in section 2.3) applies of course to any transformation 

function )( ji yx  viewed as a probability distribution over the propositions of the 

basis ix . Since the propositions of any basis are mutually exclusive we have, by 

(2.3.2), that the probability of a disjunction, e.g. ...74  xx , of any set of the 

basic propositions, m  in number, is given by 

 

...)()()...(
2

7

2

4

)(

74 


jj

ki

j yxyxeyxx jj   (3.4.5) 

 

where jk  is the phase characteristic of knowledge jy  and j  the phase 

characteristic of the disjunction ...74  xx  under knowledge jy .  

 If, however, the individual phases characteristic of the members of the 

disjunction under knowledge jy  have the same value j , e.g. if 

 

jjj yxyx  ...)(ch)(ch 74      (3.4.6) 

 

and the members of disjunction do not include all propositions of the basis, then 

in (3.4.5) we claim 

 

jj  .        (3.4.7) 

                                                                                                                                                  
sample space. But, as we have said, we suppose this normalisation necessarily applies whenever the labels 

i  (and j ) have a natural order. 
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If, in addition, our degrees of belief in the members of the disjunction are equal, 

so that their probabilities are equal: 

 

...)()( 74  jj yxyx       (3.4.8) 

 

then the probability of the disjunction under knowledge jy  is accordingly equal to 

m  times that of any one of the basic propositions making up the disjunction, so 

for example 

 

)()...( 474 jj yxmyxx  .     (3.4.9) 

 

 

3.5 Feynman’s law 

 

We can now formulate the relation between wave functions representing the same pure 

state of knowledge.* 

 

Feynman’s Law 

 

Any two representations of a pure state of knowledge by probability distributions 

)( Yxi  and )( Yy j  using bases x  and y  in S  are related thus:  

 





N

j

jjii YyyxYx
1

)()()( .     (3.5.1) 

 

More generally, if Z  is any proposition claiming a particular dynamical property 

of the system S  to which S  relates such that knowledge Z  would constitute pure 

knowledge of S , then for any basis jy  in S  

 





N

j

jj YyyZYZ
1

)()()( .     (3.5.2) 

 

 

 The existence of indeterminate constant phase factors in some wave functions 

means we can to a limited extent multiply those wave functions by constant phase factors 

without changing the relations between them that the (complex-valued) probability 

calculus requires. For example if transformation functions )( ji yx  have only 

determinate relative phases we can multiply them all by 
ie  where   is a real numerical 

                                                 
* We call this relation ‘Feynman’s law’ because it was first interpreted by Feynman as a law of probabilities 

(see p.6-1 of [7] and p.111 of [16]). 



I. The laws of complex-valued probability 

 

 25 

constant independent of i  and j . But then we must multiply all the )( ij xy  by 
ie  

because of the reciprocity relation (3.4.1). And if the transformation functions are discrete 

and finite in number the requirement (3.4.2) means   must satisfy mN  2  where N  

is the order of the sample space (or of the determinant) and m  any positive or negative 

integer or zero.  

 Also (3.5.1) relates any indeterminate constant phase factors that may be present 

in wave functions )( ji yx , )( Yxi  and )( Yy j . So if for example only the )( ji yx  

have determinate absolute phases and we multiply the wave function )( Yy j  in one 

representation by a constant phase factor we should multiply the wave function )( Yxi  

in the other representation by the same phase factor.  

 When fixing phases of wave functions (whose phases are not absolutely 

determinate) in a conventional way, we must be constantly aware of required relations 

that reduce the number of independent indeterminate phases otherwise contradictions will 

of course arise. 

 Note that, although (3.5.1) resembles the classical relation between distributions, 

it cannot be derived from the sum and product rules of section 2. Relation (3.5.1) (or 

more generally (3.5.2)) stands alone as the only source of the ‘interference of 

probabilities’ characteristic of quantum theory. The present theory of complex-valued 

probability differs from others in that the ‘interference of probabilities’ does not arise as a 

result of the sum rule. That is, we do not claim )()()( YBYAYBA   in place 

of (2.3.1) or claim that the product rule (2.4.1) or something like it holds when A  and B  

claim incompatible properties, as would be needed to derive (3.5.1). Such claims lead to 

contradictions or to violations of necessary properties of probability.* 

 Feynman’s law is the general quantitative expression of the uncertainty principle 

in the new probability calculus. In the form (3.5.1) it determines the way and the extent to 

which, under changing pure knowledge Y , one probability distribution becomes broader 

while another becomes narrower. 

 

 

3.6 Primary bases and the possibility of harmless conditioning 

 

Certain bases of a complete sample space S  may be ‘primary’.† With regard to these we 

maintain the following properties.  

                                                 
* E.g. if )()()( YBYAYBA   holds in place of (2.3.1), the probability of a disjunction of 

mutually exclusive propositions A  and B  can be zero while, under the same knowledge, the probabilities 

of  A  and B , i.e. )( YA  and )( YB  are non-zero. This is difficult to reconcile with the idea that 

probability measures degree of belief. 
† Which are primary will be known from our general knowledge. For example, in a sample space relating to 

all properties of the orbital motion of a particle, the propositions claiming the particle occupies one or other 

volume element of space at a particular time constitute a primary basis, but the propositions claiming the 

particle momentum occupies one or other volume element of momentum space at a particular time 

probably do not because an instantaneous and precise measurement of the momentum seems certain to 

change it by a very large amount (see for example p.152 of [12]). 
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 Having obtained knowledge Y  of a system S  pure in relation to a representative 

sample space S  covering a time period 0t  to 1t , we claim (as part of our general 

knowledge G ) that we can, by observation, learn by chance at time 2t  (where 

120 ttt  ) the truth of the disjunction of any number of the propositions ix  of any 

primary basis x  of S  referring to time 2t .* This can, we claim, be accomplished instantly 

and harmlessly with respect to proposition Y † and the propositions ix  of basis x  (but not 

in general harmlessly with respect to other bases of S ). Let A  be the proposition 

representing the disjunction. 

 From time 2t  we then have pure knowledge AY  in relation to a sample space S  

which includes only those propositions of S  that relate to times from 2t  to 1t . The bases 

of S  (which include the basis x ) are a subset of the bases of S . We call the process of 

passing from knowledge Y  pure in relation to sample space S  to knowledge AY  pure in 

relation to sample space S , ‘harmless conditioning’. 

 So after harmless conditioning, the sample space in which our pure knowledge is 

expressed remains complete and closed but shrinks to one covering a shorter time period.  

 An extreme case of harmless conditioning occurs when, by observation, we learn 

by chance at time 2t  the truth of one of the propositions, say ix , of a primary basis x  of 

S  referring to time 2t . This we suppose is a possibility so long as ix  does not have 

probability zero under knowledge Y . And as in the case of learning by chance the truth 

of a disjunction of the propositions ix , our sample space then contracts from S  to S . 

 

 

3.7 The product rule for wave functions and the law of absolute logical independence 

under pure knowledge  

 

We first give rules concerning bases and wave functions in a combination of closed 

sample spaces referring to distinct systems (or distinct aspects of a single system). Then 

we state the law of absolute logical independence under pure knowledge. Because the 

sample spaces are closed, all we say is true whether or not the systems in question or their 

combinations include identical particles. 

 

Rule for combining bases of closed sample spaces 

 

Let 
)1(

ix  be a basis pertaining to time t  in a closed sample space 
)1(S  and let  

)2(

jx  

be a basis pertaining to the same time t  in another closed sample space 
)2(S  

covering the same time period. Then the set of conjunctions 
)2()1(

ji xx  labelled by 

                                                 
* We omit disjunctions which have probability zero under knowledge Y . 
† Note that it may be necessary to replace Y  by an equivalent proposition in order to ensure the possibility 

of this. This would be necessary if, for example, Y  claimed a basic property jy  referring to a time after 

2t ; then Y  would have to be replaced by an equivalent proposition claiming a property of S  occurring at 

or before time 2t . 
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),( ji  always constitute a basis pertaining to time t  in 
)2()1( SS . If bases 

)1(

ix  and 

)2(

jx  are primary then so is basis 
)2()1(

ji xx . But whether or not the bases are 

primary the following rule also applies.  

 

Product rule for wave functions  

 

If we hold pure knowledge )1(Y  in relation to )1(S  and simultaneously hold pure 

knowledge  )2(Y  in relation to 
)2(S , then knowledge )2()1( YY  in relation to 

)2()1( SS  

is pure and our wave function in the 
)2()1(

ji xx  representation in )2()1( SS  is the 

product of our wave functions in the 
)1(

ix  representation and the 
)2(

jx  

representation in 
)1(S  and 

)2(S  respectively, i.e. 

 

)()()( )2()2()1()1()2()1()2()1(
YxYxYYxx jiji  .   (3.7.1) 

 

 Conversely if our wave function under pure knowledge Y  in relation to 
)2()1( SS  using the basis 

)2()1(

ji xx  in (2))1( SS , resolves into normalised factors if  

and 
jg  so that 

 

jiji gfYxx  )(
)2()1(

  

 

and )1(S  and )2(S  are separately closed, then our knowledge Y  must be separable 

into knowledge )1(Y  pure in relation to )1(S  and knowledge )2(Y  pure in relation to 
)2(S * (i.e. )2()1( YYY  ) and we should put, for our wave functions in the )1(x  and 
)2(x  representations, 

 
 i

ii efYx )( )1()1(
   and   i

jj egYx )( )2()2(
   (3.7.2) 

 

where   is generally an indeterminate real constant.† 

 

                                                 
* Knowledge Y  pure in relation to 

(2))1( SS  is not of course necessarily separable into pure knowledge in 

relation to 
)1(S  and pure knowledge in relation to 

)2(S . It generally is not, for example, if after acquiring 

knowledge Y  systems 
)1(

S and 
)2(S  interact before the time period covered by 

)1(S and 
)2(S . 

† Sometimes a wave function )(
)2()1(
Yxx ji  in a closed product space 

(2))1( SS  factors but 
)1(S and 

)2(S , 

though complete sample spaces, are not (separately) closed. An example of this kind of factoring occurs in 

the case of spinning and orbital motion of a spin one-half particle in an x  dependent magnetic field with 

only a z  component under pure knowledge that includes knowledge of the z  component of spin; the 

Schrödinger equation is then of the form (3.1.3) of Chapter XIII which has factored solutions like 

),(21, tg r  yet the sample spaces S and rS  for the spin and orbital motions of the particle are not 

separately closed because the spin and orbital aspects of motion are not generally independent. 
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The rule for combining bases of closed sample spaces and the product rule for wave 

functions (together with its converse) generalise to cases of any number of contemporary 

and closed sample spaces.* And the sample spaces need not be of the same order. 

 We now state the law of absolute logical independence under pure knowledge. 

 

Law of absolute logical independence under pure knowledge 

 

Suppose we hold pure knowledge )1(Y  in relation to 
)1(S  and pure knowledge )2(Y  

in relation to another (closed but not necessarily contemporary) sample space 
)2(S . Then 

)1(S  and 
)2(S  are necessarily logically independent sample spaces 

under knowledge )2()1( YY . 

 

This law generalises to the case of pure states of knowledge )()1( ,... nYY  held in relation to 

any number of closed but not necessarily contemporary sample spaces )()1( S,...S n . Since 

our knowledge with regard to each sample space is pure those sample spaces are 

necessarily logically independent of one another under knowledge 
)()1( ... nYY .  

 

 

3.8 The observational equivalence of wave functions differing only in absolute phase 

 

Suppose two wave functions )( Yxi  and )( Yxi
  over a basis ix  of a sample space S  

relating to a system S  (a part of the physical world) differ only by a constant phase 

factor, i.e. 

 
 i

ii eYxYx )()(         (3.8.1) 

 

where   is a constant phase independent of i . Then, by Feynman’s law (3.5.1), the same 

simple relation will hold between the wave functions in any other representation, i.e. 

relation (3.8.1) is independent of the basis x , or   is the same in every basis. In general 

Y  and Y   will claim different properties of the physical world (for example different 

properties of S  or different properties of preparation apparatus applied to S ) but the 

                                                 
* The converse of the generalised product rule for wave functions is demonstrated by grouping the 

propositions of the bases. For example, in the case of three contemporary and closed sample spaces 
)1(S , 

)2(S  and 
)3(S  with bases 

)1(x ,  
)2(x  and 

)3(x  respectively, all pertaining to the same time t  , if 

kjikji hgfYxxx  )(
)3()2()1(

 then  ))((
)3()2()1(
Yxxx kji  kji hgf )(  and the rule for just two 

sample spaces gives  )(
)3()2()1(
Yxxx kji   )()(

)3()2()1(
YxYxx kji   where 

 i

jiji egfYxx )(
)2()1(

, and 
 i

kk ehYx )(
)3(

. This in turn becomes  )(
)3()2()1(
Yxxx kji  

)()()(
)3()2()1(
YxYxYx kji   where 

 i

ii efYx )(
)1(

,  
 ii

jj eegYx )(
)2(

  and 

 i

kk ehYx )(
)3(

. 
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states of knowledge Y  and Y   are always ‘observationally equivalent’ with regard to S  

in the sense that (on account of relation (3.8.1)) the calculated expected frequencies of the 

possible outcomes of any measurement conducted on the system S  are necessarily the 

same.* This is a necessary condition for us to be able to claim as we have (in section 3.3) 

that under (3.8.1) Y  and Y   amount to the same pure state of knowledge of the 

dynamical properties of the system S . 

 

 

3.9 Extension of a sample space 

 

Suppose S  is a complete sample space of order N  consisting of propositions relating to 

certain dynamical properties of a system S  over a given time period. Then there may be 

other dynamical properties of S  that are known to us but not mentioned in any of the 

propositions of the closed sample space S .† 

 There is no reason why one or more of such other dynamical properties should not 

be incorporated into S . That is, we may if we wish extend S  to include all propositions 

relating to dynamical properties of S  already referred to in S  and all propositions 

relating to one or more other properties (or to both one or more of the original properties 

and one or more of the other properties). The resulting sample space is still a complete 

sample space of order N . 

 Unless otherwise stated it will be supposed that any closed sample space S  of 

order N  is fully extended to include all propositions about any real dynamical properties 

of the system S  over the given time period. 

 

 

3.10 Equivalent bases  

 

The theory of equivalent bases is developed in section 10.1 of Chapter II. Here we give a 

limited account of that theory for the purpose of formulating the law of inferred 

dynamical properties in section 3.12. 

 In a sample space S  of order N  relating to a system S  it can be that (with 

appropriate ordering of the propositions of bases) respective propositions of two or more 

bases jy , jy…etc. ( Nj ,...1 ), while claiming distinct physical properties, nonetheless 

imply one another (on account of physical correlation of the properties concerned). They 

may imply one another with known phases of implication, so for example jj yy jj 
  

where the j  are known. The transfer functions between these bases are then diagonal, 

e.g. 

 

                                                 
* See the calculation of expected frequencies in section 9 of Chapter II. 
† For example, there may be inferred dynamical properties associated with complete sets of orthogonal 

wave functions (see section 3.12) that may not be mentioned by any proposition of S . 
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...
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where j , j ,… are all known phases for Nj ,...1 , and we say that ,..., jj yy   are 

‘equivalent bases correspondingly ordered’. (They need not necessarily be bases referring 

to the same time.) Then the wave functions over a basis ix  (not equivalent to the bases 

,..., jj yy  etc.) under the pure states of knowledge ,..., jj yy   are the same to within 

constant phases factors. This is because, by Feynman’s law  

 
jj i

ji

l

i

ljli

l

jlliji eyxeyxyyyxyx


  )()()()()(  

 

and similarly 

 
ji

jiji eyxyx


 )()(  

 

and so on. So )( ji yx , )( ji yx  , )( ji yx  ,… are the same to within a constant phase 

factor when jy , jy , jy  ,… are equivalent bases correspondingly ordered. And 

jy , jy , jy  ,… (for any one value of j ) are different propositions concerning system S  

that serve to represent the same pure state of knowledge of dynamical properties of the 

system S . 

 

 

3.11 General law of reciprocity and the extension of the sum rule for transformation 

functions to wave functions of any kind 

 

General law of reciprocity 

 

Let S  be a complete sample space whose propositions concern a system S . If Y  and Z  

are propositions of S  claiming dynamical properties of S  and if knowledge Y  would 

constitute a pure state of knowledge and if knowledge Z  would constitute a pure state of 

knowledge, then the probability of Y  under knowledge Z  and the probability of Z  

under knowledge Y  are reciprocally related thus 

 

)()( YZZY          (3.11.1) 

 

the star denoting the complex conjugate. 

 In the particular case Y  and Z  are propositions jy  and kz  respectively drawn 

from bases y  and z  in S , (3.11.1) becomes the law of reciprocity of transformation 

functions (already noted in (3.4.1)). 
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Extension of the sum rule for transformation functions to wave functions of any kind 

 

The general sum rule (in section 2.3) applies of course to any wave function )( Yxi  

over any basis ix . And we have, by (2.3.2), that the probability of a disjunction, e.g. 

...74  xx  of any set of the basic propositions is given by 

 

...)()()...(
2

7

2

4

)(

74   YxYxeYxx ki    (3.11.2) 

 

where k  is the phase characteristic of knowledge Y  and   the phase characteristic of the 

disjunction ...74  xx  under knowledge Y .  

 If, however, the individual characteristic phases of the members of the disjunction 

under knowledge Y  have the same value  , e.g. if 

 

 ...)(ch)(ch 74 YxYx        (3.11.3) 

 

and the members of the disjunction do not include all propositions of the basis, then in 

(3.11.2) we claim 

 

 .          (3.11.4) 

 

And if, in addition  

 

...)()( 74  YxYx        (3.11.5) 

 

then, accordingly 

 

)()...( 474 YxmYxx  ,      (3.11.6) 

 

m  being the number of propositions making up the disjunction. 

 In the particular case that Y  is a proposition jy  of a basis y  (different from basis 

x ) the above rule clearly becomes the same as the sum rule for transformation functions 

(noted already in section 3.4). 

 In section 1 of Chapter X we introduce ‘improper’ bases. We note here that the 

above extension of the sum rule to wave functions of any kind includes extension to wave 

functions over improper bases. 

 

 

3.12 The law of inferred dynamical properties 

 

We now formulate the law of inferred dynamical properties. 
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 Let S  be a closed sample space of propositions relating to the dynamical 

properties of a quantum mechanical system S  over some time period. Let the jY  

( Nj ,...1 ) be propositions representing pure states of knowledge in relation to the 

sample space S  of order N . And suppose the corresponding wave functions )( ji Yx  

over a basis x  in S  are orthogonal and form a complete set.* Then we have the following 

law. 

 

Law of inferred dynamical properties  

 

To the states of knowledge jY  ( Nj ,...1 ), regardless of the absolute phases of 

the wave functions )( ji Yx , there corresponds an ‘inferred’ dynamical property 

P  of S  quantified by the variable j , and under knowledge jY  (for any value of 

j ) P  is quantified by j , i.e. quantified property jP  is present during the time 

period covered by S . Also, to hold knowledge that property jP  is present is to 

hold a pure state of knowledge. 

 In the case the wave functions )( ji Yx  are the same (to within constant 

phase factors) as the transformation functions )( ji yx  or )( ji yx  ,… from one 

or other of the correspondingly ordered equivalent bases y , y ,… to the basis x  

in S , property jP  (for any one given value of j ) is the property that one or other 

of the basic properties 
jyP ,

jyP ,…  claimed by ,..., jj yy   is present.† 

   

 We note that the law of inferred dynamical properties is different from the other 

laws of complex-valued probability. All the other laws are claims regarding the values of 

probabilities or claims regarding the relations between probabilities. They could be 

described as purely logical laws. But the law of inferred dynamical properties is a claim 

relating any set of orthogonal probability distributions (wave functions) to a physical 

property. It forms a bridge between probability theory (i.e. logic) and physics. This can 

be likened to the situation in general relativity where we have a space-time geometry 

which can be described mathematically in purely geometric terms but where the claim is 

made that an aspect of the curvature of space-time is related to a physical property of the 

                                                 
* In the language of ordinary quantum mechanics we would say the wave functions are eigenfunctions of a 

complete set of commuting Hermitian operators.  
† We include the case (if it should arise) where there is a basis jy  which has no equivalent bases. In that 

case jP  and 
jyP are the same property. But generally, although they are physically correlated, the 

properties jP ,
jyP ,

jyP ,… are distinct and letting jP  stand for the proposition claiming jP  we note that 

...)(  jjj yyP  is not the same as any one of the propositions ,..., jj yy   even though (under our 

general knowledge G ) any one of the propositions ,...,, jjj yyP   implies any other. 
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matter occupying it. So now concepts in both the logic of science and the geometry of 

science are associated with properties of matter. 

 

 

4. Cases of essentially pure knowledge  

 

Sometimes our knowledge Y  relating to a closed sample space S  of propositions falls 

short of being pure only because we lack certain knowledge characterised by parameters 

whose values are unknown but which could in principle be learnt harmlessly with regard 

to all propositions of S . We call such a state of knowledge ‘essentially pure’. 

 The rules of section 3 specific to knowledge known to be pure hold algebraically 

also in the case of knowledge known to be essentially pure. So do the principles of 

probability assignment in section 5. Using these rules and principles we may be able to 

establish (from the knowledge we do have) algebraic (or functional) forms for probability 

distributions over propositions of S . Then when the missing information finally arrives 

we are able to evaluate fully (i.e. numerically) the pure state probability distributions over 

propositions of S .  

 

 

5. Principles of probability assignment 

 

In addition to the calculus of probabilities we have (as in classical Bayesian probability) 

logical principles of probability assignment that may sometimes be applied to establish 

the form of prior probability distributions.  

 The principles of probability assignment are given below. In these, propositions 

,...,, XBA  and propositions ,...,ZY  (representing our knowledge) claim dynamical 

properties of the physical world and G  claims our general knowledge. (In addition to 

these principles there is the principle of maximum entropy applying under conditions in 

which complex-valued probability and classical probability coexist (see sections 6 and 

7).)* 

 We start by declaring the uniqueness of degrees of belief or of probabilities under 

conditions of logical equivalence and we give the ‘general rule for phases’.  

 

First uniqueness principle If (underG ) BA  and ZY  then 
22

)()( ZBYA   

 

Second uniqueness principle If (under G ) BA   (i.e. if BA 0  and AB 0 ) and 

ZY   (i.e. ZY 0  and YZ 0 ) then )()( ZBYA  . 

 

General rule for phases If (under G ) BA    (i.e. if BA   and AB  ) 

                                                 
* There are also principles of array assignment in the calculation of probabilities under mixed states of 

knowledge (see Chapter XIV) and there may of course be other principles of probability assignments yet to 

be discovered. 
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and ZY    (i.e. ZY   and YZ  ) then 
)()()(  ieZBYA . 

 

 

In words, the first principle states that if (under our general knowledge G ) A  and B  are 

equivalent and Y  and Z  are equivalent our degrees of belief (in A  given Y  and in B  

given Z ) are the same. The second principle states that if A  and B  are fully equivalent 

(which we declare to be the case when for example they claim the same property in 

different units or in different coordinate systems) and if Y  and Z  are also fully 

equivalent, our probabilities (for A  given Y  and for B  given Z ) are the same. The 

general rule for phases gives the way the phases of the probabilities are generally related 

under equivalence. We can of course derive the first and second uniqueness principles 

from the general rule for phases, but for future reference, we write them down explicitly. 

 

 

5.1 The similarity principle 

 

This takes the following form 

 

Similarity principle 

 

If our knowledge 
)1()1( GY  with regard to any one of a (not necessarily mutually 

exclusive or exhaustive) set of propositions 
)1(

iX  is recognisably similar* to our 

knowledge 
)2()2( GY  with regard to a respectively labelled and equally numerous 

set of propositions 
)2(

iX  then for each i  we should set 

 
 i

ii eGYXGYX )()( )2()2()2()1()1()1(
    (5.1.1) 

 

where   is some real constant (independent of i ).  

 

And more generally, if the problem of finding the probabilities of the 
)1(

iX  under 

various states of knowledge 
)1()1(

jj GY  is recognisably similar to the problem of 

finding the probabilities of the 
)2(

iX  under a respectively labelled and equally 

numerous set of states of knowledge 
)2()2(

jj GY , then for each i  and j  we should 

set  

 
 i

jjijji eGYXGYX )()( )2()2()2()1()1()1(
    (5.1.2) 

                                                 
* In formulating this similarity principle we allow for a possible difference in our general knowledge G  in 

cases (1) and (2). For example, there may be a difference in our supposed knowledge of the rest frame and 

of potentials experienced by the particles of a system as in section 5 of Chapter IV. 
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where   is some real constant (independent of i  and j ).* 

 

 

 It will be pretty clear whether or not one problem of finding a set of probabilities 

is similar to another but a case where similarity might at first appear to apply but 

generally does not is one in which GGG jj  )2()1( , and for each i , )1(

iX  and )2(

iX  are 

equivalent (known to imply one another under G ), and for each j , 
)1(

jY  and 
)2(

jY  are 

equivalent. Owing to the existence of phases of implication similarity might actually 

apply in such a case only when the respective propositions imply one another with the 

same phase of implication (i.e. when 
)2()1(

ii XX    and 
)2()1(

jj YY    where   and 

  are phases independent of i  and j ). Then, by the general rule for phases, (5.1.2) 

clearly applies with  . But of course such equivalence of )1(

iX  and )2(

iX , and of 

)1(

jY  and 
)2(

jY , under a common general knowledge G , is by no means the only way in 

which similarity might apply. 

 But in those many other ways it applies, it does so only when the propositions 
)1(

iX  and )2(

iX , and the propositions 
)1(

jY  and 
)2(

jY , are in each case making claim to 

physically similar properties and not to properties merely correlated with similar 

properties. For example, if similarity expressed by (5.1.2) applies to propositions )1(

iX  

and )2(

iX  claiming appropriate (physically similar) properties, it will not apply if the )1(

iX  

are replaced by propositions )1(~
iX  (claiming inappropriate but correlated properties) 

related to the )1(

iX  by )1()1( ~
ii XX ii 

  where the (all determinate) phases of implication 

i  vary with i .  

 Also, when similarity is claimed we will take it for granted that the propositions 
)1()2()1( ,, jii YXX  and 

)2(

jY  in question are plainly expressed.  

 

Similarity under any knowledge of dynamical properties 

 

Let the jY  include (under variation of j ) all possible states of knowledge of the 

dynamical properties of the physical world (including the state 0Y  of no knowledge of the 

dynamical properties). And let G  be our general knowledge which includes of course our 

                                                 
* Here j  is a parameter generally quantifying both our knowledge of dynamical properties and our 

knowledge of unchanging properties of the system in question. Like i  it may in practice take discrete or 

continuous values or represent a set of such parameter values. Most often 
)1(

jG  and 
)2(

jG  will be 

independent of j  (i.e. just 
)1(G  and 

)2(G ) and often 
)1(G  and 

)2(G  will be the same (i.e. 

GGG  )2()1(
). An example of possible j  dependence of G  occurs in the application of the 

similarity principle to demonstrate the symmetry properties of improper wave functions (section 2 of 

Chapter X). 
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knowledge of the unchanging properties of the physical world. Then it can happen that 

the problem of finding the probabilities )( GYX ji  of the iX  under any one of the states 

of knowledge 
jY  is recognisably similar to that of finding the probabilities )( GYX ji   of 

the iX  under any other one of the same states of knowledge.* In that case the correct 

mathematical expression of the similarity is that for any j  and j  

 
jj ik

ji

ik

ji eGYXeGYX 

 )()(       (5.1.3) 

 

where (for any j ) jk  is the phase characteristic of knowledge jY . On putting 0j  so 

that jY   becomes the state of no knowledge of dynamical properties, we can rewrite this 

as 

 

)()()( 0 GXGYXeGYX ii

ik

ji
j       (5.1.4) 

 

valid for all j . This is because, by (2.2.1.11), 0jk  when 0j .  

 

Similarity under no knowledge of dynamic properties 

 

Furthermore suppose jG  (according to the value of j ) denotes one or other of a number 

of different states of our general knowledge, differing only with regard to our knowledge 

of the unchanging properties of the physical world. Then if, for any value of j , the 

problem of finding the probabilities )( 0 ji GYX  of a set of propositions iX  about the 

physical world is recognisably similar to that of finding the probabilities )( 0 ji GYX   of 

the same propositions for any other value j  of j  we should set )( 0 ji GYX  equal to 

)( 0 ji GYX   or 

 

)()( jiji GXGX         (5.1.5) 

 

for all j  and j .† 

 

Similarity under a change in general knowledge alone 

 

If in (5.1.1) iii XXX  )2()1(  (or if )1(

iX  and )2(

iX  are fully equivalent under general 

knowledge 
)1(G  and under general knowledge 

)2(G  and iX  stands for either), and if 

YYY  )2()1(
 (or if 

)1(Y  and 
)2(Y  are fully equivalent under general knowledge 

)1(G  

                                                 
* This kind of similarity occurs in section 6.1 of Chapter X. 
† This kind of similarity also occurs in section 6.1 of Chapter X. 
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and under general knowledge 
)2(G  and Y  stands for either), and the problem of finding 

the probabilities of the )1(

iX  under knowledge )1()1( GY  is recognisably similar to that of 

finding the probabilities of the )2(

iX  under knowledge )2()2( GY  then we should simply put 

 

)()( )2()1( YGXYGX ii         (5.1.6) 

 

for all i .* 

 

Note that there is no converse to the similarity principle in any of the above forms. So if 

for example (5.1.2) is true of sets of propositions )1(

iX  and 
)1()1(

jj GY , and equally 

numerable sets of propositions )2(

iX  and 
)2()2(

jj GY  with   independent of i  and j , it 

does not necessarily follow that the problem of finding the probabilities )( )1()1()1(

jji GYX  

is similar to that of finding the probabilities )( )2()2()2(

jji GYX . 

 

 

5.2 The principle of indifference 

 

This takes the following general form. 

 

Principle of indifference 

 

If on the basis of knowledge YG  alone we are indifferent between the m  

mutually exclusive (but not necessarily exhaustive) claims of propositions jA  

( mj ,...1 ), then under knowledge YG  we should set our degrees of belief equal, 

i.e. 

 
22

2

2

1 )(...)()( YAYAYA m .    (5.2.1) 

 

If in addition, the differences between the properties claimed by the jA  cannot be 

expressed absolutely using natural measures, natural orders or natural directions 

or other such concepts from knowledge YG , then under knowledge YG  we are 

absolutely indifferent between the alternative propositions† and we should set our 

phases of belief equal also, so that 

 

)(...)()( 21 YAYAYA m .     (5.2.2) 

 

                                                 
* This form of the similarity principle is employed in section 9.2 of Chapter VI and in section 5 of Chapter 

IV. 
† As noted in connection with the similarity principle this requires the propositions to be expressed plainly 

and to claim appropriate physical properties (not properties merely correlated with them).  
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Note that there is no general converse to the principle of indifference. So, for example, if 

(5.2.2) holds for mutually exclusive (and perhaps exhaustive) propositions jA  

( mj ,...1 ) it does not follow that, under knowledge YG  we are absolutely indifferent 

between the jA . Without us being in a state of indifference, (5.2.1) or (5.2.2) might hold 

by accident or for some other reason. We do however make the following claim. 

 

Principle of indifference (cont.)* 

 

If under knowledge G  we are indifferent but not absolutely indifferent between 

propositions A  and B  under any state of knowledge Y  of dynamical properties 

of the physical world, then there is at least one state of knowledge Y  for which 

the probabilities A  and B  differ with regard to their phases so that 

 
22

)()( YBYA   

 

(on account of our indifference) but 

 

)()( YBYA  . 

 

 

 

5.3 The method of transformation groups 

 

 The method is difficult to explain in general terms. It will become clear in 

applications. Briefly it consists of finding a group of transformations of propositions such 

that each transformation converts the problem of finding a probability distribution (or a 

number of probability distributions) into a similar problem such that the similarity 

principle (of section 5.1) and the uniqueness principles of probability assignment 

(beginning of section 5) can be employed to calculate the probability distribution(s) or at 

least to find a general form for the function(s) representing the distribution(s).  

 

 

6. Relation to classical probability 

 

It will be noted from (2.3.1) and (2.4.1) above that the squared moduli of the new 

(complex-valued) probabilities obey the sum rule and (under certain conditions) the 

product rule of classical probability theory. From section 5 we see that the squared 

moduli are also subject to the classical principles of probability assignment. So the new 

theory of probability reduces to or coexists with the classical theory of probability 

whenever we know (from G ) that our knowledge is so limited (i.e. so approximate) that 

it is never pure and never restricted (to a significant extent) by the uncertainty principle. 

Then the product rule (2.4.1) always applies. And our probabilities are always 

                                                 
* This final part of the principle of indifference is employed in section 4.2 of Chapter X 
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probabilities of disjunctions of propositions claiming properties are quantified by 

numbers that are nearly the same (i.e. the same to classical accuracy). By the sum rule 

(2.3.1) they therefore have indeterminate phases. Phases of belief and of implication, and 

characteristic phases then lose significance and have no bearing on the calculation of the 

squared moduli of the probabilities. The phases can then simply be ignored or dropped 

and the squared moduli of the probabilities give degrees of belief satisfying all the rules 

of classical probability.* 

 Conversely, if classical probabilities )( YXP j  ,...2,1j have been legitimately 

calculated using the classical laws of probability and the classical rules for probability 

assignment, they may be converted into their complex-valued probability forms by taking 

their square roots and multiplying them by indeterminate phase factors. That is we should 

put (for all j ) 

 
ji

jj eYXPYX


 )()(  

 

the real numbers j  being indeterminate† and unrelated. 

 

 

7. Principle of maximum entropy 

 

In situations in which classical probability theory coexists with complex-valued 

probability theory (see section 6) we have the following additional principle of 

probability assignment.  

 

The principle of maximum entropy 

 

If )( YX i  is our probability distribution for a finite set of mutually exclusive 

and exhaustive propositions iX  ( ni ,...1 ) the extent of our ignorance regarding 

which one of the iX  is true is measured by the ‘information entropy’ (or 

‘entropy’ for short) given by 

 

                                                 
* Under these conditions cognitive independence of propositions is of course always present and logical 

independence (which may sometimes be present) is redefined as follows. Under conditions in which 

complex-valued probability and classical probability coexist, propositions mAAA ,..., 21  are logically 

independent under knowledge Y  if and only if 
22

2

2

1

2

21 )(...)()()...( YAYAYAYAAA mm  . 

† If, for some j , Y  and jX  are one and the same proposition or claim exactly the same (classical) 

physical property in a similar logical manner so that jXY 00 , then we should of course put 

1)(  YX j , i.e. j  is then determinate and equal to zero. But this exception is of no consequence. 



I. The laws of complex-valued probability 

 

 40 

2

1

2

)(ln)( YXYXS i

n

i

i  


     (7.1) 

 

and if knowledge Y  (or rather YG ) amounts to knowledge of one or more known 

constraints on the degree of belief distribution 
2

)( YX i , then the probability 

distribution we should rationally hold is ii

i eYX


 )(  where the i  are 

indeterminate and 
2

)( YX i  is the degree of belief distribution that maximises S  

subject to the constraints*. 

 

 

8. The possibility of wave function conjugation and its implications 

 

We have said that under any pure state of knowledge the corresponding wave function (a 

probability distribution over a chosen basis) is calculable at least to within an 

indeterminate constant phase factor. 

 But as things stand this is not exactly true. Under pure knowledge, application of 

the laws of probability and the principles of probability assignment always result only in 

showing that a wave function or its conjugate must represent our knowledge. This is 

because all the laws of probability and the principles of probability assignments are 

satisfied just as well by the conjugates of all the probabilities (with changes (in sign) 

made also to related characteristic phases and phases of implication). 

 In order to fix a wave function (at least to within a constant phase factor) we have 

to make a choice between adopting a certain wave function or its conjugate. This is not an 

independent decision for each wave function because wave functions are often related 

(for example by Feynman’s law). So in adopting a certain wave function (and not its 

conjugate) we must ensure the choice is consistent with choices already made with regard 

to related wave functions. 

 Looked at another way, each calculated wave function contains an unknown 

parameter   multiplying every i  (i.e. every square root of 1 ) in that wave function. 

The   in each wave function is equal to 1  or to 1 . Rather than leave the  s 

indeterminate we choose to fix them in a conventional way in certain (independent) wave 

functions and then deduced them for the others on the basis of the necessary relations 

between wave functions. 

 

 

 

 

                                                 

* One of the constraints is of course that 



n

i

i YX
1

2

1)( , but there may be others. And in the case i  is 

a continuous parameter (over some range) with a natural measure, the principle of maximum entropy still 

applies with iX  denoting the proposition that i  lies in one or other of a large number of small elements of 

equal measure filling the range. (See p. 375 of [2].) 
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8.1 Implications for the similarity principle under pure knowledge 

 

The possibility of wave function conjugation has implications with regard to the 

similarity principle (5.1.2) of section 5.1. As it stands, the similarity principle there 

implies that if we have to find the wave function over a basis 
)1(

ix  of a complete sample 

space under various pure states of knowledge 
)1()1(

jj GY  and if this problem is recognisably 

similar to one of finding the wave function over a basis 
)2(

ix  of the same sample space 

under pure states of knowledge 
)2()2(

jj GY , then for each i  and j  we should set  

 
 i

jjijji eGYxGYx )()( )2()2()2()1()1()1(
     (8.1.1) 

 

where   is some real constant independent of i  and j . On account of the possibility of 

wave function conjugation, however, it would seem reasonable to propose instead that  

 

)()( )2()2()2()1()1()1(

jjijji GYxGYx        (8.1.2) 

 

for all i  and j . That is, instead of the relations (8.1.1), the wave functions in case (1) 

might be the conjugates of the wave functions in case (2). We do in fact adopt this 

possibility as an extension of the principle of similarity. So according to the principle of 

similarity in its full form, either (8.1.1) or (8.1.2) must hold when the problems of finding 

the wave functions in cases (1) and (2) are recognisably similar.* 

 We note however that in applications of the similarity principle to calculate wave 

functions, use of (8.1.2) rather than (8.1.1) is seldom possible. This is because we assume 

wave functions must be differentiable functions of their continuous variables and of any 

continuous parameters in them. This logical requirement excludes (8.1.2) whenever we 

can pass from case (1) to case (2) by making infinitesimal changes in continuous 

parameters with similarity applying in each step. But when we cannot pass from case (1) 

to case (2) in that manner, (8.1.2) becomes a possibility while a relation of the kind 

(8.1.1) might be untenable. 

 

Of course the possibility of conjugation applies not just to wave functions but to any 

probability distributions calculated using the laws of probability and the principles of 

probability assignments. Taking the conjugate of all calculated probabilities (and 

changing the sign of all related phases of implication, and characteristic phases) still 

results in agreement with those laws and principles. Therefore the general extension of 

the similarity principle (5.1.2) is expressed by allowing, under similarity, either (8.1.1) or 

(8.1.2) where 
)1(

ix  and 
)2(

ix  may stand for more general propositions 
)1(

iX  and 
)2(

iX  of 

                                                 
* We stress that either (8.1.1) or (8.1.2) must then apply for all j  (as well as for all i ). We do not allow 

that under similarity (8.1.1) might hold for some j  values while (8.1.2) holds for the others. 
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equal number (not just propositions of bases of a complete sample space). And )1(

jY  and 

)2(

jY  may represent states of knowledge that are not necessarily pure. 

 

As noted already (in section 5.1) a similarity principle has no converse. So if (8.1.2) is 

true (in bases 
)1(

ix  and 
)2(

ix ) for a set of propositions 
)1()1(

jj GY , and an equally numerable 

set of propositions 
)2()2(

jj GY  it does not necessarily follow that the problems of finding 

wave functions )( )1()1()1(

jji GYx  is similar to that of finding wave functions 

)( )2()2()2(

jji GYx .  

 It is true that if problem (1) is similar to problem (2) then problem (2) is similar to 

problem (1). But if problem (1) is similar to problem (2) and problem (2) is similar to 

problem (3), it does not necessarily follow that problem (1) is similar to problem (3).* 

 

Throughout most of our work we will apply the similarity principles in their original 

forms (as in section 5.1) and make no reference to the above extension. This is just 

because of the above mentioned requirement for differentiability of wave functions which 

usually rules out (8.1.2) (as may easily be checked in detail on each occasion). We will 

however need to take account of the above extension in the cases of discrete 

transformation groups (applied, for example, in relation to time reversal or inversion). 

 

 

8.2 Implications for the first law of extreme values of probability 

 

The possibility of wave function conjugation (or rather conjugation of any probability 

distribution), must of course, when applied, be accompanied by a change in sign of 

related characteristic phases and phases of implication (whether these take determinate 

values or not). 

 A consequence of this is that no (non-zero) phase of implication   has a 

determinate value and at best is determined only to within a factor of 1 . 

 This might be thought to affect the first law of extreme values of probability (in 

section 2.2.2) because, strictly speaking, the phases referred to in that law never have 

determinate values.† However, with the understanding that we always make a definite 

choice between a wave function (or probability distribution) and its conjugate (as we 

always do) and accordingly make a definite choice of the sign of any associated phase of 

implication, the law as originally stated in section 2.2.2 is true enough and can stay as it 

is. Or, put another way, the law is true enough as it stands so long as we count as 

‘determinate’ any phase which is indeterminate (in sign) only because of the possibility 

of wave function (or probability distribution) conjugation, and we count as 

                                                 
* If (8.1.1) is the consequence of similarity of cases (1) and (2) and 

)()( )3()3()3()2()2()2(

jjijji GYXGYX   the consequence of similarity of cases (2) and (3) it is 

certainly not the case that cases (1) and (3) are similar. 
† Any one of them has of course a determinate value when it is zero, but this covers only very special cases. 
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‘indeterminate’ only phases which are indeterminate for reasons other than the 

arbitrariness of their signs under wave function (or probability distribution) conjugation. 
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CHAPTER II  

 

CONSEQUENCES OF THE LAWS OF COMPLEX-VALUED 

PROBABILITY  
 

 

1. General consequences  

 

We begin by noting the following rule.  

 

The second addition rule for phases characteristic of knowledge 

  

 If the phase characteristic of knowledge Y  is k  and if YY    

then the phase characteristic of knowledge Y   is k . 

 

We call it the second addition rule to distinguish it from the first addition rule for phases 

characteristic of knowledge declared in section 2.4 of Chapter I. 

 The second rule for phases characteristic of knowledge follows easily from the 

general rule for phases (section 5 of Chapter I). For if YY    then the general 

expression ((2.2.1.8) of Chapter I) for the probability of A  under knowledge Y  gives 

 

))((2

)()()(   kii eYAeYAYA  

 

and on account of (2.2.1.10) of Chapter I, k  must be the phase characteristic of 

knowledge Y  . 

 

We next note the following rule. 

 

The rule for phases characteristic of propositions under knowledge 

 

If the characteristic phase of A  under knowledge Y  is )(ch YA  and if 

AA 
, then the characteristic phase of A  under knowledge Y  is 

)(ch YA . i.e. 

 

 )(ch)(ch YAYA       (1.1) 

 

This rule is also a simple consequence of the general rule for phases and the general form 

((2.2.1.8) of Chapter I) of a probability. And because characteristic phases under 

knowledge stay the same under an equivalence transformation of knowledge we have 
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 )(ch)(ch YAYA        (1.2)  

 

when AA   and YY   . 

 

Finally we note that by putting A  equal to Y  in (2.2.1.20) of Chapter I we establish the 

relation 

 

YYY kk          (1.3) 

 

where k  is the phase characteristic of Y . Thus given any proposition Y  which claims a 

dynamical property and could represent a state of knowledge, the phase k  characteristic 

of knowledge Y  is the same as the phase of implication of YY  by Y . 

 We now go on to demonstrate other consequences (of the laws of complex-valued 

probability) under various headings. 

 

 

1.1 The invariance of general probability relations under equivalence 

 

Any general relation between the probabilities of propositions about the physical world 

will be invariant under equivalence. For if 

 

AA  , BB  ,…etc,       (1.1.1) 

 

and any one general relation between the probabilities of the propositions ,..., BA  is 

transformed (using the general rule for phases (section 5 of Chapter I)) into another 

(derived) relation between the probabilities ,..., BA   , then, since the original relation 

(between the ,..., BA ) is a general relation it must hold also for the propositions ,..., BA   . 

So the derived relation can only be the same as the original relation. 

 We demonstrate this invariance in a number of examples. 

 

Example 1. The product rule 

 

Let us start out with the product rule 

 
)()()()(  kieAYBYAYAB       (1.1.2) 

 

where the real numbers k  and   are the phases characteristic of knowledge Y  and of 

knowledge A  respectively. This rule holds only when A  and B  claim compatible 

properties and A  represents a possible state of knowledge that can be held in conjunction 

with knowledge Y . We will denote this condition as:  

 

],,[ YABA           (1.1.3) 
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which reads ‘ A  and B  claim compatible properties and, A  and Y  represent compatible 

states of knowledge’. 

 Now suppose  

 

YYBBAA   ,,      (1.1.4) 

 

then by the rule of phase addition under conjunction (first of (2.2.1.7) of Chapter I) 

 

YAAYBAAB   ,      (1.1.5) 

 

and applying the general rule for phases (section 5 of Chapter I) (1.1.2) becomes 

 
)()()( )(.)()(   kiiiiiii eeeYABeeYAeeYBA  

 

or 

 
))()(()()()(  kieYABYAYBA  .    (1.1.6) 

 

But by the second addition rule for phases characteristic of knowledge k  is the 

characteristic phase k  characteristic of knowledge Y   and   is the phase   

characteristic of knowledge A  so that  

 
)()()()(  kieYABYAYBA  

 

which is exactly the same relation between A , B and Y   as (1.1.2) was between A , B  

and Y .  

 

Example 2. The logical independence relation 

 

The relation (2.5.1) of Chapter I expressing logical independence of A  and B  under 

knowledge Y  becomes, under (1.1.4), 
 

kieYBYAYBA
 )().()(  

 

where  kk  and this result shows that A  and B  are logically independent under 

knowledge Y   whenever A  and B  are logically independent under knowledge Y . 

 

Example 3. The sum rule 

 

The generalised sum rule ((2.3.2) of Chapter I) is 

 

 ...)()()...(
22)(   YBYAeYBA ki
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where k  is the phase characteristic of knowledge Y  and   the (usually indeterminate) 

phase characteristic of the disjunction ...BA  under knowledge Y . It holds under any 

knowledge Y  whenever propositions A , B ,… are mutually exclusive. 

 Under the transformation ,..., BBAA    and YY    the general 

rule for phases clearly leaves the square root term unchanged, and since 

 

......   BABA  

 

with some phase of implication  , we have 

 

...)()()...(
22))((   YBYAeYBA ki  

 

where, by the second rule for phases characteristic of knowledge, k   is the phase k  

characteristic of knowledge Y  , and by the rule for phases characteristic of propositions 

under knowledge,   is the phase   characteristic of ... BA  under knowledge 

Y  . So we have derived 

 

...)()()...(
22)( 

 YBYAeYBA ki  

 

which is exactly the same relation between A , B ,… and Y   as the original relation was 

between A , B  and Y .  

 

Example 4. The similarity relation (5.1.3) of Chapter I 

 

Since this particular similarity relation is supposed to hold for any propositions jY  and 

jY   which could represent our knowledge of dynamical properties it must be invariant 

under an equivalence transformation jj YY jj 
   where the phase of implication may 

vary with j  in any possible way. By the general rule for phases and the second addition 

rule for phases characteristic of knowledge this is clearly the case. 

 

Example 5. Feynman’s Law 

 

In the more general form of Feynman’s Law ((3.5.2) of Chapter I) Z  and Y  are general 

enough propositions for invariance under equivalence to hold. For if ZZ   and 

YY    where   and   may or may not be determinate, the propositions Z    and Y   

might represent pure states of knowledge just as well as the propositions Z  and Y  are 

supposed to do. We therefore expect (3.5.2) of Chapter I to be invariant under 

ZZ   and YY  
, and by the general rule for phases, this is clearly the case. 
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Example 6. Laws relating to transformation functions 

 

In the laws (3.4.1)-(3.4.9) of Chapter I relating to transformation functions the 

propositions ix  and 
jy  are not general propositions –they are propositions of bases. And 

under a general equivalence transformation 
ii xx ii 

 , jj yy jj 


 we cannot claim 

ix  and jy  also constitute bases. This will be so only under certain conditions. In the first 

place the relative phases i  must be determinate and the same must apply to the j , so 

that the new transformation functions )( ji yx   have determinate relative phases. 

 Under this condition alone, Chapter I equations (3.4.1), (3.4.3), (3.4.4), (3.5.1) and 

(3.5.2), are, by the general rule for phases, clearly invariant under the equivalence 

transformation 
ii xx ii 

 , jj yy jj 


, where, in the case of (3.4.4) it must be 

understood that the necessary coefficients ja  change to ji

jj eaa


 . 

 But under the same condition (of determinate relative phases of the i  and j ) 

equation (3.4.2) of Chapter I is not invariant. For we find 
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So other conditions required for the invariance of (3.4.2) of Chapter I are that  

 









0  ...

0...

21

21
        (1.1.7) 

 

while (like ix  and jy ) the ix  and jy  form naturally ordered finite bases for Ni ,...2,1   

and Nj ,...2,1 . 

 The sum rule for transformation functions (as in (3.4.5)-(3.4.9) of Chapter I) is 

invariant under ii xx ii 


, jj yy jj 


 provided only that the condition for this sum 

rule (as in (3.4.6) of Chapter I) is maintained. For this to be the case it is necessary that 

i  be the same for each member ,...),( 74 xx  of the disjunction, i.e. that 

 

 ...74         (1.1.8) 

 

so that, by the rule (1.2) for phases characteristic of propositions under knowledge, we 

have 
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...

)(ch)(ch

)(ch)(ch

77

44





jj

jj

yxyx

yxyx

 

 

which (like )(ch 4 jyx , )(ch 7 jyx ,…) are all equal. Under (1.1.8), i.e. when 44 xx  , 

77 xx  ,… the characteristic phase 
j  of ...74  xx  under knowledge 

jy  will be   

plus the characteristic phase j  of ...74  xx  under knowledge jy . (This follows from 

the constancy of phase of implication between disjunctions of similarly equivalent 

propositions (in section 2.2.1 of Chapter I) which results in   ...74 xx ...74  xx ) 

Hence )(ch)(ch 44 jjjj yxyx  , so the sum rule for transformation 

functions holds just as well for ...74  xx  under knowledge jy  as it did for ...74  xx  

under knowledge jy , and claim (3.4.7) of Chapter I is invariant. 

 

 

1.2 Consequences of logical identities 

 

The pure logic rules of commutation and association, as expressed in (2.2.1.6) of Chapter 

I, have consequencies as follows. 

 

In relation to the sum rule 

 

In the sum rule (2.3.2) of Chapter I the indeterminate phase   (or   in (2.3.1) of Chapter 

I) must be the same regardless of the order or grouping of the mutually exclusive 

propositions ,..., BA  in the disjunction ...BA  on the LHS. This is because, for 

example, ABBA  00  so by the general rule for phases )()( YABYBA   

and   in (2.3.1) of Chapter I must be the same for )( YBA  as it is for )( YAB  . 

 

In relation to the product rule 

 

Since BAAB 00  the product rule ((2.4.1) of Chapter I) implies 

 
)()( )()()()()(   kiki eBYAYBeAYBYAYAB  

 

so long as ],,[ YABA  and ],,[ YBAB ,  where ,k  and   are phases characteristic of 

knowledge AY ,  and B  respectively. We thus arrive at the form of Bayes’ rule in  

complex-valued probability which states that provided ],,[ YABA  and ],,[ YBAB  then 
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)()(       (1.2.1) 

 

 We also see that because of the commutation rule BAAB 00  and the 

association rule CABBCA )()( 00  the generalisation (2.4.2) (in Chapter I) of the 

product rule is derivable from the simple product rule (2.4.1) in Chapter I. The order or 

grouping of the factors 1A , 2A …, mA  on the LHS of (2.4.2) of Chapter I is immaterial, 

so, for example we can derive (2.4.2) of Chapter I in the case 3m  using the forms 

 

)(

12121

)(

21321321

1

21

)()()(
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ki

ki

eYAAYAYAA

eYAAAYAAYAAA
 

 

of (2.4.1) of Chapter I, where the first addition rule for phases characteristic of knowledge 

has been used in relation to knowledge 21AA . Substituting the second form into the first 

gives  

 
)22(

213121321
21)()()()(



ki

eYAAAYAAYAYAAA  

 

which is (2.4.2) of Chapter I with 3m . 

 

 

1.3 Consequences in relation to the product rule and the definition of logical 

independence 

 

A consequence of the product rule ((2.4.1) of Chapter I) and the definition of logical 

independence ((2.5.1) of Chapter I) is as follows. In case ],,[ YABA , and A  and B  are 

logically independent of each other under knowledge Y , we have 

 
ikki eYBYAeAYBYAYAB )()()()()( )(  

 

 

and therefore 

 
 ieYBAYB )()( .       (1.3.1) 

 

where   is the phase characteristic of knowledge A . So, as in classical probability, given 

logical independence of A  and B  under knowledge Y  (and given ],,[ YABA ) our degree 

of belief in B  is not changed on learning the truth of A . Note however that because of 

the need for the phase factor we are unable to claim )()( YBAYB   in place of 

(1.3.1), but a consequence of (1.3.1) is the simple result 
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)(ch)(ch YBAYB          (1.3.2) 

 

 The results (1.3.1) and (1.3.2) clearly apply to any two propositions A  and B  

taken from a set of three or more propositions (logically independent of each other under 

knowledge Y ) whenever ],,[ YABA  applies to any pair A  and B  drawn from the set. 

Our degree of belief in any one (as well as its characteristic phase under knowledge Y ) is 

then not changed on learning the truth of any other. 

 

It follows from definition of logical independence ((2.5.1) of Chapter I) that if AY   

and BY   then (as is trivially the case in classical probability) A  and B  are necessarily 

logically independent under knowledge Y . 

 For if AY   and BY   then ABYY   and since YYY k  we have 

ABY k  so that 
ikeYBYAYAB )()()(   which means A  and B  are logically 

independent under knowledge Y . 

 

 

1.4 Consequences of the product rule 

 

From the general form ((2.2.1.8) of Chapter I) of a probability we see that the product rule 

 
)()()()(  kieAYBYAYAB       (1.4.1) 

 

entails the relation 

 

)(ch)(ch)(ch AYBYAYAB        (1.4.2) 

 

under the condition ],,[ YABA  of course. 

 If in (1.4.1) we make B  the same as Y  (we sometimes write YB   in making 

such a substitution) we obtain 

 
)()()()(  kieAYYYAYAY  

 

provided ],,[ YAYA . Since YAY   (as follows from (2.2.1.21) of Chapter I) this 

gives the rule 

 
ikeYAYAY )()(          (1.4.3) 

 

when ],,[ YAYA . 

 If in (1.4.1) we put AYY   we obtain 

 
)2()()()(  kieAAYBAYAAYAB  
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because the phase characteristic of knowledge AY  is k . Since AYAAY   and 

AAY k  this becomes 

 
 ieAYBAYAB )()(        (1.4.4) 

 

valid when ],,[ AYABA . If in addition AY   then YAY   (see (2.2.1.20) of 

Chapter I) and (1.4.4) gives 

 

)()( YBAYAB          (1.4.5) 

 

valid when ],,[ AYABA  and AY  . 

 Finally, if in (1.4.1) we put BA   we find 

 

)(ch)(ch AAYA          (1.4.6) 

 

when ],,[ YAAA . 

 

 

2. Product rule in a combination of logically independent sample spaces 

 

Suppose we have M  separate sample spaces )()1( S,...S M  all logically independent of each 

other under knowledge Y . If )1(

iX  ( )1(,...1 ni  ) are 
)1(n  mutually exclusive (but not 

necessarily exhaustive) propositions of 
)1(S , and 

)2(

jX  ( )2(,...1 nj  ) are 
)2(n  mutually 

exclusive (but not necessarily exhaustive) propositions of 
)2(S , and so on, then the 

propositions ,)1(

iX … )(M

lX  will be logically independent of each other under knowledge 

Y  and therefore, by the definition of logical independence (2.5.2) of Chapter I we will 

have 

 
)1()()1()()1( )()...()...(  MikM

li

M

li eYXYXYXX     (2.1) 

 

 If the )()1( S,...S M  are closed and contemporary, if knowledge Y  amounts to pure 

states of knowledge  
)()1( ,... MYY  in relation to each sample space (so that 

)()1( ... MYYY  ), 

and if the )()1( ,... M

li XX  are propositions )()1( ,... M

li xx  from contemporary bases in the 

respective sample spaces, then (2.1) becomes  

 
)1()()1()()()1()1()()1()()1( )...()......()...,...(  MikMM

l

M

i

MM

li eYYxYYxYYxx  (2.2) 
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where k  is the phase characteristic of knowledge 
)()1( ... MYY . In (2.2) lji ,...,  take values 

)1(,...1 Ni  , )2(,...1 Nj  , … )(,...1 MNl  , where )2()1( , NN ,…
)(MN  are the orders of the 

samples spaces )()2()1( S,...S,S M .  

 The result (2.2) is different from the product rule for wave functions (section 3.7 

of Chapter I). The factors )...(),......( )()1()()()1()1( MM

l

M

i YYxYYx   on the RHS of (2.2) 

differ (with regard to their absolute phases) from the wave functions 

)(),...( )()()1()1( MM

li YxYx   in each sample space. But we will generally have that 
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i

j

M

j

i

i

M

i

eYxYYx

eYxYYx

     (2.3) 

 

where ,..., )2()1(   are certain phases independent of ,..., ji . Equating the RHS of (2.2) to 

the product )()...( )()()1()1( MM

li YxYx   of the wave functions (as we may on account of 

the product rule for wave functions) we obtain (by (2.3)) the necessary relation  

 

0)1(... )()2()1(  MkM .      (2.4) 

 

 Note that (2.2) (as a relation between probabilities) is true (i.e. a consequence of 

(2.1)) also when the sample spaces and/or the bases )()1( ,... M

li xx  are not contemporary* and 

the normal product rule for wave functions does not apply. 

 

 

3. Separability of degree of belief distributions when joint distributions factor 

 

Let sample spaces 
)1(S  and 

)2(S  be separate and let )1(

iX  and )2(

jX  respectively be sets of 

mutually exclusive and exhaustive propositions in each. Now suppose that under 

knowledge Y  in relation to 
)2()1( SS  our degree of belief distribution 

2
)2()1( )( YXX ji  

factors thus 

 

jiji gfYXX 
2

)2()1( )(  

 

                                                 
* This fact is of relevance in connection with the use of (2.1) in section 9. For it implies the frequency rule 

(of section 9) applies when the 
)(r

iX ( Mr ,...1 ) there are non-contemporary bases 
)(r

ix  in contemporary 

or non-contemporary sample spaces 
)(S r

Mr ,...1 . 
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where if  and jg  are positive and normalised distributions over i  and j  respectively. 

Then since )1(

iX  is equivalent to ...)( )2(

2

)2(

1

)1(  XXX i
 or to ...)2(

2

)1()2(

1

)1(  XXXX ii
 we 

have by the sum rule ((2.3.2) of Chapter I) that 

 

i

j

i

j

ji

j

jii fgfgfYXXYX
j
 

2
)2()1(

2
)1( )()(  

 

and similarly 

 

jj gYX 
2

)2( )(  

 

so that the factors if  and jg  give the separate degree of belief distributions in the each 

sample space. This property extends naturally to the case of any number of separate 

sample spaces. 

 

 

4. Wave function after harmless conditioning 

 

Given a representation of a pure state by a wave function )( Yxi  Ni ,...1  using any 

primary basis x , we can by chance (as we have said in section 3.6 of Chapter I), instantly 

get to know the truth of a proposition A  which is the disjunction of a set A  of the 

propositions ix . And the acquisition of knowledge A  can be achieved by chance without 

affecting the truth values of the ix  or invalidating our knowledge Y . Then our knowledge 

changes to AY  representing a new pure state of knowledge with wave function 

)( AYxi . 

 Harmless acquisition of knowledge A  will of course affect the probabilities of the 

ix . In fact, because condition ],,[ YAAxi  holds when Aix , the product rule gives us 

 
)()()()(  ki

ii eAYxYAYAx       (4.1) 

 

where k  and   are the phases characteristic of knowledge Y  and A  respectively. Since 

we assume 0)(  YA  we have (for Aix ) 

 

)(

)(

)(
)( 




 kii

i e
YA

YAx
AYx  

 

But when Aix  we have Axi  , and by the general rule (2.2.1.20) of Chapter I, we 

have Axx ii

  , making 
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and since )( YAxi  is clearly zero when Aix , we arrive at 
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iki
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YA
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 After harmless conditioning the relative moduli and relative phases of the 

probabilities remain the same for propositions ix  in the set A , and the moduli become 

zero for the  propositions ix  outside the set A .* 

 If A  contains only one proposition lx  then (4.2) gives  

 

il

ik

i eAYx  )(  (when lxA )      (4.3) 

 

where the phase k  characteristic of knowledge Y  is an indeterminate phase.  

 If A  contains all the propositions ix  for Ni ,...2,1  then A  claims knowledge of 

a dynamical property known to be present under our general knowledge G . Therefore 
ikeYA  )(  (as in (2.3.3) of Chapter I) and by (4.2) our wave function undergoes no 

change at all, i.e. )( AYxi  is the same as )( Yxi .  

 

 

5. The product rule for transformation functions or Feynman’s law in a 

combination of closed sample spaces 

 

As we said in section 3.7 of Chapter I, a number M  of contemporary and closed sample 

spaces 
)()1( ,...SS M
 (referring to distinct systems) with respective bases )()1( ,... M

li xx  all 

pertaining to the same time t  can be combined to form a closed sample space 
)((1) ...SSS M  with a basis )()1( ... M

li xx  (pertaining to time t ) with respect to which pure 

states of knowledge may be expressed.  

 Bases in S  can be formed in more than one way depending on the choice of the 

bases in each component sample space. If knowledge Y  pure in relation to S  is 

represented by the wave function )...( )()1( Yxx M

li  and by a wave function )...( )()1( Yyy M

li  

                                                 
* An example of harmless conditioning, is the filtering of spin components using a Stern-Gerlach apparatus 

(see section 5-1 of [7]). And notional methods for accomplishing harmless conditioning with regard to 

particle position and particle spin are modelled in Chapter XIII. 
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using alternative bases )1(

iy ,… )(M

ly  all pertaining to (a possibly different) time t , the 

question arises as to how these wave functions are related.  

 It follows from the product rule for wave functions (section 3.7 of Chapter I) that 

the transformation functions connecting )...( )()1( Yxx M

li  and )...( )()1( Yyy M

li , i.e. the 

wave functions )......( )()1()()1( M

li

M

li yyxx  , are the products of the transformation functions 

)( )1()1(

ii yx  , … )( )()( M

l

M

l yx 
 
in )((1) ,...SS M  respectively, so that Feynman’s law in S  

takes the form 

 




 
...

)()1()()()1()1()()1( )...()()...()...(
ji

M

li

M

l

M

lii

M

li YyyyxyxYxx .  (5.1) 

 

 In the case of just two sample spaces 
)1(S  and 

)2(S , with bases )2(

jx  and )2(

jy  the 

same*, so that 
jjjj yx   )( )2()2( , Feynman’s law (5.1) becomes 

 

 
k

jkkiji YxyyxYxx )()()( )2()1()1()1()2()1( .     (5.2) 

 

 Feynman’s law (5.1) for a combination of closed sample spaces (like Feynman’s 

law (3.5.1) of Chapter I, for a single closed sample space) formally resembles the 

classical probability rule connecting distributions and (on account of the probabilities 

being complex) leads again to ‘interference of probabilities’. It is also a more general 

quantitative expression of the uncertainty principle. 

 

 

6. The association of properties with linear operators, and observations concerning 

the law of inferred dynamical properties 

 

6.1 Association of bases and basic properties with complete sets of orthonormal wave 

functions 

 

Given any known basis ix  in a sample space S , any other basis jy  in S  is clearly 

associated with a certain complete set of orthonormal wave functions of i  - namely the 

transformation functions )( jiij yx  from basis jy  to basis ix . 

 Now jy  is the proposition that a property 
jyP  is possessed by the moving system 

under study, or that the basic property yP  is quantified by the parameter value j .  

 The parameter j  is not unique. Suppose )( jfj   is a 1-1 functional relation 

between parameter j  and an alternative parameter j  . Then the proposition jy 
  that 

claims a value j   of the alternative parameter applies, is fully equivalent to the 

                                                 
* Of course this can apply only when tt  . 
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proposition jy  (where )( jfj  ) and the transformation functions are, by the second 

uniqueness principle of section 5 Chapter I, the same. That is jj yy 00
   and 

 

)()( jiji yxyx 
 ,  

 

when )( jfj  . A different choice of a parameter amounts only to quantifying the basic 

property yP  in a different way – e.g. in different units. 

 To every basis jy  there therefore corresponds a complete set of orthonormal 

functions ij (= )( ji yx ), the functions 
ijji xx  )(  corresponding to the basis x  

itself.  

 We are not claiming that to every complete set of orthonormal functions there 

corresponds a basis. However, given one basis x  another basis y  can be postulated in 

terms of transformation functions from y  to x . That is, there is nothing stopping us 

claiming that a basis y  (and therefore a basic property yP  of the moving system under 

study) exists with specified transformation functions )( ji yx  to the known basis x .* 

The specified transformation functions must of course satisfy all the necessary properties 

of transformation functions in general and if we were to claim y  was a primary basis it 

would be necessary to demonstrate the possibility of harmless conditioning over the jy  

(see section 3.6 of Chapter I). 

 Starting with another (known) basis kz , any new basis jy  may alternatively be 

associated with the transformation functions from jy  to kz . In particular the original 

basis ix  is then specified by the transformation functions )( ik xz  - i.e. by the complex 

conjugate of )( ki zx . More generally the relation between two specifications )( jk yz  

and )( ji yx  of a basis jy  is, by Feynman’s law, 

 

 
i

jiikjk yxxzyz )()()( . 

 

 

6.2 Association of basic properties with operators 

 

With any basis jy  (or with its associated property yP ) we may associate a linear operator 

f̂  in the space of wave functions of i  using a basis ix . We define this operator by its 

effect on the transformation functions, thus for all j  

 

                                                 
* Such a claim amounts to a new physical law – that there is a basic property of the moving system under 

study besides those already known. Although we point out the possibility of specifying new bases in this 

way we have so far not needed to actually employ it. 
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)()(ˆ
jiji yxjyxf  .       (6.2.1) 

 

Because of the linearity of f̂  and the completeness of the transformation functions, 

(6.2.1) determines f̂  uniquely. The eigenvalues being always real, the operator f̂  is 

always Hermitian.  

 Using a new parameter j   where )( jgj   is a real valued 1-1 transformation, f̂  

is supposed to transform to f ˆ  defined by  

 

)()(ˆ
jiji yxjyxf 
  

 

or equivalently 

 

)()()(ˆ
jiji yxjgyxf  . 

 

So we may formally write 

 

)ˆ(ˆ fgf   

 

i.e. f ˆ  is the same function of f̂  as j   is of j . 

 So however the parameter j  is defined, the corresponding operator f̂  we 

associate with the basis jy  or with the property yP  always has the transformation 

functions )( ji yx  as its eigenfunctions and the parameter j  values as its eigenvalues.  

 Note that if j  stands for M  parameters needed to enumerate the propositions of 

the basis y  or equivalently to quantify a M  dimensional basic property yP  then f̂  

stands for a set of linear operators, M  in number. To be more specific, suppose j  stands 

for 
Mjj ,...1

 - i.e. for M  independent real parameters, then f̂  stands for a set 
Mff ˆ,...ˆ

1
 of 

operators satisfying 

 

Mkyxjyxf jikjik ,...1),()(ˆ   

 

simultaneously. Or, if ),...( 1 Mkk jjgj   Mk ,...1  is a 1-1 and real transformation, then 

)ˆ,...ˆ(ˆ
1 Mkk ffgf   for Mk ,...1 . However the parameters kj  are defined, the 

corresponding operators kf̂  clearly commute with one another and form a complete set, 

meaning that any linear operator that commutes with the kf̂  can only be a function of 

them (see p.78 of [9]). 
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 The transformation functions from jy  to ix  specify the operator f̂  completely. 

But the converse is not true. Given a nondegenerate Hermitian operator f̂  its real 

eigenvalues j  are specified completely but its normalised eigenfunctions are determined 

only to within an arbitrary phase factor ji
e


which may depend in any way on j .*  

 

We saw in section 6.1 how given any basis x  on S  another basis y  can be postulated 

with specified transformation functions )( ji yx . These transformation functions can in 

turn be specified by declaring them to be the eigenfunctions of a linear Hermitian 

operator f̂  on functions of i  (or rather eigenfunctions of a complete set of linear 

Hermitian operators represented symbolically by f̂  as described above). Therefore any 

supposed basis y  (or basic property yP ) can be associated with a linear Hermitian 

operator f̂ . The real eigenvalues j  associated with the eigenfunctions of f̂  serve to 

label the eigenfunctions so defined and to quantify the physical property yP . This of 

course is to follow the procedure in the normal formulation of quantum mechanics. To 

make the transformation functions unique however, the j  dependence of the 

indeterminate phase factor in them has to be specified†.  

 

 

6.3 Observations concerning the law of inferred dynamical properties 

 

First, generally speaking, suppose jY  Nj ,...1  are pure states of knowledge in 

relation to a complete sample space S  of order N . If the corresponding wave functions 

)( ji Yx  over a basis x  in S  are orthogonal, i.e. if  

 

NjjYxYx jj

N

i

jiji ,...1,)()(
1

 





 .     (6.3.1) 

 

                                                 

* This limitation could perhaps be overcome by introducing another operator ĥ  defined by 

)()(ˆ
ijij xyixyh   for all i  and j . Then, given operators f̂  and ĥ , there is a basis y  defined 

almost perfectly (i.e. to within a constant phase factor) as one for which the functions )( ji yx  are 

eigenfunctions of f̂  with eigenvalues j  and the functions )( ij xy  (the conjugates of )( ji yx ) are 

eigenfunctions of ĥ  with eigenvalues i . 
† This is something of a sore point in the usual interpretation of quantum mechanics. The choice of the j  

dependence of the phase factor can appear arbitrary. In the present interpretation a definite j  dependence 

of the phase of the transformation functions follows from postulated physical laws governing the basic 

properties (see for example the derivation of the position/position transformation functions in Chapter IV, 

the momentum/momentum transformation functions in Chapter VI or the spin/spin transformation functions 

in Chapters VIII and IX.)  
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and if they form a complete set, then the alternative wave functions )( jk Yy  over 

another basis y  of S  are also orthogonal and also form a complete set. The proof is as 

follows. 

 

Proof of orthogonality of the )( jk Yy  

 

By Feynman’s law 

 

 












 
k i

jiik

i

jiik

k

jkjk YxxyYxxyYyYy )()()()()()(  

 

where here and in the rest of this section all sums with unspecified limits run from 1 to 

N , and since the transformation functions )( ik xy  are orthonormal the RHS reduces to  

 

 


i

jiji YxYx )()(  

 

which by (6.3.1) is jj  . This shows the )( jk Yy  are orthogonal.  

 

Proof of completeness of the )( jk Yy  

 

By hypothesis, any wave function )( Yxi  can be written as 

 





N

j

jiji YxaYx
1

)()(  

 

where the 
ja  are N  complex constants. But by Feynman’s law  

 

 
j

jkj

i

ji

j

jik

i

iikk YyaYxaxyYxxyYy )()()()()()(  

 

showing the wave function )( Yyk  can be expanded in the )( jk Yy  using the same 

constants ja . Since )( Yxi  can be any wave function in the x  representation, )( Yyk  

can be any wave function in the y  representation, so we have shown completeness of the 

wave functions )( jk Yy . 

 

Now with regard to the law of inferred dynamical properties (as formulated in section 

3.12 of Chapter I) we note that knowledge of the possession of an inferred property jP  

for any one value of j  ( Nj ,...1 ) can arise only when we hold pure knowledge jY  or 
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hold one or other of the pure states of knowledge ,..., jj YY   whose wave functions 

),...(),( jiji YxYx   differ from )( ji Yx  only with regard to their absolute phases. 

Accordingly we have for the wave functions )( ji Px  ( Nj ,...1 ) (where jP  stands for 

the proposition claiming property 
jP  applies) the formula 

 
ji

jiji eYxPx


 )()(   Nj ,...1       (6.3.2) 

 

where the jY  ( Nj ,...1 ) are pure states of knowledge for which each wave function 

)( ji Yx  ( Nj ,...1 ) has a determinate or indeterminate absolute phase, and the j  are 

indeterminate phases.  

 Now if the wave function )( Yxi  under any pure state of knowledge Y  is 

expanded in terms of the set of N  orthogonal wave functions )( ji Yx  thus 

 





N

j

jiji YxaYx
1

)()(        (6.3.3) 

 

where the ja  are N  complex constants whose squared moduli must sum to 1  and whose 

values are (as we have seen) independent of the basis, then 
2

ja  is our degree of belief 

(under knowledge Y ) that property P  is quantified by j .* For we have, by Feynman’s 

law (3.5.2) of Chapter I, that 

 

 
i

iijj YxxPYP )()()(  

                                                 
* To this result and to the (quantum mechanical) law of inferred dynamical properties there is a somewhat 

analogous (though much less fundamental or far reaching) law (or rather theorem) in classical mechanics 

using classical probability: if for example ),( vr  is our classical probability density in the 6-D  -space 

representing dynamical states (position and velocity) of a single particle system, and if ),( vrj   

Nj ,...1  are a set of orthogonal probability densities (i.e. densities satisfying 

jjjj dd   vrvrvr
33),(),( ) and if ),( vr  is expressible as 




N

j

jja
1

),(),( vrvr , then to 

every such set ),( vrj  of distributions there corresponds a property P  of the particle quantified by j  

and ja  is the probability that P  is quantified by j . The general form of the ),( vrj  is ),( vrjk  or 0  

where jk  is a normalisation factor and zero applies when a certain function ),( vrf  (representing a 

dynamical property) lies outside the range 1),(  jj fff vr . For example ),( vrf  might be 

2

2

1
),( mvf vr  ( m being the particle mass) and then  1),(  jj fff vr  represents the property that 

the kinetic energy of the particle lies in one of N  ranges specified by j . 
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where, by the general law of reciprocity ((3.11.1) of Chapter I), )()( jiij PxxP  . 

And by (6.3.2) and (6.3.3) 

 


 

i l

i

liljij
lePxaPxYP )()()( . 

 

But since the )( ji Px  are orthonormal this reduces to  

 
ji

jj eaYP


 )(  

 

giving 
22

)( jj aYP   QED. And we note that we can formally rewrite (6.3.3) as 

 







N

j

jji

N

j

ji

i

ji YPPxYxeYPYx j

11

)()()()()(    (6.3.4) 

 

which resembles Feynman’s law (3.5.1) of Chapter I.  

 But we do not claim that the propositions 
jP  ( Nj ,...1 ) (which the jY  

( Nj ,...1 ) respectively imply) necessarily form a basis in S . Nor do we generally claim 

at any specified time to be able (under knowledge Y ) to get to know instantly by chance 

the value of the property variable j . 

   In the special case that the wave functions )( ji Yx ,
 

)( ji Yx  ,… are (to within 

constant phase factors) the same as any of the transformation functions 

)( ji yx , )( ji yx  ,… from one or other of a complete set* of equivalent correspondingly 

ordered bases ,..., yy   to basis x , then, by the law of inferred dynamical properties 

... jjj yyP  . Any one of the propositions ...,, jjj yyP   then implies any other. In this 

case we can write (6.3.2) as 

 
ji

jiji eyxPx


 )()(   Nj ,...1   

 

where the j  are indeterminate phases, and we have by Feynman’s law and the general 

law of reciprocity that 

 

jj i
N

i

i

jiji

N

i

jiijjj eeyxyxPxxyPy








 
11

)()()()()( . 

                                                 
* We include the case (if it should arise) where the basis jy  has no equivalent bases. And then of course 

jj yP  . (See last footnote to section 3.12 of Chapter I.) 
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So, by the first law of extreme values of probability, and since we already know from our 

general knowledge G  that ...,, jjj yyP   imply one another, it must be that jj yP jj 
  

where the phases of implication j  are indeterminate. Similarly we have jj yP jj 


 

where the j  are indeterminate, and so on. So even though the ,..., jj   are 

indeterminate, these relations of implication must clearly apply and, as is always the case 

with implications, they apply regardless of any knowledge we may or may not hold of the 

dynamical properties of the quantum mechanical system under study.  

 

Given any wave function )( Yxi  it is clear, from the very many wave functions possible, 

that we may well be able to construct 1N  other (mutually orthogonal) wave functions 

orthogonal to )( Yxi . By applying the law of inferred dynamical properties to all these 

N  wave functions we see that any pure knowledge Y  is (as far as knowledge of the 

system dynamics is concerned) equivalent to knowledge that a certain property of the 

system has a particular value.  

 If two sets of orthogonal wave functions )( ji Yx  ( Nj ,...1 ) and )( ki Yx   

( Nk ,...1 ) share (to within a constant phase factor) a common wave function )( Yxi  so 

that for a certain j  and a certain k  

 

)()()( YxeYxeYx i

i

ki

i

ji  

      
(6.3.5) 

 

where   and   are constant phases (independent of i ), then, as regards knowledge of the 

dynamical properties of the system, knowledge Y  is the same (pure) state of knowledge 

as jY  or kY   and accordingly the same as knowledge that a certain property P  of the 

system has value j  or that a certain other property P  of the system has value k . Clearly 

there may in fact be very many ways in which a particular pure state of knowledge of 

system dynamics can be expressed in terms of the value of a possessed property. But we 

cannot generally claim, for example, that property P  having value j  implies property P  

has value k  independently of our knowledge.* We claim instead that acquisition of 

knowledge kP  physically ensures the presence of property jP . Expressed algebraically, 

Feynman’s law and the general law of reciprocity gives 

 

  

i

kiji

i

kiijkj PxPxPxxPPP )()()()()(  

 

where, on account of (6.3.2) and (6.3.5) 

 

                                                 
* To do so would open us up to the Kochen-Specker paradox (see section 1 of Chapter XV). 
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kk
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i

i

kiki
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i

jiji

eeYxeYxPx

eeYxeYxPx









)()()(

)()()(
 

 

where j  and k  are indeterminate phases unrelated to each other and to the phases   

and  . Hence we arrive at 

 
)()()( jkii

kj eePP
  

 

where the net phase kk   is indeterminate. By the first law of extreme values of 

probability this result is consistent with what we claim to be the case – that acquisition of 

knowledge of the property kP  physically ensures the presence of the property jP . 

 

It follows also from the law of inferred dynamical properties that if our sample space S  

refers to time period 0t  to 
1t  and if )(tY j

  ( Nj ,...1 ) are pure states of knowledge 

formally functions of a parameter t  for 10 ttt   and the corresponding wave functions 

))(( tYx ji
  over any basis x  in S  are orthogonal and form a complete set for any value 

t  between 0t  to 
1t , then to the pure states of knowledge )(tY j

  ( Nj ,...1 ) there 

corresponds a parameterised property )(P t  of the system S  quantified by the variable j  

and associated with time t  in the time interval 0t  to 
1t . Or we may just as well say 

property )(P t  is ‘present at the time t  in that same time interval’. Thus associated with 

any aforementioned set )(tY j
  ( Nj ,...1 ) of pure states of knowledge parameterised by 

t  with 10 ttt  , we may claim there is a real dynamical property )(P t  possessed by S  

at time t  which varies with time t  ( 10 ttt  ) and takes possible values represented by 

j  ( Nj ,...1 ).  

 As far as our knowledge of system dynamics is concerned the propositions )(tY j
  

and )(tPj
  (where we let )(tPj

  stand for the proposition claiming property )(P t  is 

quantified by j ) are the same, so that  

 
)(

))(())((
t

jiji
jetYxtPx


  ( 10 ttt  )      (6.3.6) 

 

as in (6.3.2), the )(tj
  being (for the various different values of j  and t ) indeterminate 

and unrelated. 

 Let a wave function )( Yxi  over a basis x  in S  be expanded in terms of the N  

orthogonal wave functions ))(( tYx ji
  for any one value of the parameter t . Then the 

coefficients ja  must of course be formally functions of t  so we will have 
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N

j

jiji tYxtaYx
1

))(()()( .      (6.3.7) 

 

Now suppose x  is a time-dependent basis*. Then with ix  replaced by )(txi  representing 

the same dynamical property of S  at various times t , the LHS of (6.3.7) is a function of 

time t  for 10 ttt  . It is an evolving wave function ))(( ji Ytx . Putting tt   we have 

the possible expansion 

 





N

j

jiji tYtxtaYtx
1

))()(()())(( .      (6.3.8) 

 

 Using (6.3.6) in (6.3.8) we see that any time dependent wave function can be 

expanded thus: 

 





N

j

jiji tPtxtaYtx
1

))()(()())(( .      (6.3.9) 

 

where the )(ta j  differ from the )(ta j  in (6.3.8) only with regard to their phases and 

2

)(ta j
 is our degree of belief under knowledge Y  that property )(P t  is quantified by j . 

In practice, when employing (6.3.9) it is convenient to fix the j  dependence of the 

absolute phases of the ))()(( tPtx ji  in a conventional way (as is always done in ordinary 

quantum theory).† 

 

 

6.4 Association of inferred properties with operators 

 

By the law of inferred dynamical properties (section 3.12 of Chapter I) there is a property 

P  associated with any one complete set of orthogonal wave functions )( ji Yx  over a 

basis ix . Pure knowledge jY  is, as regards knowledge of system dynamics, the same as 

knowledge that P  is quantified by j , i.e. that the system in question has property jP . 

                                                 
* see fifth footnote to section 3.1 of Chapter I 
† The important application of the law of inferred dynamical properties and the formula (6.3.9) arises in 

connection with the dynamical property represented, in the usual formalism of quantum mechanics, by the 

(generally time dependent) Hamiltonian operator for the system. Its eigenfunctions, which form a complete 

set, are an example of the ))()(( tPtx ji  above where )(tPj  then claims that the (non-basic) dynamical 

property called the ‘energy of the system at time t ’ is j  or, in the case of degeneracy of the Hamiltonian 

operator, )(tPj  claims particular values of a number of (separately non-basic) properties [such as the 

‘energy’, ‘angular momentum’ and the ‘ z  component of angular momentum at time t ’ in the case of a 

single particle in a (possibly time dependent) central field] all of which are needed to specify each 

eigenfunction of the complete set (see section 6.4).  
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 Taking one such complete set of orthogonal wave functions )( ji Yx  that are not 

necessarily transformation functions, a linear operator f̂  on functions of i  may always be 

defined by the equation 

 

)()(ˆ
jiji YxjYxf   

 

holding for all the (real) parameter values j . Or more generally if j  stands for M  

independent real parameters 
Mjj ,...1

 needed to enumerate the propositions jY  or to 

quantify the associated M  dimensional property 
jP  then f̂  stands for a set of linear 

operators 
Mff ˆ,...ˆ

1
 satisfying 

 

MkYxjYxf jikjik ,...1),()(ˆ   

 

simultaneously. Or if ),...( 1 Mkk jjgj  , Mk ,...1 , is a 1-1 and real transformation then 

we have operators )ˆ,...ˆ(ˆ
1 Mkk ffgf   for Mk ,...1 . However the parameters kj  are 

defined, the corresponding operators kf̂  clearly commute with one another and form a 

complete set, meaning that any linear operator that commutes with the kf̂  can only be a 

function of them. 

 It is therefore possible to associate with an inferred (not necessarily basic)  

property P  of the quantum mechanical process, a definite linear Hermitian operator, or a 

complete commuting set of such operators. However the converse is not necessarily true. 

That is, we do not assume that to every complete set of commuting linear Hermitian 

operators there corresponds a property. This is only the case when the simultaneous 

eigenfunctions of those operators qualify as wave functions. 

 

 

6.5 Pseudo bases, pseudo wave functions and pseudo transformation functions 

 

An inferred property jP  ( Nj ,...1 ) in a sample space S  of order N  is not generally a 

basic property because the wave functions )( ji Px  over any basis x  do not generally 

satisfy a requirement of transformation functions, i.e. the )( ji Px  are not specified to 

within a constant phase factor independent of i  and j  (see formula (6.3.2)). Nonetheless 

the probability distributions )( YPj  under pure states of knowledge Y  exhibit many of 

the same properties as wave functions. For this reason we call them ‘pseudo wave 
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functions’ and we say the propositions jP  ( Nj ,...1 ) claiming the properties jP  

( Nj ,...1 ) form a ‘pseudo basis’ in S .* 

 We have seen already that any wave function )( Yxi  can be expressed formally, 

using Feynman’s law in the form (6.3.4), in terms of the pseudo wave functions )( YPj  

and the ‘half-pseudo transformation functions’ )( ji Px . We also have by Feynman’s law 

(3.5.2) of Chapter I that 

 





N

i

iijj YxxPYP
1

)()()(       (6.5.1) 

 

and substituting for )( Yxi  in this law using the relation  )( Yxi  





N

k

kki YQQx
1

)()( , which is result (6.3.4) written for any inferred property kQ  

different from jP , we obtain 

 





N

k

kkjj YQQPYP
1

)()()(       (6.5.2) 

 

so a Feynman’s law relation between pseudo wave functions is also formally valid using 

‘pseudo transformation functions’ (the )( kj QP  in (6.5.2)).  

 It is also the case that the product rule for wave functions (section 3.7 of Chapter 

I) holds also for pseudo wave functions. So if )()1( S,...S M  are M  closed sample spaces for 

systems )()1( ,... M
SS  respectively covering the same time period and we hold pure states 

of knowledge )()1( ,... MYY  in each sample space, then with 
)((1) P,...P M

lj  standing for 

inferred properties of the )()1( ,... M
SS  and 

)((1) ,... M

lj PP  for the propositions in )()1( S,...S M  

respectively claiming those inferred properties, then 

 

)()...()......( )()()1((1))()1()((1) MM

lj

MM

lj YPYPYYPP     (6.5.3) 

 

is always true. 

 We can prove (6.5.3) using the Feynman law relations 

 

MnYxxPYP
i

nn

i

n

i

n

j

nn

j ,...1,)()()( )()()()()()(      (6.5.4) 

                                                 
* We stress that a pseudo wave function )( YPj  does not completely specify the pure state of knowledge 

Y  because the phases of the probabilities )( YPj  are indeterminate and different for each value of j  

and no wave function can be calculated from knowledge of the moduli )( YPj  alone. 
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and 
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MM

ki

M

ki

M
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MM

lj YYxxxxPPYYPP
,...

)()1()()1()()1()()1()()1()()1( )......()......()......(   

                  ...(6.5.5) 

 

where the )(n

ix  ( Mn ,...1 ) are contemporary bases in )()1( S,...S M  respectively and the 

sums are over all values of the indicated parameter(s). Putting 

)()...()......( )()()1()1()()1()()1( MM

ki

MM

ki YxYxYYxx   in (6.5.5) we find that (6.5.3) is 

equivalent to 

 

0)()...()]()...()......([
,...

)()()1()1()()()1()1()()1()()1( 
ki

MM

ki

M

i

M

jij

M

ki

M

lj YxYxxPxPxxPP . 

 

But this is evidently true because the conjugate of the expression inside the square 

brackets is zero on account of the general law of reciprocity and the ordinary product rule 

for wave functions QED. 

 

Note that the pseudo bases )((1) ,... M

lj PP  in the product rule (6.5.3) for pseudo wave 

functions may refer to different times. Clearly the proof of (6.5.3) is independent of 

whether or not this is the case. When it is the case we can write the bases as 

)(),...( )(

1

(1)

M

M

lj tPtP  where Mtt ,...1  are the times to which they refer. The general pseudo 

basis )()...( )(

1

(1)

M

M

lj tPtP  in the combined sample space 
)()1( S...SS M  is a pseudo basis 

not referring to a single time. 

 We note also that the proof of (6.5.3) works just as well with the pseudo bases 

changed to time-dependent proper bases )()1( ,... M

lj yy . There is therefore the possibility of 

starting with proper bases )(),...( )(

1

)1(

M

M

lj tyty  in certain closed sample spaces )()1( S,...S M  

(where )( 1

)1( ty j  refers to time 1t  in 
)1(S , )( 2

)2( tyk
 refers to time 2t  in 

)2(S ,…etc) and 

constructing a new kind of basis )()...( )(

1

)1(

M

M

lj tyty  in S  which does not refer to a single 

time. The product rule for wave functions then generalises to include these new kinds of 

bases. And if ))((),...)(( )()()1(

1

)1( M

M

M

lj YtyYty   are wave functions in the separate 

sample spaces we have a new kind of wave function in S  (under knowledge 
)()1( ... MYY ) 

which is the product of the wave functions ))((),...)(( )()()1(

1

)1( M

M

M

lj YtyYty   in the 

separate sample spaces. 

 However we will not find a need to employ bases and wave functions of this new 

kind in the present monograph (whether the bases from which they are derived are proper 

bases or pseudo bases). So pseudo bases of the form 
)((1) ... M

lj PP  in the combined sample 

space 
)()1( S...SS M  will always be taken to refer to a single time, i.e. the pseudo bases 

)((1) ,... M

lj PP  will be always contemporary. And proper bases of the form 
)()1( ... M

lj yy  in the 
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combined sample space 
)()1( S...SS M  will always be made up from contemporary proper 

bases )()1( ,... M

lj yy  in )()1( S,...S M  respectively. 

 

 

7. Law of partial orthonormal decomposition 

 

7.1 Statement of the Law 

 

Suppose 
)1(S  and 

(2)S  are contemporary and closed sample spaces of order 
)1(N  and 

)2(N  

respectively. And suppose 
)1(

ix  and 
)2(

jx  are bases in )1(S  and (2)S  respectively pertaining 

to the same time t . And suppose also that )2(

jx  is a primary basis in 
(2)S . Using basis 

)2()1(

ji xx  in 
(2))1( SS  let our knowledge Y  (represented by a wave function )( )2()1( Yxx ji ) be 

pure but inseparable (not expressible as pure knowledge in relation to 
)1(S  and 

(2)S  

separately). Now we may take the transformation functions )( )1()1(

ki yx  in 
)1(S  where )1(

ky  

is a primary basis in 
)1(S  (different from the basis )1(

ix  but pertaining to the same time t ), 

and expand the wave function )( )2()1( Yxx ji  in the complete set of functions )( )1()1(

ki yx  

of )1(

ix . That is we can write  

 

 
k

kikjkji yxhaYxx )()( )1()1()2()1(       (7.1.1) 

 

where k  runs from 1  to 
)1(N , the ka  are positive or zero and the kjh  are suitable 

normalised functions of j : 

 

1
2


j

kjh  for all k        (7.1.2) 

 

where j  runs from 1  to 
)2(N . The ka  are necessary constants, the sum of their squares 

being equal to 1  for normalisation of )( )2()1( Yxx ji  in (7.1.1)).*  

 Then, according to the law of partial orthonormal decomposition, 
2

ka  

(
)1(,...1 Nk  ) is our degree of belief distribution over the )1(

ky  , i.e.  

 
2

)1(2
)( Yya kk  .        (7.1.3) 

 

                                                 
* If kjkha  has to be zero for a certain value of k  in the expansion (7.1.1) then we make 0ka  for that k  

and kjh  (for that k ) may be any normalised function of j  we please. 
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And the kjh  ( )2(,...1 Nj  ) are, to within constant (i.e. only k  dependent) phase factors, 

our probability distributions over the )2(

jx  on learning the truth of )1(

ky , that is  

 
ki

kjkj ehYyx


 )( )1()2(         (7.1.4) 

 

where the k  are indeterminate constant phases for each value of k . Our knowledge 

Yyk

)1(  is then separable into knowledge )1(Y  pure in relation to )1(S  and knowledge )2(Y  

pure in relation to )2(S .  

 

 

7.2 Proof of the law 

 

Since 


 

)2(

1

)2()1()1( )(
N

j

jkk xyy  (where summation signifies disjunction), learning the truth 

of )1(

ky  would each time be a case of harmless conditioning over the primary basis 
)2()1(

ji xy  in 
(2))1( SS  (see section 3.6 of Chapter I). After such harmless conditioning our 

wave function over basis )2()1(

ji xy  in 
(2))1( SS  can, by (4.2), be written 
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ikkji







     (7.2.1)  

 

where   is the phase characteristic of knowledge Y . Here we can replace )1(

iy  on the 

RHS by )1(

ky  and we see that the RHS is (for any k ) a product of a function of  i  and a 

function of j . Knowledge  Yyk

)1(  is therefore separable into pure knowledge )1(Y  in 
)1(S  

and pure knowledge )2(Y  in 
(2)S . And we have accordingly wave functions 
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      (7.2.2) 

 

where   and k  are indeterminate constant phases.  

 Now by Feynman’s law in the special form (5.2) our original wave function 

)( )2()1( Yxx ji
 
can be expanded thus  

 

)()()( )2()1()1()1()2()1( YxyyxYxx jk

k

kiji   .     (7.2.3) 

 

Comparing this with (7.1.1) we see (using the second of (7.2.2)) that 
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kii

kjkjkkjk eeYyxYyYxyha
 )()()( )1()2()1()2()1(     (7.2.4)  

 

 If, for some k , 0ka  then by (7.2.4) 0)( )1(  Yyk  (since )( )1()2( Yyx kj  cannot 

be zero for all j ). This proves (7.1.3) in the case 0ka . Also, when 0ka  we are free 

to choose the indeterminate kjh  as we please.* Since 0)( )1(  Yyk  also, we cannot learn 

the truth of )1(

ky  so that )( )1()2( Yyx kj  is indeterminate. But we can choose kjh  to equal the 

indeterminate ki

kj eYyx


 )( )1()2(  and hence ensure the formal truth of (7.1.4) in the case 

0ka . 

 If 0ka  then by (7.2.4) 
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      (7.2.5)  

 

and since kjh  and )( )1()2( Yyx kj  are both normalised over j , (7.2.5) gives 

 

1
)(

2
)1(




k

k

a

Yy
        (7.2.6)  

 

which proves (7.1.3) when 0ka  and converts (7.2.5) to (7.1.4) QED. 

 

 

8. A case of mixed knowledge  

 

Suppose, as in section 7.1, that 
)1(S  and 

(2)S  are contemporary and closed sample spaces, 

and suppose )1(

ix  and )2(

jx  are bases in 
)1(S  and 

(2)S  respectively pertaining to the same 

time t . And suppose again that )2(

jx  is a primary basis in 
(2)S . Using basis )2()1(

ji xx  in 

(2))1( SS , let our wave function, under knowledge Y  pure and inseparable in relation to 
(2))1( SS , be )( )2()1( Yxx ji . Then given a primary basis )1(

ky  pertaining to time t  in 
)1(S  the 

law of partial orthonormal decomposition of section 7.1 applies. 

 Using the expansion (7.1.1), we have by the orthogonality of the )( )1()1(

ki yx  that 

 

 
k

kjk
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ji haYxx
22

)2()1( )(       (8.1) 

 

                                                 
* See the footnote to section 7.1 
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and with )1(

ky  a primary basis in 
)1(S , the result (7.2.4) means the RHS of (8.1) is 

 
k

kjk YyxYy
2

)1()2()1( )()( and by the sum rule we have for our probability distribution 

over the )2(

jx  the formula  

 

jj i

k

kjk

i

i

jij eYyxYyeYxxYx


 
2

)1()2()1(
2

)2()1()2( )()()()(    (8.2)   

 

where the j  are indeterminate phases.  

 The probability distribution (8.2) cannot represent a pure state of knowledge 

because its relative phases are indeterminate. We say instead that it represents a state of 

knowledge ‘mixed’ in relation to 
(2)S .*  

 If we should get to learn (by harmlessly conditioning) which of the )1(

ky  was true 

then we should of course change our probability distribution from that in (8.2) to that 

given by (7.1.4) where the kjh  are determined by (7.1.1). This distribution does have 

determinate relative phases and therefore represents a state of knowledge pure in relation 

to 
(2)S . 

 We see here the possibility of passing from a state of mixed knowledge in relation 

to 
(2)S  to a state of pure knowledge in relation to 

(2)S  having gained information in 
(1)S . 

 Before such a transformation into pure knowledge the mixed knowledge can 

evidently be represented in different ways according to which primary basis )1(

ky  is chosen 

in 
(1)S . This choice is up to us and cannot possibly affect our probabilities of propositions 

in 
(2)S . For each possible choice of this basis there will be different functions 

)( )1()2( Yyx kj . Let us say )1(

ky  will give )( )1()2( Yyx kj , )1(

ky  will give )( )1()2( Yyx kj
 , 

…etc., )1(

ky , )1(

ky , …etc representing different primary bases in 
(1)S .† From (8.2) we have 

in each case a prior probability distribution over )2(

jx : 

 

                                                 
* ‘Mixed states’ of knowledge (as they are called) can occur in many other situations, and the general theory 

of mixed states of knowledge will be given in Chapter XIV. Note that on taking the modulus squared of 

both sides of (8.2) we get a result (for the squared moduli) the same as the relation we would expect 

between classical probabilities. 

† The wave functions )( )1()2( Yyx kj , )( )1()2( Yyx kj
 , …etc. are different, so we can gain different pure 

states of knowledge in relation to 
(2)S  depending on which of the properties ( yP  or yP … etc) associated 

with 
(1)S we choose to measure. In the usual interpretation of quantum mechanics, that regards the wave 

function as the physical state of the system, this implies the possibility of controlling the physical state of a 

distant system (associated with 
(2)S ) by our choice of measurement on a nearby system (associated with 

(1)S ). But this strange action at a distance is not implied in the present interpretation where a different 

choice of measurement on the nearby system leads only (and quite naturally) to a different state of 

knowledge of the distant system. 
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ji

k

kjkj eYyxYyYx


 
2

)1()2()1()2( )()()( , 

ji

k

kjkj eYyxYyYx


 
2

)1()2()1()2( )()()( , 

…etc. 

 

These probability distributions must, by the uniqueness of probabilities, be the same. The 

moduli of them are necessarily equal as follows from the equalities 

 

etc.....                  

)()(                  

)()()(

2
)1()2()1(

2
)1()2()1(

2
)2(











k

kjk

k

kjkj

YyxYy

YyxYyYx

       (8.3)   

 

which are a consequence of (8.1) and (7.2.4). And, for consistency, the phases 
j , 

j ,…, 

though indeterminate functions of j , must be the same indeterminate function of j , i.e. 

 

... jjj  

 

for each value of j . 

 

 

9. Probability and expected frequencies 

 

An important part of probability theory is the prediction of expected frequencies of 

occurrence of the possible outcomes in repeated trials of a process involving a system 

initially prepared in a certain way, or in simultaneous trials of processes involving 

identical systems similarly prepared and taking place together in different locations in 

space without interfering with one another.  

 Let S  be a sample space of propositions about any one of the processes. And 

suppose S  includes propositions iX
 
claiming occurrence of the 

thi  outcome out of n  

mutually exclusive and exhaustive possible outcomes of the process.* Our original (not 

necessarily pure) knowledge Y  relating to S  will be the same for any one of the 

processes.  

 Suppose )( YX i  ( ni ,...1 ) is our (complex-valued) probability distribution 

over the iX  (with determinate or indeterminate relative phases). Then, in a large number 

                                                 
* For example, if a large region R  of space is divided up into n  small volume elements idV  ( ni ,...1 ), 

iX  might claim that a particle (whose motion is initially prepared in a certain way so as to finish up 

somewhere in R ) will in fact finish up in volume element idV . 
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M  of similar processes, the expected relative frequency if  of cases in which iX  is true 

is given under a certain condition by the frequency rule 

 
2

)( YXf ii  .         (9.1) 

 

This follows from the ‘law of large numbers’ which can be proved from the general laws 

of complex-valued probability in much the same way as it is proved from the laws of 

classical probability. Although the classical proof is well known the proof in the new 

probability theory will be spelt out here because of its importance in the Bayesian 

approach to probability and because of the involvement of the law of absolute logical 

independence under pure knowledge in the case when Y  is a pure state of knowledge and 

the separate sample spaces S  for each member of the ensemble (of the contemporary or 

non-contemporary processes) are closed. 

 It will be sufficient to show that 
1X  is expected to be true with relative frequency 

2

1 )( YX . This can be done by setting up sample spaces )()1( S,...S M  (which are the 

sample spaces S  for each process) and their combination 
MS  that will include 

propositions which are the 
Mn  conjunctions of the sort )()2()1( ... M

lji XXX  any one of which 

claims iX  is true in the first process, jX  is true in the second process,… lX  is true in the 

thM  process. Our knowledge relating to this sample space (the combination of the M  

sample spaces S ) will be denoted MY . We will show that given certain knowledge Z  is 

part of our general knowledge, the modulus squared of the probability of mX1  where mX1  

is the proposition ‘
1X  is true m  times in the M  processes’ has the binomial distribution 

in m , i.e. 

 

mMm

mM

Mm ppCYX  )1()(
2

1       (9.2) 

 

where 
2

1 )( YXp   and 
2

1 )(1 YXp  . As is well known, the binomial distribution 

has a mean value Mpm   and a standard deviation )1( pMp   so that as M  

the ratio 0 m  and the probability that Mm  is inside the range pp   to pp   

tends to one for any p  however small. That is, for large enough M  the frequency rule 

(9.1) (with 1i ) follows from (9.2). 

 We can prove (9.2) under the condition that the sample spaces )()1( S,...S M  are 

known to be logically independent of each other under knowledge MY . This is the 

required knowledge labelled Z  above. And under knowledge Z , if it is possible to 

acquire knowledge of the outcomes of some of the processes as they occur* this 

knowledge is redundant in as far as it does not change our degree of belief in any 

                                                 
* We assume of course that acquisition of such knowledge could be achieved harmlessly with regard to the 

outcomes themselves and that knowledge of the outcomes would be compatible with knowledge 
MY . 



II. Consequences of the laws of probability 

 

 75 

particular outcome of the other processes (see section 1.3). In the case when Y  is a pure 

state of knowledge and the sample spaces )()1( S,...S M  are closed, the required logical 

independence is necessarily present because of the law of absolute logical independence 

under pure knowledge (section 3.7 Chapter I). In the case when Y  is not a pure state of 

knowledge it is necessary to justify logical independence in some other way*; the 

difficulty in doing this with complete confidence gives credence to the idea, often 

expressed, that probabilities deduced under pure states of knowledge in quantum 

mechanics are more fundamental and more reliable than probabilities deduced under the 

non-pure states of knowledge in classical mechanics. 

 The proof of (9.2) can now be illustrated by example. Let 5M  and 3m  i.e. 

consider the probability that 
1X  is true 3  times out of the 5 . The probability for getting 

the sequence )5(

1

)4(

1

)3(

1

)2(

1

)1(

1 XXXXX  (which means, reading from left to right, that 
1X  is 

true in the first process, true in the second, false in the third,…etc.) is, by the specialised  

product rule (2.1),  

 

kieYXYXYXYXYX

YXXXXX

45)5(

1

5)4(

1

5)3(

1

5)2(

1

5)1(

1

5)5(

1

)4(

1

)3(

1

)2(

1

)1(

1

)()()()()(

)(




  (9.3)  

             

where k  is the phase characteristic of knowledge 5Y . So because, for example 

)( 5)2(

1 YX  and )( 1 YX  differ only with respect to their phases, we have 

 
35

1

3

1

5)5(

1

)4(

1

)3(

1

)2(

1

)1(

1 )()()(


 YXYXYXXXXX    (9.4) 

 

The number of possible sequences which claim 
1X  is true in just 3  of the 5  processes is 

35C . These sequences represent mutually exclusive propositions in the sample space 
MS and their disjunction is mX1  with 3m . Using the sum rule ((2.3.2) of Chapter I) we 

therefore have from (9.4) that 

 

    352

1

32

135

2
5)5(

1

)4(

1

)3(

1

)2(

1

)1(

135

53

1 )()()()(


 YXYXCYXXXXXCYX  

 

or 

 

353

35

2
53

1 )1()(  ppCYX        (9.5) 

 

                                                 
* Of course cognitive and causal independence of the sample spaces (which we do assume) does not imply 

logical independence of them, and without being sure of logical independence, knowledge of the outcomes 

of some of the processes of the ensemble might well lead us to recalculate our probabilities for outcomes of 

the others (as for example in repeatedly rolling a die which might be biased). 
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where 
2

1 )( YXp  . Clearly (9.5) generalises to (9.2) which holds for any values of M  

and m . 

 It follows from (9.2) that for large enough M , 
1X  is (under knowledge MY  and 

our general knowledge that includes Z ) expected to be true with relative frequency close 

to 
2

1 )( YX and similarly, for any i , that iX  is expected to be true with relative 

frequency close to if  as given by (9.1).* And this applies even when we could not in 

principle get to know which outcome occurs on each occasion.†  

 That iX  is, for large M , expected to be true with frequency 
2

)( YX i  has been 

proved by calculating the probability (call it  ) that this is so and finding that   has 

modulus 1  (in the limit M ). But because of the repeated use of the sum rule to do 

this, the phase   is generally indeterminate and we are unable for certain to claim that 

the relative frequency is determined physically (i.e. implied by knowledge MY  or brought 

about by acquisition of that knowledge). And we insist that we would in fact generally be 

wrong in making that claim. Things would be different if   turned out to be 

determinate, but this is hardly ever the case. ‡  

 

As a corollary to the derivation of (9.1), it is noted that the expected relative frequency 

Af  of cases in which any disjunction A  of the iX  is true is simply 

 

 
22

)()( YAYXf
i

iA        (9.6) 

 

where the sum is over all the iX  in the disjunction A . 

 

As a second corollary, we note that the mean value )(ix  (in M  trials) of any function 

)(ix  of i  is (for large M ) expected to be close to the ‘expected value’ defined by 

 

                                                 
* Of course expected frequencies are generally not the same as actual frequencies. The former generally 

change with our knowledge while the latter do not. (See Appendix F for further discussion of this point.) 
† If, for example, the iX  are the propositions of an improper basis (see section 1 of Chapter X) we could 

never get to know which of the iX  was true.  

‡ Even if the iX  form a basis in S , n  equals the order N  of S  and Y  is a pure state of knowledge with 

 i

ii eYXYX )()(  where   is a known phase independent of i  so the sum rule for wave 

functions might be employed in 
MS , the phase   is still generally indeterminate. This is because, for 

2N , 
)5(

1

)4(

1

)3(

1

)2(

1

)1(

1 XXXXX  in (9.3) can only be expressed as a disjunction of the 

)5(

1

)4()3()2(

1

)1(

1 XXXXX ji  through use of the distribution rule (7th of (2.2.1.5) of Chapter I) which carries an 

indeterminate phase of implication. With 2N  we do get a determinate   and this rather special case 

is the only one in which frequencies of outcomes are apparently determined physically.  
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n

i

i YXixixE
1

2

)()())(( .       (9.7) 

 

For the relative the frequency if
~

 at which the value i  occurs in the M  trials is expected 

to be close to 
2

)( YX i . So replacing 
2

)( YX i  by if
~

, the RHS of (9.7) might be 

rewritten  

 




n

i

ifix
1

~
)(          (9.8) 

 

which is the sample mean value )(ix . We therefore expect (for large M ) that  

 

))(()( ixEix  .         (9.9) 

 

 

 

10. Reasoning with certainty in quantum mechanics  

 

The laws of extreme values of probability (section 2.2.2 of Chapter I) can sometimes be 

used to demonstrate an implied relation (between physical events) that exists quite 

independently of any knowledge we may or may not have of the dynamical properties of 

the quantum mechanical system in question. 

 If we start out with general knowledge G  and if for example we can show, using 

the (complex-valued) probability calculus, that under supposed pure knowledge Y  of the 

dynamical properties of a system 

 
 ieYX )(  

 

where   is a real number with a definite (determinate) value, then by the first law of 

extreme values we can say 

 

XY  . 

 

This means that the dynamical property or event claimed by Y  implies (with phase of 

implication  ) the dynamical property or event claimed by X . So the one event must 

cause or imply the other as a consequence of the laws of motion, the unchanging 

properties of the system and the external fields present, all of which are known to us 

under the heading of our general knowledge G . (If in addition we can prove that 
 ieXY )(  where   is a determinate real number (which must in fact always equal 

 ) then YX   also and we have demonstrated a correlation between X  and Y .)  

 Being a consequence of the laws of motion, the unchanging properties of the 

system and the external fields, such an implied relation (or correlation) must apply 
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regardless of any knowledge we may or may not hold of the dynamical properties of the 

system in question. 

 

 

10.1 Equivalent bases in a closed sample space 

 

If ix  Ni ,...1  is a basis in a closed sample space S  of order N  then under certain pure 

states of knowledge we are certain which value of i  applies. Each such state of 

knowledge involves of course knowledge of the truth of ix  for some value ki  . And by 

the laws of extreme values of probability our wave function in the x  representation can 

be written as )( ki xx  given by 

 

ikki xx  )(          (10.1.1) 

 

because 
kiik xx


0  and 

kiik xx


 . 

 Now it can be that for a certain other basis jy  ( Nj ,...1 ) in S  (possibly referring 

to a property at a different time) the transfer functions from y  to x  take the form 

 














j

j

i

ji
ki

kie
yx

j

      0

   
)(        (10.1.2) 

 

where the j  are determinate phases and jk  is a generally different (known) integer in 

the range N,...1  for each value ( Nj ,...1 ) of j . In the matrix notation we might for 

example have 
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000

000

000

...000

)( 1

3

2

i

i

i

ji e

e

e

yx       (10.1.3) 

 

where every row and every column necessarily contains only one non-zero entry. This 

may apply also to certain other bases jz  Nj ,...1 , …etc so that )( ji yx , )( ji zx , 

)( ji yz ,… are all of the form (10.1.2) with generally different known functions jk  of j  

and generally different (but determinate) values j  in each case. A set of bases of this 
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kind will be called a ‘set of equivalent bases’ and we shall say any one of the bases of the 

set is ‘equivalent’ to any other.* 

 In relation to a set of equivalent bases ,..,, zyx  and under knowledge of the 

transformation functions between them we can reason with certainty using Feynman’s 

law to deduce the phases of implication. 

 First, given (10.1.2) we clearly have 

 












jij

jij

kixy

kixy j

         

      
        (10.1.4) 

 

 Second, because the inverse transfer function )( ij xy  is the conjugate of 

)( ji yx  we have also that 

 












jji

jji

kiyx

kiyx j

          

      
        (10.1.5) 

 

Hence propositions ix  and jy  (with jki  ) are equivalent or 

 

jij kixy jj 


    when  .       (10.1.6) 

 

In the case that bases x  and y  are the same except perhaps for the order of their 

propositions† we must have full equivalence of corresponding propositions, i.e. 0 j  in 

(10.1.6), since any proposition implies itself with phase of implication equal to zero.) 

 Third, by applying Feynman’s law to equivalent bases x , y  and z  (possibly 

referring to properties occurring at different times) we have 

 

 
i

miijmj zxxyzy )()()(       (10.1.7) 

 

where, as well as (10.1.4) and (10.1.5),  

 












m

m

i

mi
li
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zx

m

      0

   
)(  

 

                                                 
* If the matrix in (10.3.1) is diagonal we say the bases x  and y  are ‘correspondingly ordered’ (as we did in 

section 3.10 of Chapter I). The matrix (4.4) in Chapter VII representing the spin/spin transfer function for 

the z  components of spin in two coordinate systems sharing a common z  axis is an example of a case in 

which the matrix representing a transformation function between equivalent bases is diagonal. 
† In such a case the natural order of the propositions of x  (or of y ) remains the same but the order in 

which the propositions of x  (or of y , or of both) are numbered may be different from the natural order. 
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Clearly, for any given m , the summand in (10.1.7) is non-zero only for one value of i  i.e. 

for mli  . Thus )( mj zy  is zero except when j  makes jk  equal to ml  and 

 














mj

mj

i
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lke
zy

jm

            0

   
)(

)(

      (10.1.8) 

 

from which we deduce that 

 

mjjm lkyz jmjm 


       when 
)(

.     (10.1.9) 

 

 

Therefore, in reasoning with certainty over equivalent bases yx,  and z  in a closed 

sample space we have the following laws for phases of implication. Given any values of 

ji,  and m : 

 

if ji yx   then ij xy         (10.1.10) 

 

and 

 

if ji yx   and mj zy   then mi zx  .     (10.1.11) 

 

Note that (10.1.11) is in agreement with (or provided the original reason for claiming) the 

general rule of phase addition in (2.2.1.2) of Chapter I. 

 

 

10.2 Changes in the phases of wave functions under reasoning with certainty 

 

Let yx,  and z  be bases of a closed sample space and suppose only y  and z  are 

equivalent. Then our wave function )( ji yx  generally has, for any i , a modulus less 

than 1 and we are uncertain as to which proposition ix  ( Ni ,...1 ) is true. Since y  and z  

are equivalent )( mj zy  is of the form (10.1.2) and by Feynman’s law 
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mjjimi zyyxzx )()()( .      (10.2.1) 

 

On putting  
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we arrive at the rule: 

 
mmm i

jimijm eyxzxyz


 )()(   then    If     (10.2.3) 

 

 If, instead of y  and z , x  and z  are equivalent bases and Y  any pure state of 

knowledge we can again use Feynman’s law to derive the following rule (in which m   

and i  are supposed to be related by the 1-1 relation ilm  ):  

 
mmm i

mimi eYzYxzx


 )()(        then  If .    (10.2.4) 

 

In this case our wave functions in the x  and z  representations under knowledge Y  are 

generally different with regard to their absolute and relative phases. Our phases of belief 

in the ix  and in the equivalent mz  are different for each value of i  but our degrees of 

belief in the ix  and in the equivalent mz  are the same (as required by the first uniqueness 

principle in section 5 of Chapter I). 

 Results (10.2.3) and (10.2.4) are in agreement with (or served as the original 

reason for establishing) the general rule for phases claimed in section 5 of Chapter I. 

 

 

10.3 Reasoning with certainty in combined sample spaces 

 

Let 
(1)S  and 

(2)S  be closed sample spaces referring respectively to systems 
(1)S  and 

(2)S . 

If ,..., )1()1(

ji yx  are a set of equivalent bases in 
(1)S  and ,..., )2()2(

mn yx  are a set of equivalent 

bases in 
(2)S  then the combined bases such as )2()1(

ni xx  and )2()1(

mj yy , evidently form an 

equivalent set in 
(2)(1)SS . The transfer functions )( )2()1()2()1(

mjni yyxx  are (for given j  and 

m ) non-zero only for one value of ),( ni . For, by the product rule for wave functions 

 

)()()( )2()2()1()1()2()1()2()1(

mnjimjni yxyxyyxx   

 

and the LHS is only non-zero when 

 
)1()1(

ij xy    and  )2()2(

nm xy   

 

which apply (for certain definite values of the phases   and  ) only when  

 

ikj    and nlm  , 

 

ik   and  nl  being certain single valued functions of i  and n . We then have 

 
)()2()1()2()1( )(  i

mjni eyyxx  
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and so we find the rule 

 
)2()1()2()1(

nimj xxyy     when  )1()1(

ij xy    and  )2()2(

nm xy  .  (10.3.1) 

 

This relates phases of implication in 
(2)(1)SS  to phases of implication in 

(1)S  and 
(2)S , and 

is in agreement with (or served originally as the reason for claiming) the addition rule for 

phases under conjunction (as in (2.2.1.7) of Chapter I). 

 

 

10.4 Knowledge expressed as a conjunction of propositions from equivalent bases 

 

If bases x  and y  are equivalent and  

 

jij kixy jj 


    when   

 

as in (10.1.4) to (10.1.6), then ix  and jy  (with jki  ) claim correlated properties of the 

quantum mechanical system in question and knowledge of ix  is compatible with 

knowledge of jy , and therefore ji yx  (with jki  ) expresses a possible state of 

knowledge equivalent to ix  or to jy . 

 In such special cases it is possible for us to hold knowledge of the truth of 

propositions from different bases simultaneously. Application of the rules for phases of 

implication and the general rule for phases then enables us to calculate the form taken by 

wave functions when our pure knowledge is expressed as a conjunction of equivalent 

propositions taken from equivalent bases. 

 For example if bases y  and z  are equivalent as in (10.2.2) and basis x  is not 

equivalent to y  and z , then a wave function )( mji zyx  (where mkj  ) is related to 

)( ji yx  by 

 
ik

jimji eyxzyx  )()(        (10.4.1) 

 

where k  is the phase characteristic of knowledge mz . This follows from the general result 

(2.2.1.20) of Chapter I which here means that mj

kk

j zyy 
, giving (10.4.1) directly 

from the general rule for phases. 

 The result (10.4.1) (and many others involving conjunctions of propositions from 

equivalent bases) lie outside the conventional quantum mechanical formalism. They do 

not add any new physics but are nonetheless of interest in the present interpretation of 

quantum mechanics all results and deductions within which should form a consistent 

whole. 
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10.5 Consequences of the general law of reciprocity 

 

The general law of reciprocity (section 3.11 of Chapter I) states that given propositions Y  

and Z  claiming dynamical properties of a system S , if Y  and Z  could each represent 

(generally different) pure states of knowledge of S  then the relation 

 

)()( YZZY          (10.5.1) 

 

must hold. Assuming Y  and Z  represent possible pure states of knowledge, we note the 

following consequences of (10.5.1) that result from the first law of extreme values of 

probability (section 2.2.2 of Chapter I). 

 (i) If acquisition of knowledge Z  is known (from our general knowledge G ) to 

bring about or ensure the truth of Y  (as a result of the uncertainty principle), then 
 ieZY )(  where   is an indeterminate phase. And it then follows from (10.5.1) that 

 ieYZ )(  with indeterminate phase   so we should expect Z  to be true when we 

know Y  is true.  

 (ii) If we know (from G ) that YZ   with an indeterminate phase  , then by 

(10.5.1)  ieYZ )(  where the phase   is indeterminate and we should again expect 

Z  to be true when we know Y  is true. 

 (iii) If we know (from G ) that YZ   with an determinate phase  , then 
 ieZY )(  and by (10.5.1) 

 ieYZ )(  where the phase   is determinate, so in 

this case ZY   with an determinate phase  . The properties claimed by Y  and Z  are 

then naturally correlated independently of any knowledge we may or may not have about 

the system. 
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CHAPTER III  

 

LAWS OF NON-RELATIVISTIC QUANTUM MECHANICS  
 

 

1. Quantum mechanical processes 

 

Non-relativistic quantum mechanics is a theory of systems of particles in motion. Each 

particle maintains its form and no particles are created or destroyed. They move in 

ordinary (Euclidean) fixed space and ordinary (Newtonian) time.  

 In the present interpretation of non-relativistic quantum mechanics we adopt a 

picture of particles which is the same as in classical mechanics in as much as they are 

viewed as material points with fixed masses moving in ordinary space and time. So at 

each moment in time any particle has a definite position in space. It seems however that 

we cannot carry over the classical picture of smooth orbital motion of particles.  So 

particle position coordinates are taken to be continuous functions of time but not 

differentiable functions of time. Particle position coordinates are therefore changing in an 

irregular manner at the smallest scales. 

 Relative to a stationary frame of reference* a system with N  particles has 

properties with classical analogue such as particle positions (vectors Nrrr ..., 21 ) and 

particle momenta (vectors Nppp ..., 21 ) and properties without classical analogue (like the 

spin s  of each particle and its z  component of spin in each fixed right-handed Cartesian 

coordinate system†). A z  component of particle spin may change abruptly 

(discontinuously) from one allowed value to another but is almost always constant over a 

small enough time interval.  

 We assume that definite orbital and spinning motions take place determined by 

mechanisms unknown to us. These motions are therefore governed by laws, but these 

laws may not be finite in number – i.e. they may not be expressible in a finite number of 

propositions.  

 We make no claim to know the detailed laws governing the motions of systems of 

particles. Instead we claim to know only certain general properties of the motions and we 

calculate our probabilities based on this limited knowledge. We claim for example that 

particle motions may depend on certain unchanging properties, like particle masses and 

spins, and the internal system potential function, without saying how. We claim that the 

motion of a system over a short time interval is not at all influenced by or dependent 

upon the value of the system potential at later times. We claim (as we have said) 

continuity of particle orbital motion and discontinuity of particle spinning motion. Other 

general properties of the motions will be claimed in this Chapter and certain others will

                                                 
* A frame of reference can notionally be regarded as a system of axes and synchronised clocks filling all 

space and made of particles of such high mass that the uncertainty principle is not of concern for them. 

These particles interact with each other through inter-particle potentials of their own. They behave 

classically and in no way interact with particles of any quantum mechanical system under study. 
† Henceforth, unless otherwise stated, all Cartesian coordinate systems will be assumed to be right-handed 

and to employ the same units of distance and the same units of time. 
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be claimed at various points in the rest of the monograph where their importance will be 

more readily appreciated. 

 Because of their relatively large (ideally infinite) masses, coordinate frames can 

be treated classically. They can remain in known fixed positions relative to one another 

or can move smoothly with positions and velocities known at every instant, and they are 

not subject to the uncertainty principle.* 

 We have reason to believe (and we assume it true) that the momentum of a 

particle is (like its spin) an internal property of the particle (relative to the fixed 

coordinate system in question) and not a property of its drifting motion through space.† 

However, owing to its intimate connection with particle position (in the uncertainty 

principle) we classify it as a property of particle orbital motion. (If we try to insist on 

smooth differentiable particle motion and define momentum and orbital angular 

momentum in the classical way we will arrive at contradictions with the predictions of 

non-relativistic quantum mechanics.) 

 A system of N  particles may move under the action of a (generally time-

dependent) system potential ),,...( 1 tV Nrr . This is a function of the time and of the 

positions Nrr ,...1  of the particles relative to some stationary coordinate frame.‡ The 

system may move under the action of time-dependent external scalar and vector potential 

fields possibly different for each particle and specified by scalar functions ),( tVi r  and 

vector functions ),( ti rA  Ni ,...1  (the potential fields ),( tVi r  and ),( ti rA  acting on the 
thi  particle alone). The system may move under an internal system potential and external 

potentials acting simultaneously.§  

 External fields are produced by macroscopic sources, and (like the kinematic 

properties of coordinate frames) the sources, and their fields are not subject to the 

uncertainty principle. 

 In addition to external fields due to sources we allow the possibility of 

background constant and uniform external scalar and vector fields 0V  and 0A  of any 

magnitude and (in the case of 0A ) of any direction. These have no sources but act on any 

particle of mass im  providing it with extra particle scalar and vector potentials of values 

0Vmi  and 0Aim .** The background particle scalar potentials 0Vmi  and the particle scalar 

potentials ),( tV ii r  from sources can, and often will, be included in (i.e. considered as part 

of) the system potential ),,...( 1 tV Nrr , and a background particle vector potential 0Aim  

                                                 
* We should stress that it is the position and velocity of a coordinate system that is not subject to the 

uncertainty principle, The position and momentum of a coordinate system certainly is, but knowledge of the 

momentum of a coordinate system is never needed since a coordinate system serves a kinematic purpose 

only. 
† See first footnote to section 2.4 of Chapter XIII. 
‡ The system potential may sometimes arise from simple line-of-action particle/particle interactions and is 

then a function only of the distances between the particles (see section 2 of Chapter V). 
§ In non-relativistic quantum mechanics there are no particle-particle interactions through inter-particle 

vector potentials. 
** Being proportional to particle masses these potentials are gravitational potentials (see Appendix D) and 

they will play a role in the ‘quantum mechanical principle of equivalence’ (see section 3.8). 
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can, and often will, be included in (i.e. considered as part of) the corresponding external 

particle vector potential ),( tii rA . 

 Any particle scalar potential or any system potential has units of energy and any 

particle vector potential has units of momentum. (The background fields 0A  and 0V  

above therefore have units of velocity and velocity squared respectively.) Any external 

vector potential field ),( ti rA  is a divergent free (polar) vector field, so 0),(.  ti rA .  

 The detailed particle motions under the action of potentials are unknown but 

certain general laws of potential action apply (see section 3.2). Adding a constant k  to a 

scalar potential ),( tV r  of a single particle or a constant vector K  to the vector potential 

),( trA  of that particle does make a difference to the quantum mechanical motion of the 

particle. In the classical limit the particle is expected to move according to Newton’s laws 

in the force field )( AvA  Vt  where v  is the particle velocity.* So adding 

constants to ),( tV r  and ),( trA  makes no difference to the particle motion when working 

only to classical accuracy. 

 

 

2. Probabilistic description 

 

2.1 Closed sample spaces and isolated quantum mechanical systems in motion 

 

The general closed sample space S  is a complete sample space whose propositions refer 

to the detailed motion of an ‘isolated’ quantum mechanical system S  during a specified 

time interval 0t  to 1t . An ‘isolated’ system S  can be a system whose motion is affected 

by a known external field but cannot be a system whose particles interact with particles 

of another system whose motions are uncertain. To be ‘isolated’ the system S  and any of 

its parts must also be distinguishable from the whole or parts of any other system. For 

example, if S  is a single particle it must be one distinguishable from any other particle 

either by clear spatial separation from it or on account of it being a particle of a different 

type from the (outside) particle which (though not part of system S ) might then approach 

close to it.† 

 Two quantum mechanical systems 
(1)

S  and 
(2)

S  each in isolated motion during a 

certain time interval ( 0t  to 1t ) can be considered together as one isolated quantum 

mechanical system 
(2)(1)

SS  in motion during the same time interval. A closed sample 

space for system 
(2)(1)

SS  is the combination 
(2)(1)SS  of the contemporary and closed 

sample spaces 
(1)S  and 

(2)S  associated with 
(1)

S  and 
(2)

S  respectively.  

 If the systems have interacted in the past (before time 0t ) 
(1)S  and 

(2)S  are 

generally logically dependent - knowledge in relation to one system (or in relation to its 

                                                 
* The most common particle potentials are those associated with electromagnetic fields in which case 

)( AvA  Vt  is the Lorentz force. (See Appendix C.) However, we leave open the 

possibility also of non-electromagnetic particle potentials of both the scalar and vector variety. 
† If the particles are of the same kind and come so close as to be indistinguishable on account of the 

‘principle of indistinguishability of identical particles’ (in section 3.5), we can no longer consider either 

particle to constitute an ‘isolated system’ even if the particles are known not to interact with each other. 
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sample space) is also knowledge in relation to the other. But if our knowledge in relation 

to 
(1)S  is pure and our knowledge (simultaneously held) in relation to 

(2)S  is pure then the 

law of absolute logical independence under pure knowledge (see section 3.7 of Chapter I) 

applies and 
(1)S  and 

(2)S  must be logically independent. 

 The possibility of combining isolated systems and the closed sample spaces 

associated with them extends naturally to any number of isolated systems in motion. And 

different aspects of one and the same quantum mechanical system (for example the 

orbital motion and the spinning motion of a particle) can sometimes qualify as isolated 

quantum mechanical systems in motion. 

 Finally we note the following important principle. 

 

Principle of short-time isolation 

 

 To a limited extent a quantum mechanical system that interacts with others and/or 

moves in known external fields can be considered to be isolated and free from the 

action of the external fields. This is because actions and interactions take time to 

have an effect on certain properties, so over a short enough time interval, a 

moving system in interaction with another and/or under the action of external 

fields can be considered isolated and free of the external fields as far as those 

properties are concerned. That is, any interaction potentials and external fields 

can be briefly ‘switched off’ leaving those properties unaffected.* 

 

Therefore if we reason only with propositions concerning those unaffected properties 

present during a short enough time period, we can proceed to apply to those propositions 

the laws of probability that would apply if our system was not in interaction with any 

others and not under the influence of external fields.†  

 

 

2.2 Examples of closed sample spaces associated with isolated quantum mechanical 

systems in motion 

 

Single particle in an external potential field 

 

 With regard to the orbital motion (over a specified period of time) of a single spin 

zero particle in a known scalar and/or vector potential field, the set of all propositions 

claiming properties of its position and momentum during the specified period form a 

closed sample space we denote as rS . Each atomistic proposition of this sample space 

claims a specific history of the particle position and the particle momentum over the 

specified time period. We then have, in rS , propositions that are disjunctions of the 

                                                 
* Which properties are unaffected will be part of our general knowledge G . It would seem in fact that all 

the most common basic properties like particle positions, particle momenta and the z  components of 

particle spin, are in this category, though quantum mechanical acceleration (as defined on p.56 of [12]) 

evidently is not.  
† In the limited context under discussion, our general knowledge regarding the interactions and external 

fields is then redundant. 
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atomistic propositions, for example the proposition claiming just that the particle 

occupies a certain position at a certain time during the time period, and the proposition 

claiming just a certain value for the particle momentum at a certain time during the time 

period, and so on.  

 If there is no external field (so the particle moves freely) or if there is only a 

uniform external scalar and/or vector potential field, the components of motion of the 

particle in each of three mutually perpendicular directions x , y  and z  qualify as 

motions of ‘isolated’ quantum mechanical systems. Motion in the x  direction for 

example is motion under the x  component of the vector potential and under one-third of 

the 3-D uniform scalar potential. (The action of the (uniform) scalar potential is equally 

shared between the three component motions (as shown in section 3.1 of Chapter IV).) 

The set of all propositions concerning the particle position and momentum in the x  

direction during the specified time then form a closed sample space xS . And similarly 

there are closed sample spaces yS  and zS  associated with the position and momentum in 

the y  and z  directions. These closed sample spaces can be combined to form the closed 

sample space zyx SSS  associated with the motion of the particle in 3-D space, zyx SSS  

being the same as sample space rS  defined above.  

 If the particle has spin (and therefore an associated magnetic moment*) and moves 

in a uniform (possibly time dependent) external magnetic field†, the orbital motion has no 

effect on the spinning motion so the spinning motion of the particle can be considered as 

an ‘isolated quantum mechanical system in motion’, isolated, that is, from its orbital 

motion. And the set of all propositions concerning the spinning motion relative to fixed 

Cartesian coordinate systems in a specified time interval form a closed sample space S . 

Similarly, since the spinning motion has no effect on the orbital motion the orbital motion 

can be considered as an ‘isolated quantum mechanical system in motion’, isolated, that is, 

from its spinning motion. And the set of all propositions concerning the orbital motion 

over the same time interval also form a closed sample space 
rS . Thus the set of all 

possible propositions concerning the z  components of spin and the orbital motion in the 

same time interval form a closed sample space SSr . 

 

Two particle system 

 

 With regard to the orbital motions, in a specified time period, of two 

distinguishable (spin zero) particles possibly moving in their own external potentials 

and/or interacting through an internal system potential, the set of all propositions 

concerning the particle positions and momenta in the specified time period form a closed 

sample space 
21

S rr .  

 Formally we can write 
2121

SSS rrrr   were 
1

Sr  and 
2

Sr  are the separate sample 

spaces of propositions about the positions and momenta of particle 1 and particle 2 

respectively in the same time period. If the particles are not interacting with each other 

                                                 
* We assume a particle with non-zero spin always has a non-zero magnetic moment. 
† i.e. in an electromagnetic vector potential whose curl is at any time uniform in space. This vector potential 

may affect the orbital motion if the particle is charged. 
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1
Sr

 and 
2

Sr
 are also closed and probability rules for the combinations of closed sample 

spaces can be applied. As explained in section 2.1, those rules can also be applied, for a 

short enough time period, when the particles interact through an internal system potential 

because the properties of position and momentum are, for short enough times, unaffected 

by switching off the system potential.  

 

 

2.3 Examples of bases in the above sample spaces 

 

With regard to the sample space 
rS  (of section 2.2) for orbital motion of a particle under 

the action of a known external potential, the set of all propositions claiming that, at a 

certain moment in time, the particle lies in one of the infinite number of equal cubical 

volume elements dV  filling space and represented by dxdydz in any fixed (Cartesian) 

coordinate system constitutes a basis. The same set of propositions referring to another 

time during the specified time period constitutes an alternative basis. As does the set of 

all propositions claiming that at that time (or at another time) the particle momentum lies 

in one of the infinite number of equal cubical volume elements p
3d  ( zyx dpdpdp ) filling 

the momentum space associated with the coordinate system. 

 With regard to the sample space xS  (of section 2.2) relating to the x  component 

of the particle motion, the set of all propositions claiming that, at one moment in time 

during the specified time interval, the x  component of position of the particle lies in one 

of an infinite number of equal line elements dx  filling the x  axis constitutes a basis. 

Similarly, with reference to the same coordinates there are bases of propositions of the 

kind ‘ y  in dy ’ or ‘ z  in dz ’ at that time in the sample spaces yS  or zS  for the motions 

in the y  or z  directions respectively. These three bases may be combined to form (in 

sample space zyx SSSS r
) a basis  the propositions of which claim ‘particle is in dV ’ at 

one moment in time (where dxdydzdV  ). 

 If the particle has spin s , then with regard to the sample space S  (of section 2.2) 

for the spinning motion of the particle, the set of all propositions claiming that at one 

moment in time the component   of spin along the z  axis of a fixed Cartesian 

coordinate system has one or other of the possible values ssss ,1,...,1,   constitutes 

a basis. The same set of propositions referring to another time in the specified time period 

or to another fixed Cartesian coordinate system constitutes an alternative basis. When the 

particle has an associated magnetic moment and moves in a uniform (possibly time 

dependent) external magnetic field one of the above propositional bases in S  can be 

combined with one in sample space rS  (of section 2.2) to give a basis for describing our 

knowledge (in the sample space rr SSS   ) of the process of orbital and spinning motion 

of the particle. 

 If the same particle (with its magnetic moment) moves in a non-uniform external 

magnetic field the set of propositions claiming that   has one or other of the values 

ssss ,1,...,1,   at time t  and the particle occupies one or other of the equal volume 
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elements dV  filling space at time t  still constitutes a basis in sample space rS . Here 

)SS(S rr    is closed even though S  and 
rS  are not. 

 Similarly, in sample space 
21

S rr
 (of section 2.2) for the orbital motion of a two 

particle system, where the (spin zero) particles interact with each other and are not 

identical, the set of all propositions claiming that at one moment in time particle 1  lies in 

volume element 1dV  (one of an infinite number of equal cubical volume elements filling 

space) and that simultaneously particle 2  lies in a cubical volume element 2dV  constitute 

a basis. These propositions are fully equivalent to the propositions that claim the 

representative point in the (six dimensional) configuration space lies in volume element 

21dVdV  (one or other of the infinite number of equal cubical volume elements filling 

configuration space).  

 Quantum mechanical systems in motion, closed sample spaces and bases in them 

are many. The above examples are just a few. We know (or learn) from experience which 

components of a quantum mechanical system can sometimes constitute isolated moving 

systems, and then which sets of propositions constitute complete sample spaces (and 

bases in them) and how and when these sample spaces (and the bases in them) may be 

combined to form (closed) sample spaces containing bases suitable for describing any 

pure knowledge of the whole moving system. 

 

 

2.4 Probability distributions and wave functions 

 

Probability distributions that qualify as ‘wave functions’ (see section 3.3 of Chapter I) are 

the same (except for an infinitesimal factor in the case of bases with continuous 

parameters) as the wave functions in the usual quantum mechanical formalism. 

 For example, for a single (spin zero) particle at one moment in time, a pure state 

probability distribution )( YdV  over position in a fixed coordinate system is related to 

the usual wave function )(r , by 

 

dVYdV )()( r         (2.4.1) 

 

where, on the left, dV  = ‘particle is in volume element dV ’ and Y  is our pure (or 

essentially pure) knowledge concerning the particle motion. And on the right r  denotes 

the particle position (or rather the position of dV ).* The square root on the right is clearly 

needed in connection with the required normalisation: 

 

1)()(
22

  dVYdV
dV

r       (2.4.2) 

 

                                                 
* When our knowledge Y  is not necessarily pure )( YdV  still takes the form (2.4.1) and (2.4.2) still 

applies but the phase or argument )(r  of )(r  may no longer be determinate. 
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Note that we will continue to use the term ‘wave function’ for functions (like )(r  in 

(2.4.1)) that are called wave functions in the usual formulation of quantum mechanics, or 

sometimes, when appropriate, we will call them ‘probability densities’ not forgetting they 

must be multiplied by the square-root of the volume element of configuration space to 

turn them into (complex-valued) probabilities. 

 

 

3. Physical laws of quantum mechanics 

 

3.1 Law of continuous motion  

 

Particles move continuously in space always taking some time to traverse a 

distance. They cannot pass from one point to another infinitely fast. So the 

distance moved by a particle in a non-zero but short enough time   is for certain 

less than any pre-assigned distance  . 

 

 

3.2 Laws of potential action 

 

With regard to the orbital motion of particles we claim the following laws of potential 

action. 

 In relation to particle positions in fixed space as functions of time, we claim the 

‘first law of potential action’: 

 

First law 

 

The orbital motion of a particle under the action of an external scalar potential 

(specified by a function ),( tV r  of time t  and position r  in a fixed coordinate 

system) is different from its motion under no such potential. In any short time 

interval t  to dtt   its motion is dependent upon the local potential (i.e. on the 

value of ),( tV r  at the position occupied by the particle, zero potential having no 

effect on the motion) but it is not dependent on the values of ),( tV r  at other 

places or on the local gradient (first spatial derivatives) of the potential or on the 

time derivative of the potential (or on higher spatial and time derivatives of the 

potential) during the time interval.* Nor is it dependent on values of ),( tV r  

anywhere at times after time dtt  . It may however be dependent on values of 

),( tV r  at positions r  that (given our knowledge of its motion) the particle might 

have occupied before time t .† 

                                                 
* That is, the effects of the momentary local higher (spatial or temporal) derivatives of ),( tV r  are of order 

2dt  or higher, while the order of the effect of the momentary local value of ),( tV r  is of order dt . 
† This latter dependence seems evident, for example, in an interferometer for an electron (where the mirrors 

(‘half-silvered ’or ‘ordinary’) are potential barriers). If the ordinary mirror in one path (say mirror M in 

Figure 1.3.1 of Chapter XII) is removed, the electron may pass (via the other path) through the final (half-

silvered) mirror in a direction it never takes when mirror M is present. We seem here to have delayed 
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This law generalises to a system of particles under the action of any system potential 

specified by a function ),,...( 1 tV Nrr  of time t  and the positions Nrr ,...1  of all the particles 

in a fixed coordinate system (i.e. the position of the representation point in configuration 

space). The orbital motions are, in any short time t  to dtt  , affected by the value of 

),,...( 1 tV Nrr  at the position occupied by the representation point, but not by the value of 

),,...( 1 tV Nrr  at other positions or by the local gradient (first spatial derivatives) of the 

potential in configuration space* or by the time derivative of the potential (or by higher 

spatial and time derivatives of the potential) and not by ),,...( 1 tV Nrr  after time dtt  . It 

may however be affected by the values of ),,...( 1 tV Nrr  at points of configuration space 

that might have been occupied before time t . 

 

First law (cont.) 

 

The orbital motion of a particle under the action of an external vector potential 

specified by a function ),( trA  of time t  and position r  relative to fixed 

coordinates is, in any short time t  to dtt  , affected by a non-zero value of 

),( trA  at the position occupied by the particle but not by ),( trA  at other places 

and not by the local gradient (first spatial derivatives) of ),( trA  or by the time 

derivative of ),( trA  (or by higher spatial and time derivatives of ),( trA ) nor by 

the form of ),( trA  after time dtt  . It may however be affected by ),( trA  at 

places where the particle might have been before time t .  

 

 

With regard to effects of the motion of sources on the fields they generate we claim ‘the 

second law of potential action’: 

 

Second law 

 

Let ),( tVi r  and ),( ti rA  be the external scalar and vector potential fields of 

(macroscopic) sources acting on the 
thi  particle of a quantum mechanical system. 

 

If the source of ),( tVi r  is moved at constant velocity v  relative to fixed space but 

still occupies the same position as before at time 0t , and if the source is 

unaffected internally, then its field moves along with it, i.e. ),( tVi r  changes to 

),( ttVi vr  . 

                                                                                                                                                 
action by the potential of mirror M (at the time the electron might have struck it) on the motion of the 

electron through the final half-silvered mirror. (For an alternative view see section 4 of Chapter XV.) 
* This situation is quite different from the situation in classical mechanics, where it is of course precisely 

the first spatial derivatives of the potential (the forces) that affect the motion. In quantum mechanics 

potential is therefore more fundamental than force. Adding a constant to the potential in quantum 

mechanics can make a difference to the particle motions whereas adding a constant to the potential in 

classical mechanics makes no difference at all to particle motions. 
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If the source of ),( ti rA  is moved at constant velocity v  relative to fixed space, 

occupies the same position as before at time 0t , and is unaffected internally, 

then its field too moves along with the source, so that ),( ti rA  changes to 

),( tti vrA  , but the source also gives rise to an additional scalar potential field 

),( tVi r  of value ),(. tti vrAv   acting on the 
thi  particle.* 

 

 

Finally, with regard to the rate of increase of the momenta of particles relative to a fixed 

coordinate system we claim ‘the third law of potential action’: 

 

Third Law 

 

 Relative to a fixed coordinate system, the momentum of a particle in an external 

scalar potential (specified by a function ),( tV r  of time t  and position r  in our 

coordinate system) changes as follows. In any short time interval t  to dtt   the 

momentum is increased at a rate proportional to the momentary local gradient 

),( tV r  of the potential at the position occupied by the particle, a spatially 

uniform potential having no effect on the momentum. But the momentum is not 

dependent on the value of ),( tV r  or on its gradient at other places or on higher 

spatial derivatives of ),( tV r  at the position occupied by the particle or on the time 

derivatives ),( tV r  of any order. Nor is it dependent on values of ),( tV r  

anywhere at times after time dtt  . It may however be dependent on values of 

),( tV r  at positions r  that (given our knowledge of its motion) the particle 

might have occupied before time t . 

 

This law, like the first, generalises to a system of particles under the action of any system 

potential specified by a function ),,...( 1 tV Nrr  of time t  and positions Nrr ,...1  of all the 

particles in a fixed coordinate system (i.e. the position of the representation point in 

configuration space). Each particle momentum (relative to the coordinate system) is in 

any short time t  to dtt   increased at a rate proportional to the local gradient of 

),,...( 1 tV Nrr  with respect to the corresponding particle (vector) coordinate, but the 

particle momenta are not affected by the value of ),,...( 1 tV Nrr  itself or by spatial 

derivatives of ),,...( 1 tV Nrr  higher than the first and not by ),,...( 1 tV Nrr  after time t  . 

They may be affected by the respective gradients of ),,...( 1 tV Nrr  at points of 

configuration space that might have been occupied before time t . 

                                                 
* If a second boost v  is given to the source of the vector potential, this scalar potential (like external scalar 

potentials in general) changes to ),(. ttti vvrAv   and a new scalar potential ),(. ttti vvrAv   is 

added. The result is the same as that of a single boost vv  . Note that the second law of potential action 

can, in the case of electromagnetic potentials, be derived from electromagnetic field theory (see Appendix 

C). 
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Third law (cont.) 

 

 Relative to a fixed coordinate system, the momentum of a particle under the 

action of an external vector potential specified by a function ),( trA  of time t  and 

position r  relative to the fixed coordinates is, in any short time t  to dtt  , 

increased at a rate proportional to the momentary first spatial derivatives of 

),( trA  at the position occupied by the particle at time t . Its rate of increase is not 

affected by the local value of ),( trA  itself or by the local spatial derivatives of 

),( trA  higher than the first, or by the time derivatives of ),( trA  (of any order) 

nor by the form of ),( trA  after time dtt  . It may however be affected by the 

spatial gradients of ),( trA  at places where the particle might have been before 

time t . 

 

 

3.3 Fundamental unit of action 

 

In non-relativistic quantum mechanics there is just one fundamental unit - the unit 

of action   ( Js1005459.1 34 ). 

 

 

3.4 Correspondence principle 

 

Under ‘quasi-classical’ states of pure knowledge of a process in quantum 

mechanics, particles are expected to move (to classical accuracy) in classical 

orbits. And the moduli squared of the probabilities of propositions concerning 

properties with a classical analogue (calculated using the rules of complex-valued 

probability and the physical laws of quantum mechanics and averaged if 

necessary over classically small domains) must be interpretable as classical 

probability distributions over classical properties consistent with the laws of 

classical mechanics and classical probability. 

 

 

3.5 Principle of indistinguishability of identical particles 

 

Except in special cases, it is impossible for us to mark, keep track of, or recover 

the identity of two or more identical particles (e.g. two or more electrons) that 

interact with one another at the quantum level. 

 

Of course when we say ‘impossible for us’ we mean it is impossible using macroscopic 

instruments (natural or manmade) to project a macroscopic image that would enable us to 

keep track of identical particles or recover their identity during or after their interaction at 

the quantum level. In special cases some distinctive features of the particles (e.g. their 

(different) spin components in a certain direction) may be known to us and may be 
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known to remain constant during interaction, then measurement of these at any time 

during or after the interaction could enable us to learn which particle was which.  

 

 

3.6 Assumption of natural ordering of particles and systems of particles 

 

It is supposed that nature herself, so to speak, can and does keep track of all particles 

(including identical particles) even if they interact at the quantum level without 

maintaining what we could recognise as distinctive features. So she always ‘knows’ 

which is which. 

 We also suppose that particles and systems of particles are (once and for all time) 

ordered or numbered by nature in a random way (i.e. in a way completely unknown to 

us).*  

 We do not know the ordering scheme and there is no way we can learn it, but in 

connection with non-identical particles or systems, claiming one particular ordering 

scheme (rather than another) never leads to disagreement between theoretical predictions 

and experimental results.  

 In the case of identical particles or identical systems it is possible to claim to 

know the natural order of them only in connection with processes during which the 

particles or systems remain clearly distinguishable throughout (on account of their 

spatial separation for example). In that limited context claiming one particular ordering 

scheme (rather than another) never leads to disagreement between theoretical predictions 

and experimental results. 

 

 

3.7 Bosons and fermions and the inter-penetrability of all particles 

 

Particles are divided into two classes called ‘bosons’ and ‘fermions’ according as their 

spins are integral (have one of the values ...,2,1,0 ) or half-integral (have one of the 

values ...,
2

5
,

2

3
,

2

1 ).  

 Any number of particles (whether or not some are identical) may occupy the same 

infinitesimal volume element of space regardless of their z  components of spin. So the 

probability of this happening is never zero for physical reasons. It is zero in the case of 

identical fermions whose z  components of spin (relative to a fixed coordinate system) 

are known to be equal, but this comes about for logical reasons rather than physical 

reasons as will be explained in Chapter X. 

 

 

 

 

 

                                                 
* This natural numbering (or ordering) is needed to allow the possibility of a natural ordering of the 

propositions of bases concerning spin components of more than one particle and to demonstrate the 

symmetry properties of wave functions for systems of particles some of which are identical. 
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3.8 Lack of knowledge with regard to fixed space and background fields, and the        

quantum mechanical principle of equivalence 

 

As in classical mechanics, we claim that there is no way we can know whether or not a 

particular inertial frame is at rest with respect to fixed space.* No experiment can settle 

such a question. We are also ignorant with regard to the values of the background fields 

0V  and 0A  that may be present in fixed space and we claim that no experiment can reveal 

their values. 

 Therefore, without contradiction with experiments, we may assume that any 

particular inertial frame O  is at rest and take any particular values 0V  and 0A  for the 

background fields.† But for future use we lay down the following principle. 

 

Quantum mechanical principle of equivalence 

 

Although we do not know the detailed laws that govern the orbital and spinning 

motions of particles, we claim that under those laws exactly the same motions 

(relative to any coordinate system) could occur if instead of frame O  the property 

of being at rest was held by a frame O  moving at a constant velocity v  with 

respect to O  and additional background fields 0V  and 0A  were present with 

values 0

2

2

1

0 .Avv V  and vA  0  respectively causing an additional scalar 

potential ).( 0

2

2

1
Avv iii mmV   to act on each particle ( im  being the mass of 

the particle) and an additional vector potential vA ii m  to act on each particle 

( im  being again the mass of the particle).‡ 

 

 

3.9 The ‘spinorial’ character of coordinate systems 

 

The group of rotations of a coordinate system, or of any (classical) rigid body, is assumed 

to be the group SU(2) (rather than the group SO(3)). Thus a coordinate system (or any 

rigid body) has two ways of occupying any specific orientation in space. We can get from 

one to the other by making one full turn of the coordinate system (or the rigid body) in 

either direction about any axis. Two full turns of a coordinate system (or of any rigid 

body) about an axis always returns it to the same state. 

                                                 
* Since coordinate frames and particles of large enough mass behave classically, an inertial frame in 

quantum mechanics can be defined, as in classical mechanics, as a system with respect to which any free 

particle of large enough mass remains at rest or moves uniformly in a straight line. 
† Lack of knowledge with regard to fixed space and the background fields is not a consequence of the 

uncertainty principle; therefore we are at liberty to suppose we know which inertial frame is representative 

of fixed space and what background fields are present without violating the uncertainty principle. 
‡ The quantum mechanical principle of equivalence resembles the principle of equivalence in classical 

mechanics (employed in general relativity). The latter principle asserts that a uniformly accelerating 

coordinate system can be considered to be at rest provided a certain extra uniform gravitational field is 

supposed to occupy all space. Here too exactly the same particle motions (relative to any coordinate 

system) take place (under the same initial conditions).  
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 We suppose there is meaning to the question as to whether or not two coordinate 

systems (or similar rigid bodies) in the same orientation occupy that orientation in the 

same way. If they do not, a full rotation of either ensures they do. Coordinate systems (or 

similar rigid bodies) that move and turn around so they may have any positions in space 

but always the same orientation as each other maintain the sameness or difference in the 

way they occupy their orientations.  

 Suppose two coordinate systems (or similar rigid bodies) have initially the same 

orientation as each other. They may occupy that orientation in the same way or in a 

different way – they may be in a state of sameness or difference in that regard. Suppose 

they then move and turn around in any manner (independently of each other) but finally 

have again the same orientation as each other (possibly an orientation different from the 

initial one). Then it is possible to apply a test (we will call it the ‘band test’) to see 

whether or not they come to occupy their final orientation in the same state of sameness 

or difference as applied initially. In the band test the two coordinate systems (or similar 

rigid bodies) are initially joined by a flexible band (for example an elastic neck tie) one 

end of which is rigidly attached to one body and the other end of which is rigidly attached 

to the other body. If, and only if, the state of twist of the band (modulo slipping the band 

over either body any number of times) is ultimately the same, the bodies have returned to 

the same state of sameness or difference with regard to the way they occupy their 

common orientation (see p. 205 of [11]). 

 

 

3.10 Absence of observable consequences of a full rotation of coordinates 

 

We cannot know, on any particular occasion, whether coordinate systems of the same 

orientation occupy that orientation in the same way or not, but we are at liberty to assume 

they do or do not as we please. Then if the coordinate systems are moved and turned 

around we should of course use the band test (or its equivalent) to determine if they are 

occupying the same orientation in the same way on a different occasion. But even if we 

neglect to apply the band test and become unsure at a later time whether two parallel 

coordinate systems are occupying their common orientation in the same way or not and 

have to guess, it will not matter. That is, there are no observable consequences that would 

reveal a wrong choice.*  

 

 

3.11 The isotropy of space, the homogeneity of space and time, time reversal and 

inversion 

 

Consider the quantum mechanical motion of a system of particles moving under the 

action of an internal system potential, external potentials due to macroscopic sources, a 

background scalar field 0V  and a background vector field 0A . We do not know the 

detailed laws governing the motion of the particles, but in the absence of a background 

                                                 
* Lack of knowledge of the way coordinate systems occupy their orientations is not a consequence of the 

uncertainty principle. We are thus at liberty to suppose we know whether parallel coordinate systems 

occupy their common orientation in the same way or not without violating the uncertainty principle. 
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vector field, i.e. with 00 A , or equivalently with additional (unchanging) vector 

potentials applied by us to cancel out the action of 0A  on each particle, we suppose  the 

following laws hold good.  

 

Law of isotropy of space and homogeneity of space and time  

 

For every possible macroscopic source history and every possible motion of a 

particle system (in the fields of the sources) relative to a certain fixed Cartesian 

coordinate system, an identical source history and system motion relative to any 

other fixed Cartesian coordinate system is a possibility. (Here we allow the zero 

point in time also to be different in the two coordinate systems.)*  

 

The motion of the particle system may include spinning motion of the particles as well as 

orbital motion of them. Then both the orbital and spinning motions of the particles are the 

same relative to the respective coordinate systems. So the yx,  and z  components of 

position of each particle are the same functions of time, and the z  components of spin of 

each particle are the same functions of time in the respective coordinate systems. Because 

of this, we have no reason to attach special significance to any particular (fixed) 

coordinate system and this is what we mean when we say that space is homogeneous and 

isotropic and time is homogeneous.† 

  

Law of time reversal 

 

Relative to fixed space, for every possible macroscopic source history and every 

possible motion of a particle system in the fields of the sources a time reversed 

source history and particle motion is a possibility.  

 

Under time reversal some of the dynamical variables with a classical analogue change 

sign while others stay the same. Thus, taking time reversal through the time origin 

( 0t ), the positions and momenta of the 
thi  particle and the internal system potential 

function change as follows 

 

).,,...(),,...(

),()(

),()(

11 tVtV

tt

tt

NN

ii

ii
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pp

rr

       (3.11.1) 

 

                                                 
* Put another way, every particle system together with the macroscopic sources serving it may be advanced 

or retarded in time and bodily translated and rotated to a new location in fixed space and still function in 

exactly the same manner. 
† Of course if a non-zero background vector field 0A  is present and is not cancelled out, space and time are 

still homogeneous but space is no longer isotropic, or only isotropic with regard to rotations about the 

direction of 0A . 
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The ‘time reversed source history’ is one in which the original external scalar and vector 

potential fields ),( tVi r  and ),( ti rA  for each particle and the magnetic field ),( trH  have 

changed as follows.* 
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        (3.11.2) 

 

Under time reversal the z  components of spin in any fixed Cartesian coordinate frame O  

simply change sign. Thus for all i  and in any one coordinate frame O   

 

)()( tt ii  .        (3.11.3) 

 

But it is important to state or claim, as we do, that the spinning motions relative to any 

fixed coordinate frame O  are, under time reversal, exactly the same as the spinning 

motions relative to the coordinate frame O
~

 formed by rotating the coordinate frame O  

through angle   about its y  axis. This is of course consistent with all the z  components 

of spin changing sign, as in (3.11.3), but it says more because it refers to all aspects of the 

spinning motion, which are not (we suppose) captured completely by the values of the i  

in all fixed coordinate frames. 

 Any process time reversed twice is the same as the original process. 

 

Law of inversion 

 

Relative to fixed space, for every possible source history and particle motion an 

inverted source history and particle motion is a possibility.  

 

Under inversion some of the dynamical variables with a classical analogue change sign 

while others stay the same. Thus, taking inversion through the origin of a fixed 

coordinate frame, the positions and momenta of the 
thi  particle change as follows and the 

internal system potential changes accordingly: 

 

                                                 
* If (constant) parts of the ),( ti rA  are used to cancel out the effects of a background vector potential 0A  

we should not of course change the sign of those parts. So the second of (3.11.2) refers to the external 

vector potentials without those parts. In the case of external electromagnetic potentials the time reversed 

forms of iV  and iA  in (3.11.2) follow from the field equations governing the potentials (Appendix C) 

when the source motions and current directions are reversed. And the third of (3.11.2) clearly follows from 

the second since H  is the curl of the electromagnetic vector potential. In the case of non-electromagnetic 

potentials the time reversed forms of iV  and iA  in (3.11.2) must follow when the source motions are 

reversed and certain other internal changes are made to the sources analogous to the reversal of the currents 

in the electromagnetic case. 
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      (3.11.4) 

 

The ‘inverted source history’ is one in which the original external scalar and vector 

potential fields ),( tVi r  and ),( ti rA  for each particle, and the magnetic field ),( trH , 

have changed as follows.* 
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        (3.11.5) 

 

The z  components of spin remain the same on inversion, i.e. for all i  and for all fixed 

coordinate frames 

 

)()( tt ii           (3.11.6) 

 

and all aspects of the spinning motion stay the same as well. 

 Any process inverted twice is the same as the original process. 

                                                 
* Again, we should not of course change the (constant) parts of the ),( ti rA  used to cancel out the action 

of a background vector field 0A . So the second of (3.11.5) refers to the external vector potentials without 

those parts. In the case of external electromagnetic potentials the inverted forms of iV  and iA  follow from 

the field equations governing the potentials (Appendix C) when the source motions and currents are 

inverted. 
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CHAPTER IV 

 

 DERIVATION OF  

THE SCHRÖDINGER EQUATION  

FOR THE ORBITAL MOTION OF A PARTICLE  
 

 

Throughout Chapter IV arguments are conducted in the closed sample space 
rS (of 

section 2.2 of Chapter III) referring to the position and momentum of the particle in a 

certain time period, or sometimes in the component sample spaces xS , yS and zS (of 

section 2.2 of Chapter III) when they are closed. The bases used are the sets of 

propositions claiming one or other particle position at one time or another. 

 

 

1. Derivation of the position/position transformation functions for a free particle 

 

We consider all space to be divided into equal cubical elements r3d  labelled by their 

positions r  in a rest frame and we seek the transformation functions )( 11

3

22

3 tdtd rr  and 

)( 22

3

11

3 tdtd rr . The first of the transformation functions is the probability that at a time 

2t  the particle lies in coordinate volume element 2

3
rd  at position 2r  given the particle is 

known to lie in coordinate volume element 1

3
rd  at position 1r  at time 1t . The second is 

the probability that at a time 1t  the particle lies in coordinate volume element 1

3
rd  at 

position 1r  given the particle is known to lie in coordinate volume element 2

3
rd  at 

position 2r  at time 2t .* The transformation functions have the form  

 

2

3

2211

3

22

3 )(
~

)(
11

rrrr r dttdtd t , 
1

3

1122

3

11

3 )(
~

)(
22

rrrr r dttdtd t .  (1.1)  

 

where )(
~

2211
tt rr  is a continuous differentiable function of 1r , 2r , 1t , and 2t  independent 

of 2

3
rd  and )(

~
1122

tt rr  is a continuous differentiable function of 1r , 2r , 1t , and 2t  

independent of 1

3
rd . 

 The reciprocity of transformation functions gives 

 

  2

3

221

3

11 )(
~

)(
~

1122
rrrr rr dtdt tt  

                                                 
* The times 1t  and 2t  must of course lie in the time period covered by the sample space rS . 
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or 
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t tt
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Denoting the LHS by )( 1122
tt rr  and the RHS (before conjugation) by )( 2211

tt rr  we have 

 

1

3

2222 )()(
~

1111
rrr rr dtt tt  ,  2

3

1111 )()(
~

2222
rrr rr dtt tt  .  (1.2)  

 

where )( 2211
tt rr  and )( 1122

tt rr  are continuous differentiable functions of 1r , 2r , 1t  and 

2t , and are independent of 2

3
rd  and 1

3
rd . So by (1.1) and (1.2) 
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             (1.3) 

 

with  

 

)()( 2211 1122
tt tt rr rr

         (1.4) 

 

We will call )( 2211
tt rr  and )( 1122

tt rr  ‘transformation functions’ even though they are 

only related to the actual transformation functions through equation (1.3). Note that it 

does not matter whether 1t  is earlier or later than 2t . For the sake of being definite 

however we suppose for the time being that 21 tt   .  

 

We are assuming that the particle moves freely i.e. in the absence of any potentials during 

the time period of the sample space and we find the forms of )( 2211
tt rr  and )( 1122

tt rr  

using the method of transformation groups and noting the requirements of 

dimensionality. But first we bring in the initial condition 
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which must hold because the propositional implication 21

30

11

3 tdtd rr   applies in the 

limit 12 tt   on account of the law of continuous motion (see section 3.1 of Chapter III). 

This means 
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)()()()()()( 1222
12

11
zyxt

tt
t 


Rrrrr     (1.5) 

 

where 12 rrR  , where x , y  and z  are the Cartesian components of R , and where the 

delta function )( 12 rr   is the weighted Kronecker delta function 
2

3
1

3 ,

1

1

3 )(
rr

r
dd

d   i.e. a 

function which is zero when 2r  lies outside 1

3
rd , and equal to 1

31 rd  when 2r  lies inside 

1

3
rd .*  

 Now we note that the transformation functions )( 2211
tt rr  and )( 1122

tt rr  must be 

independent of the position of the origin of the fixed coordinate system and of the origin 

of the time coordinate. For under any displacement of the origin of the space coordinates 

and any displacement of the time coordinate origin, the distributions )( 2211
tt rr  in the new 

coordinate system must, by the homogeneity of space and time and the similarity 

principle (section 5.1 of Chapter I), be the same functions as the )( 2211
tt rr  in the original 

coordinates except perhaps for a constant phase factor 
ie  independent of 11tr  and 22tr .† 

But when 12 tt   both )( 2211
tt rr  and )( 2211

tt rr  must be the same (both equal to 

)( 12 rr   as in the RHS of (1.5)) and therefore   can only be zero. 

 

Use of the transformation group of displacements of the coordinate system (or of the 

system itself) in time and space: 

 

 Starting with a fixed coordinate system O  let us make a displacement Δ  of the 

origin of the coordinates and a displacement   of the time origin to give a new 

coordinate system O . Then a time labelled t  in O  becomes a time  tt  in O  and a 

position labelled r  in O  becomes Δrr   in O . We have seen that our 

transformation functions in the original and in the new coordinates must be the same, i.e. 

 

                                                 
* With this definition of the delta function )( 12 rr   we have both normalisation of )( 12 rr  , i.e. 

1)()(
3
2

2
3

1
3 2

3

,

1

1

3

2

3

12  


r
rr

rrrrr
d

dd
ddd  and normalisation of the wave function 

1

3

22
12

11
)( rrr dt
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t


 , i.e. 1)()(

3
2

2
3

1
3

12
11 2

3

1

3
2

,

1

1

3

2

3
2

1

3

22  



r

rrr rrrrrr
d

ddtt
t dddddt . 

† Note that the homogeneity of time is not jeopardised by the existence of the fixed times (say 0t  and 3t ) 

marking the beginning and end of the period covered by the sample space rS . We could if we liked let 

0t  and 3t . But the times 0t  and 3t  are anyway not relevant to the calculation of the 

position/position transformation functions because, as noted in section 3.2 of Chapter I, knowledge of any 

potentials present before time 0t  is redundant, and potentials after time 3t  have no effect. Hence similarity 

applies and gives )( 2211
tt rr =

 i

t et )( 2211
rr  which follows from (5.1.2) of Chapter I in the case of 

common general knowledge (i.e. with jjj GGG  )2()1(
)  j  labelling the propositions 11tr  (or 11

3 td r ) 

and i  the propositions 22tr  (or 22

3 td r ). 
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)()( 2222 1111
tt tt rr rr  . 

 

And since propositions claiming the same event* using different coordinate systems are 

fully equivalent, we have, by the second uniqueness principle (section 5 of Chapter I) that  

 

)()( 2222 1111
tt tt rr rr    

 

where  11 tt ,  22 tt , Δrr  11  and Δrr  22 . Combining these relations we 

get 

 

)(),( 2222, 1111
tt tt rΔr rΔr    

 

which, being true for all   and Δ , implies 

 

),()( 2211
 Rrr Ftt .        (1.6) 

 

where  

 

12 rrR  ,   12 tt  .       (1.7) 

 

 The same result (1.6) follows using the transformation group of displacements   

and   of the system in time and space. Here the problems of finding the probability 

distributions )( 2211
tt rr  and )( 2211

tt
  rr  (where  11 rr ,  22 rr ,  11 tt  and 

 22 tt ) are similar, so those two distributions can differ only by a phase factor 

independent of 11tr  and 22tr . Since when 12 tt   the first becomes )( 12 rr   and the 

second becomes ))(()( 1212 rrrr   the phase factor can only be 1 , so  )( 2211
tt rr  

)( 2211
  tt rΛr  and the form (1.6) follows. 

 

Use of the transformation group of system rotations: 

 

 Let us make a rotation   of the spatial position vectors 1r  and 2r  about an axis û  

passing through the origin of coordinates. By the isotropy of space and the similarity 

principle we have 

 


  i

tt ett )()( 2222 1111
rr rr  

 

where 1r   and 2r   are 1r  and 2r  rotated by   about û , and the phase   is independent of 

11tr  and  22tr , and must in fact be zero on account of the case when 1r  and 2r  point in the 

same direction as û  and )( 2211
tt rr
   and )( 2211

tt rr  are necessarily equal. This shows that 

                                                 
* i.e. occupation by the particle of the same position in fixed space at the same time 
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)( 2211
tt rr  is invariant on rotation of 1r  and 2r  together. Hence F  in (1.6) is invariant on 

rotation of R , and so we can write 

 

)),((exp),(),()( 2211
 RRRrr bicFtt      (1.8) 

 

were c  and b  are real functions of R  and  , c  being positive. 

 

Requirements of dimensionality: 

 

 In (1.8) c  must, by (1.3), have dimensions of length to the power 3 , and b  

must be dimensionless. The only natural constants we have available to meet these 

conditions are the particle mass m  and the unit of action  .* From R ,  , m  and   we 

can form only one dimensionless combination namely 


2mR
 so we must have  

 

)(exp)()()(
22

23

2211 
 



 mR
ig

mR
f

m
tt rr  

 

where 0  since we are assuming 21 tt  , and f  and g  are real functions, f  being 

positive. We can absorb f  into g  by expressing f  as the exponential of a new function 

and allowing g  to be complex. Hence 

 

)(exp)()(
2

23

2211 
 



 mR
ig

m
tt rr       (1.9) 

 

where g  is now a complex function. 

 

Proof of the linearity of the function g : 

 

 Instead of considering the particle motion in 3-D space we can consider the 

independent motions of the projections of the particle’s position on the x , y  and z  axes 

of our (Cartesian) rest frame. The 3-D transformation functions are then given by the 

product of the three transformation functions belonging to the projections. For the 

projection on the x  axis we seek the functions )( 2211
txtx  and )( 1122

txtx  in 

 

21221122 )()(
11

dxdxtxtdxtdx tx , 

12112211 )()(
22

dxdxtxtdxtdx tx , and 

 

                                                 
* We assume that m  and   are the only physical parameters that could have any bearing on the free 

orbital motion of the particle. 
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 ))(()( 2211 1122
txtx txtx .       (1.10) 

 

 The transformation group of coordinate displacements in space and time give, in a 

manner similar to the 3-D case, the form 

 

),()( 2211
 xFtxtx  

 

(like (1.6)), x  standing for 12 xx   and   for 12 tt  . 

 The transformation group of rotations in 3-D space, now limited to a rotation 

through angle   about the y  axis, leads to the requirement )()( 2222 1111
txtx txtx   or 

),(),(  xFxF . So ),()( 2211
 xFtxtx  or  

 

),(exp),()( 2211
 xibxctxtx  

 

(cf. (1.8)) where c  and b  are real functions ( c  being positive). 

 Requirements of dimensionality now give 
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(like (1.9)) where f  is a complex function. Application of (1.10) gives )( 1122
txtx . 

 The transformation functions )( 2211
tyty  and  )( 2211

tztz  must be of the same 

form: 
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where y  stands for 12 yy   and z  stands for 12 zz  . This follows from the similarity 

principle and the fact that )( 2211
txtx , )( 2211

tyty  and  )( 2211
tztz  are all the same 

functions (i.e. )( 12 xx  , )( 12 yy   and )( 12 zz  ) in the limit 12 tt  . 

 By the product rule for wave functions (section 3.7 of Chapter I) we thus have  
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Comparing this with the form (1.9) for the same distribution worked out in 3-D space, we 

see that  
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where 2222 zyxR  . This implies g  is a linear function of its argument, i.e.  
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where A  and B  are complex numerical constants. Hence we arrive at 
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Satisfying the initial condition: 

 

 The initial condition requires 
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. 

 

By Corollary 1 of Representation 1 in Appendix B, this is indeed possible provided (B.8) 

and (B.3) hold, i.e. provided 
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where the power to one-half function is defined as in Appendix A. Hence (1.11) becomes 
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Orthonormal requirement: 

 

 The transformation functions )( 11
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3 tdtd rr  must be orthonormal, i.e.  
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Therefore, by the first of (1.3) the distribution in (1.14) must satisfy 
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or )( 2211
txtx  must satisfy 
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Substituting the x  component part of (1.14) in (1.15) gives the requirement 
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Using result (A.1) of Appendix A to evaluate the integral, (1.16) becomes 
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where the existence of the integral requires (see (A.2)) 

 

)0)Im(i.e.(0)Im(   AAA .      (1.18) 

 

 By Representation 1 of Appendix B, we see (1.17) can be satisfied but only if we 

let 0 AA . We therefore have to make A  real in (1.14) or rather regard A  as real 

with an infinitesimal positive imaginary part (to satisfy (1.18)). Or, in (1.14), A  should 

be considered to approach a real value   from a complex value  i  with 0 . 

 For this to work it is necessary that condition (B.3) is fulfilled, i.e. that 
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We easily confirm that (1.19) is satisfied and therefore conclude from (1.14) that  
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where (because the cut for the power-one-half function is taken along the negative real 

axis) 
4323   iei  and only the real numerical constant   remains to be found.* The 

                                                 
* Since we are assuming that m  is the only particle property that can affect the free orbital motion the 

same result (1.20) holds for a particle of any type, i.e.   is the same for all particles. Note that the result 

(1.20) is consistent with the principle of indifference (section 5.2 of Chapter I) as it should be. For under 

knowledge 11tr  and no knowledge regarding the velocity of the particle (other than this is never infinite) 
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transformation function )( 1122
tt rr  is given by the conjugate of the RHS of (1.20). Both 

transformation functions have been derived assuming 12 tt  . But if 12 tt   )( 1122
tt rr  is 

given by the RHS of (1.20) with 1r  and 2r  and 1t  and 2t  interchanged, and )( 2211
tt rr  is 

therefore given by the conjugate of this which is the same as in (1.20). Therefore (1.20) 

holds for 12 tt   as well as for 12 tt  . 

 By (1.20) the modulus of )( 2211
tt rr  remains constant as 2r , so the form of 

)( 2211
tt rr  seems to violate the law of continuous motion (that particles do not move 

infinitely fast). But we are contemplating ideal preparation of the particle to ensure it has 

a definite position at time 1t . As we know, the acquisition of such knowledge almost 

certainly leads to an infinite force acting on the particle at time 1t  causing it to move at 

infinite speed. In practice of course we cannot achieve exact knowledge of the particle 

position at time 1t  and our distribution will only approximately be given by (1.20). But 

we need (1.20) as an expression of the ideal case for use in theoretical arguments. The 

ideal nature of (1.20) is evident from the fact that, on account of the factor 1

3rd  in it, the 

wave function )( 11

3

22

3 tdtd rr  (given by the first of (1.3)) is, even without the (expected) 

factor 2

3rd , infinitesimal throughout all space. 

 

 

2. Derivation of the Schrödinger equation for a free particle 

 

However it comes about, any pure knowledge Y  of the particle’s motion may be 

represented by a probability distribution )( 11

3 Ytd r  over the propositions (the 

propositional basis) claiming the particle is in one or other of the many volume elements 

1

3
rd  at time 1t  during the motion; or equivalently by the wave function )( 11tr  in 

 

1

3

1111

3 )()( rrr dtYtd   

 

where 1r  is the position coordinate of the volume element 1

3
rd , and 1t  the time. 

 Alternatively our pure knowledge can be represented by another probability 

distribution relating to another time 2t  i.e. by 

 

                                                                                                                                                 

we are indifferent with regard to where it is at time 2t  so 
2

22 )(
11

tt rr  should be independent of 12 rr   

and it is. And since there is a natural distance, namely mtt )( 12  , enabling us to distinguish 

absolutely different distances from the known initial position 1r  we are not absolutely indifferent with 

regard to particle position at time 2t  so )( 2211
tt rr  should not necessarily be independent of 12 rr   

and it is not. However we are unable to absolutely distinguish positions on the sphere 

const.12  rr , so )( 2211
tt rr  should be constant over such a sphere, and it is. 
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where 2r  is the position coordinate of the volume element 2

3
rd ,  and 2t  the other time.  

 These two distributions are related by Feynman’s law: 
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so the wave functions are related by 
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where the kernel is the position/position transformation function: 

 

)();( 221122 11
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Of course this kernel contains an unknown constant   (see (1.20)). Later (in section 5 of 

Chapter VI) we will use the correspondence principle to fix this constant at 
2

1 . 

 Now it is well known that (with 
2

1
 ) the kernel in (2.2) (given the form of 

)( 2211
tt rr  in (1.20)) satisfies the Schrödinger equation for a free particle. With   

unspecified it will therefore satisfy the Schrödinger equation with   replaced by 2 , 

i.e. );( 11ttK rr  as given by (2.2) satisfies 
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Therefore, by (2.1) our wave function )( tr  also satisfies the Schrödinger equation with 

  replaced by 2 , i.e. 
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.       (2.4) 

 

So pending the evaluation of  , we have derived the Schrödinger equation for free 

particle motion. It must hold at all times during free motion of the particle under the pure 

knowledge Y . 

 In our interpretation, (2.4) is a logical consequence given the (complex valued) 

probability theory (as an extension of logic) and the little knowledge we have regarding 

the physics of free particle motion – the existence of particle mass (as the only relevant 
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particle property), the existence of one and only one fundamental unit (the unit of action 

 ), the homogeneity and isotropy of space and the homogeneity of time.* 

 From (2.1) we see that our probability density )( 22tr  at 2r  and at a time 2t  not 

much greater than 1t  depends only on our probability density )( 11tr  at points 1r  (at time 

1t ) not far from 2r  i.e. within a distance  

 

m

tt






)( 12
12


rr ,        (2.5) 

 

of 2r , because for 12 rr   much greater than this the kernel in (2.1) rapidly oscillates (see 

the phase factor in (1.20)) so the contribution to the integral in (2.1) becomes small (at 

least for all ‘normal’ distributions )( 11tr ). This is in agreement with the law of 

continuous motion (that particles do not move infinitely fast) which implies that 

knowledge at time 1t  about particle position at places not close to 2r  has less and less 

bearing on )( 22tr as 2t  becomes closer and closer to 1t . Of course in the extreme limit 

12 tt   the kernel becomes the delta function )( 12 rr  . 

 The effective concentration of the kernel in (2.1) for small 12 tt   is reflected in 

the form of the Schrödinger equation (2.4) where in a short period of time t  to dtt   the 

change in   is  

 

dt
m

i
dt

t
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i.e. dependent only on local spatial derivatives of   at time t . 

 

 

3. Derivation of the Schrödinger equation for a particle moving under the action of 

a scalar potential  

 

A particle may move under the action of a scalar potential ),( tV r . This potential has the 

units of energy and a particle at position r  at time t  then has ‘potential energy’ ),( tV r  

which we know may have an effect on particle motion subject to the first law of potential 

action (section 3.2 of Chapter III).  The mechanism of interaction between particle and 

potential is unknown. We know only that in the classical limit the particle should move 

according to Newton’s laws with V  interpreted as the force on the particle. As we 

have said before, in quantum mechanics the potential is more fundamental than in 

classical mechanics. Whereas in classical mechanics ),( tV r  is defined only to within an 

arbitrary additive constant, in quantum mechanics its absolute value has physical 

                                                 
* The derivation of (2.4) given here is formally similar to the derivation (using classical probability) of the 

diffusion equation for tiny particles in a fluid (see Appendix H). 
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significance (see end of section 3.1) so the potential ktV ),(r  where k  is a constant is 

not the same physically as the potential ),( tV r . 

 

 

3.1 Position/position transformation functions in a uniform constant potential  

 

Supposing a particle experiences a uniform constant potential, so VtV ),(r  is 

independent of both r  and t , we seek the effect this knowledge has on our particle 

position/position transformation functions. 

 We may repeat the arguments of section 1 up to and including (1.8) because with 

),( tV r  constant the particle still moves in a homogeneous and isotropic (fixed) space and 

a homogeneous time. We suppose for the time being (as we did in section 1) that 12 tt   

so that   is positive. 

 

Requirements of dimensionality: 

 

 When we come to the requirements of dimensionality however, in addition to   

(dimension TML2 ) and m  (dimension M ) and of course R  (dimension L ) and   

(dimension T ) we have a new quantity at our disposal namely the potential V  

(dimension 22 TML ). 

 From ,,, mR   and V  we can form just two independent dimensionless 

combinations, for example 


2mR
 and 



V
. So in (1.8) we can put 
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where h  and g  are real functions, h  being positive. Absorbing h  into g  by expressing 

h  as e  to the power of a real function of 


2mR
 and 



V
 we therefore have 
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where g  is now a complex function. 
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Linearity of the function g  with respect to its first variable: 

 

 If we work instead with each of the independent motions of the projections of 

particle position onto the Cartesian axes as in section 1, we come up with similar 

expressions for the 1-D component wave functions: 
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where 12 xxx  , 12 yyy  , 12 zzz   and f  is some complex function which must 

again be the same in each case. 

 From (3.1.2) and the product rule for transformation functions we must have  
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Since the RHS of (3.1.1) must equal that of (3.1.3) for all 22 ,, yx  and 2z  ( 2R  being 

equal to 222 zyx   in (3.1.1)) it can only be that g  is linear in its first variable*, i.e. 

 






















 

V
Bzyx

mV
A

VmR
g )(),( 222

2

    (3.1.4) 

 

with 

 






















 

V
B

mxV
A

Vmx
f

3

1
),(

22

.     (3.1.5) 

 

Using (3.1.4) and (3.1.1) gives 
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which differs from the zero potential result (1.11) in that A  and B  may now be complex 

functions of 


V
 rather than complex constants.  

                                                 
* For in general if )()()()( zfyfxfzyxg   we have after differentiation with respect to x  

that )()( xfzyxg   showing g   can only be constant. 
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Consistency with Feynman’s law: 

 

 From (3.1.2) and (3.1.5) the position/position transformation function for the 

projection of particle position onto the x  axis of Cartesian coordinates is 
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 (3.1.7)  

 

where A  and B  are complex functions and 12 tt  . 

 If 3x  is the position at time 3t ( 2t ) we have similarly 
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 (3.1.8)  

 

and 
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 (3.1.9) 

 

But distributions )( 3311
txtx  and )( 2211

txtx are alternative representations of the same 

state of knowledge. They must therefore be related by Feynman’s law thus 
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This imposes a condition on the unknowns in (3.1.6). Substituting the expressions (3.1.7) 

to (3.1.8) for the wave functions and the RHS of (3.1.10) we obtain an integral of a form  
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According to Appendix A, the integral exists only when 0)Im(   and then 
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where the power one-half function is defined in Appendix A. Using this result we find 

that (3.1.10) requires 
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 We may equate the coefficients multiplying 2

13 )( xx   in the exponents in 

(3.1.13)* giving 
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Considering the special case in which  1223 tttt  (so that  213 tt ) this gives  
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for all  , proving that A  must be a constant. 

 In (3.1.13)   is, from (3.1.11), given by  
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so (3.1.13) simplifies to 
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* If the coefficients are denoted P  and Q , (3.1.13) can be written Ke
xxQPi


 2

13 ))((
 where K  is 

independent of )( 13 xx  . It follows that QP   can only be zero. 
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 Writing 0
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showing B  can only be a linear function of its argument, i.e. 
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txtx in (3.1.7) must in fact be of the form 
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we must have 
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where A  and   are numerical constants. This must hold for all 22tx , 11tx  and V . So, 

putting 0V  we see that A  must be the same as the real constant   in (1.20). Also   

must be real otherwise the orthonormal requirement (1.15) would not be satisfied when 

V  was different from zero.  

 By forming the product of the transformation functions for each projection, we 

arrive at the result 
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where   and   are real numerical constants yet to be found.* The transformation 

function )( 1122
tt rr  is of course the conjugate of that in (3.1.15). And, for the same 

reasons as we noted in connection with result (1.20), the result (3.1.15) holds whether 2t  

is greater than or less than 1t . 

 Assuming 0  (and in section 5 of Chapter VI we will find that   is necessarily 

equal to 1 ) the form of (3.1.15) shows that motion of a particle in a constant uniform 

(non-zero) potential proceeds differently from the case of zero potential. Otherwise, 

(having calculable absolute phases) the transformation functions for 0V  and for 0V  

would (by the similarity principle) have to be identical at any time 2t . 

 

 

3.2 Schrödinger equation for a particle moving under the action of a potential 

 

The Schrödinger equation for a constant uniform potential can be derived in the same 

way as for a free particle (section 2). Equation (2.1) remains valid but now the kernel in 

(2.2) is given by (3.1.15) i.e. it now includes the factor 
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So instead of satisfying (2.3), the kernel );( 11ttK rr  in the case of a constant uniform 

potential satisfies 
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And accordingly, under pure knowledge Y , our wave function )( tr  satisfies 
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 The point noted (at the end of section 2) about the effective concentration of the 

kernel );( 1122 ttK rr  within a distance (2.5) for small time intervals 12 tt  , remains 

mathematically valid in the case of the kernel for a particle in a constant uniform 

potential field.  

 This is again reflected in the Schrödinger equation (3.2.2) where at any point in 

space the change in   in a short time depends only on the local values of 2 ,  and 

V . By (3.2.2), after a short time dt  the value of ),( tr  changes thus:  

 

                                                 
* We are assuming particle mass m  and particle potential energy V  are the only particle properties 

affecting the particle motion. This means   as well as   is independent of particle type. (See footnote 

following (1.20).) 
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 The Schrödinger equation for a particle in a general variable and non-uniform 

potential field ),( tV r  can be derived as follows. Suppose we hold pure knowledge Y  

relating to the particle motion from which we can infer that a particular wave function 

),( tr  applies at time t . Suppose knowing ),( tr  everywhere at time t  we set 

ourselves the problem of calculating ),( tr  inside a small volume element dV  any short 

time dt  later. For this purpose we form the sample space 
rS  of propositions regarding 

particle motion from time t  onwards. Let Vd   be a small volume element enclosing dV . 

 We know, from the first law of potential action, that the motion of the particle 

between times t  and dtt  , should it be in dV  at that time, is affected by the value of the 

potential ),( tV r  in Vd  , but not by the spatial or temporal derivatives of ),( tV r  in Vd   

nor by the potential ),( tV r  outside Vd   between times t  and dtt   nor by ),( tV r  

anywhere at future times. It may be affected by the potential ),( tV r  at positions the 

particle may have occupied at earlier times, but since we have pure knowledge Y  in rS  

(expressed by ),( tr  at time t ), knowledge of ),( tV r  at earlier times is redundant (see 

section 3.2 of Chapter I).*  

 We know that the particle does not move infinitely fast so that our knowledge 

),( tr  regarding particle position at time t  for r  outside the small volume element Vd   

enclosing dV  is, for our purpose, superfluous. Therefore our problem is similar to the 

one in which the potential is (from time t  to time dtt  ) constant in time and space and 

equal to the local value of ),( tV r  at the position of dV  and at the time t  in question. In 

that case (3.2.3) holds for the change in ),( tr  over any short enough time. So by the 

similarity principle, for r  in dV  and after any short time dt  
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where   is a real constant independent of dt . But for 0dt  we must have 

),(),( tdtt rr   so that   can only be zero and ),( tr  must satisfy 
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in any short enough time interval. Being valid for any short enough time interval, and in 

any volume element dV , (3.2.5) is valid for all times and positions in space and (except 

                                                 
* It is still quite possible that the motion after time t  is dependent on ),( tV r  at earlier times. It is just that 

we do not need to involve earlier values of ),( tV r  in our present logical argument. The effect of ),( tV r  

at earlier times is if you like already incorporated in the form of the wave function ),( tr  at time t . 
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for the values of the numerical constants   and  ) we have established the Schrödinger 

equation for a particle moving under the action of a general scalar potential.* 

 In section 5 we will establish the relation  2  between   and   . The correct 

numerical value of   (namely 
2

1
 ) will be established in section 5 of Chapter VI.  

 

 

4. Case of particle motion under the action of a vector potential 

 

The derivation of the Schrödinger equation in the case of a vector potential (or of a 

combination of vector and scalar potentials) proceeds in a very similar way to the case of 

a scalar potential. We suppose both kinds of potential are present and start by finding the 

transformation function )( 2211
tt rr  when the potentials are constant in space and time. 

 

 

4.1 Position/position transformation functions in uniform constant vector and scalar 

potentials 

 

The homogeneity of space and time again leads to the form 
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as in (1.6) but now rotational invariance is present only for rotations of R  about an axis 

parallel to A . This means we can write† 
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and for now we assume (again) that 0 . We have in (4.1.2) the form of )( 2211
tt rr  as a 

function of R , A  and  , but in (4.1.2), F  may of course also depend separately on V . 

                                                 
* In the usual formulation of quantum mechanics Schrödinger’s equation (3.2.5) is often viewed as a 

fundamental law of motion, giving the evolution of the state of the system and becoming Newton’s second 

law of motion when ),( tr  is a small wave packet and ),( tV r  is slowly changing in space and time. It 

may therefore seem strange that we are apparently able to derive it from general physical assumptions like 

the homogeneity of space and time. But we claim only that ),( tr  represents an evolving probability 

distribution not the evolving state of the system. Thus (3.2.5) relates only to our rational degrees of belief 

regarding particle position at various times given our limited knowledge. It gives, in repeated trials and at 

any one time, expected frequencies of occupation by the particle of volume elements of space; but expected 

frequencies are not actual frequencies (see Appendix F) and in small wave packet cases ),( tr  is not zero 

outside or even far away from the packet, so (3.2.5) in fact leaves open the possibility of any actual motion 

of the particle. It is not a law of motion. 
† Taking R  and A  to originate from the origin of abstract 3-D space, F  must be constant as R  rotates 

about A . Only the configuration of R  in relation to A   in a plane containing R  and A  matters. This 

configuration is evidently fixed by specifying R , A  and the angle   between R  and A , or rather the 

cosine of that angle, (   and   being equivalent). Hence the form (4.1.2). 
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 There are only four independent dimensionless combinations of ,,, ARAR .  

mV ,,  and  , for example  
1

,,
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RA.
VmR





and 

m

A 2

, where 
2222 , AR  AR . 

Hence we can write 
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  RArr     (4.1.3) 

 

in place of (3.1.1).  

 The separate yx,  and z  Cartesian components of the motion take place under 

constant 1-D vector potentials yx AA ,  and zA  respectively.  

 In place of (4.1.1) and for the same reason, we can write for the x  component 

transformation function 

 

),()( 2211
 xFtxtx  

 

where 1212 , ttxxx  .  

 Using the law of inversion and the similarity principle we obtain the relation 

 

)()( 2222 1111
txtx

xx AtxAtx          (4.1.4) 

 

where dependence of the transformation function on xA  is made explicit. This is because 

for every motion of the projection of the particle on the x  axis there is an inverted 

motion (see section 3.11 of Chapter III) with the component xA  of A  also inverted. So 

the similarity principle gives (4.1.4) with a phase factor 
ie  on the RHS independent of 

11tx , 22tx  and xA . The phase   must however be zero because when 021  xx  and 

0xA  both sides of (4.1.4) are for certain the same.  

 It follows from (4.1.4) that as a function of x , xA  and  , F  must have the form* 

),,,( xx AxAxF , i.e. 

 

),,,()( 2211
 xxtx AxAxFtx  

 

in place of (4.1.2). F  might of course depend also on V  (as well as on   and m ) . 

 There are only three independent dimensionless combinations of x , xAx , xA , 

 , V , m , and  , for example, 2mx  are  V  and xAx , hence we can write 

 

                                                 
* F  can depend only on the configuration of the 1-D vectors x  and xA  i.e. on x  and xA  and on the 

relative signs of x  and xA  or on the sign of xAx . 
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in place of (3.1.2). The product of these must return us to )( 2211
tt rr  in (4.1.3), giving us 

the identity 
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RA  must be a linear function of its first, third and 

fourth variables.* So in place of (3.1.4) and (3.1.5) we have 
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and 

 

                                                 
* Thinking of f  and g  as functions of zyx ,,  and zyx AAA ,,  (and numbering some equations (1), 

(2),…etc.) we have 

),,(),(),(),( 222222222 cbaczbyaxzyxgczzfbyyfaxxf   (1)  

where cba ,,  stand for zyx AAA ,, . Putting 0 zy  and differentiating with respect to b we get 

bcbaaxxgbh 2),,()( 2222

3   (2), where we suppose )(),( 2 bhbyyf   as 0y . This 

shows (by independent variation of the variables in 3g  -the first derivative of g  with respect to its third 

variable) that 3g  is a constant (say B ), making g  equal to B  times its third variable plus a function of 

its first and second variables, and kBbbh  2)(  (3), where k  is a constant. Replacing, as we may, the 

f  functions in (1) by functions of 
2a and ax  etc rather than 

2x and ax  etc we can show similarly that 

g  is a constant (say A ) times its first variable plus a function of its second and third variables. Hence 

)()(),,( 22222222 axFcbaBAxcbaaxxg   (4), where F  is some function. So by 

(3), and by putting 0 zy , (1) gives kaxFBaAxaxxf 2)(),( 222   (5). Using forms (4) 

and (5) for g  and f , (1) now gives kczFbyFaxFczbyaxF 6)()()()(   showing F is 

a linear function. Hence g  in (1) is linear in all three of its variables. 
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where CBA ,,  and D  are functions of V  only.  

 Hence in (3.1.10) we should now put 
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where the coefficients  ,,,,  and  , and the function   are 
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where   is 13 tt  , 23 tt   or 12 tt  . 

 Since coefficients ,  and   in (4.1.8) are (by (4.1.9)) independent of xA  they 

remain unchanged as 0xA  and must equal the corresponding factors in (3.1.9), (3.1.8) 

and (3.1.7), i.e. A  is the same function as A  in section 3.1. Similarly the part B  of   in 

the last of (4.1.9) is independent of xA  and remains unchanged as 0xA , so B  is the 

same function as B  in section 3.1. 

 Using the result 
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of Appendix A (where conditions for the existence of the integral are given) we obtain 

from (3.1.10) and (4.1.8) the result 
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                            …(4.1.10) 

 

As in the case of (3.1.13) we may equate the coefficients multiplying 2

13 )( xx   and (now 

also) the coefficients multiplying )( 13 xx   in the exponents on the LHS and RHS of 

(4.1.10). This gives 

 









 ,        (4.1.11) 

 

and cancelling out the exponent terms in 2

13 )( xx   and )( 13 xx  , (4.1.10) reduces to 
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                 …(4.1.12) 

 

 Substituting in (4.1.11) for  ,,,,,  as given in (4.1.9), the first of (4.1.11) 

shows A  must be constant (for the same reason that A  had to be constant in section 3.1). 

In a similar manner the second of (4.1.11) shows C  must be constant. Hence   is 

zero and (4.1.12) reduces to the same equation for the function )(  (involving 

A ( 0

0




i
eA )) as (3.1.13) gave (in (3.1.14)) for the function )( 



V
B  (involving 

A ( 0

0




i
eA )), i.e. 
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Substituting for   using the last of (4.1.9) the terms in B  cancel (the functions B  and 

B  being the same and the constants A  and A  being the same) and (4.1.13) reduces to 
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giving the functional relation )()()()( yDyxDxyxDyx   which with xy   

reduces to )()2( xDxD   showing )(xD  is just a constant D . 

Hence from (4.1.8) and (4.1.9) using the fact that B  is the same as B  in section 

3.1 we arrive at  
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                 …(4.1.14) 

 

where   is the same real constant as in section 3.1 and A , C  and D  are constants 

(possibly complex). We now need to establish that result (4.1.14) can satisfy the 

orthonormal requirement (1.15). 

 Substituting (4.1.14) (with 12 tt   replaced by  ) into (1.15) we get a requirement 

the same as (1.16) except that A  is replaced by A , an additional factor 
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i x
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appears in the integrand and an additional constant factor 
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appears on the LHS. (As   is real the constant term involving   disappears.) Without the 

factor (4.1.15) the LHS of (1.16) therefore becomes 
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Evaluating the integral in (4.1.16) using the result in Appendix A this equals 
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and the integral exists only when 

 

)0)Im(i.e.(0)Im(   AAA . 
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For (4.1.17) times (4.1.15) to equal )( 11 xx   conditions established in Representation 1 

of Appendix B must be satisfied. As in section 1 we need to let 0 AA , i.e. to make 

A  real except for a small positive imaginary part which we let tend to zero. So in the 

limit A  is real and equal to   in (3.1.15). But it is also necessary that the factor 

 





AA

CACA )())((
 

 

in (4.1.17) remains finite as 0 AA . This requires  CC  i.e. C  must be real. 

The last term in (4.1.17) thus vanishes and (4.1.17) becomes )( 11 xx  . So as to not spoil 

this, the constant factor (4.1.15) must equal 1  i.e.  DD  or D  must be real. 

 Replacing the symbol C  by   and D  by  , and forming the product of the 

transformation functions )( 2211
txtx , )( 2211

tyty  and )( 2211
tztz  we thus arrive at the 

following form for the transformation function )( 2211
tt rr : 
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              ……(4.1.18) 

 

where  ,  ,  and   are real numerical constants yet to be found.* The transformation 

function )( 1122
tt rr  is of course the conjugate of the RHS of (4.1.18). And for the same 

reasons as in section 1, the result (4.1.18) holds whether 2t  is greater than or less than 1t . 

 It is clear that (4.1.18) satisfies the initial condition (1.5) as required. This follows 

from Representation 1 of Appendix B (in the case when   is real).  

 Assuming 0  (and we show in section 5 of Chapter VI that   must equal 1) it 

is clear that adding a constant vector (or the gradient of a scalar) to A  alters the 

probability distribution function. So we cannot claim that such a modification to A  

leaves the particle motion unaffected.  

 

 

4.2 Schrödinger’s equation for a particle moving under the action of a general (vector and 

scalar) potential  

 

The Schrödinger equation for a particle moving in constant uniform vector and scalar 

potentials can be derived in the same way as for a particle in a uniform scalar potential 

(section 3.2). An equation of the form (2.1) remains valid but now the transformation 

                                                 
* They are later shown to be 

2

1
,1 , 0  and 1  respectively. (See section 5 of this Chapter and section 5 of 

Chapter VI.) 
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function in (2.2) is given by (4.1.18) rather than by (3.1.15). So the new kernel 

);( 11ttK rr  is related to the kernel );( 11ttK rr  of section 3.2 by 

 

);(),();( 1111 ttKtfttK rrrrr        (4.2.1) 

 

where 
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and we have 

 

KffKK  ,     KffKfKK 222 .2  .  

 

It follows that the new kernel satisfies the differential equation 
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For on substituting for K  in (4.2.3) using (4.2.1) and cancelling out terms related by 

(3.2.1) there remains 
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which is satisfied on account of the fact that (by (4.2.2)) 
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Under any pure knowledge Y  our wave function ),( tr  must clearly satisfy the same 

differential equation as the new kernel does in (4.2.3). So the Schrödinger equation is 

now 
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 As in section 3, on account of the law of continuous motion and the first law of 

potential action, this equation must hold not only for constant uniform potentials V  and 

A  but also for potentials ),( tV r  and ),( trA  varying in any way with position and time. 

 We will establish the necessary relations 12   and  2)4( 2  in the 

next section. The correct values for   and   (namely 21  and 1 ), and therefore 

for   (namely 1 ) and for   (namely 0 ), are established in section 5 of Chapter 

VI.  

 

 

5. Implications of the quantum mechanical principle of equivalence 

 

Consider the motion of a particle of mass m  in the general case where any scalar and 

vector potentials may be present.  

 Let O  and O  be inertial frames, O  moving uniformly relative to O  at velocity 

v  so that at time t  it is displaced from O  by amount tv . We use the same variable t  to 

denote the time in either inertial frame. 

 Suppose we have pure knowledge Y  of the particle motion relative to O  at time 

0t  (when O  and O  momentarily coincide). Taking O  to be at rest we will then have 

a wave function ),( tr  in O  satisfying the Schrödinger equation (4.2.4) in which the 

total vector and scalar potential fields are 
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SA  and SV  being the generally variable potentials due to sources and 0A  and 0V  the 

supposed constant values of the background fields. 

 We may if we wish (see section 3.8 of Chapter III) change our mind and claim 

that O  is at rest and additional background fields 0

2

2

1

0 .Av vV  and vA  0  are 

present. Then any wave function ),(~ tr   in O  satisfies the Schrödinger equation  
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in O  where 
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SA
~

 and SV
~

 being the potentials of the same sources which however now move with 

velocity v  relative to fixed space. By the second law of potential action (section 3.2 of 

Chapter III) SA
~

 and SV
~

  are related to SA  and SV  by 
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when tvrr  .* That is, at any ‘event’ in (classical) space-time  
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In terms of SA  and SV  (5.4) and (5.3) give for the total potentials at any ‘event’: 
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In terms of A  and V  in (5.1), equations (5.5) give at any event 
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the last step following from the first of (5.1). 

 But we have claimed (see section 3.8 of Chapter III) that our above change in 

mind concerning the true rest frame and background field values does not affect the 

possible particle motions relative to any coordinate system. Therefore given our 

knowledge Y  of the particle motion relative to O , the problem of finding the probability 

distribution ),( tr  in O  given O  is at rest is similar to the problem of finding the 

probability distribution ),(~ tr  in O  given O  is at rest and the additional background 

fields are present. This is because for every possible particle motion in the one case there 

is exactly the same possible motion in the other, and our knowledge Y  of the particle 

motion relative to O  is the same in the two cases. Because only our general knowledge is 

different in the two cases, the similarity principle (5.1.6) of Chapter I applies giving  

 

),(),(~ tt rr          (5.7) 

 

for all r  and t .  

 Let ),(~ tr   be our probability distribution in O  under knowledge Y  and 

supposed knowledge that O  is at rest. Then since propositions claiming the same 

physical event are fully equivalent we have by the second uniqueness principle (of 

section 5, Chapter I) that ),(~),(~ tt rr   when tvrr  . Therefore by (5.7) 

 

                                                 
* Here r  denotes the position vector from the origin of O  and r  the position from the origin of O . 
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),(),(~ tt rr          (5.8) 

 

when tvrr  , or, more briefly ~  at any one and the same ‘event’. From (5.8) we 

thus have at any ‘event’ 
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 Now we naturally assume that any knowledge Y  of the particle motion relative to 

O  (which is pure knowledge when O  is at rest) also qualifies as pure knowledge when 

O  is taken to be at rest instead. Hence ~  must satisfy the Schrödinger equation (5.2) in 

O , and we obtain by substitution of (5.6) and (5.9) into (5.2) the following equation for 

),( tr : 
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which on account of the fact that ),( tr  must satisfy the Schrödinger equation (4.2.4) in 

O  reduces to  
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Now this must hold for all v . Equating the coefficients of the second power of v  on both 

sides gives 
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and then the RHS of (5.10) vanishes implying 0
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 . Hence the relations 
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CHAPTER V 

 

DERIVATION OF THE MANY PARTICLE SCHRÖDINGER 

EQUATION  
 

 

1. The case of constant particle scalar potentials 

 

Consider a system of N  distinguishable particles over a certain time period each particle 

moving under the action of its own constant and uniform external scalar potential without 

particle/particle interaction. Let Nrr ,...1  be the positions of particles N,...1  relative to a 

fixed coordinate system. Our knowledge regarding the orbital motion of the particles can 

be separate knowledge concerning the motion of each particle on its own, but when the 

particles have interacted in the past our knowledge is generally inseparable. When 

inseparable, propositions about the orbital motions of each particle are not logically 

independent. But the propositions claiming the point ),...( 1 Nrr  in configuration space 

occupies one or other of equal cubical volume elements )...( 3

1

3

NdddV rr  filling 

configuration space form a basis in the sample space S  of all propositions concerning the 

positions and momenta of all N  particles over a specified time period. Using this basis 

and under pure knowledge Y  of the motion of the system we will have a time dependent 

wave function ),,...( 1 tNrr  where 

 

NNN ddtYtdd rrrrrr
3

1

3

1

3

1

3 ...),,...(),,...(      (1.1) 

 

 Sample space S  is the combination 
Nrr ...SS

1
 of sample spaces 

Nrr S,...S
1

 (of the 

kind described in section 2.2 of Chapter III) for each particle, and since we are presently 

assuming no particle/particle interaction, the sample spaces 
Nrr S,...S

1
 and S  itself are all 

closed. Referring to the position of the point P  in configuration space, position/position 

transformation functions between times t  and t  are therefore the products of the 

position/position transformation functions for the separate particles (see section 5 of 

Chapter II) and the relationship between the wave function at time t  and the wave 

function at time t  is, by Feynman’s law, 
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   (1.2) 

 

where  

 

)()...(),,...( 11,,... 11
ttt NttNt NN

rrrr rrrr        (1.3) 

 

each factor on the RHS of (1.3) being the transformation function for a single particle in 

its constant potential field (given by (3.1.15) of Chapter IV). 
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 As noted in section 3.2 of Chapter IV the transformation function )( titi i
rr   or 

kernel iK  for the 
thi  particle satisfies the Schrödinger equation (3.2.1) of Chapter IV. 

Thus 
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where im  is the mass of the  thi  particle, iV  the constant potential of the  thi  particle and 

2

i  the Laplacian operator in the 
thi  particle space coordinates. The transformation 

function ),,...( 1,,...1
tNtN

rrrr   for given tN
 ,,...1 rr  therefore satisfies the N -particle 

Schrödinger equation 
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where  
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         (1.6) 

 

is the constant system potential. This result follows by direct substitution of (1.3) into 

(1.5) and use of (1.4). 

 Being a linear combination of the ),,...( 1,,...1
tNtN

rrrr   for different tN
 ,,...1 rr , as in 

(1.2), any wave function ),,...( 1 tNrr  (in the case of constant potentials) must also satisfy 

the Schrödinger equation (1.5). 

 

 

2. Case of a general system potential 

 

A system of particles may move under the influence of variable external scalar potentials 

and inter-particle potentials. The system potential is then a function ),,...( 1 tV Nrr . In 

particular it may (as is common) take the form 
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where )( jiijV rr   (equal to )( ijjiV rr  ) is the potential energy between particles i  and 

j , i.e. a known function of the distance between the particles (possibly a different 

function and different kind of potential for each pair of particles). By convention 
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jiV jiij   for,0)( rr        (2.2) 

 

and )( iiV r  is the known potential energy of the 
thi  particle in the external field. The 

)( iiV r  and the )( jiijV rr   may be functions of the time t  also. 

 

The proof that (1.5) holds for any known system potential ),,...( 1 tV Nrr  (of the form (2.1) 

or of more general form) is conducted in a manner similar to the one used in section 3.2 

of Chapter IV in the case of a single particle. 

 Consider first the case of each particle moving in its own constant potential field. 

The change in   in a short time is given by (1.5) and depends, at any point of 

configuration space, only on the local values of 2

i
,   and V  in that space. By (1.5), 

after a short time dt  the value of ),...( 1 tNrr  changes thus:  
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 Now consider the case of any system potential ),,...( 1 tV Nrr . Suppose we know 

),,...( 1 tNrr  everywhere at time t  and set ourselves the problem of calculating 

),,...( 1 dttN  rr  inside a small volume element dV  of configuration space any short 

time dt  later. For this purpose we consider the sample space S  of propositions regarding 

the motion of the representative point in configuration space from time t  onwards. Let 

Vd   be a small volume element of configuration space enclosing dV . 

 We know that the motion of the representation point during time t  to dtt  , 

should it be in dV  then, is affected by the value of ),,...( 1 tV Nrr  in Vd   at that time (but 

not by its local spatial or temporal derivatives at that time) nor by the system potential 

outside Vd   between times t  and dtt  , nor by future values of ),,...( 1 tV Nrr  anywhere. 

Values of ),,...( 1 tV Nrr  somewhere at earlier times might affect the motion of the 

representative point during time t  to dtt  . But since we have pure knowledge in S  

(expressed by ),,...( 1 tNrr  at time t ), knowledge of ),,...( 1 tV Nrr  at earlier times is 

redundant.  

 We know that the particles do not move infinitely fast so that our knowledge 

regarding the position of the representation point at time t  outside the small volume 

element Vd   enclosing dV  is superfluous for our present purpose. Therefore our 

problem is similar to the one in which the potential is constant from time t  to time dtt   

and uniform throughout configuration space and equal to the local value of ),,...( 1 tV Nrr  

at the position of dV  and at the time t  in question. But this means that (2.3) must hold 

also for the change in ),,...( 1 tNrr  over any short enough time even when ),,...( 1 tV Nrr  is 

non-uniform, time dependent and of any form. More precisely the similarity principle 

implies that for Nrr ,...1  in dV  and after any short time interval dt  
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where   is a real constant independent of dt . But for 0dt  we must have 

),,...(),,...( 11 tdtt NN rrrr   so that   can only be zero and ),,...( 1 tNrr  must satisfy 
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     (2.4) 

 

in any short enough time interval.  

 Being valid for any short enough time interval and for any volume element dV  of 

configuration space, (2.4) is valid for all times and positions in configuration space and 

this establishes the Schrödinger equation for a many particle system with a general 

system potential. 

 

 

3. Inclusion of vector potentials 

 

In non-relativistic quantum mechanics there are no inter-particle vector potentials, so we 

have only to include external vector potentials ),( tii rA  for each particle with 0.  ii A  

for each i . 

 The derivation of the many particle Schrödinger equation for a general system 

potential ),,...( 1 tV Nrr  and general external vector potentials may be conducted in the 

same way as in the case of a general system potential. The derivation goes as follows. 

 In the case each particle moves under the action of its own (external) constant 

uniform scalar and vector potential fields the transformation function )( titi i
rr   for the 

thi  particle (given by (4.1.18) of Chapter IV) satisfies the individual Schrödinger 

equation 
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given by (4.2.4) of Chapter IV with the iV  and iA  constants. The transformation function 

),,...( 1,,...1
tNtN

rrrr   for given tN
 ,,...1 rr  therefore satisfies the N -particle Schrödinger 

equation 
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 (3.2) 

 

as can be confirmed by substitution of (1.3) and (1.6) into (3.2) and use of (3.1). As any 

wave function ),,...( 1 tNrr  can be expressed in the form (1.2) it too must satisfy (3.2). 
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 In the case of a general system potential ),,...( 1 tVV Nrr  and general (space and 

time dependent) external vector potentials ),( tii rA  for each particle, (3.2) must still hold 

for the wave function ),,...( 1 tNrr  representing any pure state of knowledge of the 

system’s motion. This follows (as in section 2) from the redundancy (under pure 

knowledge) of the knowledge of earlier potentials, the law of continuous motion, the first 

law of potential action and the similarity principle. 
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CHAPTER VI 

 

MOMENTUM 
 

 

1. Properties of momentum 

 

In relation to the orbital motion of a single particle, whether it moves freely or under the 

action of potentials, there is, axiomatically, at any one time, an internal property called 

‘momentum’ (a vector p  with units -1MLT ) relative to each stationary coordinate 

system. The momentum is not changed if the coordinate system occupies the same 

orientation the other way (see section 3.9 of Chapter III). And, as in classical mechanics, 

at any time t  and under any rotation of the coordinate system about an axis through the 

origin, the Cartesian components of p  transform like the Cartesian components of an 

ordinary vector. But (unlike the situation in classical mechanics), at any one time t , the 

momenta p , p ,… of a particle relative to stationary coordinate systems O , O ,… 

whose origins occupy different points in fixed space, are distinct physical properties.*  

 In the closed sample space rS  (of section 2.2 Chapter III) for orbital motion of a 

single particle, the momentum relative to any one fixed coordinate system is a basic 

property. In the case of a free particle, or of a particle moving under the action of a 

uniform scalar and/or uniform vector potential, the Cartesian components of momentum 

in three mutually perpendicular directions yx,  and z  are basic properties in the 

separately closed sample spaces yx S,S  and zS  (of section 2.2 Chapter III). 

 We now introduce the following law applying at any one time:  

 

The law of constancy of momentum under coordinate displacement 

 

 Let O  and O  be any pair of fixed coordinate systems, the second being displaced 

a distance Δ  relative to the first, then the momentum p  relative to O  and the 

momentum p  relative to O  are always equal. But (with pp  ) the 

propositions ‘ p  in O ’ and ‘ p  in O ’ (claiming the values p  and p  apply in O  

and O  respectively) imply one another with phases of implication that are equal 

to zero only when n 2.Δp  where n  is an integer. 

 

 Now let free orbital motion of a single particle be considered relative to one or 

other of two fixed Cartesian coordinate systems O  and O  the second being displaced a 

distance Δ  relative to the first. Then, as we have said, the particle has, at any one time, a 

momentum p  relative to O  and another (equal) momentum p  relative to O  and either

                                                 
* The momenta p , p ,… relative to O , O ,… must therefore be somehow encoded in the internal 

motion associated with momentum, much as the z  components of spin in coordinate systems of different 

orientation are encoded in the internal motion associated with spin. 
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property may serve as a basis, as may the position r  of the particle relative to coordinates 

O  at the same time. We will seek the transformation functions between p  and p  (the 

‘momentum/momentum transformation functions’) and the transformation functions 

between p  and r  (the ‘momentum/position transformation functions’). The problems of 

finding these transformation functions for different kinds of particle are taken to be 

equivalent. 

 

 

2. Derivation of the momentum/momentum transformation functions for a free 

particle 

 

Dividing momentum space up into equal infinitesimal cubical parts, we seek the 

transformation function )( 33
pp  dd  and its conjugate )( 33

pp dd  . In either of these, 

‘ p
3d ’ is the proposition claiming that ‘relative to O , p  lies in element p

3d  at time t ’, 

and ‘ p3d ’ is the proposition claiming ‘relative to O , p  lies in element p3d  at time t ’ 

O  being displaced by Δ  relative to O .  

 The distribution )( 33
pp  dd  must be proportional to p3d  in order that in the 

normalisation requirement 

 

1)(
3

2
33 

p

pp
d

dd         (2.1) 

 

the LHS becomes an ordinary integral. Similarly the inverse transformation function 

)( 33
pp dd  , the conjugate of )( 33

pp  dd , must be proportional to p3d . So 

)( 33
pp  dd  and )( 33

pp dd   have the forms* 
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dddd
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      (2.2) 

 

and we seek the functions )( pp  and )( pp
  where 

 

  )()( pp pp .        (2.3) 

 

 Of course, when 0Δ , the first and second laws of extreme values (section 2.2.2 

of Chapter I) and the fact that any proposition implies itself with zero phase of 

implication make 

 

                                                 
* We use , for brevity, the same symbol   to denote different functions )( pp  and )( pp

 . 
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This means that in (2.2) 
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 ,       (2.4) 

 

where the delta function is 

 

pp
ppp


 33 ,

3 )1()(
dd

d .  

 

 The functions )( pp  (and therefore the functions )( pp
 ) are universal functions 

of p , p  and Δ  i.e. they are functions independent of the position of the origin of the 

coordinates O  and independent of the time to which p  (and p ) refer. This is because 

the problem of finding the distributions )( pp  relating to fixed coordinates O  and O  at 

a time t  for any number of different displacements Δ  of O  from O , i.e. the problem of 

finding the probabilities )( pΔp   where Δ  is made explicit, is (because of the 

homogeneity of time and space) similar to the problem of finding the distributions 

)(
~

pΔp   relating to any other pair of fixed coordinates O
~

 and O
~
  at any other time t

~
 for 

the same displacements Δ  of O
~
  from O

~
. Hence 

 


  ie)()(
~

pp ΔpΔp         (2.5) 

 

where   is a real constant, i.e. independent of p , p  and Δ , but possibly a function of 

t
~

 and of the position of the origin O
~

.* But for 0Δ , )(
~

pΔp   and )( pΔp   are 

certainly equal (both equal to )( pp   by (2.4)) so in (2.5),   can only be zero. 

 To find )( pp  (where we now drop the Δ  for simplicity) we first note that the 

law of constancy of momentum under coordinate displacement in section 1 gives, by the 

first law of extreme values (section 2.2.2 Chapter I), the necessary form 

 
),()()( Δp

p ppp



 ie        (2.6) 

 

where ),( Δp   is an, as yet, a generally unknown phase – a real differentiable function 

of p  and Δ  satisfying 

 

                                                 
* (2.5) follows from (5.1.2) of Chapter I in the case of common general knowledge (i.e. with 

jjj GGG  )2()1(
) i  labelling propositions p  (or p

3d ) and j  labelling propositions Δp   (or 

Δp 3d ). 
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0),(  Δp   only when  n 2.Δp .     (2.7) 

 

 To help calculate ),( Δp   consider a third fixed coordinate system O   displaced 

a distance Δ   relative to O . Feynman’s law 
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)()()( 333333
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gives the necessary relation 

 

   pppp ppp

3)()()( d        (2.8) 

 

between the representations )( pp   and )( pp
   of the same pure state of knowledge 

(that momentum relative to O   has value p  ). Substituting (2.6) in (2.8) gives 

 

ppppppp
ΔΔpΔpΔp  
 3),(),(),( )(.)()( deee iii  

 

and hence 

 

),(),(),( ΔΔpΔpΔp  . 

 

So ),( Δp  (we now drop the prime on the delta) must be a homogeneous linear function 

of Δ , i.e. ΔpfΔp ).(),(   and hence 

 
Δpf

p ppp
).()()( ie  .       (2.9) 

 

 Now taking the Cartesian coordinate systems O  and O  to have the same 

orientation we could conduct a similar argument for each of the components of 

momentum and hence come up with the forms 
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      (2.10) 

 

where, by the isotropy of space and the similarity principle, g  must be the same real 

valued function in each case.  

 Since the phases in (2.10) must be dimensionless and since we have at our 

disposal only one fundamental physical constant, i.e.  *, we only get non-dimensional 

                                                 
* or   and the particle mass if this should be considered relevant 
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phases by making g  a linear homogeneous function of its argument, i.e. 

xx ppg )(  where   is a real numerical constant.  

 Now )( pp  is the product of the distributions (2.10) and so we arrive at the result  

 
p.Δ

p ppp



 ie)()(        (2.11) 

 

where   is a universal real numerical constant independent of particle type. It follows 

from (2.7) that   can only be 1 . It cannot be m  where m  is an integer greater than 1  

for then ),( Δp , equal to p.Δ  in (2.11), is for certain zero (modulo 2 ) for a value 

of Δp.  not equal to n2  (i.e. for m 2.Δp ).  

 The choice of the value 1  or 1  for   is arbitrary (see section 8 of Chapter I). 

By convention it is taken as 1  and so we finally arrive at the transformation functions 
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       (2.12) 

 

 

3. Derivation of the momentum/position transformation functions for a free particle 

 

Dividing space up into equal infinitesimal elements r3d  labelled by the variable r , we 

now derive the form of the transformation functions )( 33
pr dd  and )( 33

rp dd  in any 

fixed Cartesian coordinate system O , the propositions ‘ r3d ’ and ‘ p
3d ’ referring to one 

and the same time t .  

 In the same way as we derived the forms (2.2) we see at once that  

 

rprpr p

3333 )()( dddd  , prprp r

3333 )()( dddd   (3.1) 

 

where 

 

  )()( rp pr         (3.2) 

 

and both functions )(rp  and )( pr  must have the same units as 23 . 

 We assume the same physical properties of momentum as we did in section 1 and 

find )(rp  using the results of section 2 and Feynman’s law.  

 

First we show )(rp  is a universal function of r  and p , i.e. the same in all fixed 

coordinate systems and at all times. 
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 Under a shift δ  of coordinates we obtain new fixed coordinates O . By the 

homogeneity of space, )(rp  in the new system must (by similarity) be the same function 

to within a constant phase factor. We write this as  

 
 ie)()( rr pp  

 

the prime referring to O . Here   is independent of r  and p  but might depend on δ . 

With p  equal to zero this gives 

 
)(

00 )()( δ
rr

 ie         (3.3) 

 

By the law of constancy of momentum under coordinate displacement, ‘ 0p  in O ’ 
00  ‘ 0p  in O ’. Also if r   in O  represents the same point as r  represents in O  

then rr
00 . So by the second uniqueness principle (section 5 of Chapter I) 

 

)()( 00 rr  , 

  

when δrr  . This gives, by (3.3) with r  replaced by r  , 

 
)(

00 )()( δ
rr

 ie  

 

when δrr  . But when we know just that 0p , there is no way our probability 

density )(0 r  can vary from point to point in space. Because of the homogeneity of space 

and the lack of any special distance or direction in space* we are indifferent with regard 

to claiming particle location in one or other of the (equal) elements r3d . Neither can we 

distinguish different elements r3d  in an absolute manner. By the principle of 

indifference (5.2.2) of Chapter I this means )(0 r  can only be a (generally complex) 

constant, i.e. 

 

const. )()( 00  rr ,        (3.4) 

 

and therefore )(δ  can only be zero. Hence )(rp  is the same function in any fixed 

coordinate system however positioned.  

 Let )(rp  now stand for the transformation functions in the same coordinate 

system O  but at a time   later on. Then the homogeneity of time and the similarity 

principle gives 

 

                                                 
* It is obvious that there is no special direction in space. And there can be no special distance either since no 

quantity of dimension of length can be formed from   alone or from   and the particle mass if this mass 

should be considered relevant. 
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)()()(  ierr pp  

 

where )(  is independent of r  and p  but might depend on   with 0)0(  . But since 

there is no dimensionless combination of   and  *, )(  can only be a numerical 

constant independent of   and because 0)0(   it can only be zero.  

 Hence )(rp  is the same function at any time as well as being the same function 

in any fixed coordinate system. 

 

Next we use Feynman’s law in the form  
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33333333 )()()()(
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dddddddd    (3.5) 

 

where the prime refers to a fixed coordinate system O  displaced from O  by distance Δ . 

In O  we have 

 

rprpr p
 

3333 )()( dddd  

 

and since propositions ‘ r   in O ’ and ‘ Δrr   in O ’ imply one another with zero 

phases of implication 

 

rrΔrrrr 3333 ))(()( dddd   

 

and from (2.2) we have 
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where by (2.12) 
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Hence (3.5) gives 

 





Δp

p

Δp

pppp

Δr

pppΔrprprΔrrr

.

3.33

)(          

)()()()())(()(

i

i

e

dedd



   

 

 

which must hold for all Δ . With Δ  infinitesimal it gives 

 

                                                 
* or of  ,  and the particle mass 
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So )(rp  must be an eigenfunction of 
r



i


 with eigenvalue p . Solving this equation 

gives 
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where )( pk  is a complex function of p  which must be such as to satisfy the orthonormal 

condition  
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where p  now stands for another value of p  in the same coordinate system O . This 

orthonormality condition requires 
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Using the result 
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(see Representation 4 of Appendix B) we have 
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and similarly for the y  and z  components. Forming the product of these and substituting 

the result into (3.6) shows 
23)2()(  pk . So we have the following form for )(rp : 

 

))(.(exp)2()( 23
prprp kii    .     (3.7) 
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 Now we can conduct a similar argument with each of the Cartesian components 

of p  and r  and hence come up with the forms 
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     (3.8) 

 

where, by the isotropy of space and the similarity principle, the real valued (and 

necessarily continuous) functions 21, ff  and 3f  must, apart from an arbitrary additive 

constant, be the same in each case. Since we have at our disposal only one fundamental 

physical constant   and a momentum component in each case*, we only get non-

dimensional phases by making 21, ff  and 3f  real numerical constants.  

 Since )(rp  is the product of the distributions (3.8) we arrive at the following 

forms for )(rp  and )( pr : 
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where  )( 321 fff   is an indeterminate constant phase independent of p  and r .† 

By convention we may choose to take 0321  fff  in (3.8) so long as we make 

appropriate choices of the indeterminate absolute phases of any other wave functions that 

are related to (and therefore not independent of) )(x
xp , )(y

yp  and )(z
zp  (see section 

3.5 of Chapter I). In particular we must then put 0  in (3.9) giving  
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Results (3.9) or (3.10) hold in any fixed coordinate system and at any time, and for any 

kind of particle moving in free space. 

 

 

                                                 
* and the particle mass if this is considered relevant 
† The first of (3.9) is evidently consistent with the principle of indifference. For knowing only p  we are 

clearly indifferent with regard to particle position so that 
2

)(rp  should be constant, and it is. Also, 

when 0p  the existence of a characteristic length p  and direction pp  enables us to absolutely 

distinguish between different position components in the direction pp  so we are not absolutely 

indifferent with regard to such position components and accordingly )(rp  should not necessarily be 

constant in the direction of pp , and it is not. 
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4. The transformation functions under motion in an external field 

 

In any fixed coordinate system and in the presence of any finite (generally non-uniform 

and time dependent) scalar potential field ),( tV r  and/or vector potential field ),( trA , the 

transformation functions )(rp , )( pr , )( pp  and )( pp
  remain the same. This is 

because we may employ the principle of short time isolation (section 2.1 of Chapter III) 

and derive in the same way results (2.12) and (3.9) on account of the fact that properties 

r , p  and p  are unaffected during a short enough time during which the fields ),( tV r  

and ),( trA  may be switched off.* The problems of deriving (2.12) and (3.9) with and 

without the external fields are similar, and since only our general knowledge is different, 

the form of the similarity principle in (5.1.6) of Chapter I applies leaving )(rp , )( pr , 

)( pp  and )( pp
  unchanged. 

 

 

5. Implications of the correspondence principle  

 

The passage to the classical limit of particle motion under the action of general (scalar 

and vector) potentials can be achieved by considering the case of pure knowledge 

represented in the form of wave packets.†  

 Using the transformation functions )(rp  and )( pr  and Feynman’s law, we note 

first, using (3.10), that the general relationship between the wave functions ),( tr  and 

),( ta p  in the coordinate and momentum representations is  
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    (5.1) 

 

i.e. one wave function is always the Fourier transform of the other. 

 The limit of classical motion of the particle on a definite (classical) orbit is 

approached by considering the case where ),( tr  and ),( ta p  have significant values 

only within (classically small) regions of dimensions r  and p  in coordinate and 

momentum space respectively with 

 

 pr .         (5.2) 

 

 

                                                 
* Note that the first of (3.9) cannot be true if ),( tV r  is infinite in some region of space. As we have said 

before, a particle cannot enter such a region so )(rp  should be zero there. The method of calculating 

)(rp  evidently breaks down when ),( tV r  is infinite in some region and exact knowledge of particle 

momentum is evidently not possible then.  
† See section 1 of Chapter XII for the general theory of this. 
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Case of constant potentials 

 

 We first consider particle motion under the action of constant uniform (scalar and 

vector) potentials V  and A . Substitution of the first of (5.1) into the Schrödinger 

equation (4.2.4) of Chapter IV shows that the wave function ),( ta p  in momentum space 

then satisfies the differential equation 
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 The differential equation for ),( ta p  has the solution 
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Hence the first of (5.1) can be rewritten as 

 

prppr
323 ).(exp)0,()2(),( dEtiat         (5.4) 

 

where E  is the function of p  given by (5.3). Let 0r  and 0p  mark the centres of the wave 

packets ),( tr  and ),( ta p . Then, since 0pp  , the integrand in (5.4) is of significant 

value only for values of p  close to 0p  and for short enough times t , the phase Et  is not 

much different in (5.4) from the value tE )( 0p . Hence in (5.4) we can put,  
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Using (5.5) in (5.4) amounts to omission of a remainder term of order mt 2)( 2

0pp   

assuming   in (5.3) is of order 1 . The condition for omitting this remainder in the 

exponent of (5.4) is evidently that  
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0  mtpp    for   p 0pp       (5.6) 

 

and this can hold only for short enough times. Then by (5.5) and (5.3) we have  
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 Using (5.7) in (5.4) we see that 
2

),( tr  is a function of t0vr   (rather than of r  

and t  separately) where 0v  is given by 

 

)
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Therefore, for short times, the wave packet in coordinate space (or rather its density 
2

),( tr ) simply moves as a whole with this constant (group) velocity, i.e. 

)(),( 0

2
tft vrr  .* This is in agreement with the classical law (Newton’s first law of 

motion) which states that the particle moves uniformly in a straight line when the force 

on it (i.e. )(0 AvA  Vt ) is zero. But by the correspondence principle we 

also require, when 0A , that the momentum 0p  (being a property with classical 

analogue) should equal 0vm . By (5.8) this means  

 

21 .         (5.9) 

 

This establishes the value of   in the Schrödinger equation (4.1.4) of Chapter IV†. Using 

the result 12   found in (5.11) of Chapter IV, (5.8) becomes 

 

m

Ap
v


 0

0 .  

 

This is in agreement with the classical relation between particle velocity 0v  and particle 

generalised momentum 0p  in a uniform electromagnetic vector potential‡, the potential 

A  being then cq emA  where emA  is the electromagnetic vector potential and q  the 

particle’s charge (as in (C.3) of Appendix C where emA  is simply denoted by A ). This 

                                                 
* As we have said this holds true only for times satisfying (5.6). During such times the packet still moves a 

distance large compared to its size. At a time 
2

2 pmt   , when (5.6) begins to fail, the packet has 

moved  a distance rpppp ppmmptv  )()2)(()2)(( 00

2

00   and this is 

extremely large compared to r  since 10  pp .  

† Had we chosen to make 1  (instead of 1 ) at the end of section 2, the particle momentum/ 

momentum and momentum/position transformation functions would have then had to have been the 

conjugates of the functions we obtained (and which are normally employed). (In fact all wave functions 

over position or momentum would have then had to have been the conjugates of those we actually employ.) 

The sign of p  would have been different in (5.3) and that of rp.  different in (5.4). Therefore the sign of 

A  would have been different in (5.7). The sign of 0p  in (5.8) would have changed, and we would have 

found that the value of   was 21  rather than 21 . 

‡ See, for example, p.49 of [15] where generalised momentum is denoted by P .  
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suggests that, at least in the case of a constant uniform electromagnetic vector potential, 

what we call ‘particle momentum’ p  in quantum mechanics might be the analogue of the 

classical generalised momentum. We will take up this question fully in section 8. 

 

Case of a scalar potential of uniform gradient 

 

 We can find the correct value for   in the Schrödinger equation (4.2.4) of Chapter 

IV (and hence, through relations (5.11) of Chapter IV, the correct value for   in the same 

Schrödinger equation) by considering particle motion under the external scalar potential  

 

rF.V          (5.10) 

 

where F  is a constant which should be identified with the force on the particle in the 

classical limit. 

 The Schrödinger equation is now 
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Substituting (5.10) for V  and using the first relation in (5.1) for   (on the LHS only) 

this becomes 
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Taking the inverse Fourier transform gives 
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So the differential equation for a  is in this case 
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the gradient referring to momentum space. 
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 We now transform our coordinates in momentum space from coordinates 
pO  

employed so far to coordinates 
pO  moving at velocity v ( F ) relative to 

pO .* That 

is, we put tvpp  . Then ),( ta p  in 
pO  is related to ),( ta p  in 

pO  by 

 

t
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vpp
pp
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and we have at any ‘event’ in momentum space that 
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the last two relations giving 
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 In 
pO  (5.11) therefore becomes 
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with solution 
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So the solution to (5.11) is 

 

                                                 
* Being a velocity in momentum space, v  has the units of momentum per unit time. 
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 Substituting this result into the first of (5.1) we obtain 
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Shifting the origin of integration by tv  (i.e. replacing tvp  by p ) gives 
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Since )0,( pa  and )0,( pa  are the same function of p  we have 
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where 
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 Since we are considering a wave packet, )0,( pa  is very small except when p  is 

close to 0p  and in (5.13) we can approximate g  thus: 
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So in (5.13) 
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the last term vanishing when we take the modulus squared in (5.13). In making the 

approximation (5.14) we are again omitting a remainder term of order mt 2)( 2

0pp   in 

the exponent in (5.13) but this, as we said before, can be neglected under condition (5.6). 

 The form (5.15) for ),(. tg prp   in (5.13) shows that 
2

),( tr  is just a function 

of 
20

2

1
t

m
t

m

Fp
r   so the wave packet in space moves so its centre 0r  follows the 

trajectory 
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m
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Fp
r  . 

 

This agrees with the expected classical trajectory only if   is 1 . And by the relation 

(5.11) of Chapter IV we have finally found the correct values for all the numerical 

constants in the Schrödinger equation (4.2.4) of Chapter IV, namely 

 

0,1,1,21  .      (5.16) 

 

 

6. Laws regarding momentum 

 

In the ‘Case of constant potentials’ in section 5 we showed that under any pure state of 

knowledge Y  of particle motion in constant potentials the wave function ),( ta p  in the 

momentum representation has the general form 
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with E  given by (5.3). With the values of  ,,  and   in (5.16) we have 
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where V  and A  are constants. 

 In (6.1) the initial form )0,( pa  of the wave function is arbitrary and dependent on 

our pure state of knowledge. 

 It is clear from (6.1) that our degree of belief distribution 
2

),( ta p  remains 

unchanged over time. And this is consistent with the particle momentum itself remaining 

unchanged. But to show that momentum is actually conserved during motion in a 

constant scalar and/or vector potential we need to consider the special pure state of 

knowledge represented by 

 

)()0,( 0ppp a         (6.3) 

 

In this case we have exact knowledge of the particle momentum at time 0t  and (6.1) 

gives 
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Denoting Y  by 00

3pd  meaning ‘ p  lies in element 
0

3pd  at 0p  at time 0t ’ we can 

rewrite (6.4) as 
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from which we have, by the first law of extreme values of probability that 

tdd 0

3

0

3 0 pp   or equivalently ),()0,( 00 tpp
  where   has the determinate value 
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So we have the following law. 

 

Conservation of momentum If a particle of mass m  moves under the action of constant 

and uniform scalar and vector potentials V  and A , and has 

momentum 0p  at time 0t  then this implies, with phase 

of implication 
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, that at any 

time t  the particle’s momentum is 0p . Particle momentum 

is therefore conserved. 

 

This holds quite independently of any knowledge we may or may not have regarding the 

dynamics of the particle motion. It is a result logically derived from the laws of complex-

valued probability and the laws of quantum mechanics. 

 The law of conservation of momentum under constant uniform V  and A  is 

consistent with the third law of potential action (section 3.2 of Chapter III) which claims 

that momentum is increased at a rate proportional to the spatial gradients of the local 

potentials. (On the basis of the latter law alone it might be thought possible to deduce (in 

place of (6.4)) that )(),( 0ppp ta  knowing )()0,( 0ppp a . This might be 

thought to follow from the fact that uniform V  and A  produce no change in the 

momentum over time and that therefore the problems of finding ),( ta p  (given 

)()0,( 0ppp a ) with and without potentials V  and A  are similar, with similarity 

relation (5.1.6) of Chapter I applying. But this particular claim of similarity is evidently 

not valid. When V  and A  are changed, knowledge 0pp   at time 0t  entails 

knowledge of a change in the energy E  of the particle (given by (6.2)). We thus have 

dissimilar (stationary) states of knowledge (see section 3 of Chapter XI).)  

 

In the ‘Case of a scalar potential of uniform gradient’ in section 5 we showed that under 

any pure state of knowledge Y  of particle motion in a scalar potential of uniform gradient 

the wave function ),( ta p  in the momentum representation has the general form 
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where FFv   is the constant in the given potential field 

 

rF.V          (6.6) 

 

or what would classically be the force acting on the particle. At 0t  (6.5) becomes 
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so that )0,( pa  is the wave function at 0t  and can be taken to represent our pure state 

of knowledge Y . 

 In the particular case in which Y  consists in knowing the particle momentum is 

0p  at time 0t  we have )()0,( 0ppp a  and therefore by (6.5), putting Fv  , 
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where 
0

3pd  is at 0p  and p
3d  is at tFp 0 . From this we conclude that tdd pp

3
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3 0  , 

or ),()0,( 00 ttFpp   where   has the determinate value 
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This gives us the following law. 

 

Law of momentum increase  If a particle of mass m  moves in a scalar potential 

V  of uniform gradient V )( F  and has 

momentum 0p  at time 0t  then this implies, with 

phase of implication   given in (6.8) that its 

momentum at time t  is tFp 0 . 

 

This holds quite independently of any knowledge we may or may not have regarding 

particle dynamics, and it is consistent with the third law of potential action (in section 3.2 

of Chapter III). 
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 Newton’s law is thus confirmed in this case but only as a law of momentum 

increase. And momentum is an internal property of the particle and not particle mass m  

multiplied by particle velocity r  since r  does not exist. So we cannot conclude that 

(under the action of the potential (6.6)) particle position (as well as particle momentum) 

changes in time as it would in classical mechanics.* 

 

 

7. Momentum in a uniformly moving coordinate system 

 

In addition to the property of particle momentum relative to a fixed coordinate system we 

suppose there is a (vector) property ‘particle momentum’ relative to any uniformly 

moving coordinate system O . This too is an internal property of the particle. And taking 

a coordinate system O  at rest and momentarily coincident with O  at time t , and letting 

the mass of the particle be m  and the velocity of O  be v , we claim the following law. 

 

Law of momentum in a uniformly moving coordinate system 

 

 A particle momentum p  in O  at time t  implies, with phase of implication zero, a 

particle momentum vpp m  in O  at time t . And conversely a particle 

momentum p  in O  at time t  implies, with phase of implication zero, a particle 

momentum vpp m  in O  at time t . 

 

 It follows from this law, as can easily be demonstrated, that the relation (at any 

one time t ) between the momenta of a particle in any two uniformly moving frames of 

reference (inertial frames) is exactly the same as it would be in classical mechanics. That 

relation can always be expressed as an implication of one proposition by another with a 

determinate phase of implication whether or not the inertial frames in question coincide 

or occupy different positions in space at time t . So that relation necessarily holds true 

regardless of any knowledge we may or may not hold about the particle motion. 

 

We claim that the property of momentum p  in O  is a basic property. Accordingly there 

are transformation functions )( pp  and )( pp
  relating wave functions over p  in O  at 

time t  and wave functions over p  in O  at time t  when O  and O  momentarily 

coincide. 

 From the above law of momentum in a uniformly moving coordinate system we 

can say at once that 

 

))(()()( vpppp pp m        (7.1) 

 

                                                 
* That such a conclusion does hold in the classical limit does not mean (even in this case) that the (real) 

increase in quantum mechanical momentum is the cause of the expected acceleration. It means only that 

quantum mechanical momentum and mass   particle velocity are expected to be correlated in the classical 

limit. 
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and using Feynman’s law we can derive from this the momentum/momentum and 

momentum/position transformation functions between any pair of inertial frames. First 

however we will pause to derive the position/position transformation functions in a 

uniformly moving coordinate system under constant potentials. 

 

 

7.1 Position/position transformation functions in a uniformly moving coordinate system 

under constant potentials  

 

Suppose O  is at rest and O  moves so that the displacement Δ  of its origin from that of  

O  is tv . The two coordinate systems then coincide at time 0t . By (4.1.18) of Chapter 

IV the position/position transformation function in O  from 11tr  to tr (without inserting 

the known values of the constants  ,,  and  ) is 
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V  and A  being the constant potentials that are assumed to be present. We leave the 

constants  ,,  and   general in order to show that the relations between them 

established in section 5 of Chapter IV can also be derived by applying the quantum 

mechanical equivalence principle to the position/position transformation functions in O  

and O . 
 From (7.1.1) we can at once calculate the position/position transformation 

functions )(
11

tt rr
   in O . We simply use the kinematic (propositional) relations 
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when tvrr   and 111 tvrr  . These give 
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and after some algebra we obtain 
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                   …(7.1.3) 

for the required transformation functions in the moving frame. 
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 By the quantum mechanical equivalence principle (section 3.8 of Chapter III) we 

may instead regard O  to be at rest provided we add vm  to A  and v.A 2

2

1
mv  to V  to 

give new constant values A  and V   of the potentials. When we do that (7.1.3) should 

return to the original form (7.1.1). That is we should get 
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This clearly requires that  

 

  
2

AvA 










m
 

 

and 

 



V

m

A
v

mV

m

A 











2
2

2

.vA . 

 

Substituting vAA m  and v.A 2

2

1
mvVV  into these conditions and 

remembering the conditions must hold for any values of V  and A  we do indeed obtain 

the same two relations between  ,,  and   as in (5.11) of Chapter IV. 

 Inserting the known values of the constants  ,,  and   in (7.1.3), we obtain for 

the position/position transformation equations in the uniformly moving coordinate system 

O  the result 
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7.2 Momentum/momentum transformation functions from a rest frame to one in uniform 

motion 

 

So far we have established the momentum/momentum transformation functions only at 

the moment that the rest frame and moving frame coincide. Then (7.1) holds. To 

generalise this we take again coordinates O  and O  as in section 7.1 and consider 

another coordinate system O
~

 at rest and momentarily coincident with O  at time t . We 

may then apply Feynman’s law 
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at time t . This clearly gives the relation 

 

   pppp ppp

~)~()()( 3
~ d  

 

and substituting for )(~ pp  and )~( pp  using formulae (2.12) and (7.1) we find 

 
tiem vp

p vppp
.))(()( 

        (7.2.1) 

 

valid for all t . This is the momentum/momentum transformation function at time t  from 

the uniformly moving frame O  to the rest frame O  coincident with O  at time 0t . By 

reciprocity, the momentum/momentum transformation function from the rest frame O  to 

the uniformly moving frame O  is the conjugate of (7.2.1): 
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7.3 Momentum/position transformation functions in a uniformly moving coordinate 

system 

 

With respect to the same coordinate systems O  and O  employed in section 7.1 and 7.2 

we can find the momentum/position transformation functions in the uniformly moving 

coordinate system O  by applying Feynman’s law twice: 
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at a general time t . This gives   

 

   prprrr pprp

33)()()()( dd . 

 

By the first of (7.1.2) we have  ))(()( tvrrrr  , and substituting for )(rp  and 

)( pp  using (3.10) and (7.2.1) we find 
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and of course )( pr
   is just the conjugate of this: 
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Formulae (7.3.1) and (7.3.2) are the same formulae as (3.10) except that in the former 

pair the rest frame momentum vp m  must be employed on the RHS rather than the 

momentum p  in the frame O  itself. 

 

 

7.4 Momentum/momentum transformation functions between coordinate systems  

moving uniformly at the same velocity 

 

We now use the coordinate systems O  and O  employed in sections 7.1 to 7.3 and 

introduce a third coordinate system O   which may be any coordinate system moving at 

the same velocity as O . We also introduce coordinate systems O
~
  and O

~
  at rest and 

momentarily coincident with O  and O   at time t . We find the momentum/momentum 

transformation functions between O  and O   by applying Feynman’s law: 
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at a general time t . This gives  
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and substituting for )(~ pp
   and )~( pp

   using (7.1) and for )~(~ pp
   using (2.12) we find 

 
Δvp

p ppp



 ).()()( mie       (7.4.1) 

 

where Δ  is the (constant) displacement of the origin of O   from the origin of O . And 

of course )( pp
   is just the conjugate of this: 
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Formulae (7.4.1) and (7.4.2) are the same formulae as (2.12) except that (as in the case of 

the momentum/position transformation functions in section 7.3) the rest frame 

momentum vp m  must be employed in the exponents on the RHS rather than the 

momentum p  in the frame O . 

 

As in the case of the transformation functions (2.12) and (3.9) in stationary coordinate 

systems, results (7.2.1), (7.3.1) and (7.4.1) (and their inverse (conjugate) forms) hold 

whether or not scalar and vector potentials are present expressed by general functions 

),( tV r  and ),( trA  in the stationary coordinate system O . This is evident because the 

transformation functions all refer to one instant in time and because we claim that the 

momentum p  in a uniformly moving coordinate system O  is a property amenable to 

the principle of short time isolation (cf. the argument employed in section 4). 
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7.5 Schrödinger equation in a uniformly moving coordinate system 

 

Let coordinate system O  be at rest and let coordinate system O  move relative to O  at 

constant velocity v  so that the frames O  and O  are momentarily coincident at time 

0t .  

 The Schrödinger equation governing the wave function ),( tr  in O  for a single 

particle under a pure state of knowledge Y  is, as we have seen 
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where ),( tVV r  and ),( trAA   are potentials that may be experienced by the particle.  

 Under the same pure state of knowledge Y  our probability density ),( tr   in O  

is related to ),( tr  thus: 
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because the propositions ‘particle at r  in O  at time t ’ and ‘particle at tvrr   in O  

at time t ’ imply one another with phases of implication equal to zero. We therefore have 

that 
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        (7.5.3) 

 

where   is the gradient ( r  ) referred to coordinates O . Since the gradients in O  

and O  are equal, (7.5.1) and (7.5.3) show us that ),( tr   satisfies the equation 
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where 
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are the potentials referred to O  rather than O . 

 Equation (7.5.4) is the required form for the Schrödinger equation in the moving 

coordinate system. It can be rewritten as 
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or as 
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                …(7.5.7) 

where the additional terms simply cancel out.  

 We can say then that the Schrödinger equation in the moving system O  is the 

usual Schrödinger equation provided we replace the potentials V   and A  by potentials 

V
~

 and A
~

 given by* 
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        (7.5.8) 

 

 

In the case of an N  particle system, we have seen that the wave function ),,...( 1 tNrr  

satisfies the N  particle Schrödinger equation ((3.2) of Chapter V), i.e. 
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   (7.5.9) 

 

in O  where we have substituted the known values for the constants  ,,  and  . It is 

evident now that the Schrödinger equation for ),,...( 1 tNrr   in O  will likewise take the 

form 
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 (7.5.10) 

 

(corresponding to (7.5.6)) where V   and iA  are the potentials V  and iA  expressed as 

functions of Nrr ,...1  and t . We can rewrite (7.5.10) as 
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  (7.5.11) 

 

(corresponding to (7.5.7)) where  

 

                                                 
* These are precisely the changes in potentials we will adopt under Galilean transformation (section 9) 

when we switch to regarding O  (rather than O ) to be at rest. But of course we are not actually changing 

our rest frame here. Nor does the derivation of equations (7.5.7) and (7.5.8) prove the truth of the quantum 

mechanical principle of equivalence which is an assertion about actual particle motions. 
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are replacement potentials -a replacement system potential V
~

 and replacement external 

vector potentials iA
~

 for each particle.  

 

 

8. The kinetic momentum and the quantum mechanical velocity of a particle 

 

We noted in the Case of constant potentials in section 5, that the velocity 0v  of a quasi-

classical wave packet representing our knowledge of a particle’s motion in a fixed 

coordinate system under a constant vector potential A  is given by 

 

m

Ap
v


 0

0          (8.1) 

 

where m  is the particle mass, 0p  its momentum (to classical accuracy) and A  the vector 

potential (electromagnetic or otherwise). Here 0vm ( Ap  0 ) is of course the classical 

(kinetic) momentum of the particle (as opposed to its classical generalised momentum). 

 We now claim that in the presence of any particle vector potential ),( trA  and at 

any time t , the quantum mechanical momentum p  of a particle relative to a stationary 

coordinate system O  is the analogue of the corresponding classical generalised particle 

momentum. We claim it is an internal property of the particle made up of the sum of two 

components, each component having its own classical analogue. One component we will 

denote by p  and called the ‘kinetic momentum’ of the particle relative to O  and the 

other component arises from and is equal (in magnitude and direction) to the value of the 

net particle vector potential at the position occupied by the particle at time t . The kinetic 

momentum relative to O  is an internal property of the particle proportional to its mass. 

The vector quantity mp  is of course also an internal property of the particle and we call 

it the ‘quantum mechanical velocity’ of the particle relative to coordinate system O . 

Since a particle does not move smoothly in space we cannot claim the quantum 

mechanical velocity is the rate of change of the particle position vector in O  because this 

rate of change does not exist, but the quantum mechanical velocity is nonetheless 

classified as a property of particle orbital motion just as momentum is. It is moreover 

classified as a kinematic property of particle orbital motion. Let ),( trA  be the vector 

potential field as a function of time t  and position r  in O . The field ),( trA  acts 

instantly on the internal motion of the particle giving rise to an extra component of the 

particle’s momentum. So at any time t  we have for the momentum p  in O  the relation 

 

),( trAp  p         (8.2) 
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where r  is the position in O  occupied by the particle at time t .  

 A relation of the form (8.2) is supposed to hold in any fixed coordinate system, 

regardless of any knowledge we may or may not hold in relation to the particle motion. 

 If at time t  and relative to some fixed frame O , we know the momentum p  to 

quantum mechanical accuracy, we cannot generally claim to know also the kinetic 

momentum p  at time t  because in (8.2) we are uncertain of the particle’s position r . We 

do however know the probability distribution ),( tr  or the wave function in O . By (3.9) 

it is ).(exp)2( 23  rpi . We therefore have a uniform degree of belief distribution for 

particle position r  in O , and on the basis of this we are able to calculate a degree of 

belief distribution over the possible values of ),( trA  and thus obtain a degree of belief 

distribution over p  at time t . In the simple case in which ),( trA  is uniform in space (i.e. 

of the form )(),( tt ArA  ) we know immediately (from (8.2)) the value of p  at time t  

when we know p  at time t . 

 

We have claimed in section 4 that particle momentum relative to a fixed coordinate 

system is a dynamical property amenable to the principle of short time isolation (stated in 

section 2.1 of Chapter III). Thus if vector potential ),( trA  is ‘switched off’ (or suddenly 

changed) at time t  no sudden change in p  occurs. Owing to the general relation (8.2) 

this implies that the kinetic momentum p  must undergo a sudden change (equal and 

opposite to the change in ),( trA ) when ),( trA  is ‘switched off’ or changes suddenly in 

any way.  

 The fact that p  is changed but p  is not is consistent with quasi-classical wave 

packet motion (or classical particle motion) to which Newton’s law  

 

)( AvAv  PP Vtm       (8.3) 

 

applies in the rest frame (as claimed at the end of section 1 of Chapter III), Pv  being the 

velocity of the wave packet (or of the classical particle) and the RHS of (8.3) being 

evaluated at the location r  of the particle. In (8.3) Pmv  is the classical kinetic 

momentum of the particle (the classical analogue of the quantum mechanical kinetic 

momentum). And, on account of the term  tA  in (8.3), Pmv  must change abruptly 

when ),( trA  increases by ),( trA  suddenly at time t , the increase )( Pmv  in Pmv  

being given by 
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(In the case of a charged particle in an electromagnetic field this sudden change in 

momentum is due to the impulsive action of the electric field induced by the sudden 

change in the magnetic field or its vector potential.) On the other hand, since 
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AvAA ).(  Pt , the rate of change of the classical generalised momentum 

Av Pm  is, by (8.3),  

 

AvAvAv ).()(  PPP Vm  .     (8.4) 

 

So we see that generalised momentum Av Pm  does not change suddenly under a 

sudden change in ),( trA .* 

 Note that the RHS of (8.4), which might also be considered equal to (or related to) 

the rate of increase of the quantum mechanical momentum of the particle, is of a form 

consistent with the claims made in the third law of potential action. That is, it is 

proportional to the first spatial derivatives of  V  and A  at the position momentarily 

occupied by the particle. 

 

Finally we make some more claims regarding kinematic properties at any one time t . 

 We have noted in section 7 that the relation at any one time t   between the 

quantum mechanical momenta of a particle in any two uniformly moving coordinate 

systems is the same as it would be in classical mechanics whatever the velocities of each 

frame relative to fixed space, whatever positions the frames may occupy at time t  and 

whatever our knowledge of the particle motion might be. 

 We now claim that the same is true of the quantum mechanical kinetic momenta 

of a particle (and therefore of the quantum mechanical velocities also). That is, the 

relation at any one time t  between the kinetic momenta of a particle in any two inertial 

frames is the same as it would be in classical mechanics whatever the velocities of each 

frame relative to fixed space, whatever positions the frames may occupy at time t  and 

whatever our knowledge of the particle motion might be. In this case however it may not 

be that the phase of implication in a statement claiming a kinetic momentum in one 

inertial frame implies the classically related value in another has a determinate value. But 

we nonetheless claim that statement to be true whatever our knowledge of the particle 

motion might be. 

 

 

9. Galilean invariance in quantum mechanics 

 

In the conventional interpretation of quantum mechanics Galilean invariance is accounted 

for in the way reproduced (for single particle motion) in section 9.1 below. And we give 

in section 9.1 the conventional Galilean transformation equations and show how these 

can be brought into line with those of the present interpretation derived in section 9.2 

using the quantum mechanical principle of equivalence (section 3.8 of Chapter III). The 

Galilean transformation equations to be adopted for a many particle system are given in 

section 9.3. 

 For the purpose of discussion we employ the same pair of (inertial frame) 

coordinates O  and O  set up in section 5 of Chapter IV where O  moves relative to O  at 

velocity v , the frames O  and O  being momentarily coincident at time 0t . 

                                                 
* cf. the like-minded discussion on p21-5 of [7] 
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9.1 Galilean invariance in the conventional interpretation of quantum mechanics 

 

Taking O  to be at rest, any wave function ),( tr   in O  satisfies the Schrödinger 

equation 
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    (9.1.1) 

 

where r , and V   and A  are the potentials expressed in (9.1.1) as functions 

),( tV r   and ),( trA   of the position coordinate in O  and the time, A.  being zero. 

The sources of the potentials are as seen in the rest frame O . (In the conventional 

interpretation there are no ‘background fields’ and hence no components of the potentials 

due to background fields.) 

 When taking O  to be at rest instead of O  no measurable difference should result. 

In particular our expectations of the relative frequencies of position measurement 

outcomes should remain the same so the squared modulus of the wave function ),( tr  in 

O  for the same physical process must equal 
2

),( ttvr   and in the conventional 

account of Galilean invariance ),( tr  is claimed to be  
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since this satisfies the Schrödinger equation 
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     (9.1.3) 

 

in O  where the potentials, expressed by the functions ),( tV r  and ),( trA  in (9.1.3), are  
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      (9.1.4) 

 

on account of the fact that the sources of the potentials now have a velocity (or extra 

velocity) v  relative to fixed space (i.e. relative to O ).  

 The proof that ),( tr  satisfies (9.1.3) may be conducted by substituting (9.1.2) 

and (9.1.4) into (9.1.3) and showing (9.1.3) reduces to the original Schrödinger equation 

(9.1.1) in ),( tr   which is satisfied by assumption. To carry out the proof we abbreviate 

])(.[ 2

2

1
tmvm rv  to ][ , and note that (9.1.2) implies  
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All of these consequences of (9.1.2) are relations between derivatives of ),( tr  and the 

values and derivatives of ),( tr   when tvrr  , i.e. at one and the same ‘event’ in 

classical space/time. Using these results we easily see that (9.1.3) reduces to the 

Schrödinger equation (9.1.1). 

 The momentum wave functions ),( ta p  and ),( ta p  corresponding to ),( tr  in 

O  and ),( tr   in O  respectively are, by (5.1), 
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and by (9.1.2), ),( ta p  can be written 
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which with the substitution tvrr   gives 
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We thus obtain the relation 
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between the corresponding momentum wave functions. 

 This completes our account of quantum mechanical Galilean invariance as usually 

given.  

 

We note that under this Galilean invariance the wave functions over position are related 

(by (9.1.2)) in a manner different from the simple relation ),(),( ttt vrr   which we 

might expect. Staying within the conventional interpretation of quantum mechanics we 

may however obtain this simple relation by applying a certain gauge transformation in 

addition to the transformation (9.1.2) and (9.1.4). A gauge transformation is (in the 

conventional interpretation of quantum mechanics) allowed as it has no effect on the 

predicted frequencies of measurement results. 

 The general gauge transformation in O  is 
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where f  is any function of r  and t  except that as we need to preserve 0. A  we must 

impose the condition 02  f . The transformation (9.1.6) then always results in ),(~ tr  

satisfying the Schrödinger equation 
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when ),( tr  satisfies the Schrödinger equation (9.1.3). 

 With the choice tmvmf 2

2

1
.  rv  for the gauge transformation to be added to 

the usual Galilean transformation (9.1.2) and (9.1.4) we can evidently remove the phase 

factor in (9.1.2). We thus obtain a ‘new’ Galilean transformation expressed by  

 

),(),( ttt vrr          (9.1.7)  

 

and 
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     (9.1.8) 

 

instead of (9.1.2) and (9.1.4). This is formally the same as the transformation we adopt in 

our interpretation of quantum mechanics (derived in section 9.2). It clearly ensures that 

),( tr  satisfies the Schrödinger equation (9.1.3) (where V  and A  are given by (9.1.8)) 

whenever ),( tr   satisfies the Schrödinger equation (9.1.1). 
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 Corresponding to (9.1.7) the wave functions in the momentum representation are 

now related by 
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 .       (9.1.9) 

 

as may easily be checked. 

 

 

9.2 Galilean invariance in the present interpretation of quantum mechanics 

 

In the present interpretation of quantum mechanics we employ the ‘new’ Galilean 

transformation equations (9.1.7) and (9.1.8) (and therefore (9.1.9) also). And we show (i) 

how to establish these equations more directly and (ii) why they represent the most 

natural way of formulating the Galilean transformation equations.  

 Our pure knowledge Y  regarding the particle motion must always be knowledge 

of particle dynamical variables expressed relative to O  or to O  or to some other 

coordinate system. 

 Let ),( tV r   and ),( trA   be the particle potentials in O  when O  is taken as the 

rest frame. We then have 
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where V
~
  and A

~
  are the potentials due to sources, and 0V   and 0A  are the constant 

background potentials.  

 When we change our choice of rest frame from O  to O  it is, on account of the 

quantum mechanical principle of equivalence, natural to add 0

2

2

1
.Av  mmv  and vm  

respectively to the background scalar and vector potentials and we must of course take 

account of the changed velocity of the sources. We thus arrive at the potentials ),( tV r  

and ),( trA  in O  given by (9.1.8). Then, by the quantum mechanical principle of 

equivalence, the possible particle motions (relative to O  or O  or to any other coordinate 

system) remain the same. And the problem of calculating the probability ),( tr  of one 

or other event ),( tr  in O  under knowledge Y  is similar to that of calculating the 

probability ),( tr   of the same event ),( tr   in O  under the same knowledge Y  before 

our change in mind regarding the rest frame and background potentials. Hence, by the 

similarity principle ((5.1.6) of Chapter I*), we must have 

                                                 
* We note that although our knowledge Y  is the same for wave functions ),( tr  and ),( tr  , and 

although ),( tr  and ),( tr   refer to one and the same event, our general knowledge is different because of 

the difference in assumed rest frame and background potentials in each case. Note that were we to adopt a 

different change in background potentials (on changing our rest frame from O  to O ) the quantum 

mechanical principle of equivalence would not apply and particle motions would likely be different in each 

case, and similarity would no longer be present. 
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),(),( tt rr   

 

when tvrr  . This is the reason it is natural to adopt (9.1.7) and (9.1.8) as our 

Galilean transformation equations. 

 As noted in section 9.1 these transformation equations ((9.1.7) and (9.1.8)) ensure 

that ),( tr  satisfies the Schrödinger equation (9.1.3) (where V  and A  are given by 

(9.1.8)) whenever ),( tr   satisfies the Schrödinger equation (9.1.1).  

 This completes the derivation of the Galilean (single particle) transformation 

equations in the present interpretation of quantum mechanics. 

 

A result (as noted in (9.1.9)) of the Galilean transformation equations is the relation  
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         (9.2.1) 

 

between the corresponding momentum wave functions. When 0t  this reduces to 

 

)0,()0,( pp aa  .        (9.2.2) 

 

So the distributions over momentum (before and after our change in choice of the rest 

frame) are the same at the moment O  and O  coincide despite their relative motion. This 

is consistent with the fact that particle momentum includes a contribution arising from 

the vector potential at the point occupied by the particle, and while the kinetic momentum 

increases by vm  on change of rest frame from O  to O  the vector potential increases by 

an equal and opposite amount. 

 Finally we note that the presence of the phase factor 
tie vp.
 in (9.2.1) needed 

when 0t  simply reflects the fact that at any time 0t , O  is displaced from O  by a 

distance tvΔ . To see this we derive (9.2.1) assuming the truth of (9.2.2). 

 First note that (9.2.2) implies 

 

),(),(~ tata pp  .        (9.2.3) 

 

where ),~(~ ta p  is the momentum wave function referred to an inertial frame O
~

 stationary 

with respect to O  and momentarily coincident with O  at time t . Second, working under 

the assumption that O  is at rest we have, from the first of (2.12), the following 

propositional relationship at time t . 
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where p.Δp   and tvΔ . And since p  in O  and p~  in O
~

 are equivalent bases 

we may apply the general rule (10.2.4) of Chapter II getting 
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VI. Momentum 

168 

 

Replacing ),(~ ta p  by ),( ta p  (using (9.2.3)) we obtain (9.2.1). QED. 

 

Taking O  to be at rest, the position/momentum transformation function in O  is, by 

(3.10), ).(exp)2()( 23  rppr i  . Then, if our pure knowledge regarding particle 

motion is represented by a general wave function ),( tr  in O , our wave function ),( ta p  

in the momentum space corresponding to O  is  

 

  
rrprp

323 ).exp(),()2(),( ditta  ,     (9.2.5) 

 

while if we take O  to be at rest, the position/momentum transformation function in the 

uniformly moving system O  is, by (7.3.2), )).((exp)2()( 23  rvppr mi   , where 

the sign of v  is changed on account of O  moving at velocity v  with respect to O . 

Our wave function in the momentum space corresponding to O  is now 

 

  
rrvpr

323 ).)(exp(),()2( dmit  .     (9.2.6) 

 

and by (9.2.5) is therefore given by  

 

),( tma vp           (9.2.7) 

 

so our knowledge regarding particle momentum in O  changes even though our 

knowledge regarding particle position in O  (expressed by the wave function ),( tr ) 

does not. But when O  is taken to be at rest the kinetic momentum in O  is, by (8.2) 

 

),( trAp p          (9.2.8) 

 

while the kinetic momentum in O  when O  is taken to be at rest is 

 

),()()),(( tmmt rAvpvrAp p      (9.2.9) 

 

because, by the Galilean transformation established above, the vector potential must now 

be increased by vm . Hence, as we would expect, our kinetic knowledge (our knowledge 

regarding r  and p  in O  over time) is the same whether O  or O  is taken to be at rest. In 

either case the distributions ),( tr  and )),,(( ttrAa p  expressing our knowledge of r  

and p  in O  are the same.  

 

 

9.3 Galilean invariance in the case of a many particle system 

 

The generalisation of our Galilean transformation equations (9.1.7) and (9.1.8) to the case 

of a many particle system is straightforward. 
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 For a system of N  distinguishable particles any wave function in configuration 

space satisfies the Schrödinger equation (3.2) of Chapter V. This means that a wave 

function ),,...( 1 tNrr   satisfies 
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  (9.3.1) 

 

in O  when O  is taken to be at rest. Here im  is the mass of the 
thi  particle, 

),,...( 1 tVV Nrr   the system potential and ),( tiii rAA   the external vector potential for 

the 
thi  particle. 

 Given the same state of pure knowledge Y  of the dynamical properties of the 

particle motion (relative to O  or to O  or any other coordinate system) we require (for 

the same reasons as those given in section 9.2 for single particle case) that the relation 

 

),,...(),,...( 11 tttt NN vrvrrr        (9.3.2) 

 

holds between the wave functions in O  and O  when respectively O  and O  are taken to 

be at rest. And on account of the change in absolute motion of the sources of potentials 

and of the need for a change in the background fields, we have, for the potentials in the 

case when O  is taken to be at rest the equations 
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which is the generalisation of (9.1.8). 

 It is demonstrable that ),,...( 1 tNrr  then satisfies the Schrödinger equation 
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   (9.3.4) 

 

in O  when O  is taken to be at rest and, V  and A  are given by (9.3.3). 

 From (9.3.2) we can show that with first frame O  then frame O  taken at rest the 

wave function ),,...( 1 ta Npp  in the momentum space of O  in the first case given by 
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is related to the momentum wave function ),,...( 1 ta Npp   of O  in the second case by 
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     (9.3.6) 

 

which is the generalisation of (9.1.9). With 0t  this relation too is as we expect when 

we consider that the kinetic momentum of the 
thi  particle increases by vim  while its 

vector potential increases by vim  on change of rest frame from O  to O . And with 

0t  the phase factor in (9.3.6) again arises because of the relative displacement (by tv ) 

of O  in relation to O . 

 

 

10. The meaning of gauge invariance 

 

In the usual interpretation of quantum mechanics gauge invariance refers to the 

possibility of certain alternative representations of physical states. Thus, if the evolving 

physical state of a single particle moving under the action of potentials ),( tV r  and 

),( trA  is represented by a wave function ),( tr  it is regarded as equally true that the 

same evolving state can be represented by the wave function ),(),( tifet r
r  provided we 

also change (in what is classically a harmless manner) the potentials to 

ttftV  ),(),( rr   and ),(),( tft rrA   respectively. As noted in section (9.1), the new 

wave function still satisfies the usual Schrödinger equation formulated using the new 

potentials. 

 In the present interpretation of quantum mechanics we must view the matter 

differently. For, in the present interpretation, as we have seen, a change in potentials must 

certainly alter the motion of the particle so we cannot claim the evolving state of the 

particle is unchanged by a gauge transformation. Instead we claim that gauge invariance 

(in which we restrict the function f  to satisfy 02  f  in order to preserve the property 

0. A ) reflects a correspondence between different (but observationally equivalent) 

states of knowledge under different potentials. Thus if G  and G  are states of general 

knowledge differing with regard only to the potentials present, with G  claiming the 

potentials are ),( tV r  and ),( trA , and G  claiming they are ttftV  ),(),( rr   and 

),(),( tft rrA  , then for any pure state of knowledge Y  of particle motion under G  

there is another pure state of knowledge Y   of particle motion under G  observationally 

equivalent to Y  under G . If in the first case our wave function is ),( tr  and in the 

second ),( tr  then these wave functions are related by 
),(),(),( tfiett r

rr  . But 

under YG  and under GY   the expected frequencies of the results of any measurement of 

a kinematic property of the particle motion are equal in the two cases.* 

                                                 
* It is evident that the expected frequency for finding the particle in r

3d  at time t  is the same in the two 

cases since 
22

),(),( tt rr  . The corresponding particle momentum wave functions are not related 

in the same way, i.e. 
22

),(),( tata pp  , but this has to do with the fact that p  includes a 

contribution from the vector potential which is different in each case. Under gauge invariance (both in 

conventional quantum mechanics and in the present interpretation) constancy of expected frequencies 



VI. Momentum 

171 

 For a system of N  distinguishable particles the general gauge transformation is 

given by 
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        (10.1) 

 

where ,, iV A  (and their primed versions) and f  are generally all functions of the 

particle coordinates Nrr ,...1  and the time t . To preserve the condition 0.  iA  for 

Ni ,...1  we restrict f  to functions satisfying 02  fi
 for Ni ,...1 . Under the 

transformation (10.1) the expected frequencies of the possible results of a measurement 

of any property of the motion (not involving the potentials) are preserved. That is   

under iV A,  and   under iV A,  represent observationally equivalent states of 

knowledge. When   satisfies the Schrödinger equation 
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the transformation (10.1) results in   satisfying the Schrödinger equation 
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For completion we give the proof. 

 First note that by the last of (10.1) 
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and that therefore 
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Also 

 

                                                                                                                                                 
applies only to kinematic properties (like particle position and quantum mechanical particle velocity) which 

are not (gauge dependent) functions of the assumed potentials. 
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Using these results we easily show, by substitution in (10.3), that (10.3) results in (10.2) 

and therefore that   satisfies (10.3). 
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CHAPTER VII  

 

SPIN ONE-HALF 
 

 

1. Nature of spin in general 

 

Spin is an internal dynamical property of a particle characterised by a dimensionless spin 

value s  taking possible values ,...,1,,0
2

3

2

1
. A system of particles (including a single 

particle system) may be known to have a net spin s  (equal to one of the possible values 

,...,1,,0
2

3

2

1
) and a net magnetic moment   both constant over a certain time period under 

prescribed conditions or both constant for all time in the case of a single particle 

whatever the conditions. It is then a ‘spin s  system’.  

 A spin s  system has a dimensionless (generally time dependent) ‘ z  component 

of spin’   relative to a fixed Cartesian coordinate reference frame. At any one time and 

in any one such frame,   has one of the discrete values sss  ,...1,  (e.g. 
2

1
 or 

2

1
  in the 

case 
2

1
s ) representing a property of the system in that frame. A definite z  component 

of spin (e.g. 
2

1
 ) in each coordinate system of different orientation (or of the same 

orientation occupied another way - see section 3.9 of Chapter III) represents a different 

property. But the same z  components of spin in fixed coordinate systems that differ only 

by a simple translation in space, represent the same property. 

 All propositions concerning the z  components of spin in fixed Cartesian 

coordinate systems over a time period constitute a complete sample space S . The 12 s  

propositions claiming one or other value of the z  component of spin   relative to a 

particular fixed Cartesian coordinate system at a certain time constitute a basis in S , the 

natural order of this propositional basis being always given by the following order of the 

  values claimed, 

 

sss  ,...1, ,        (1.1) 

 

for example 

 

2

1

2

1
,  .          (1.2) 

 

in the case 
2

1
s . Wave functions for spin using such a basis are normalised (complex 

valued) probability distributions )(  over the possible values of  . 

 A particle with spin s  always has a (constant) magnetic moment. And, if an 

external magnetic field is present (possibly non-uniform and time-dependent), its 

spinning motion is dependent on the magnetic moment and on the magnetic field at the 

point occupied by the particle. That is, in any one fixed Cartesian coordinate frame 

whether or not the value of   jumps to another value at any one time is dependent on the
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size of the magnetic moment, and on the strength and direction of the magnetic field at 

the point occupied by the particle at that time and at times before.* If the particle carries a 

charge there may be an effect (on particle orbital motion) of the electromagnetic potential 

emA  associated with the magnetic field. But the magnetic field itself has no physical 

effect on the particle’s orbital motion.† Despite this, propositions concerning the spinning 

motion and propositions concerning the orbital motion are only logically independent in 

the case of a uniform magnetic field. In a non-uniform magnetic field our knowledge of 

the particle position in space may clearly be of relevance with regard to our knowledge of 

its spinning motion and vice versa. Accordingly the sample space S  and the sample 

space 
rS  (of all propositions concerning the particle’s position and momentum over the 

same time as that covered by S ) cannot (in general) be logically independent, and by the 

law of absolute logical independence (section 3.7 of Chapter I) we cannot generally hold 

pure knowledge )1(Y  in S  and pure knowledge )2(Y  in 
rS . Therefore S  and 

rS  are not 

generally closed sample spaces. But the combined sample space SSr  is closed.  

 A system of particles known initially to have a spin s  may not remain a spin s  

system when it experiences a magnetic field. This is because the magnetic field will 

generally act differently on the spin components of the individual particles which may 

have different magnetic moments or be in different parts of a non-uniform magnetic field. 

But since the z  components of spin of all particles are amenable to the principle of short 

time isolation, a system of spin s  will maintain its spin s  for a short time after a 

magnetic field is switched on. And in certain circumstances (e.g. in a uniform magnetic 

field with certain relations holding between the magnetic moments of the particles 

making up the system) the system may remain indefinitely a spin s  system carrying a 

constant (net) magnetic moment. 

 

In the rest of this chapter we consider systems of particles (including single particle 

systems) having the particular spin value 
2

1
s . 

 

 

2. Kinematic properties of the z  components of spin one-half 

 

With regard to a system of spin one-half, let the z  component of spin relative to a fixed 

Cartesian coordinate system O  be   and let the z  component of spin relative to another 

fixed Cartesian coordinate system O  sharing its origin with O  be  . (Of course s  

(
2

1
 ) is itself independent of the coordinate system.) 

 We will specify the state of O  relative to O  using Euler angles ,  and  , 

which denote (as in p 6-13 of [7]) a sequence of rotations of O  that would get us to O  

(i.e. that would put O  into the same state as O ); we rotate O  through angle   about the 

z  axis of O , then through angle   about the new (temporary) x  axis, then through 

                                                 
* As we consider only non-relativistic theory, we assume there is no particle spin/orbit interaction – this 

process can only be properly treated in a relativistic theory. 
† This follows from the first law of potential action (section 3.2 of Chapter III) according the which a 

particle’s orbital motion is not affected by the first spatial derivates of the local vector potential. 
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angle   about the new z  axis; (all rotations being measured in the positive (right-

handed) sense). Now ,  and   may take any real values. But adding 4  to any one will 

of course change neither the orientation or the way O  occupies that orientation. Adding 

2  to any one will not change the orientation but will change the way O  occupies that 

orientation.  

 Now, with regard to a system known to be a system of spin one-half with 

(constant) magnetic moment   over a period of time, we claim the following kinematic 

properties of the z  components of spin in O  and O  during the time period. 

 

First property  The nature of the system carrying the spin 
2

1
s  and the magnetic 

moment   has no bearing on the values of its z  components of 

spin in O  and O  (or in any fixed coordinate system) over the time 

period. 

 

Second property If O  and O  occupy the same orientation in the same way, then at 

any time t , a value of   in O  and an equal value of   in O  
denote the same physical property.  

 

Third property  If the z  axes of O  and O  point in the same direction (i.e. if  

0 ) then, whatever the value of  , a spin component   in 

O  at time t  implies a spin component   in O  at  time t . But 

it does so with a phase of implication equal to zero only when 

n 4  ( n  any integer), i.e. only when O  and O  occupy the 

same orientation in the same way. 

 

Fourth property If the x  axes of O  and O  point in the same direction (i.e. if 

0 ) then at any one time, (i) a spin component   in O  

implies (with zero phase of implication) a spin component   

in O  only when n 4 ( n  any integer) and (ii) when  , a 

spin component   in O  implies a spin component   in O .  
 

Fifth property  If 0 ,   and   (or equivalently if coordinates O  are 

formed by rotating coordinates O  through an angle   about the 

y  axis*) then ‘
2

1
  in O  at time t ’ and ‘

2

1
  in O  at  time 

t ’ are fully equivalent propositions. 

 

 

3. Spin/spin transformation functions  

 

We seek the transformation functions )(   and )(  , the first being the 

probability distribution over the possible values of   in O  at time t  knowing the value 

                                                 
* The band test (section 3.9 of Chapter III) shows this rotation to be exactly equivalent 
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of   in O  at time t  and the second the probability distribution over the possible values 

of   in O  at time t  knowing the value of   in O  at time t . Letting 

 

)()(   ,        (3.1) 

)()(           (3.2) 

 

where, for brevity, the same symbol   is used to denote different (parameterised) 

functions )(  and )( , we have the necessary relations (see section 3.4 of Chapter 

I) 

 

   )()( ,        (3.3) 

    1)(det)(det  ,      (3.4) 

 

where, in the matrix equation (3.4), the matrix elements are labelled by the   and   

values in their natural order as in (1.2).* 

 The transformation functions )(  are, by the first property in section 2, 

independent of the nature of the system of spin one-half and they are independent of any 

magnetic field that might be present.† The )(  are also the same (continuous and 

differentiable) functions of ,  and   regardless of the time or of the orientation or 

position in space of the coordinate systems O  and O  taken together as a pair. This 

follows from the isotropy of space and the homogeneity of space and time, for under any 

translation or rotation of coordinates O  and O  taken together as a pair and for any 

change in the time )(  can, by the similarity principle, evidently change only by a 

phase factor 
ie  independent of   and  , and of ,  and  , but possibly dependent on 

the rotation and translation applied to O  and O  and the change in time. But with 

)0,0,0(),,(   we have, by the second property in section 2,   )(  both before 

and after the rotation or translation applied to O  and O , and the change in time, so 
ie  

can only be equal to 1 and there can in fact be no change at all in the function )( . So 

)(  and )(  are universal functions of ,  and  . 

 In matrix form we write (as in chapter 6 of [7]), 

 













































db

ca

)()(

)()(
)()(

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

   (3.5) 

                                                 

* So for example )(
2

1

2

1 
  is the top right element of the 22  matrix )(  . 

† This is because   represents a pure state of knowledge so that knowledge of the past history of the 

magnetic field is redundant. Knowledge of the future magnetic field is redundant because it has no effect 

on  . And knowledge of the present magnetic field is redundant because   is a property amenable to the 

principle of short time isolation.  
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cba ,,  and d  being functions of ,  and  . Accordingly, Feynman’s law connecting 

wave functions )(  and )(  in O  and O  can be written 
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1

db
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 )(
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)(

2

1
2

1

2

1
2

1

dc

ba
  (3.6) 

 

where, by the second property of section 2 and the second uniqueness property of 

probability assignment (section 5 of Chapter I),  

 

1
00
 da , 0

00
 cb        (3.7) 

 

subscripts zero denoting values at )0,0,0(),,(  . 

 

 

4. Derivation of the transformation functions in the case of parallel z  axes 

 

Following the method employed by Feynman et al (see chapter 6 of [7]), we first derive 

the general form of )(  in the case O  could be realised by rotating O  about the z  

axis through an angle   where  40 . 

 By the third property of spin in section 2 we have  

 
),()( 

  ige         (4.1) 

 

where ),( g  is a real function of   and   continuous and differentiable in   and  

 

)2 (mod  0),( g     only for    n 4      (4.2) 

 

where n  is any integer.  

 We have seen that )(  and therefore ),( g  depends only on the relative 

orientation of O  and O . Consider three coordinate systems O , O  and O  , where O  

would be realised by rotation of O  through angle 1  and O   would be realised by 

rotation of O  through the angle 2  or equivalently by rotation of O  through angle   

(where 21  ). Feynman’s law gives 

 




 )()()(  

or   

 




  )()()(  
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or, by (4.1), 

 
)),(),((),(),(),( 211221 .

















  
ggiigigig

eeee  

 

implying that ),( g  must satisfy 

 

),(),(),( 2121  ggg  

 

or must be a homogeneous linear function of  : 

 

 )(),( gg .        (4.3) 

 

Hence 
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0
ig

ig

e

e

db

ca
. 

 

where the determinant condition (3.4) gives 0)()(
2

1

2

1
 gg  or   )()(

2

1

2

1
gg  in 

which, by (4.2) and (4.3),   can be only 
2

1
 . Hence 

 



























i

i

e

e

db

ca

0

0
,   

2

1
 .      (4.4) 

 

(Later we will use the freedom to choose a wave function or its conjugate (section 8 of 

Chapter I) to set 
2

1
 , but for the present we leave the choice of   unspecified.) 

 

 

5. Derivation of the transformation functions in the case of a general rotation 

 

To obtain the transformation functions for a general rotation we first derive their form in 

the case of rotations about the x  axis. Then using this result and the result in section 4 we 

derive the transformation functions for a general rotation by applying successive rotations 

about the (original) z  axis, the (temporary new) x  axis, and the (new) z  axis. 

 

Case of rotations about the x  axis 

 

Here only the Euler angle   is different from zero. A rotation of axes O  by   about the 

x  axis to give new axes O  followed by a infinitesimal rotation d  to give new axes O   

is equivalent to a single rotation  d  giving O   directly from O . This implies the 

following matrix equation: 
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      (5.1) 

 

 

where the subscript denotes the value of   in the matrix elements cba ,,  and d , and 

(below) in their first derivatives. Clearly 
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and by (3.7) 
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where 
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a .    (5.4) 

 

Substituting (5.2) and (5.3) into (5.1), multiplying out the matrix product on the RHS and 

equating matrix elements on the two sides gives 
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        (5.5) 

 

 From the orthonormality of transformation functions we require 
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Differentiating these with respect to   and setting   equal to zero gives 
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         (5.6) 

 

where 0  and 0  are certain real numbers. 

 From the requirement for phase normalisation, i.e. by (3.4), we have 

 

1bcad . 

 

Differentiating this with respect to   and setting 0  gives 

 

00
~~
ad           (5.7) 

 

 Differentiating each of (5.5) with respect to   and using (5.5) themselves to 

eliminate the first derivatives, we find with the help of (5.6) and (5.7) that 
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   (5.8) 

 

where   

 

2

0

2

0

2 ~
 bk .        (5.9) 

 

It is evident that 0k  for then (5.8) would make dcba ,,,  linear functions of   which 

reduce to 1 da , 0 bc  on account of the ‘boundary conditions’ at  4,0 . And 

this would contradict the fourth property of spin. 

 Solving the differential equations (5.8) we have 
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        (5.10) 

 

where the constant coefficients can be found from the ‘boundary conditions’ on dcba ,,,  

and their first derivatives at 0 . The result is 

 



VII. Spin one-half 

 

 181 

































k
k

ikd

k
k

b
c

k
k

b
b

k
k

ika

sincos

              sin
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~

sincos

0
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       (5.11) 

 

 For  4  we know the transformation functions must return to the same 

form, i.e. )()4(  aa , )()4(  bb ,… etc. By (5.11) this means kcos  and 

ksin  (and therefore 
ike ) are periodic functions of   with period 4 . Therefore 

104  ikik ee  and k  must have one of the half-integer values 

 

...,,1,
2

3

2

1
k  .       (5.12) 

 

 Now we apply part (ii) of the fourth property of spin in section 2 to obtain 
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where   and   are real constants. This gives, from (5.11), 
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The first shows that 0  can only be zero and that k  is limited to half-odd-integer values. 

And as a result the second shows that 

 

 

~
0  ie

k

b
         (5.13) 

 

for some real function   of k  (i.e. of its half-odd-integer value). 

 To see which half-odd-integer value of k  applies consider the probability for 

2

1
  in O  when we know 

2

1
  in O . By (3.5) this is 

 




ka cos)(
2

1

2

1
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since 00   in the first of (5.11). But by part (i) of the fourth property of spin )(
2

1

2

1 

  is 

equal to 1  only for n 4  ( n  any integer) therefore k  can only be equal to 
2

1
 .  

 We thus reach the following form for the transformation matrix in the case of 

rotations through any angle   about the x  axis: 

 













 













22

22

cossin

sincos
i

i

e

e

db

ca
.      (5.14) 

 

We establish the value of the remaining real constant   by considering general rotations 

and applying the fifth property of spin. 

 

Case of general rotations 

 

 Under any rotation of O  through successive Euler angles  ,,  we clearly have 

by (4.4) and (5.14), that the form of the general transformation matrix in (3.5) is given by 

the following product: 
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 To fix the value of 
ie  we apply the fifth property of spin in section 2. By the first 

of (3.6) the fifth property of spin tells us that 
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which gives 10 



b , or, by (5.15), 1  ii ee , Therefore iei 
 according as 

2

1
 . Substituting these alternatives into (5.15) gives a certain matrix or its conjugate 

according as we take 
2

1
  or 

2

1
 . Since we have not yet established the absolute 

form (one form or its conjugate) of any wave function to do with spin one-half, we are at 

liberty to choose which value of   to take. In agreement with the normal convention we 

choose to make 
2

1
  and hence establish the spin/spin transformation matrix as  
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The transformation functions )(  are of course expressed in terms of the matrix 

elements by (3.5) now given explicitly by (5.16), and the transformation function )( , 

which is just the conjugate of )(  is, in matrix form, the conjugate of the transpose of 

the matrix on the RHS of (5.16) as in (3.6). 

 

 

6. Wave function for spin with a known component in a given direction 

 

Let O  and O  be fixed coordinate systems sharing an origin. Let O  be obtained by 

rotating O  through Euler angles 
2


 ,   and   equal to any given angle. The z  

direction is then specified (in O ) by spherical polar angles   and  ,   being the angle 

between the z  axis and the z  direction, and   the angle between the x  axis and the 

projection of the z  direction onto the xy  plane. 

 If we know 
2

1
  in O  then in O  our wave function )()(

2

1


  is (by 

(3.6))  
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.   (6.1) 

 

Evidently, for various specified values of  , or for unspecified  , our states of 

knowledge of the physical world are the same as regards the spinning motion itself (see 

section 3.3 of Chapter I). In the case of unspecified   (i.e. given only the spin component 

in a direction specified by polar angles   and  ) our wave function is accordingly  
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       (6.2) 

 

where   ( )(
22

1 
 ) is an unspecified constant phase. If the means of recovering 

knowledge of   (which must have been initially given when acquiring the knowledge 

2

1
  in O ) is irretrievably lost then   is an indeterminate phase. 

 Knowledge that 
2

1
  in O  at time t , with given   and  , and with specified 

unspecified, partially specified or indeterminate  , is the general pure state of knowledge 

in relation to the sample space S . The corresponding wave functions ((6.1) and (6.2)) 

cover all the possible wave functions in O  at time t  and these are in fact all the possible 

normalised 2-D column vectors of complex-valued components with determinate relative 
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phases and determinate, unspecified, partially specified or indeterminate absolute 

phases.* 

 Alternatively, if we know 
2

1
  in O  then, in O  our wave function )(  is  
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in place of (6.1), and our wave function given only that the spin component is 
2

1
  in a 

direction specified by polar angles   and   is  
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where   is here the same constant   as in (6.2).  

 

 

7. The x  and y  components of spin 

 

In the usual formalism of quantum mechanics we have, relative to any one fixed 

Cartesian coordinate system O , components of spin x  in the x  direction  and y  in the 

y  direction (as well as the component   in the z  direction). The wave functions in   

for known values (
2

1
  or 

2

1
 ) of x  or for known values (

2

1
  or 

2

1
 ) of y  are 

represented by eigenvectors of the operators x̂  and ŷ  respectively where 
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In the case of x̂  these eigenvectors are 

 

                                                 
* Any coordinate system O  sharing its origin with O  is represented uniquely by (  ,, ) with 

0 ,   20  and  40 . With the same ranges for ,  and  , any normalised 2-D 

column vector },{  ii BeAe  ( 122  BA ) is represented uniquely by the RHS of (6.1). For   fixes 

2
cos


 and 

2
sin


 (i.e. A  and B ) uniquely, and thinking of   and   as points on the unit circle in the 

complex plane represented by their angular position (their arguments)   and   with   positive or 

zero, the relative position of     with respect to   is fixed by   (  ) and finally the absolute 

position of   is fixed by   in the relation 
422


 . 
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with eigenvalues 
2

1

2

1
,  x  respectively. They are determined only to within arbitrary 

phase factors 
ie  and 

ie . 

 In the present interpretation of quantum mechanics we identify the properties of 

the x  and y  components of spin in O  (for spin of any magnitude, not just for 
2

1
s ) 

with the z  components of spin in coordinates O  formed by rotating coordinates O  

through the Euler angles )2,2,2(),,(   and )0,0,2(),,(   

respectively, or equivalently by rotating O  by 2  about the y  axis and 2  about 

the x  axis respectively. It follows that the properties of the x  and y  components of spin 

in O  are each basic properties and we obtain (for 
2

1
s ), in the case of x  the 

transformation functions 
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derived from (5.16). These agree with (7.2) with 0  and  . Similarly in the case of 

y  we obtain the transformation functions  
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the two columns in the matrix being eigenvectors of ŷ  in (7.1). On account of us 

identifying the x  and y  components of spin in the way we have, the transformation 

functions )( x  and )( y  have definite absolute phases. 

 The basic properties x  and y  have operators x̂  and ŷ  associated with them 

as all basic properties do (see section 6.2 of Chapter II). We can derive the form of these 

operators (as quoted in matrix form in (7.1)) from the defining rules 

 

),()(ˆ
xxxx         (7.5) 

 

),()(ˆ
yyyy         (7.6) 

 

(c.f. (6.2.1) of Chapter II). The first has to hold for all values of x  (i.e. for 
2

1
 x  and 

2

1
 x ) and the second for all values of y  (for 

2

1
 y  and 

2

1
 y ). 
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 To obtain the matrix expression for x̂  we write  













x
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where  ,, and   are complex constants to be determined and we rewrite (7.5) as 

 


















































 )(

)(

)(

)(

2

1
2

1

2

1
2

1

x

x

x

x

x
     (7.7) 

 

holding for 
2

1
 x  and 

2

1
 x . The two relations (7.7) (one for each value of x ) can 

be written together as the single relation 
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Here the second matrix on the LHS is just the matrix )]([ x  in the notation used in 

the ‘law of unit determinant’ (section 3.4 of Chapter I). By the law of orthogonality of 

transformation functions ((3.4.3) of Chapter I) we have, in matrix notation 

 

]1[)]()][([  

xx  

 

where ]1[  is the unit 22  matrix. Therefore )]([ 

x  is the inverse of matrix 

)]([ x , and it is given by the transpose of the conjugate of the matrix in (7.3). i.e. by 
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The matrix on the RHS of (7.8) is, by (7.3), 
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Substituting this on the RHS of (7.8) and multiplying each side of (7.8) on the right by 

the matrix (7.9) we obtain 
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which is the same as x̂  in the first of (7.1). 

 Similarly we can establish from (7.6) the form for ŷ  quoted in the second of 

(7.1).  

 And of course we can formally introduce the operator ẑ  going with the z  

component of spin z  (so far denoted  ). This is defined by the relation 

 

)()(ˆ
zzzz         (7.10) 

 

for 
2

1
 z  and 

2

1
 z . Since 

zz  )( , this relation in matrix form is 
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where the first matrix on the LHS now represents ẑ . Therefore ẑ  in matrix form is 

 













10

01
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z
        (7.11) 

 

 

8. Spinning motion in a uniform magnetic field 

 

A spin one-half system has a constant magnetic moment   associated with its spin, the 

dimensions of magnetic moment being those of energy divided by magnetic field 

intensity. Its spinning motion is therefore affected by a uniform external magnetic field of 

intensity )(tH .* That is, the way in which the z  component of spin   (relative to any 

one fixed coordinate system O ) changes abruptly from time to time (between the values 

2

1
 and 

2

1
 ) depends in some way on )(tH  and on   but not on the peculiar nature of the 

system carrying the spin one-half. We claim the following properties regarding the 

dependence of spin components on the field, the magnetic moment and the time. 

 

 

First property  During any short time t  to dtt   the value of   in any fixed  

Cartesian coordinate system is affected by the momentary value 

)(tH  of H  but not by the time derivative of )(tH  or by higher 

                                                 
* Although the magnetic field )(tH  is always uniform in space, we allow its magnitude and direction to 

change in time. 
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time derivatives of )(tH  at time t , or of course by the value of 

)(tH  at times greater than dtt  .* 

 

Second property Suppose, relative to fixed coordinates O , that kH ˆ)( Ht  , i.e. that  

the field is parallel to the z  axis and constant in time. Then (i)   

in O  is constant in time, and (ii) the z  components of spin in all 

fixed coordinate systems are each periodic functions of the time 

with period H  and they do not all return to their same values 

in any time less than H . 

 

 

8.1 Spin/spin transformation functions over time in a constant magnetic field. 

 

Relative to a fixed Cartesian coordinate system O  we denote by )( 11tt   the 

transformation function that will take us from any wave function over the z  component 

of spin (denoted 1 ) in O  at time 1t  to the corresponding wave function over   in O  at 

time t . Clearly )( 11tt   is independent of the position of the origin of the coordinates 

in space and of the nature of the system carrying the spin one-half. 

 

Case of H  parallel to the z  axis of coordinates 

 

With kH ˆH  ( const.H ) part (i) of the second property of spinning motion in a 

magnetic field tells us that the transformation function )( 11tt   between spin 

component 1  at time 1t  and spin component   at time t  has the form 

 
),,(

11
111

1
)(




ttti

ett        (8.1.1) 

 

where   must be a real-valued differentiable function of 1tt   and 1t , and 

 

0),,0( 11  t          (8.1.2) 

 

since at 1tt   equal values of    and 1  represent the same property. 

 If we shift the origin of the time by any amount  , the problem of finding 

)( 11tt (
),,( 111

1




ttti

e ) using the new time coordinate is (by the homogeneity of 

time) similar to the problem of finding )( 11tt  (
),,( 111

1




ttti

e ) in the original time 

coordinate. Therefore, by (5.1.2) of Chapter I we have the functional relation 

 






  itttittti
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),,(),,( 111

1

111

1
 

                                                 
* In the case of a particle of spin one-half, this property is generalised (in section 9.2) to cover also the lack 

of any effect of the spatial derivatives of a non-uniform magnetic field. 
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where the phase   is independent of  , 1 , t  and 1t . Also, by the uniqueness of 

probability assignment ),,( 111  ttt ),,( 111  ttt   where by (8.1.2)   must 

be zero, and accordingly ),,( 111  ttt  is independent of its second variable and can be 

replaced by ),( 11  tt . So we can change (8.1.1) to 

 
),(

11
11

1
)(




tti

ett        (8.1.3) 

 

and (8.1.2) gives 

 

0),0( 1  .         (8.1.4) 

 

 Because of the isotropy of space and the similarity principle )( 11tt   in (8.1.3) 

(and therefore ),( 11  tt ) is a universal function of 1tt   and 1 , i.e. one independent 

of any rotation of the coordinate system and magnetic field together. The constant phase 

factor that might be multiplying the wave function )( 11tt   after such a rotation must 

be independent of 1tt  , and on account of (8.1.4) it can only equal 1 .  

 Introducing another time 2t  we now apply Feynman’s law  
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Using (8.1.3) this gives 
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implying 

 

),(),(),( 1121211  tttttt . 

 

As this must hold for any t , ),(  t  must be a homogeneous linear function of t . Hence 

(8.1.3) becomes 
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1
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 . 

 

 Now )( 1  can depend only on  , H  and the fundamental constant  . So from 

dimensional considerations it must be that 


H
f


 )()( 11  where )( 1f  is a real-

valued universal dimensionless function of 1 . Hence 
)()(

11
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1
)(

tt
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if

ett





   and 

applying the unit determinant condition: 
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we find 0)()(
2

1

2

1
 ff  or kff   )()(

2

1

2

1
, where k  is a universal (real-valued) 

numerical constant. In matrix notation we therefore have 
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.      (8.1.5) 

 

 Now by part (ii) of the second property of spinning motion in a magnetic field, 

starting at time 1t  and assuming H  is positive, the z  components of spin in all fixed 

coordinate systems return to their same values for the first time when Htt  1 . 

Before this time at least some of the z  components of spin are different from their initial 

values. This means that, in a fixed coordinate system O  formed by rotating O  through 

Euler angles ),,(  ,   does not generally return to the value )( 1t  it had at time 1t  till 

Htt  1 . Certainly the   components for every orientation ),,(   do not all 

return to their initial values simultaneously at any time between 1t  and Htt  1 . 

Accordingly we cannot have  

 
),,(

1)(  iett         (8.1.6) 

 

with ),,(   determinate for all ),,(   at any one time t  in the range 

Httt  11 , for this would mean that tt  

1  with a determinate phase of 

implication for any ),,(  , or that the z  components of spin do all return to exactly the 

same values before time Ht  1 . 

 Now applying Feynman’s law twice we have for general spin components   and 

1  in O  that 
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where   and 1  refer to O . In the matrix notation this is, by (3.6) and (8.1.5) 
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Multiplying out the matrices and applying the result (5.16) we thus find 
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for the specific values 
2

1

1   and 
2

1
  respectively. 

 For (8.1.6) to hold, as it should for Htt  1  (or for  ), it must be that 

1)(
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12
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2
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tt , or (with c


2
cos  and s



2
sin ) that 

 

12cos22244  kscsc . 

 

And since 12)( 2244222  scscsc , this means 12cos k  or that k  must be an 

integer. In fact k  must equal 1  because if, for example k  was 2 , then for 

Htt  21   (or for 2 ) we would have, by (8.1.8) that 
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for all ),,(   which contradicts part (ii) of the second property of spinning motion 

stated in the beginning of section 8. 

 Since the transformation function )( 11tt   is not related to any wave function 

so far calculated we are free to choose the sign of k  (see section 8 of Chapter I). 

Following the usual convention we take 1k  and so arrive at the result 

 




























)(

)(

11

1

1

0

0

)(
tt

H
i

tt
H

i

e

e
tt





.      (8.1.10) 

 

 

Case of H  in a general direction  

 

 Let a general direction be specified by the vector OP  from the origin of fixed 

coordinates O  to a point P  on the unit sphere and in turn let this vector be specified by 

spherical polar angles   and  ,   being the angle between the z  axis of the coordinates 
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and OP , and   the angle between the x  axis and the projection of OP  onto the xy  

plane. Let the magnetic field H  be parallel to OP  with a component H  in the direction 

OP , H  taking any real value (positive or negative or zero). 

 To find )( 11tt   we make use of the coordinate system O  formed by rotating 

the base coordinates O  through Euler angles 
2


 ,   and any angle  . Starting 

with the wave function )( 1111 tt   in O  and applying Feynman’s law twice, first with 

respect to a change in time (from 1t  to t ) then with respect to a change in coordinates 

(from O  to O ) we have the requirement 
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11111111 )()()()( tttttttt  

 

where the prime indicates a spin component in O . In the matrix notation, using (5.16) 

and (8.1.10) this becomes 
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where   is as in (8.1.7). Multiplying this out and putting 
2


  and   gives 
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)( .  (8.1.11) 

 

So in the matrix notation this is the spin/spin transformation function between two times 

in the case of a constant uniform magnetic field in any given direction specified by polar 

angles   and  .*  

                                                 
* In (8.1.7) H  stands for the component of H  in the given direction ),(   (rather than the absolute 

value of H ). So H  may be positive or negative, and in (8.1.11) there are two ways to change the sign of 

H . We either let HH   (so that  ) or we change   and   thus:   and 

  leaving   the same. We easily confirm that either way changes the RHS of (8.1.11) in the 

same manner. We note that )( 11tt   in (8.1.11) is a differentiable function of  ,  and H , and 

therefore is, as required, a differentiable function of H  at least for 0H . If 0H  a change Hd in 

H  can be specified by a direction ),(   and a value dH  or, equivalently by a direction ),(   

and value dH . The corresponding change )( 11ttd   found by differentiating the RHS of (8.1.11) 



VII. Spin one-half 

 

 193 

 

 

8.2 Schrödinger’s equation for spinning motion in a uniform magnetic field 

 

First suppose the field is constant in time. Under pure knowledge Y  of the spinning 

motion from time 0t  let )( Yt  be our wave function at time )( 0tt   in the fixed 

coordinates O . By Feynman’s law 
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)()()( 1111 YtttYt .      (8.2.1) 

 

for any t  and 1t  where we suppose ttt  10 . To find the Schrödinger equation we 

differentiate this with respect to t  and put 1t  equal to t  (or let tt 1 ). First, using 

(8.1.11) we find 
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where  cosHH z ,  cossinHH x  and  sinsinHH y  are the Cartesian 

components of H . Hence (8.2.1) implies 
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   (8.2.2) 

 

 Now (8.2.2) holds for constant H . But when H  is changing in magnitude and/or 

direction we expect (8.2.2) to hold true for short times. This is because the manner of 

switching of   from 
2

1
 to 

2

1
  or from 

2

1
  to 

2

1
 during time t  to dtt   is not dependent 

on the time derivatives of H  (first property in section 8) so the problem of finding 

)( Ydtt   is similar to that of finding it when H  is constant, and the phase factor of 

similarity can only be 1  (c.f. the derivation of the Schrödinger equation for particle 

orbital motion in a general scalar potential, section 3.2 of Chapter IV). So (8.2.2) is true 

even if H  is changing in time.  

                                                                                                                                                 

with respect to H  and setting 0H  gives the same result either way showing )( 11tt   is a 

differentiable function of H  even at 0H . 
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 We can rewrite (8.2.2) as  
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where  
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and in the matrix representation 
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the order of the values of   and   as designators of the matrix elements being (as 

always) the same as their natural order (
2

1
 then 

2

1
 ). 

 Alternatively we can write, in the matrix notation, 
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 Result (8.2.3) with (8.2.4) is the general Schrödinger equation for spin one-half in 

a uniform magnetic field possibly changing in magnitude and direction. In (8.2.4) the 

Hamiltonian is expressed in terms of the Pauli spin matrices (8.2.5), but it can instead be 

expressed in terms of the operators x̂ , ŷ  and ẑ  of section 7 which in matrix form 

differ from the Pauli matrices only in the factor 
2

1 . This gives  

 

 zzyyxx HHH
s

H 
ˆˆˆ

1
      (8.2.7) 

 

where s  is the spin (which is of course 
2

1 ). We can formally write (8.2.7) as 

 

Hσ.ˆ
1

s
H          (8.2.8) 

 

where σ̂  is the vector operator whose Cartesian components are the operators x̂ , ŷ  and 

ẑ  of section 7.* 

 

 

                                                 
* Note that σ̂  is denoted ŝ  in [12] (in for example (110.3) of [12]). 
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8.3 Precession 

 

Referring to section 6, our wave function )(
12

1
1 tt


  over   in O  at time 1t  given 

2

1
  

in O  at time 1t  is, by (6.1), for given angles ,  and   
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And our wave function over   in O  is 

 




































0

1

)(

)(

12

1
12

1

12

1
12

1

tt

tt
.        (8.3.2) 

 

 Now suppose a uniform constant magnetic field H  is present in the z  direction 

in O . Then, by the Schrödinger equation (8.2.2) (or by (8.1.10) and Feynman’s law 

connecting the wave functions )(
12

1 tt


  and )(
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1
1 tt


 ), we find 

 

)
2

(
2

1

2

)(2

2

2

)(2

2

12

1

2

1

12

1

2

1

1

1

sin

cos

)(

)( 



















































 i

ttH
i

ttH
i

e

e

e

tt

tt





     (8.3.3) 

 

for our wave function in O  at a later time t . Changing the Euler angle   thus: 

 

)(2 1ttH         (8.3.4) 

 

leaving the angles   and   the same, we see that the RHS of (8.3.3) returns to the RHS 

of (8.3.1), from which we deduce that  
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applies in the new O  coordinates (just as (8.3.2) followed from (8.3.1) in the original 

coordinates). So the spin is in precession about the z  axis of O . More precisely, on 

constantly changing   in accordance with (8.3.4), we can say that ‘
2

1
  at time 1t ’ 

implies ‘
2

1
  at any later time t ’ with phase of implication zero. And it will clearly not 

affect this implication (except with regard to the value of its determinate phase) if we 
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choose (alongside the change (8.3.4) in  ) to change the angle   in any definite way. 

Because the phase of implication is here determinate, the precession is a natural 

precession. It occurs, whenever the constant uniform magnetic field is present, 

independently of whatever knowledge we may or may not hold regarding the spinning 

motion. And under any general state of knowledge of that motion, for any particular 

value of   and  , we will (in repeated trials) expect the value of   at time 1t  to be 

sometimes 
2

1
  and sometimes 

2

1
 , but in each trial the precessions of the various z  

components of spin for different values of   and   will always take place 

simultaneously in the same direction and at the same rate.  

 Similarly we can show that whenever 
2

1
  at time 1t , 

2

1
  at any later 

time t  provided   is constantly changed in the same manner (i.e. as in (8.3.4)). So when 

2

1
  the precession occurs in the same direction* and at the same rate.  

 

A more general natural precession is present (see p 10-17 of [7]) even when the magnetic 

field changes smoothly in magnitude and direction. For let the z  axis of O  be taken 

initially in the direction of )(tH  (so that kH )()( 11 tHt  ) and suppose the spin 

component in a direction specified by polar angles ),(   in O  is known to be 
2

1
  at time 

1t . Then our wave function in O  at 1t  is  
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(as in (8.3.1)). In a short time from 1tt   to dttt  1  we know, from our study of 

precession in a constant magnetic field, that this wave function evolves in a way that 

implies the spin component in the direction ),(   remains equal to 
2

1
  provided   is 

continually updated according to (8.3.4) leaving   and   the same. The small change in 

)(tH  during the period 1t  to dtt 1  does not invalidate this argument because it 

produces only a second order change in the wave function (8.3.3). Therefore ‘
2

1
  at 

time 1t ’ implies ‘
2

1
  at time dtt 1 ’ still with a determinate phase of implication so 

the precession is a natural precession from time 1t  to time dtt 1 . At the end of that time 

)(tH  will have changed to )( ! dtt H , but by turning coordinates O  so that )( ! dtt H  is 

back in the z  direction we may repeat the same argument. So when the spin component 

in a given direction specified by polar angles ),(   in the original coordinates O  is 

                                                 
* Looked at in the classical way, both the spin angular momentum k  ( k  being the unit vector in the 

z  direction) and the couple Hm  arising from the magnetic moment km 


s
 have changed sign 

so it is not surprising that the direction of the precession remains the same when   changes sign. 
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known to be 
2

1
  at time 1t , thereafter a natural precession takes place about the moving 

direction of )(tH  and at the (changing) rate of )(2 tH  radians per unit time. If we 

know initially that the spin component is 
2

1
  rather than 

2

1
  then precession occurs in 

the same sense and always at the same rate as before.  

 

 

9. Orbital and spinning motion of a particle in a non-uniform magnetic field 

 

We now consider the orbital and spinning motion of a particle with spin one-half and 

magnetic moment   under the action of a generally non-uniform and time dependent 

magnetic field ),( trH . We suppose general time dependent scalar and vector particle 

potentials ),( tV r  and ),( trA  may also be acting and in general the particle may possess 

a charge q  as well as a magnetic moment. 

 

 

9.1 Case of a constant magnetic field and constant net potentials 

 

We consider first the case of a uniform and time independent magnetic field and uniform 

and time independent net scalar and vector potential fields. 

 The magnetic field must of course result from an electromagnetic vector potential 

field emA  with the magnetic field H  given by 

 

emAH    

 

and to ensure H  is time independent and uniform we make emA  (i) time independent, (ii) 

everywhere parallel to itself (iii) constant in the direction of itself and (iv) linearly 

increasing in a direction perpendicular to itself.  

 Now if the particle has a non-zero charge q  it will experience the non-uniform 

vector potential cq emA , so in order that the net vector potential be made uniform we 

need to cancel the effect of the non-uniform electromagnetic potential and this we can do 

by adding a non electromagnetic potential addA  of value cq emadd AA  . We may then 

add any uniform and time independent potentials V  and A  we choose.*  

 Under these conditions we claim that the sample spaces S  and rS  (of 

propositions relating to the spinning motion and orbital motion respectively) are 

(separately) closed. We are able to say this because we know that the potential V  and the 

net potential A  have no effect on the spinning motion and in particular no effect that 

might depend on the particle’s position in space or on the properties of its orbital motion. 

And we claim the magnetic field H  has no effect on the orbital motion and in particular 

                                                 
* Note that even if the magnetic field is non-uniform and time dependent it is still possible to eliminate the 

electromagnetic vector potential associated with it by adding an appropriate non-electromagnetic vector 

potential. The magnetic field, scalar potential and net vector potential experienced by a particle may 

therefore be quite general and independent of one another. 
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no effect that might depend on the z  component of the particle’s spin.* Also, since the 

magnetic field is uniform its effect on the spinning motion is independent of the position 

occupied by the particle. 

 Working in a fixed Cartesian coordinate system O , the position-spin/position-

spin transformation function )(
111

tt rr   will be the product of the position/position 

transformation function )(
11

tt rr  in 
rS  from position 1r  at time 1t  to position r  at time t  

and the spin/spin transformation function )( 11tt   from 1  at time 1t  to   at time t  

(see section 5 of Chapter II). The position/position transformation function in 
rS  is given 

by (4.1.18) of Chapter IV. Putting in the known values of  ,  ,  and  , and replacing 

22tr  by tr  this is 
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. (9.1.1) 

 

The spin/spin transformation function )( 11tt   in sample space S  is given by 

(8.1.11). In the combined sample space SSr  the position-spin/position-spin 

transformation function )(
111

tt rr   is therefore 

 

)()()( 1111111
tttt tt  rr rr       (9.1.2) 

 

and we have the following (Feynman Law) relation between the wave functions ),( tr  

at different times. 

 




 
1

1111 1

3

11 ),()(),( rrrr r dttt t      (9.1.3) 

 

Now in (9.1.2) )(
11

tt rr  (as given by (9.1.1)) satisfies the Schrödinger equation (4.2.4) of 

Chapter IV. Also )( 11tt   satisfies the Schrödinger equation (8.2.3). As a result 

)(
111

tt rr   satisfies the Schrödinger equation 

 

                                                 
* It might be thought that (as in classical physics) H  and the spin 

2

1
s  should give rise to an effective 

(generally position dependent) potential energy of order H  and therefore that H  must affect the 

orbital motion (as any potential -including any constant potential- always does in quantum mechanics). 

However it is clear that this (magnetic) potential energy belongs not to the orbital motion but to the 

spinning motion as is evident from the form of the Hamiltonian (8.2.4) in the Schrödinger equation (8.2.3) 

for spinning motion in a magnetic field. The absence of a magnetic potential in the orbital motion is related 

to the classical observation made by Deissler in [25] to the effect that when a classical magnetic dipole 

moves in a non-uniform magnetic field the magnetic field performs no work on it.  
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as can be checked by substituting )()(),( 1111
tttt t  rr r  in (9.1.4). Being a linear 

combination of the )(
111

tt rr  , any wave function ),( tr  also satisfies (9.1.4). So in a 

short time t  to dtt   
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9.2 General case of variable and non-uniform magnetic field and potentials 

 

We can now show (9.1.4) is valid when A , V  and H  are any functions of position and 

time. This is done in the same way as has been done previously (for example in the case 

of the Schrödinger equation for a variable and non-uniform scalar potential (section 3.2 

of Chapter IV)). To be thorough we go through the argument again. 

 First we note that sample spaces S  and rS  are now not separately closed, and it 

is generally possible to hold a pure state of knowledge only in their combination rS  (see 

comments made in section 1).  

 Now suppose we hold pure knowledge Y  in rS  relating to both the particle’s 

spinning and orbital motion from which we can infer that a particular wave function 

),( tr  applies at time t . Suppose, knowing ),( tr  everywhere (for all  ) at time t , 

we wish to calculate (for each  ) ),( tr  inside a small volume element dV  any short 

time dt  later. For this purpose we form the sample space r
S  of propositions regarding 

particle orbital motion and spin from time t  onwards. 

 We know, from the first law of potential action (section 3.2 of Chapter III), that 

the orbital motion of the particle between times t  and dtt  , should it be in dV  at that 

time, is affected by the potentials ),( tV r  and ),( trA  in dV  between times t  and dtt  , 

but not by the spatial or temporal derivatives of ),( tV r  and ),( trA  in dV  between times 

t  and dtt   (nor therefore by the magnetic field ),( trH  between times t  and dtt   

since ),( trH  is a function only of the spacial derivatives of the electromagnetic part of 

the vector potential) nor by the potentials ),( tV r  and ),( trA  anywhere at future times. It 

may be affected by the potentials ),( tV r  and ),( trA  (but not ),( trH ) at points the 

particle might have occupied at earlier times, but since we have pure knowledge Y  in 
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r
S  (expressed by ),( tr  at time t ), knowledge of ),( tV r  and ),( trA  at earlier times is 

redundant (see section 3.2 of Chapter I). 

 We also assume, as a generalisation of the first property of spinning motion in a 

uniform magnetic field (section 8), that the spinning motion of the particle between times 

t  and dtt  , should it be in dV  at that time, may be affected by the magnetic field 

),( trH  in dV  between times t  and dtt  , but not by the spatial or temporal derivatives 

of ),( trH  in dV  nor by ),( trH  anywhere at future times (nor of course by the 

potentials ),( tV r  and ),( trA  anywhere at any time). The spinning motion may be 

affected by the magnetic field ),( trH  at points the particle might have occupied at 

earlier times, but since we have pure knowledge Y  in r
S  (expressed by ),( tr  at time 

t ), knowledge of ),( trH  at earlier times is redundant. 

 We know that the particle does not move infinitely fast so that our knowledge 

regarding particle position at time t  outside some small volume element Vd   enclosing 

dV  is, for our purpose, superfluous. Therefore our problem is similar to the one in which 

the potentials and magnetic field are constant in time and space and equal to their values 

at the position of dV  and at the time t  in question. In that case (9.1.5) holds for the 

change in ),( tr  over any short enough time. So by the similarity principle, for r  in 

dV  and after any short enough time dt  

 

 




































 

i

z

z

y

y

x

x

edtA
mm

i
V

m

HHH
i

tdtt

.)
2

1
.

2
(

),(),(

22
2

A

rr




 

 

where   is a real constant independent of dt . But for 0dt  we must have 

),(),( tdtt rr    so that   can only be zero and ),( tr  must satisfy the 

differential equation (9.1.4) in any short enough time interval. Being valid for any short 

enough time interval, and in any volume element dV , (9.1.4) is valid for all times and 

positions in space and we have established the Schrödinger equation for a spinning and 

orbiting particle moving under the action of generally non-uniform and time dependent 

scalar and vector potentials and a generally non-uniform and time dependent magnetic 

field. 
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CHAPTER VIII 

 

PAIRS OF SPIN ONE-HALF SYSTEMS, SPIN ONE AND SPIN 

ZERO  
 

 

1. Total spin of a pair of spin one-half systems 

 

Consider a pair of distinguishable systems each having spin one-half over a time period. 

The systems may be experiencing one and the same uniform (possibly time-dependent) 

magnetic field but we assume there is no interaction between their spins.* Let us label 

these systems 1 and 2. Their spin values are denoted 1s  and 2s  respectively with 

2121  ss . The propositions ‘ 21 ’ claiming system 1  has a z  component of spin 1  

relative to a fixed Cartesian coordinate system O  and system 2  has a z  component of 

spin 2  relative to the same coordinates constitute a basis in the closed sample space 

21
S   which is the combination 

21
SS   of the closed sample spaces  

1
S  and 

2
S  (of type 

S  in section 1 of Chapter VII) of the separate systems.  The sample space 
21

S   and the 

propositions ‘ 21 ’ relate to ‘a pair of spin one-half systems’. Supposing system 1  

comes before system 2  in the natural order of systems (see section 3.6 of Chapter III), 

we claim that the discrete basis ‘ 21 ’ of the pair of spin one-half systems has a natural 

order given by† 

 

2

1

2

1
,

2

1

2

1
,

2

1

2

1
,

2

1

2

1

21  .       (1.1) 

 

It is clear that a natural order for the propositions of this basis cannot be claimed without 

the assumption of a natural order of the subsystems themselves.‡  

 Now the pair of spin one-half systems also has a property called ‘total spin’. This 

is characterised by the following variables, (i) a spin s  switching from time to time from 

one to another of the values 21 ss   (i.e. 1  or 0 ), and (ii)  (generally time dependent) z  

components of spin   (in each fixed Cartesian coordinate frame) taking one or other of 

the  values sss  ,...1,  (i.e. 0  if 0s  but 0,1  or 1  if 1s ). The total spin value s  

(taking value 1  or 0 ) is coordinate system independent. And the same z  component   

of the total spin denotes the same property in all fixed Cartesian coordinate systems of 

the same orientation occupied in the same way regardless of the positions of their origins. 

                                                 
* Spin/spin interactions (as well as spin/orbit interactions) are best taken to be entirely absent in non-

relativistic quantum mechanics. 
† This natural order is derived by following the general rule of Kronecker matrix multiplication [31]. So the 

order in (1.1) is the order of the elements (as normally written) in the developed Kronecker product 

  )()(
2

1

2

1

2

1

2

1
)(

2

1
.

2

1

2

1
.

2

1

2

1
.

2

1

2

1
.

2

1
  of the single row matrices )(

2

1

2

1
  and )(

2

1

2

1
  (for the 

subsystems) whose elements are in the natural order of their bases. 
‡ If we assumed system 2 came before system 1 in the natural order then we would have to write 
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 Now we extend the sample space 
21

S   to include reference to total spin and we 

claim that propositions ‘ s ’ constitute another basis (in the extended sample space) 

having a natural order given by 

 

00,11,01,11 s .       (1.2) 

 

This natural order applies whether the natural order of the subsystems is assumed to be 

2,1  (as we are supposing) or 1,2 . 

 Each subsystem (i.e. each system of spin one-half) will carry its own magnetic 

moment (say )1(  and )2(  for subsystem 1 and 2 respectively). And if a uniform 

magnetic field is present, this will have a bearing on the spinning motion of each 

subsystem (and therefore on the spinning motion of the whole system). We postulate the 

following kinematic properties of total spin which hold at any one time so long as the 

subsystems 1 and 2 are and remain spin one-half systems over the period of time in 

question. 

 

First property  The peculiar nature of the spin one-half subsystems carrying the 

spins 
2

1

1 s  and 
2

1

2 s , and the magnetic moments )1(  and )2( , 

has no bearing on the value of the total spin s  or on the value of 

the z  component   of total spin in any fixed Cartesian coordinate 

system at any time.  

    

Second property In any fixed Cartesian coordinate system at any one time, (i)   is 

equal to the sum 21   of the values of 1  and 2  possessed by 

the subsystems, (ii) The propositions ‘
2

1

2

1

21  ’ and ‘ 11s ’ 

are fully equivalent, (iii) the propositions ‘
2

1

2

1

21  ’ and 

‘ 11 s ’ are fully equivalent, and (iv) the proposition 

‘ 01s ’ implies the proposition ‘
2

1

2

1

2

1

2

1

21 or  ’ with zero 

phase of implication.  

 

Third property  In any two fixed Cartesian coordinate systems O  and O  at any  

one time the propositions ‘ 00s ’ and ‘ 00s ’ evidently 

imply one another and they do so with phases of implication equal 

to zero regardless of the orientations of the coordinate systems or 

the way they occupy their orientations. 

 

 

2. Transformation functions between the bases 21  and s  

 

On account of parts (i)-(iii) of the second property claimed in section 1 the transformation 

functions )( 21 s  and )( 21  s  at any one time can evidently be written (in 

matrix form) as 



VIII. Pairs of spin 
2

1  systems, spin 1  and spin 0  

 203 

 























00

1000

00

0001

)( 21

DB

CA
s , 


























0100

00

00

0001

)( 21
DC

BA
s  (2.1) 

 

where the rows (numbered top to bottom by s  in the first matrix and by 21  in the 

second) and the columns (numbered left to right by 21  in the first matrix and by s  in 

the second) are in the natural order of the propositions of the respective bases, and 

CBA ,,  and D  are (perhaps complex-valued) constants yet to be found. With no 

magnetic field present these constants are clearly the same in all fixed Cartesian 

coordinate systems at all times, regardless of the nature of the spin one-half systems. This 

follows from the first property above, the isotropy of space, the homogeneity of space 

and time and the similarity principle and the fact that some of the entries in the matrices 

are equal to 1  thus fixing the absolute phases of the transformation functions. The 

constants are also the same in all fixed Cartesian coordinate systems and at all times 

when a (possibly time-dependent) uniform magnetic field is present because we claim 

that total spin is (like spin one-half) a property amenable to the principle of short time 

isolation.* 

 The required orthonormality of the transformation functions gives 

 

1  CCAA ,    1  DDBB ,    0  CDAB    (2.2) 

 

and phase normalisation gives 

 

1 ADBC .         (2.3) 

 

 Solving (2.3) and the last of (2.2) for A  and C  in terms of B  and D  we easily 

get to see that 

 
 BC   and    DA    (assuming 0B )     (2.4) 

 

or if 0B  then 

 

0 CB  and 1AD .       (2.5) 

 

                                                 
* The argument used here is the same as in section 3 of Chapter VII in connection with a single spin one-

half system. 21  represents a pure state of knowledge so past history of the magnetic field is redundant. 

Knowledge of the future magnetic field is redundant because it has no effect on s,, 21   or  . And 

knowledge of the present magnetic field is redundant because s,, 21   and   are each amenable to the 

principle of short-time isolation. 
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This goes part way to finding the constants CBA ,,  and D . To go further we need to 

consider rotations of coordinates. 

 

 

3. Transformation functions under rotation of coordinates 

 

Under a rotation of coordinates from O  to O  the transformation function )( 2121   

will be the product of the transformation functions for each subsystem under the same 

rotation of coordinates: 

 

)()()( 22112121   

 

or in matrix notation 
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2121 )(

ddbbdb

dcdabcba

cdcbadab

ccaaca

      (3.1) 

 

where cba ,,  and d  are given by (5.16) of Chapter VII.* 

 Now Feynman’s law (twice applied) requires that the transformation function 

)(  ss  satisfies 

 


 


21 21

)()()()( 21212121 ssss  

 

or in the matrix notation 
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22
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cdcbadab
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DB

CA
ss  . (3.2) 

 

Multiplying this product out we obtain for the last column the result 

 

                                                 
* With our method of ordering rows and columns according to the natural order of the bases, matrix 

)( 2121   is the Kronecker product [31] of the matrices )( 11   and )( 22  . The 

determinant of a Kronecker product BA  of an nn  matrix A  and a pp  matrix B  is given by 

np
BABA   (see p.709 of [31]) so 1)](det[ 2121   as required of any ordered discrete 

basis (see (3.4.2) of Chapter 1). 
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)()(
)00(

daDbcBDcbDadBB

dbDbdB

daDbcBCcbDadBA

caDacB

s .    (3.3) 

 

But by the third property of total spin ‘ 00s ’ implies ‘ 00s ’ with phase of 

implication zero. Hence 

 

00,)00(  ss  

 

Therefore all elements but the last in column (3.3) must be zero while the last itself is 1 . 

Making use of the second of results (2.2) we can now rule out the possibility of (2.5) 

because it would make the bottom element in (3.3) equal to da  which is certainly not 

equal to 1  for all angles of rotation. Using (2.4) and the fact that the top element in (3.3) 

is zero we thus establish that ADB   . We therefore have, by (2.4), that CA  and 

the second of (2.1) becomes  
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s       (3.4) 

 

Putting 10s  and applying the sum rule (3.4.9) of Chapter I we get 
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But, by part (iv) of the second property in section 1, A2  must equal 1 . So A  must 

equal 21  and we arrive at  
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for the first of the transformation functions (2.1) in matrix form.  From (3.2) it follows 

that  
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ss .     (3.6) 

 

This is the matrix form of the s  transformation function under coordinate rotation. 

 

 

4. Pair of spin one-half systems in a uniform magnetic field 

 

Pure knowledge Y  over the sample space 
21

S   of a pair of spin one-half systems in a 

(possibly time dependent) uniform magnetic field can be expressed as a wave function 

)( 21 Yt  of the z  components of spin at any time t  during the time period covered by 

21
S  . This wave function is related to the wave function )( 21 Yt  of the spin 

components at an earlier time t  during evolution in the magnetic field. Either wave 

function can serve to represent the pure knowledge Y . The relation between them is of 

course 

 





21

)()()( 21212121 YtttYt     (4.1) 

 

the transformation function )( 2121 tt   being given by 

 

)()()( 22112121 tttttt  ,     (4.2) 

 

where the functions on the RHS are the transformation functions for each subsystem in 

the magnetic field. We have seen that the latter transformation functions satisfy the 

Schrödinger equation ((8.2.3) of Chapter VII) so we can write for either subsystem 
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  being the magnetic moment of the subsystem in question. 

 As we can check by direct substitution, the transformation function 

)( 2121 tt   given by (4.2) satisfies the Schrödinger equation 
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are the Hamiltonians for the subsystems 1 and 2 respectively. Being a linear combination 

of the )( 2121 tt   (as in (4.1)), any wave function )( 21 Yt  also satisfies the 

Schrödinger equation (4.3), i.e. 
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where  

 
)2()1(

, 221122112121   HHH       (4.5) 

 

 We can express the Hamiltonian 
2121 , H  in 44  matrix form with the rows 

following (from top to bottom) the natural order (1.1) of the basis 21  and the columns 

following (from left to right) the natural order of the basis 21 . This is accomplished by 

representing 
)1(

11H  and 
)2(

22H , and 
22  and 

11  by 22  matrices (with their rows and 

columns following the natural order of their bases) and writing (4.5) in the matrix form 
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, 221122112121   HHH  

 

where   denotes the Kronecker product (as defined for example in [31]). Then by 

(8.2.6) of Chapter VII 
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and 
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Adding the two gives 
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                 …(4.6) 

 

 To find the Schrödinger equation in the s  representation we substitute for 

)( 21 Yt  and )( 21 Yt  in (4.4) using the relation 

 





s

YtssYt )()()( 2121 . 

 

Multiplying the result by )( 21 s  and summing over 21  shows that the 

Schrödinger equation governing the wave function )( Yts  is 

 




 




s

ss YtsH
t

Yts
i )(

)(
,       (4.7) 

 

where 

 


 

 
21 21

2121
)()( 21,21, sHsH ss .    (4.8) 

 

Using (3.5) and (4.6) the matrix form of  ssH ,  is found to be 
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4.1 The case when the magnetic moments )1(  and )2(  are equal 

 

When )2()1(   the Hamiltonian in (4.9) simplifies to 
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where )2()1(  .  

 If knowledge Y  is knowledge expressed as ‘ 00s  at time 1t ’ or as ‘ 100t ’ 

where ‘ ts ’ is the proposition claiming total spin s  and z  component of total spin   

are present at time t , then clearly 00,1 )(  sYts , or in vector form 

 























1

0

0

0

)( 1 Yts . 

 

And when the Hamiltonian has the form (4.1.1) with its bottom row a row of zeros, we 

have, by (4.7), that at time dtt 1  the wave function is 

 

)()(
1

)()( 11,11 YtsdtYtsH
i

YtsYdtts
s

ss  





. 

 

So it is clear that the wave function does not change in time. And at any time t  

 

00,)(  sYts  

 

or ‘ 00s  at time 1t ’ 
00  ‘ 00s  at time t ’ telling us that the state of total spin 

0s  is a property naturally conserved independently of our knowledge of the spin 

dynamics. 
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 So a pair of spin one-half systems with equal magnetic moments in a uniform 

(possibly time dependent) magnetic field has a total spin s  which remains constant in 

time independently of any knowledge we may or may not hold in relation to the spinning 

motion. For whenever 0s  at one time then 0s  at any other time as we have seen. 

And whenever 1s  at one time then it must be that 1s  at any other time, for if s  were 

zero at that other time it would have had to have been zero at the original time too, 

contrary to hypothesis. 

 Put another way, a pair of spin one-half systems with equal magnetic moments in 

a uniform magnetic field (possible time-dependent) constitute either a ‘spin 1  system’ or 

a ‘spin 0  system’ independently of our knowledge of the system spin dynamics. And if 

we have sufficient knowledge (which need not always be pure knowledge) of the system 

spin dynamics to be aware the system is a spin 1  system (or a spin 0  system) then that 

awareness can be classified as part of our general knowledge regarding the unchanging 

properties of the system. 

 

 

5. Spin one systems 

 

The nature of spin one is covered in section 1 of Chapter VII if we take s  to equal 1  in 

that section. Nonetheless we review the specific nature of spin one systems and note two 

properties that relate to them. 

 

We may claim to know that some systems of particles (including some single particles) 

are ‘spin 1  systems’. They are then understood to have a spin of magnitude one and a 

constant magnetic moment   –both constant over a certain time period under certain 

conditions or constant for all time in the case of single particles.  

 Spin one is a dynamical property characterised by a dimensionless spin value s  

( 1 ). A spin one system has a dimensionless (generally time dependent) ‘ z  component 

of spin’   relative to a fixed Cartesian coordinate reference frame. At any one time and 

in any one such frame,   has one of the discrete values sss  ,...,1,  (i.e. 1 , 0  or 1 ) 

representing a property of the system in that frame. A definite z  component of spin (e.g. 

1 ) in each coordinate system of different orientation (or the same orientation 

occupied the other way) represents a different property. But the same z  components of 

spin in fixed coordinate systems that differ only by a simple translation in space, 

represent the same property. 

 All propositions concerning the z  components of spin in fixed Cartesian 

coordinate systems over a time period constitute a complete sample space S . The three 

propositions claiming one or other value of the z  component of spin   relative to a 

particular fixed Cartesian coordinate system at a certain time constitute a basis in S , the 

natural order of the propositional basis being always given by the following order of the 

  values claimed. 

 

1,0,1  .          (5.1) 
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Wave functions for spin using such a basis are normalised (complex valued) probability 

distributions )(  over the (three) possible values of  . 

 

With regard to a system of spin one, let the z  component of spin relative to a fixed 

Cartesian coordinate frame O  be   and let the z  component of spin relative to another 

fixed Cartesian coordinate frame O  sharing its origin with O  be  . (Of course s  ( 1 ) 

is itself independent of the coordinate frame.) We again specify the state of O  relative to 

O  using Euler angles ,  and  , as in section 2 of Chapter VII.  

 Transformation functions and the Schrödinger equation for a system known to be 

a system of spin one over a time period are most easily derived using the following 

assumed properties in relation to systems of spin one.  

 

First property  The nature of the system carrying the spin 1s  and magnetic 

moment   has no bearing on the values of its z  components of 

spin in O  and O  (or in any fixed coordinate frame) over the time 

period. 

 

Second property When a system made up of two distinguishable spin one-half 

subsystems 1 and 2 with equal magnetic moments is in a uniform 

(possibly time dependent) magnetic field and is prepared in a way 

that ensures its total spin s  is known to be 1  over a time period, 

then (i) the system is a spin one system during that time period, (ii) 

its z  component of spin   in any fixed coordinate frame is at any 

time equal to the sum of the z  components of spin of the 

subsystems 1 and 2 in the same coordinate frame, and (iii) its 

magnetic moment is the sum of the magnetic moments of the 

subsystems 1 and 2. 

 

 

5.1 Spin/spin transformation functions 

 

From the above properties, the problem of finding the probabilities )(   and )(   

(i.e. the spin/spin transformation functions for any spin one system between fixed 

coordinates O  and O  of different orientation) is similar to that of finding the 

probabilities )(  ss  and )(  ss  (i.e. the spin/spin transformation functions for a 

pair of spin one-half systems) when it is known that s  (and therefore, by (3.6), also s ) is 

equal to 1. By the similarity principle we may therefore write 

 
 ie)11()(  

 

where the phase   is independent of   and  , and of the Euler angles  ,,  specifying 

O  relative to O . But with 0  both )(   and )11(   must be  , so   

can only be zero, and from (3.6) we have 
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So this is the spin/spin transformation function for any spin one system under coordinate 

rotation. 

 

 

5.2 Spin one system in a uniform magnetic field 

 

Consider the spinning motion of any spin one system of magnetic moment   in a 

uniform (possibly time dependent) magnetic field. 

 Again, because of the two properties of spin one (given in the beginning of 

section 5), the problem of finding the probabilities )( tt   (i.e. of finding the wave 

function of any spin one system at time t  knowing   in the same coordinate frame at 

another time t ) is similar to that of finding the wave function )( tsts   (with 

1 ss ) of a pair of spin one-half systems (with magnetic moments )1(  and  )2(  each 

equal to 
2

1
) in a uniform (possibly time dependent) magnetic field at time t  knowing 

  at another time t  and knowing  1s  at time t  (and therefore knowing 1s  at all 

times). Hence we can write  

 
 ietttt )11()(  

 

where   is independent of  ,,t  and t , and can only be zero because both wave 

functions must reduce to   when tt  . 

 But )( tsts   must satisfy the Schrödinger equation (4.7) with tsY  . To 

avoid confusion we replace the dummy suffix s  on the RHS of (4.7) by s , so we 

can say 

 





 





s

ss tstsH
t

tsts
i )(

)(
,      (5.2.1) 

 

With 1 ss , (5.2.1) with (4.1.1) for  ssH ,  gives 

 





 




)11(

)11(
1,1 ttH

t

tt
i . 

 

Since )11()( tttt  , the wave function )( tt   satisfies the Schrödinger 

equation  
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where, by (4.1.1) 
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where )2()1(   is, by part (iii) of the second property of spin one systems, the 

magnetic moment of the system of spin one. 

 By Feynman’s law the general wave function )( Yt  for a spin one system 

under pure knowledge Y  satisfies 

 




 )()()( YtttYt , 

 

i.e. it is linear combination of the wave functions )( tt   and must therefore, by 

(5.2.2) satisfy the Schrödinger equation 

 




 



)(

)(
YtH

t

Yt
i       (5.2.4) 

 

where 
H  is given by (5.2.3). This establishes the Schrödinger equation for any spin 

one system in a uniform and possibly time dependent magnetic field. 

 

 

5.3 Spin one particle in a non-uniform magnetic field 

 

We now formulate the Schrödinger equation for the orbital and spinning motion of a 

particle with spin one and magnetic moment   in a non-uniform magnetic field. Its 

derivation is the same as the derivation in the case of a particle of spin one-half (see 

section 9 of Chapter VII). 

 Allowing again for general external scalar and vector potentials V  and A  to be 

present as well as an external magnetic field H  (all three of which may be any functions 

of position and time) we thus arrive at the Schrödinger equation  
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for any wave function ),( tr . In (5.3.1) 
H  is given by (5.2.3) in which xH , yH  and 

zH  are now generally functions of position and time.  

 

 

6. Spin zero systems 

 

The nature of spin zero is covered in section 1 of Chapter VII on taking 0s  in that 

section, but again we review the specific nature of spin zero. 

  

We may claim to know that some systems of particles (including single particle systems) 

are ‘spin zero systems’. They are then understood to have a spin of magnitude zero –zero, 

that is, over a certain time period under certain conditions or zero for all time in the case 

of single particles.  

 Spin zero is a dynamical property characterised by a dimensionless spin value s  

( 0 ). A spin zero system has a dimensionless ‘ z  component of spin’   relative to a 

fixed Cartesian coordinate reference frame taking values sss  ,...,1,  (i.e. 0  in any 

frame). At any one time and in any one such frame,   represents a property of the system 

in that frame. A definite z  component of spin (i.e. 0 ) in each coordinate frame of  

different orientation (or the same orientation occupied the other way) represents a 

different property. But the same z  components of spin in fixed coordinate frames that 

differ only by a simple translation in space, represent the same property. 

 All propositions concerning the z  components of spin in fixed Cartesian 

coordinate frames over a time period constitute a closed sample space S . The single 

proposition of S  claiming the z  component of spin   is zero relative to a particular 

fixed Cartesian coordinate frame at a certain time constitutes a basis in S . There is 

clearly no more than one natural order of such a basis, and as a result any transformation 

function can only equal 1 , as follows from the law of unit determinate (section 3.4 of 

Chapter I). 

 Knowledge ‘ 0 ’ in one frame at one time (or in any number of frames at any 

number of times) is the only possible form of pure knowledge Y  in S . Since   can 

have only the single value 0  a wave function )( Y  in S  using the   basis of any 

frame is therefore just equal to a (generally complex) number of unit modulus (i.e. equal 

to 
ie  where   is real).  

 The spin/spin transformation functions )00(  (from any one coordinate frame to 

another at a fixed time) are therefore necessarily equal to 1 . The same applies to the 

spin/spin transformation functions over time in one coordinate system.  

 The Schrödinger equation for a spin zero system therefore simply states that the 

rate of change of the wave function is zero. So any wave function )( Y  in S  is 

constant in time and the same in all coordinate frames. 

 A system with spin zero may have a magnetic moment. But, on account of the 

spin being zero, the system’s spinning motion is not affected by a magnetic field. That is, 

in any one fixed Cartesian coordinate frame the values of s  and   remain zero.  
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 If a particle of spin zero carries a charge there may of course be an effect on the 

particle orbital motion produced by the electromagnetic potential emA  associated with 

any magnetic field. But propositions concerning the spinning motion and propositions 

concerning the orbital motion are logically independent because our knowledge of the 

particle position in space is clearly of no relevance with regard to our knowledge of its 

spinning motion and vice versa. Accordingly the sample space S  and the sample space 

rS  of all propositions concerning the particle’s position and momentum over the same 

time as that covered by S  are logically independent, and by the law of absolute logical 

independence (section 3.7 of Chapter I) we can formally hold pure knowledge )1(Y  in S  

and pure knowledge )2(Y  in 
rS , )1(Y  amounting simply to the proposition claiming 

knowledge that 0s  and therefore 0  in one or more fixed Cartesian coordinates 

frames. Therefore S  and 
rS  are always closed sample spaces. And the combined sample 

space SSr  is closed (whether or not emA  affects the orbital motion) and we can hold 

pure knowledge Y  in SSr . Our wave function in SSr  can then differ from our wave 

function in 
rS only by a constant phase factor. The Schrödinger equation for a spin zero 

particle is therefore the same as that (given in (4.2.4) of Chapter IV) for a particle with no 

spin. It does not involve the external magnetic field ),( trH  that may be present and the 

wave function ),( tr  need not contain the variables s  or   because these are known to 

be zero at all times. 

 A system of particles known initially to have spin zero may not remain a spin zero 

system when it experiences a magnetic field. This is because the magnetic field will 

generally act differently on the spin components of the individual particles which may 

have different magnetic moments or be in different parts of a non-uniform magnetic field. 

But since the z  components of spin of all particles are amenable to the principle of short 

time isolation, a system of spin zero will maintain its spin zero for a short time after a 

magnetic field is switched on. And in certain circumstances (e.g. in a uniform magnetic 

field with certain relations holding between the magnetic moments of the particles 

making up the system) the system may remain a spin zero system indefinitely. 

 

Corresponding to the properties assumed in relation to spin one systems in section 5 we 

claim the following properties relating to systems known to be spin zero systems over a 

time period. 

 

First property  The nature of the system carrying the spin 0s  and magnetic  

moment   has no bearing on the value of its z  component of spin 

in any fixed coordinate frame over the time period. 

 

Second property When a system made up of two distinguishable spin one-half 

subsystems 1 and 2 with equal magnetic moments in a uniform 

(possibly time dependent) magnetic field, is prepared in a pure 

state in which its total spin is known to be zero in some time 

period, then (i) the system is a spin zero system in that time period, 

(ii) its z  component of spin   in any fixed coordinate frame is at 
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any time equal to the sum of the z  components of spin of the 

subsystems 1 and 2 in the same coordinate frame, and (iii) its 

magnetic moment is the sum of the magnetic moments of the 

subsystems 1 and 2.   

 

 The problems of finding the transformation functions )(   and )( tt   

(the latter applying in a uniform (possibly time dependent) magnetic field) is (as in the 

case of systems of spin one in section 5) similar to that of finding the transformation 

functions )(  ss  and )( tsts   (with 0 ss ) relating to the total spin of a 

system made up of two subsystems of spin one-half with equal magnetic moments in the 

same magnetic field. And again the corresponding transformation functions (i.e. )(   

and )00(  , and )( tt   and )00( tt  ) are identical.  

 Result (3.6) thus confirms that 

 

 )(    or   1)00(  , 

 

and result (4.7) with (4.1.1) confirms that 

 

1)()(  tttt      or     1)00(  tt . 

 

And accordingly any wave function )( Yt  for any spin zero system has the form 

 


 ieYt 0)(  

 

where the phase   remains constant. 

 

 

 

 

 

 

 



 217 

CHAPTER IX 

 

SPIN IN GENERAL 
 

 

1. Nature of particle spin in general 

 

The nature of particle spin in general has been covered in section 1 of Chapter VII. But 

we note again here that the spin of the general quantum mechanical particle is an internal 

physical property of the particle. It is characterised by a constant dimensionless spin 

value s  (which has one of the possible dimensionless values 0 , 
2

1
, 1  , 

2

3
,… depending 

on the particle type) and a (generally time dependent) dimensionless ‘ z  component of 

spin’   relative to any one fixed Cartesian coordinate system. At any one time and 

relative to any one Cartesian coordinate system,   has one of the discrete values 

 

sss  ,...,1,          (1.1) 

 

and this value is generally different in fixed coordinates with different orientations. It is a 

different property in each fixed Cartesian coordinate system of a different orientation or 

of the same orientation occupied in one or other of the two possible ways.  

 All propositions concerning the z  components of spin in fixed Cartesian 

coordinate systems over a time period constitute a complete sample space S . The 

propositions claiming one or other value of   (relative to a particular fixed Cartesian 

coordinate system) is possessed by the particle at a certain time (in the time period 

covered by S ) constitute a basis in S . 

 When a particle with non-zero spin moves in a uniform external magnetic field 

(possibly time-dependent) its spinning motion is physically independent of its orbital 

motion but there may be spin/field interaction (arising from a magnetic moment of the 

particle associated with its spin).* S  is then closed. And wave functions in S  using a 

basis of the kind described above are normalised (complex-valued) probability 

distributions )( . 

 

 

2. The spin of a system of non-identical particles 

 

A system composed of N  non-identical particles with spins Nsss ,..., 21  has a (generally 

time dependent) net z  component of spin   relative to a fixed Cartesian coordinate 

                                                 
* We suppose any quantum mechanical particle with non-zero spin has a magnetic moment, otherwise it 

would not be possible to claim (as we wish) that certain spin bases are primary. As we have said before, 

because we consider only non-relativistic theory, we may assume there is no spin/orbit interaction and no 

spin/spin interaction in the case of a system of particles, these processes being properly treated only in a 

relativistic theory. 



IX. Spin in general 

 218 

system. And we have the following general law: 

 

Law of spin component addition 

 

 The z  component of spin   of a system of N  non-identical particles is at any  

time equal to the sum of the momentary z  components of spin N ,...1  of the 

separate particles. 

 

The complete sample spaces 
1

S ,…
N

S of each particle can be combined to form a 

complete sample space 
N ...1

S for the spinning motion of the system. And in that sample 

space, as the particles are non-identical, the propositions claiming possible values for 

each of the N  components of spin N ,...1  relative to any one fixed Cartesian coordinate 

system form a basis.  

 But it is not always possible to form an alternative basis s  in 
N ...1

S where s  

takes on a number of possible total spin values and the system z  component of spin   

takes (as in (1.1)) one of the 12 s  values sss  ,...1,  accordingly. This is evident 

because the law of spin component addition limits the possible values of s  and prevents 

such a basis having the same dimension as the basis N ...1 . For example, for a system 

made up of three particles of spin 
2

1  the possible values of   are 
2

3 , 
2

1 , 
2

1
  and 

2

3
  

allowing only s  values 
2

3  and 
2

1 . The dimension of a basis s  would therefore have to 

be 624   (there being 4  values of   going with 
2

3
s  and 2  values of   going with 

2

1
s ). But this differs from the dimension of basis 321   which is 823  . 

 However it is always possible to form an alternative basis s  when the system is 

made up of just two particles with spin values 1s  and 2s . (Here 1s  may be any of the 

values 0 , 
2

1
, 1  , 

2

3
, … and the same goes for 2s . We thus have an extension of the 

theory we had in Chapter VII of two spin one-half particles.) We claim that the possible 

values of   are then (as would follow from (1.1)) found by adding any one of the values 

111 ,...1, sss   to any one of the values of 222 ,...1, sss  . That is, the possible values of 

  are: 

 

)(,...1, 212121 ssssss  .      (2.1) 

 

And we claim the possible values of s  are  

 

212121 ,...1, sssssss         (2.2) 

 

(assuming 21 ss  ). Now there are 1)(2 21  ss  values of   going with 21 sss  , 

1)1(2 21  ss  values of   going with 121  sss , … and finally 1)(2 21  ss  

values of   going with 21 sss  . The dimension of bases s  must therefore be the 
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sum of 1)(2 21  ss , 1)1(2 21  ss ,… 1)(2 21  ss  which works out to be equal to the 

dimension of basis 21 , that is, equal to )12)(12( 21  ss .* 

 

 

3. Combination of a pair of spin systems 

 

When we form a system of two non-identical particles with spins 1s  and 2s  we have a 

system which, as we have said, has at any time a net spin s  (equal to one or other of the 

values 21 sss  , 121  ss ,…, 21 ss  ) and in each case a net component of spin   

taking possible values sss  ,...,1,  in any fixed Cartesian coordinate system. Under 

certain circumstances this system remains (over time) a system with a constant net spin 

s  and a constant magnetic moment and behaves (as far as its net spinning motion is 

concerned) in the same way as would a particle of spin s  with the same magnetic 

moment. This can be the case, for example, if the two particles of the system have 

magnetic moments proportional to their spins and the magnetic field each particle 

experiences is at any time the same.  

 Given any two such systems with demonstratively constant net spins 1s  and 2s  

(and we include the case where one of the systems might be just a single particle) we may 

consider these two systems together as forming a system, and everything said in sections 

1 and 2 with regard to particles and systems of particles applies just as well to systems 

and systems of systems. In particular the spin s  of the combined system takes the 

possible values 

 

212121 ,...1, sssssss        (3.1) 

 

and the z  component of spin   of the combined system takes the possible values 

 

sss  ,...1,         (3.2) 

 

depending on the value of s .  

 Starting with two particles each of spin 
2

1  and magnetic moment  , we can build 

up a system with net spin 1  and magnetic moment 2 . This case has been covered 

already in Chapter VIII where we showed how a pair of systems of spin 
2

1  in a uniform 

magnetic field can remain a spin 1  system over time. We can, it seems, extend this 

method indefinitely, and in the next two sections we cover the combination of a spin 
2

1  

particle with magnetic moment   and a spin 1  system with magnetic moment 2 , 

showing how this combination can, in a uniform magnetic field, be a ‘system of spin 
2

3
’ 

with a magnetic moment 3  (or alternatively a ‘system of spin 
2

1 ’ with magnetic 

moment  ) and we claim this system then behaves (as far as its net spinning motion is 

                                                 
* Being symmetric in 1s  and 2s  this expression clearly applies whether or not 21 ss  . 
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concerned) in the same way as a particle of spin 
2

3
 (or as a particle of spin 

2

1 ) would. In 

general we claim that any system of particles that has a definite spin s  of any (allowed) 

value and demonstratively remains a ‘system of spin s ’ in a spatially uniform magnetic 

field behaves (as far as its net spinning motion is concerned) in the same way as would a 

particle of spin s  and a certain magnetic moment, or as would the net spinning motion of 

any other ‘system of spin s ’ (with the same magnetic moment) made up of spinning 

systems in any other manner*. 

 Just as we claimed a first and second property in relation to spin zero systems 

(section 6 of Chapter VIII) and in relation to spin one systems (section 5 of Chapter 

VIII), we claim first and second properties in relation to systems of any spin s  and 

magnetic moment   as follows. 

 

First property  The nature of a ‘system of spin s ’ with magnetic moment   

has no bearing on the value of its z  component of spin in any 

fixed Cartesian coordinate frame at any time. 

 

Second property When a system made up of two distinguishable subsystems of spin  

1s  and 2s , with respective magnetic moments )1(  and )2(  

proportional to their spins, in a uniform (possibly time dependent) 

magnetic field, is prepared in any way in which its total spin is 

expected to be s  over a time period, then (i) the system is a 

‘system of spin s ’, (ii) its z  component of spin   in any fixed 

Cartesian coordinate frame is at any time equal to the sum of the z  

components of spin of the two subsystems and (iii) its magnetic 

moment is the sum of the magnetic moments of the two 

subsystems. 

 

Note that in general we will claim, in relation to the second property, that it is the 

preparation of the system, i.e. the acquisition of knowledge that the system has a net spin 

s  at a particular time, that physically ensures that its total spin remains constant under 

specified conditions. Unlike the case in which 
2

1

1 s  and 
2

1

2 s , we are not able to show 

in general that the net spin s  of two distinguishable subsystems (of spin 1s  and 2s ) has a 

constant net spin under certain physical conditions independently of our knowledge. That 

is why we have substituted the word ‘expected’ for the word ‘known’ in the second 

property stated above.  

 

 

                                                 
* Thus for every possible spinning motion of one system of spin s  (in any prescribed time varying uniform 

magnetic field and relative to any prescribed fixed coordinate frame) there is an identical possible motion 

of any other system of spin s , and the transformation functions (from one time to another or from one 

fixed coordinate system to another) are accordingly the same. A system of spin s  can be constructed in 

many ways. For example a ‘system of spin 
2

1 ’ could be made up of a spin 
2

1  particle and spin 1  particle, or 

of a spin 
2

3
 particle and a spin 1  system, etc. 
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4. The combination of a spin one-half particle and a system of spin one 

 

4.1 Bases for the combined system 

 

Let us label the spin one-half particle and the spin one system 1  and 2  respectively. Then 

relative to any one fixed Cartesian coordinate frame we have 
2

1

1 s , 12 s , 
2

1

2

1

1 ,   

and 1,0,12  . In the combined sample space 
21

S   the natural order of the basis 21  

is, we suppose,* 
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21        (4.1.1) 

 

the corresponding total spin component   values being 
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21 ,,,,,        (4.1.2) 

 

respectively. And the possible values of net spin s  being  

 

2

1
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3
,s .         (4.1.3) 

 

 The natural order of the basis s  we take to be 
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And because of the relation 21   and the limits on the possible values of s  and   

we have the following propositional implications: 
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                 …(4.1.5) 

 

                                                 
* This order is derived following the general rule footnoted in section 1 of Chapter VIII. We assume 

systems of spin 
2

1
 come before those of spin 1  (in the natural order of systems) and then we develop the 

Kronecker product )101()(
2

1

2

1
  in the usual manner without actually evaluating the elements. This 

gives the order in (4.1.1). 
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where we claim full equivalence in the two cases of equivalence and 0  in the last 

implication. Accordingly the transformation function taking us from wave functions in 

the 21  basis to corresponding wave functions in the s  basis (relative to one and the 

same coordinate system) has the (matrix) form 
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100000
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)( 21

GH

FE

DC

AB

s      (4.1.6) 

 

where, as usual, the order of the columns from left to right follows the order of the basis 

21 , and the order of the rows from top to bottom follows the order of the basis s . 

The (possibly complex) elements GBA ,...,  are necessarily independent of the coordinate 

system and of any magnetic field present.* 

 The transformation function taking us from wave functions in the s  basis to 

corresponding wave functions in the 21  basis is accordingly 

 





































001000
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)( 21
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HC
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s      (4.1.7) 

 

  

4.2 Transformation functions for coordinate system rotations 

 

The ( s  basis) transformation function for a rotation of coordinates from coordinates O  

to coordinates O  is, by Feynman’s law 

 





2121 ,

21212121 )()()()( ssss    (4.2.1) 

 

where 

 

)()()( 22112121        (4.2.2) 

                                                 
* The reasons for this are the same as those in the case of the elements of the transformation function 

)(  for a spin 
2

1  system in section 3 of Chapter VII. 
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the system 1  and system 2  transfer functions )( 11   and )( 22   being given in 

matrix form by (3.5) of Chapter VII and (5.1.1) of Chapter VIII with cba ,,  and d  as in 

(5.16) of Chapter VII. Working out the product terms we obtain the following matrix*. 
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 (4.2.3) 

 

So by (4.2.1) 
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ss

 

                … (4.2.4) 

 

Now since the value of total spin is independent of the coordinate system, elements of the 

matrix )(  ss  for which ss   must vanish. So, for example, 0)(
2

1

2

1

2

3

2

3
  and by 

(4.2.4) this gives 0)2( 2   caFE  and therefore 2EF  . Similarly from 

0)(
2

1

2

1

2

3

2

3
   we find 2GH  . From 0)(

2

1

2

1

2

1

2

3
  we thus obtain 2AB   and 

from 0)(
2

1

2

1

2

1

2

3
   we obtain 2CD  . Setting the remaining vanishing elements of 

)(  ss  equal to zero gives nothing new. But we have reduced the unknowns to just 

four, namely ECA ,,  and G . 

 The requirement for normalisation of the wave functions )( 21 s  in (4.1.6) 

gives 1  EEBB  and 1  FFAA . Substituting 2AB   and 2EF   gives 

                                                 
* which is the Kronecker product of matrices )( 11   and )( 22  , and (as in the case of the matrix 

(3.1) of Chapter VIII) necessarily has a determinant equal to1. 
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3

1
EE . Similarly from 1  GGDD  and 1  HHCC  we obtain 

3

1
GG . And 

from the requirement 1  DDCC  by putting 2CD   we find 
3

1
CC . And 

similarly putting 2AB   in 1  BBAA  we find 
3

1
AA . 

 Using these results we can simplify (4.2.4) to 
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                … (4.2.5) 

 

where we have used the fact that 1bcad  to simplify the four bottom right elements.  

 We note that the requirement of phase normalisation applied to the transfer 

function (4.1.6) gives  

 

19)](det[ 21  ACEGAEDHAECGBDFHBCFGs  

 

or 

 

9

1
ACEG          (4.2.6) 

 

 Finally we observe that if our system (composed of a spin one-half particle and 

spin one system) is known to have a net spin 
2

1
 at one moment in time*, the problem of 

finding the probability distributions )(
2

1

2

1
  (i.e. the )(  ss  with 

2

1
 ss ) over 

the possible values (
2

1
 ) of   and   at the time in question is, by the second property 

in section 3, evidently similar to that of finding the transfer functions )(   for a spin 

one-half system. Therefore  ie)()(
2

1

2

1
 where the phase   is independent of 

  and  . In matrix notation this means that in (4.2.5) 

 

                                                 
* For example, if somebody had prepared our system in a pure state such that  ~

2

1
s  at a certain time 

telling us only that s  was equal to 
2

1
 leaving us guessing what value ~  they chose for  . 



IX. Spin in general 

 225 
































 ie
db

ca

dbGE

cEGa

3

3
 

 

and here   can only be zero giving 

 

3

1
EG .         (4.2.7) 

 

 To get further we need to make a comparison between our combined spin one-

half and spin one system and a system made up of three spin one-half particles.  

 

 

4.3 Comparison with a system composed of three spin one-half particles 

 

Consider a system of three distinguishable particles each with spin one-half. Let us label 

the particles 1, 2 and 3. The particle spins 1s , 2s  and 3s  are all equal to 
2

1 . The 

propositions ‘ 321  ’ claiming that at one time and with respect to a fixed Cartesian 

coordinate system O , particle 1 has a z  spin component 1 , particle 2 has a z  spin 

component 2  and particle 3 has a z  spin component 3 , constitute a basis in the 

sample space 
321

S   which is the combination of the sample spaces 
1

S ,
2

S  and 
3

S  of 

each particle. We suppose the discrete basis ‘ 321  ’ in 
321

S   has the natural order*  
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321 ,,,,,,,   (4.3.1) 

 

and there is a property   which is the net z  component of spin related to 1 , 2  and 3  

by 

 

321  .        (4.3.2) 

 

There is also a property s  which is the net spin of the system taking the possible values 

 

2

1

2

3

321321

,  

...,1,



 sssssss
      (4.3.3) 

 

and s  is, like 1s , 2s  and 3s , independent of the coordinate system. 

 The possible values of   at any one time are physically determined by the value 

of s  at that time,   taking one of the values 

 

                                                 
* Again this order is the order of the (unevaluated) elements in the developed Kronecker product 

)()()(
2

1

2

1

2

1

2

1

2

1

2

1
  . 
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sss  ,...1, .        (4.3.4) 

 

But as we have said in section 2, there is no basis s .  

 Any wave function )( 321 Y  under pure knowledge Y  takes a different form 

in each fixed Cartesian coordinate system with 

 





321

)()()( 321321321321 YY     (4.3.5) 

 

relating the wave function in O  to that in O . The transformation function 

)( 321321   is clearly 

 

)()()()( 332211321321   

 

where )( 11  ,…etc. are given by (3.5) of Chapter VII. In matrix form we therefore 

have* 
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 (4.3.6) 

 

 A three spin 
2

1
 system is evidently more general (has more possible 

configurations) than a spin 
2

3  system. But a three spin 
2

1
 system may be known (under a 

certain conditions) to be a spin 
2

3  system over a time period. 

 We know that under the pure state of knowledge 
2

1

2

1

2

1

321   for which the 

wave function is simply 

                                                 
* The matrix )( 321321   is the Kronecker product of the matrices )( 11  , )( 22   and 

)( 33  . Since the Kronecker product is associative the determinant of the matrix 

)( 321321   is again equal to 1 . (If BA,  and C  are nn , pp  and qq  matrices we 

have 
pnqnpqnpqpqnpq

CBACBACBAC)BACBA  )((  which 

equals 1  when 1 CBA .) 
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 ,      (4.3.7) 

 

the system is a spin 
2

3  system (since 
2

3
  and therefore 

2

3
s ) and will remain so if, for 

example, there is no magnetic field. If we transform from coordinates O  to O  we will 

get another form of wave function entailing knowledge that the system is a spin 
2

3  

system. In vector notation this is, by (4.3.6) 
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Since the probabilities for 
2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

321   and,,   are all equal to ba 2
, we 

have, by the sum rule (3.4.9) of Chapter I, and on claiming the propositional equivalence  
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Similarly we can arrive at 
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Now we can identify )(
2

1

2

1

2

1

2

1
  with the probability )(  ss  (of section 4.2) with 

2

1

2

3
s  and 

2

3

2

3
s . For we may naturally claim 

2

300

2

3
 ss  so that 

 ss 00  and then )()(  ssss . And since 
2

3
  implies 

2

3
s  and since 

],,[  sss  is true generally, we have, by (1.4.5) of Chapter II, that 
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Similarly we have 
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. 

 

But in the theory of section 4.2 (on the RHS of (4.2.5)) these probabilities were given by 

bAa 23  and 
23Cab  so it must be that 

3

1
CA  and by (4.2.6) that 

3

1
EG . And since 

we know (by (4.2.7)) that 
3

1
EG , it must be that G  (and therefore E ) are real, and 

since 
3

1
  GGEE , that 

3

1
E  while 

3

1G .  

 We can establish the signs of E  and G  from the claim that 0  in (4.1.5), i.e. 

from  
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  s  with  0 .   (4.3.9) 

 

This implies G  must be 
3

1
  (and therefore E  must be 

3

1
). For if G  was 

3

1
, then since 

3

2
2 CD , D  and G  in (4.1.6) would have the same phase (namely zero) and by 

the sum rule (3.4.9) of Chapter 1 we would have 1)0or (
2

1

212
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 ---s  

contradicting (4.3.9).  

 

Hence we arrive at the usual forms for the transfer functions for a combination of a spin 

one-half particle and a spin one system, namely 
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and 
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where of course cba ,,  and d  are given, as functions of the Euler angles, in (5.16) of 

Chapter VII. 

 

 

5. Combination of a spin one-half particle and spin one system in a uniform 

magnetic field 

 

5.1 Derivation of the Schrödinger equation 

 

In a uniform (possibly time dependent) magnetic field H  a wave function )( 21 Yt  

over the basis 21  in 
21S  (with 21  taking the possible values in (4.1.1) at any time) 

satisfies a Schrödinger equation  that can be derived in a manner similar to the way it was 

done for the combination of two spin one-half systems in section 4 of Chapter VIII. 

 With H  independent of time, the spin/spin transfer function from time t  to time 

t  is given by  

 

)()()( 22112121 tttttt       (5.1.1) 

 

i.e. by the product of the transfer functions for the spin one-half particle and spin one 

system on their own in the separately closed sample spaces 
1

S  and 
2

S . And the first 

transfer function satisfies the Schrödinger equation  

 





 





1

11
)(

)(
11

)1(11
ttH

t

tt
i       (5.1.2) 

 

and the second 
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where by (8.2.3) and (8.2.6) of Chapter VII 
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and by (5.2.2) and (5.2.3) of Chapter VIII 
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where )1(  and )2(  are the magnetic moments of the particle of spin one-half and the 

system of spin one respectively, and the usual matrix representation is employed. 

 It  follows that the Schrödinger equation for )( 2121 tt   is 
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where the Hamiltonian is 
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, 221122112211   HHH .      (5.1.7) 

 

This is easily confirmed by substitution of (5.1.1) and (5.1.7) into (5.1.6). 

 Working in the matrix notation and employing the Kronecker product we have 
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Adding these we find 
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Since any wave function )( 21 Yt  is a linear combination of the wave functions 

)( 2121 tt   (which form a complete set) it follows that the Schrödinger equation for 

any wave function is 
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with 
2211 , H  given by (5.1.8). 

 Transforming to the s  basis using the transformation function )( 21 s  given 

in (4.3.10) we get the Schrödinger equation 
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where 
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(cf. the derivation of (4.7) and (4.8) in Chapter VIII). Using (4.3.10) and (5.1.8) and 

evaluating the ordinary matrix products in (5.1.11) we obtain  
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5.2 Conditions under which the system is one of spin one-half 

 

We suppose the combination (in section 4) of the spin one-half particle and spin one 

system experiences a uniform, though generally time dependent, magnetic field as in 

section 5.1 and that the magnetic moments )1(  and )2(  are proportional to the spins, i.e. 

 

 )1( ,  2)2( .       (5.2.1) 

 

Then the Hamiltonian  ssH ,  in (5.1.12) simplifies to 
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 Whenever our wave function )( Yts  is at one time (say at time 0t ) zero for 

s  different from 
2

1  and is therefore (in vector form)  
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where we have labelled the elements, and   and   are complex-valued probabilities 

satisfying 1
22
 , it will, by (5.1.10) with (5.2.2), clearly maintain this form over 

time with   and   evolving in exactly the same way as the corresponding probabilities 

would in the Schrödinger equation (8.2.3) of Chapter VII for a system of spin one-half.  

 Also, at any time, on account of the form of the transformation equation (4.3.11), 

the values of   and   change with our choice of fixed Cartesian coordinate frame in 

exactly the same way as the corresponding probabilities would for a spin one-half system. 

 It is therefore possible to claim (as we do) that under (5.2.1) and with the system 

in a uniform magnetic field, the acquisition of pure knowledge Y  that includes the 

knowledge that the system has total spin 
2

1
s  at one time ensures it has spin 

2

1
s  at 

any other time and ensures it is a system of spin one-half with magnetic moment  . 

 

 

5.3 Conditions under which the system is a system of spin 
2

3  

 

Under the same prescribed conditions (of uniform and generally time dependent magnetic 

field, and relations (5.2.1) between magnetic moments) a wave function )
~

( Yts  

initially of the form 
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 Ys        (5.3.1) 

 

where 1
2222
 , will, by (5.1.10) and (5.2.2), clearly maintain this form 

over time.  

 We claim, as part of our general knowledge G , that the acquisition of knowledge 

Y
~

 physically ensures that the total spin of the system is and remains equal to 
2

3 , and 

ensures that the system is one of spin 
2

3 . Therefore the problem of finding a wave 
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function )( Yt  for any system of spin 
2

3  where Y  is pure knowledge relating to the z  

components of the spin 
2

3  in any coordinate frame, is similar to that of finding the wave 

function )
~

( Yts  (with 
2

3
s ) for our combined spin one-half and spin one system 

under knowledge Y
~

 which is the same knowledge Y  with regard to   but includes the 

knowledge that 
2

3
s . Hence 
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where   is a constant phase independent of   and t . So the wave function )( Yt  for 

any system of spin 
2

3  satisfies the Schrödinger equation 
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where, by (5.2.2) 
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in which 3  is, by part (iii) of the second property in section 3, the magnetic moment of 

the system. 

 We note also that, by similarity, the transformation function )(   for any 

system of spin 
2

3  under rotation of coordinates is 

 



 i

s
ess

2

3)()(  

 

where )(  ss  is given by (4.3.11) and   is a constant phase independent of   and 

 , and of the Euler angles defining the rotation. With the Euler angles set equal to zero 

)(   and 
2

3)(



s

ss  must both equal   so that   can only be zero. The 

transformation function for a system of spin 
2

3  under coordinate rotation is therefore 

given in matrix form by 
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6. The Schrödinger equation for the spinning and orbital motion of a spin s  particle  

 

6.1 The Schrödinger equation for spinning motion in a uniform magnetic field 

 

Proceeding in a manner similar to that employed in section 5 in the derivation of the 

Schrödinger equation for the spinning motion of a system of spin 
2

3  in a uniform 

magnetic field, we can (we assume) derive the Schrödinger equation for the spinning 

motion of a system of any spin s  in a uniform magnetic field by building such a system 

up from pairs of systems of smaller spins with magnetic moments proportional to their 

spins and using the laws of complex-valued probability claiming phases of implication in 

physical laws are zero or not zero as needed. 

 When this is done for any one value of s  the Schrödinger equation is always of 

the form 
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as in (5.3.2) for the case 
2

3
s , in (5.2.4) of Chapter VIII for the case 1s , and as in 

(8.2.3) of Chapter VII for the case 
2

1
s . The Hamiltonian can in any case be written 
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where yx HH ,  and zH  are the components of the magnetic field H  and x

 , y

  and 

z

  are the generalised 12 s  by 12 s  spin matrices, and   is the magnetic moment of 

the system. 

 For the case 
2

1
s  the spin matrices are the (Pauli) matrices given in (8.2.5) of 

Chapter VII. For the case 1s  they are readily derived from (5.2.3) of Chapter VIII to be  
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and for the case 
2

3
s  they are, by (5.3.3) 
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                 …(6.1.4) 

 

We can introduce a vector σ̂  whose Cartesian components are the matrices xs  , ys   

and zs   which are also the matrix forms of the operators yx  ˆ,ˆ  and ẑ  associated with 

the ‘ yx,  and z  components of spin s ’ defined as the z  components of spin in rotated 

coordinates (just as was done in the case of spin one-half in section 7 of Chapter VII*). 

We can then write the Hamiltonian for spin s  as  

 

Hσ.ˆ
s

H


         (6.1.5) 

 

in place of (6.1.2). This generalises (8.2.8) of Chapter VII. 

 

 

6.2 The Schrödinger equation for spinning and orbital motion 

 

When the particle (of spin s  and magnetic moment  ) experiences a uniform magnetic 

field H  and constant scalar and vector potentials V  and A , the Schrödinger equation 

for its spinning and orbital motion is easily derived in the same way as we did in the case 

of 
2

1
s  in section 9.1 of Chapter VII. The result, for the wave function written ),( tr  

or  , is evidently the Schrödinger equation  
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the same form as in (9.1.4) of Chapter VII. Here x

 , y

  and z

  are the appropriate 

spin matrices (examples of which were given in section 6.1) and of course m  is the 

particle mass and r . 

                                                 
* with the same Euler angles used to define the rotated coordinates 
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 For the same reasons as in section 9.2 of Chapter VII (for the case 
2

1
s ) 

equation (6.2.1) also holds, and is the Schrödinger equation, when H , V  and A  are any 

functions of position and time. 

 We note that (6.2.1) can be written 
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with 
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where σ̂  is the vector operator as defined in section 6.1 and s  the particle spin. 

 

In the case H  has only a component zH  (i.e. when xH  and yH  are everywhere zero) 

the spin part of the Hamiltonian H  in (6.2.3) simplifies to 

 

zz Hσ
s

ˆ


  

 

where ẑ  is the operator for the z  component of spin s  which is defined by 

 

)()(ˆ
zzzz         (6.2.4) 

 

for 1,...1,  sssz  (cf. (7.10) of Chapter VII in the case 
2

1
s ). Since the 

transformation function )( z  equals 
z  the operator ẑ  in matrix form is clearly 
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so that in (6.2.4) ẑ  is 
zz   and in (6.2.3)  σ̂  is k  ( k  being the unit vector in the 

z  direction).  

 Accordingly the Schrödinger equation when H  is everywhere parallel to the z  

axis can be written 
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so we have a separate Schrödinger equation for each   component of the wave function, 

  of course taking the values 1,...1,  sss . 
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CHAPTER X 

  

SYSTEMS CONTAINING IDENTICAL PARTICLES  
 

 

1. Bases and wave functions 

 

In complete sample spaces of propositions concerning dynamical properties of a system 

of particles some of which are identical, we introduce sets of propositions that form 

‘improper bases’. These are formally the same as the bases in the case the particles are all 

non-identical.  

 For example, consider a system of two identical particles and the sample space S  

of all propositions about the orbital motions and spinning motions of the particles over a 

time period. In that sample space, using a fixed Cartesian coordinate system and dividing 

fixed space into equal infinitesimal volume elements r
3d , we introduce the improper 

basis 21  the general proposition of which claims that at time t  the particle occurring 

earliest in the natural order of particles has ‘coordinates’ 1  i.e. occupies the volume 

element 1

3
rd  at 1r  and has spin component 1  in the z  direction of the fixed Cartesian 

frame of reference and at the same time t  the other particle has ‘coordinates’ 2  i.e. 

occupies the (generally different) volume element 2

3
rd  at 2r  and has a (generally 

different) spin component 2  in the z  direction.  Alternatively, with respect to the same 

fixed coordinate system, we might employ the improper basis 21 pp  the general 

proposition of which claims that at time t  the particle occurring earliest in the natural 

order of particles has ‘coordinates’ 1p  i.e. occupies the volume element 1

3
pd  at 1p  in the 

momentum space associated with the frame of reference and has spin component 1  in 

the z  direction of the frame of reference and at the same time t  the other particle has 

‘coordinates’ 2p  i.e. occupies the (generally different) element 2

3
pd  at 2p  in the 

momentum space and has a (generally different) spin component 2  in the z  direction.*  

 The propositions of any improper basis are not propositions whose truth could 

generally be known because nature provides us with no means for determining the natural

                                                 
* We are using for example 1  to stand both for the coordinates of a particle and for the proposition that 

claims these coordinates are possessed by the particle. We stress that in our notation (here and elsewhere 

when we deal with identical particles and unless we state otherwise) the natural order of the particles is 

reflected in the order in which the propositions (and associated coordinates) occur in a conjunction such as 

21 , while generally different coordinate values are marked by a numerical suffix 1,2, …etc. So, for 

example 1  is not necessarily associated with the particle of the system occurring earliest in the natural 

order of particles, and if we write 12  we will mean the proposition claiming that the earliest particle (in 

the natural order) has coordinates 2  and the other particle (occurring later in the natural order) has 

coordinates 1 . 
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order of identical particles. And we may not generally claim to know the natural order 

either (see section 3.6 of Chapter III). Therefore an improper basis is not usually a basis 

in the normal sense. Nonetheless, under pure knowledge Y  relating to sample space S  of 

all propositions about the orbital motions and spinning motions of the particles over a 

time period we will have a calculable probability distribution over the propositions of an 

improper basis and one determinate at least to within a constant phase factor, and we call 

such a probability distribution an ‘improper wave function’ or a ‘wave function over an 

improper basis’. (So )( 21 Y  is an improper wave function in the two particle example 

above). 

 We will see that the wave functions over different improper bases are related or 

connected to one another through transformation functions, but, because the bases are 

improper, these transformation functions are not generally wave functions or probability 

distributions under possible states of knowledge. 

 Now whether the identical particles are bosons or fermions, corresponding to 

every improper basis there is a derived proper basis (in the same sample space) that is a 

proper basis in the usual sense (except for its size in relation to the order of the sample 

space -see below). The propositions of this basis are the same as those of the 

corresponding improper basis except that they make no claim concerning which of the 

identical particles has which property. So, for example, corresponding to the improper 

basis 21  described above there is a proper basis denoted ][ 21  where  

 

122121 ][  .        (1.1) 

 

The general proposition ][ 21  of this basis is thus the disjunction of the propositions 

21  and 12 , the second of which claims the particle occurring later (in the natural 

order of particles) has the coordinates 1  and the particle occurring earlier (in the natural 

order of particles) has the coordinates 2 . 

 Wave functions over improper bases (like ordinary wave functions over proper 

bases) cannot be just any function of the coordinates (e.g. the position/spin coordinates or 

the momentum/spin coordinates). The same restrictions apply to them as apply to 

ordinary wave functions over proper bases. For example, they must be differentiable 

functions of the continuous components of the coordinates and of any continuous 

parameters. But in addition they must have symmetry properties (see section 2). Subject 

to these restrictions however wave functions over improper bases may take any form and 

again (to within a constant phase factor) there is a 1-1 correspondence between wave 

functions (over any one improper basis) and pure states of knowledge. 

 Note that a question arises with regard to the size of bases or the order* N  of the 

sample space S , because the number† of propositions in the improper basis 21 , for 

example, is clearly greater than the number of propositions in the derived proper basis 

][ 21 . As the improper bases play the more fundamental role in the theory, we adopt the 

convention that N  equals the number of propositions in any improper basis (such as 

                                                 
* This is the order before we take the limit as the number of continuous coordinate values is allowed to go 

to infinity. 
† Again, before taking the limit as the number of continuous coordinate values goes to infinity. 
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21 ) not the number in the corresponding proper basis. And this convention extends to 

sample spaces whose improper bases span coordinate values of any number of particles 

some or all of which may be identical. 

 Finally we claim that the sum rule for wave functions (in section 3.11 of Chapter 

I) applies also to wave functions over improper bases. 

 

 

2. Symmetry properties of improper wave functions under the interchange of the 

coordinates of identical particles.  

 

Consider a process involving certain sets of identical and (generally interacting) 

particles.* Let   denote identical particles of one type of which there may be two (or 

more) present. Let   denote identical particles of another type of which there may be two 

(or more) present,…etc. Let ,..., 51  etc. denote the coordinates of position and spin for 

each type of particle present.  So for example, 1  will denote one or other volume 

element of space and one or other z  component of spin for an   particle depending on 

the value of the variable 1  and so on. 

 If the particles in the process had all the same relevant unchanging properties 

(masses, spins etc) without any two being identical, then in the ordinary way, pure 

knowledge of the process would be present whenever we had sufficient knowledge of the 

dynamical properties of the system whose particles are distinguishable and can be 

assigned a natural order. If, in relation to the actual process, we have the same knowledge 

of dynamical properties except for the knowledge of which was which of the identical 

particles, we still have pure knowledge of the actual process.† Such knowledge (i.e. ‘full’ 

knowledge of the dynamical properties at one time without knowledge of the natural 

order of the identical particles of each kind) is in fact the general form of pure knowledge 

of a process containing identical particles. Under such pure states of knowledge let the 

(generally time dependent) improper wave functions be denoted 

 

).........( 6521 GYt , 

).........( 6521 GYt  ,       (2.1) 

).........( 6521 GYt  , 

… 

 

where the time t  appears explicitly and where the variables for particles of each type are, 

as usual, supposed to be ordered from left to right in the way nature has ordered those 

                                                 
* In accordance with our non-relativistic treatment we assume the particles retain their form and number 

during motion. 
† For example we might know (of a two electron system in free space) that at time 0t  one electron is in 

volume element r
3d  with z  component of spin 

2

1
  and the other is in volume element r 3d  with z  

component of spin 
2

1
 , but not know or be able to claim which electron (in the natural order of electrons) 

occupies which volume element. This would constitute pure knowledge of the two-electron system. 
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particles. These wave functions amount to a list of probabilities for the propositions 

‘ ......... 6521  ’ for all values of the variables ...,...;,,...;, 6521   and for all times t , 

under pure states of knowledge ,...,, YYY   of dynamical properties and states of general 

knowledge ,...,, GGG   which possibly differ but only in regard to the external potential 

fields experienced by the particles (the same set of particles in every case) and the choice 

of rest frame. Relating (as they do) to any one time t  the propositions ‘ ......... 6521  ’ 

constitute a time dependent improper basis in the sample space S  for the orbital and 

spinning motions of the particles of the system.   

 

To deduce the symmetry properties of the improper wave functions in (2.1) we apply the 

method of transformation groups. We consider a transformation in which (in all our 

distributions (2.1)) we change the order of two variables referring to identical particles 

(specifically the first two   variables). This means the first written variable 1  now 

refers to the particle to which 2  previously referred and the second written variable 2  

now refers to the particle to which 1  previously referred*. The problem of finding (under 

the same states of knowledge ,...,, GYGYYG  ) the new improper wave functions 

 

).........(
~

6521 GYt , 

).........(
~

6521 GYt  ,       (2.2) 

).........(
~

6521 GYt  , 

… 

 

after this transformation is similar to the problem of finding the original wave functions. 

(This is because we have no clue as to the actual natural order of the particles so this 

actual order can play no part in our reasoning.) Therefore we should set our degrees of 

belief and our relative phases of belief in all corresponding propositions equal, i.e. we 

should set (as in (5.1.2) of Chapter I)† 

 
 ieYGtYGt ).........().........(

~
65216521 , 

 ieGYtGYt ).........().........(
~

65216521 ,   

… 

 

where   is a real constant (independent of the values of the coordinates 

...,...;,,...;, 6521  , the time t , and the states of knowledge ,...,, GYGYYG  ) but 

possibly different had we interchanged two other   variables or two of the   variables 

…etc. 

 But by the second uniqueness principle of probability assignments we should also 

set 

 

                                                 
* i.e. to the particle 1st in the natural order of the particles of the first type present 
† The alternative expression of similarity (by conjugation) is not possible (see first footnote to section 4.2).  
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).........().........(
~

65126521 YGtYGt  , 

).........().........(
~

65126521 GYtGYt  ,   

… 

 

because the propositions ‘ t......... 6521  ’ on the LHS and ‘ t......... 6512  ’ on the RHS 

are fully equivalent, being propositions claiming the same physical property. So we find  

 
 ieYGtYGt ).........().........( 65216512 , 

 ieGYtGYt ).........().........( 65216512 ,   

…                   …(2.3) 

 

i.e. the effect of interchanging the 1st and 2nd   coordinate values in any of the original 

wave functions is to multiply by 
ie  regardless of the actual values of the coordinates or 

of the time. Doing this twice shows that 1)( 2 ie  or  

 

1ie . 

 

The effect of interchanging any two   coordinate values in the original wave functions 

will be to multiply them by the same phase factor. For interchanging say the 3rd and 5th   

coordinate values is equivalent to the set of successive interchanges of the 3rd and 1st, 2nd 

and 5th, 1st and 2nd, 2nd and 5th and finally of the 3rd and 1st. So if interchanging the first 

and second multiplies by 
ie  and if interchanging the 3rd and 5th multiplies by 

ie , and 

interchanging the 3rd and 1st and the 2nd and 5th multiply by 
ie and 

ie  respectively, then 

 
  iiiiii eeeeee . 

 

Since 
ie  and 

ie  are each 1  this gives 

 
  ii ee . 

 

 So all the improper wave functions are symmetric or all the improper wave 

functions are anti-symmetric under an interchange of any pair of   coordinate values. 

The same can of course be said with regard to the   coordinate values or with regard to 

the coordinate values relating to any particles of the same type in our set of particles.* 

 Exactly the same symmetry or anti-symmetry property of an improper wave 

function applies in another representation. This can be shown simply by including 

                                                 
* This finding is consistent with the principle of indifference ((5.2.1) of Chapter I) which for example leads 

us to set 
2

6521

2

6512 ).........().........( YtYt   on account of us being quite indifferent 

as to which of the two   particles occurring earliest (in the natural order of   particles) might have which 

of the coordinate values 1  or 2 . 
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improper wave functions in another representation in the list (2.1) and reordering also the 

variables belonging to the same two particles in the tilde wave functions in the new 

representation. We see, then, that the symmetry or anti-symmetry property of an 

(original) improper wave function with respect to the interchange of any two of the 

coordinates of particles of one type is independent of the representation. It is also present 

when in addition to the various sets of identical particles non-identical particles are 

included in the process; the above demonstration going through unchanged. Wave 

functions are then still referred to as ‘improper’ or as improper with regard to the sets of 

identical particles of the system. 

 Also, since the proof of symmetry or anti-symmetry given above does not use the 

fact that the states of knowledge ,...,, YYY   are pure, it also holds for probability 

distributions (2.1) under any states of knowledge ,...,, YYY   of the dynamical properties 

of the system. 

 

 

3. The transformation functions connecting improper wave functions  

 

To derive these transformation functions we introduce the following physical law. 

 

Law of motion of identical particles 

  

The detailed laws governing the orbital and spinning motions of a system of 

particles some of which are identical, though unknown to us, are exactly the same 

as the detailed laws governing a similar system of non-identical particles having 

the same relevant properties*.  

 

It follows that if we have a wave function over a certain improper basis, the problem of 

calculating the wave function in another improper basis is similar to that same problem 

for the like process involving non-identical particles in which we start out with the same 

wave function (to within a constant phase factor) and the improper bases have become 

proper bases. This leads to the required transformation functions and the Schrödinger 

equation being the same as the transformation functions and Schrödinger equation in the 

equivalent non-identical particle case.  

 As an example, consider a process involving just two identical particles as in 

section 1, and let us suppose the particles do not interact with each other through an inter-

particle potential. Suppose we have pure knowledge Y  of the process which does not 

include actual or supposed knowledge of which particle is which in the natural order. Let 

our corresponding improper wave function over the position/spin coordinates at one time 

t  be )( 21 YG  and suppose, under the same state of knowledge, we want to find the 

                                                 
* The non-identical particles replacing the identical ones must of course have all the same properties 

relevant to the process considered as the identical particles they replace. But they cannot have all the same 

properties whatsoever or they would remain identical. So we suppose that their orbital motions are sensitive 

to a kind of external potential peculiar to each but not playing a part in the process considered. These 

peculiar potentials could in principle be used to locate and distinguish between the particles at any time of 

our choosing. 
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improper wave function )( 21 YGpp  in a representation using another improper basis 

21 pp  ( p  denoting another property pertaining perhaps to another time t , for example, 

the element of momentum space occupied by a particle and the z  component of spin of 

the particle at time t ). If the particles were non-identical we could (because of the 1-1 

correspondence between wave functions and pure states of knowledge postulated in 

section 3.3 of Chapter I) still start out with essentially the same wave function – i.e. with 

the same probability distribution (to within a constant phase factor) over the propositions 

21  which would then form a proper basis. Let GY
~~

 be the pure knowledge 

corresponding to this wave function so that we have  ieYGGY )()
~~

( 2121
 where 

G
~

 differs from G  only because we know the particles are non-identical in one case and 

identical in the other.* In the case the particles are non-identical we have, by Feynman’s 

law, 

 





21

)
~~

()()()
~~

( 21221121 GYppGYpp     (3.1) 

 

the )( 11  p  and )( 22  p  being the transformation functions in the completely separate 

sample spaces of the individual particles. By the law of motion of identical particles (as 

stated above) the problems of finding the wave functions in the 21 pp  representation in 

the identical and non-identical particle cases under knowledge YG  and GY
~~

 respectively 

are similar and by the similarity principle ((5.1.1) of Chapter I) we have 

 
 ieGYppYGpp )

~~
()( 2121       (3.2) 

 

where   is independent of coordinates 21 pp , and of the basis 21 pp  itself. In the case that 

the basis 21 pp  coincides with 21  i.e. that the new basis coincides with the original 

basis, we have  ieGYppYGpp )
~~

()( 2121  by hypothesis, so the constant   must 

equal   and (3.1) gives 

 





21

)()()()( 21221121 YppYpp      (3.3) 

 

where for simplicity we have dropped the general knowledge parameter G  from both 

sides. 

                                                 

* In the wave function )
~~

( 21 GY  we still take 1  to be the coordinates of the particle occurring earlier 

in the natural order of particles. Since the particles are here non-identical they are distinguishable and, as 

we have claimed in section 3 of Chapter III, their natural order may be harmlessly claimed in any way we 

please. 
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 Hence the transformation function connecting )( 21 Y  to )( 21 Ypp  is the 

function )()( 2211  pp , the same as in the non-identical particle case where we write 

it as )( 2121  pp . Note well, however, that this transformation function )( 2121  pp  

with the proposition order convention of section 1, is not itself a probability distribution 

or wave function under knowledge 21  in the identical particle case because, as we have 

said, nature does not provide as with the means to tell, nor generally the right to claim to 

know, the natural order of identical particles, so the truth of 21  cannot generally be 

established. For this reason we will (here and in similar circumstances) place a hat over 

the phi, i.e. write the transformation function as )(ˆ
2121  pp  to guard against taking it 

as a wave function under knowledge 21 . Thus, for a pair of identical particles 

Feynman’s law takes the form 

 





21

)()(ˆ)( 21212121 YppYpp      (3.4) 

 

where )()()(ˆ
22112121  pppp . 

 

The above demonstration including the result (3.4) clearly extends to cases when the 

particles interact with each other through an inter-particle potential. The transformation 

function )(ˆ
2121  pp  is then perhaps no longer of the simple form )()( 2211  pp  

but is nonetheless the same as the function )( 2121  pp  that would apply in the case of 

non-identical particles interacting in the same way. The demonstration also naturally 

extends to cover processes involving any number of particles some of which are identical. 

 

 

4. The dynamic order of fermion coordinate values and the symmetry properties of 

improper wave functions  

 

4.1 The dynamic order of fermion coordinate values  

 

Any isolated system S  of particles* that includes a set of identical fermions possesses a 

property the like of which was not met before the advent of the quantum theory. It is the 

property of dynamic order of fermion coordinate values. 

 Let   stand for the coordinate of position r  and z  component of spin   

applicable to any one of a set of identical fermions of S . Now we can imagine putting all 

the possible values of the   coordinates in a certain order. Since r  has continuous 

components yx,  and z , it is not as easy to express such an order mathematically as it 

would be if the components of   were all discrete, but we suppose it can in principle be 

done and done in an infinite number of ways corresponding to all the possible different 

                                                 
* i.e. a system not in interaction with other quantum mechanical systems but possibly under the influence of 

externally applied fields 
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orders.* Under one such order of   values we may then write for example that 63   

meaning that the coordinate value 3  comes before the coordinate value 6  under the 

order in question. 

 We suppose that at any time t  a certain order of all possible   values represents 

a property possessed by S  at that time. This property is a dynamical property (called the 

dynamic order of   coordinate values) and it may change with time. There is similarly a 

dynamic order of p  coordinate values (of momentum p  and z  component of spin  ) or 

of the   coordinates values of any other basis that could be employed in connection with 

any single fermion of the kind in question. And if S  includes sets of identical fermions 

of different kinds there is a different time dependent property of S  represented by the 

dynamic order of the coordinate values of each kind of fermion.  

 With regard to the time evolution of any dynamic order we claim the following 

law. 

 

Law of evolution of the dynamic order  

 

Under any knowledge Y  of the dynamical properties of an isolated quantum 

mechanical system S  possibly in an external field, the dynamic order of all 

possible coordinate values associated with any set of identical fermions of one 

kind stays constant at least for short times but may change abruptly from time to 

time. And we can take it to be a property of S  amenable to the principle of short 

time isolation. 

 

We claim too the following principle of free choice: 

 

Principle of free choice of the dynamic order of coordinate values 

 

We can never know the (generally time dependent) dynamic order of coordinate 

values associated with any one set of identical fermions of S , but we may assume 

it (specify it) in any way we please consistent with the law of evolution of the 

dynamic order of coordinate values and the requirements of continuity of 

improper wave functions. If our choice then differs from the actual dynamic order 

it will not matter –no contradiction between theory and experiment will arise.  

 

 Note that there is no property represented by an order (dynamic or otherwise) of 

coordinate values of any one of a set of identical bosons of a particle system. But, as we 

have explained, such a property does exist in the case of identical fermions. And these 

facts will be of importance in connection with establishing the symmetry properties of 

improper wave functions (section 4.2) and the relation between proper and improper 

wave functions for systems of identical fermions (section 6.1). 

                                                 
* If we divide space up into an infinite but countable number of equal tiny volume elements ir

3 , forming 

an order of the positions ir  (of the ir
3 ) and   values is much easier. We can then imagine taking the 

limit as the volume elements tend to zero in size. 
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4.2 The symmetry properties of improper wave functions 

 

We established in section 2 that in any process during which the identical particles cannot 

be (or simply are not) claimed to have a natural order, wave functions over improper 

bases must be either symmetric or anti-symmetric with respect to the interchange of the 

coordinates of any two identical particles. 

 We now employ the principle of indifference to show that the wave functions (or 

more generally the probability distributions over coordinates under any state of 

knowledge Y  pure or not) must in fact be symmetric with regard to the interchange of the 

coordinates of any two identical bosons and anti-symmetric with regard to the 

interchange of the coordinates of any two identical fermions. 

 Consider a time dependent improper wave function (or general time dependent 

probability distribution) ).........( 6521 Yt  where we suppose the   coordinates refer 

to a set of identical fermions and the   coordinates refer to a set of identical bosons. 

(And there may also be (unwritten) coordinates referring to other sets of identical 

particles and to particles not identical to each other.) As previously, the order of the 

coordinates ......... 6521   as written in the wave function (or probability distribution) is 

supposed to correspond to the natural order of the particles. 

 Now because we have no idea which boson comes before which in the natural 

order of identical   bosons we are indifferent between the propositions ......... 6521   

and ......... 5621   . Also we cannot demonstrate an absolute difference between the 

physical properties claimed by these propositions. Therefore we are absolutely indifferent 

between the propositions and must (by (5.2.2) of Chapter I) assign equal probabilities to 

them. So 

 

).........().........( 56216521 YtYt   

 

and it clearly follows that the wave function (or probability distribution) must be 

symmetric with respect to the interchange of the coordinates of any two identical bosons.* 

And this is true regardless of the coordinate bases employed and regardless of our 

knowledge Y . 

 Similarly, because we have no idea which fermion comes before which in the 

natural order of identical   fermions we are indifferent between the propositions 

......... 6521   and ......... 6512   . But this time, whenever 21  , we can 

demonstrate an absolute difference between the physical properties claimed by these 

propositions. This is because, at time t  we know there is a certain dynamic order of the 

                                                 
* Hence ).........().........( 56216521 YtYt  

 cannot be the expression of similarity with 

regard to the interchange 65  . And since we may claim similarity under interchange 21   and 

65   together this similarity too (and similarity under the like reordering of any number of variable 

pairs) can only be expressed as in section 2. (See second footnote to section 8.1 of Chapter I.) 
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  coordinate values (i.e. 21   or 12  ) so the propositions ......... 6521   and 

......... 6512   can, under our general knowledge G  alone, be distinguished absolutely 

by the fact that in one case the natural order of the fermions coincides with the dynamic 

order of the coordinates of those particles and in the other case is does not. So for some 

states of knowledge Y  the probabilities ).........( 6521 Yt  and ).........( 6512 Yt  

differ with regard to their phase (see the final part of the principle of indifference section 

5.2 of Chapter I). Since ).........( 6521 Yt  must be either always symmetric or always 

anti-symmetric under the interchange of 1  and 2 , it must be anti-symmetric and it 

clearly follows that the wave function (or probability distribution) ).........( 6521 Yt  

must be anti-symmetric with respect to the interchange of the coordinates of any two 

identical fermions. And this too is true regardless of the  , ,…etc. bases employed and 

regardless of our knowledge Y .* 

 

 

5. Processes involving non-interacting identical bosons 

 

5.1 The relation between proper wave functions and improper wave functions 

 

Let )...( 1 YN  be our wave function under pure knowledge Y  of any process 

involving N  identical and indistinguishable non-interacting bosons using any improper 

basis N ...1  referring to time t .† We know this wave function is symmetric under the 

interchange of any pair of its variables and we can relate it to the wave function 

)]...([ 1 YN  in the corresponding proper basis as follows. 

 The probability )]...([ 1 YN  for any particular values of the variables N ,...1  

is given by the sum rule (3.11.6) of Chapter I (which as we have said applies also to 

improper wave functions). This is because (by definition (as in (1.1))) the proposition 

]...[ 1 N  is a disjunction of the proposition N ...1  and all the distinct propositions 

obtained from N ...1  by rearranging the order of the i  values. And, as we have shown, 

all these propositions have equal probabilities. When the   coordinates are all different 

we have !N  propositions in the disjunction ]...[ 1 N , and accordingly, by the sum rule 

(3.11.6) of Chapter I 

 

)...(!)]...([ 11 YNY NN  .      (5.1.1) 

 

                                                 
* Note that this proof of the anti-symmetry of wave functions under the interchange of identical fermion 

coordinates would not be possible if the dynamic order of fermion coordinates was a merely conventional 

one rather than a real or natural one. An absolute difference between the propositions ......... 6521   

and ......... 6512   would not then be present. 

† Although the bosons are non-interacting (i.e. not interacting through an inter-particle potential) they may 

of course be moving under the action of an external potential field. 
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If however some of the   coordinates in ]...[ 1 N  have equal values no new proposition 

is obtained by interchanging those particular values. Therefore to cover all possibilities 

we must divide the RHS of (5.1.1) by the number of ways of arranging the equal   

coordinates among themselves. We first imagine the coordinates N ,...1  to be grouped 

into sets each containing equal (but different)   values. Let 1N   be the number of   

coordinates sharing one particular value, 2N   be the number of   coordinates sharing 

another particular value, and so on. Then clearly 

 

NNNN m  ...21        (5.1.2) 

 

where Nm  ( m  being equal to N  only when none of the   coordinates are equal i.e. 

when all the numbers iN  are equal to 1). The number of ways of arranging equal values 

of the   coordinates amongst themselves is the product !...! 21 NN of the factorials of all 

the iN  numbers. So in general we should replace (5.1.1) by 

 

),...(
!...!

!
)]...([ 1

21

1 Y
NN

N
Y NN       (5.1.3) 

 

where !...! 21 NN  is (like )...( 1 YN ) a function of the coordinates N ,...1 . The RHS 

of (5.1.3) remains (as it should) symmetric with respect to the interchange of any two of 

the   coordinates values. 

 We see that (5.1.3) is the general rule for taking us from a wave function 

)...( 1 YN  over an improper basis to the wave function )]...([ 1 YN  on the 

corresponding proper basis ],...[ 1 N . To go the other way, i.e. from )]...([ 1 YN  to 

)...( 1 YN , we must put 

 

)]...([
!

!...!
)...( 1

21
1 Y

N

NN
Y NN       (5.1.4) 

 

 Now we are assuming that the wave function )...( 1 YN  must always be a 

differentiable function of its continuous variables. Therefore, by (5.1.4), the wave 

function )]...([ 1 YN  must also be a differentiable function of its continuous variables 

except at a set of points of configuration space where, under an infinitesimal change in 

the continuous variables, some of the numbers ,..., 21 NN  change abruptly. Outside this 

set of points (which is of measure zero) the ,..., 21 NN  are all equal to 1  so the original 

form (5.1.1) may be said to apply to all intents and purposes. Nonetheless we maintain 

the more general form (5.1.4) which is certainly needed before the limit of vanishingly 

small volume elements is taken, i.e. while the   coordinates are fully discrete. 
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5.2 The symmetrised transformation functions for bosons 

 

We now seek ‘symmetrised transformation functions’ denoted )]...[...(ˆ
11 NN qq  that 

may connect, through the relation 

 

)]...([)]...[...(ˆ)...( 1

},...{

111

1

YqqqqY N

qq

NNN

N

  ,   (5.2.1) 

 

any wave function )]...([ 1 Yqq N  over any (derived) proper basis ]...[ 1 Nqq  to the 

corresponding wave function )...( 1 YN  over any (improper) basis N ...1  possibly 

referring to a different time. In (5.2.1) the sum is conducted over all possible sets 

},...{ 1 Nqq of q  values that correspond to the different propositions of the basis ]...[ 1 Nqq .* 

 We will find that the transformation functions )]...[...(ˆ
11 NN qq  are 

symmetrised combinations of the (non-symmetrised) transformation functions 

)......(ˆ
11 NN qq , any one of which is defined as 

 

)()...()......(ˆ
1111 NNNN qqqq       (5.2.2) 

 

i.e. as the simple product of the transformation functions )(...),( 11 NN qq   in 

individual sample spaces for each particle. 

 To find the transformation functions )]...[...(ˆ
11 NN qq  in (5.2.1), we start with 

the relation  

 

)...()......(ˆ)...( 1

...

111

1

YqqqqY N

qq

NNN

N

  ,    (5.2.3) 

 

which follows from the theory in section 3, and substitute for  )...( 1 Yqq N   using 

formula (5.1.4) applied to the q  representation. This gives 

 

)]...([
!

!...!
)......(ˆ)...( 1

21

...

111

1

Yqq
N

NN
qqY N

qq

NNN

N

    (5.2.4) 

 

                                                 
* We cannot claim that (5.2.1) follows from Feynman’s law because N ...1  is not a possible pure state of 

knowledge and the N ...1  do not form a proper basis. The hat on the transformation function is here 

employed to guard us against assuming prematurely that the transformation functions are (improper) wave 

functions, though this will actually turn out to be true. 
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where ..., 21 NN  are functions of the variables Nqq ,...1  being (for any particular values of 

the Nqq ,...1 ) the numbers of members in the various subsets of },...{ 1 Nqq  that share 

common values. 

 Now if a summand ),...( 1 NqqS  is symmetric with respect to the interchange of 

any two of the variables Nqq ,...1  we clearly have the relation 

 

 
},...{

1

21...

1

11

),...(
!...!

!
),...(

NN qq

N

qq

N qqS
NN

N
qqS     (5.2.5) 

 

because to get the correct value for sum on the LHS we have to multiply the summand on 

the RHS by the number of distinct ways of arranging the q  values amongst themselves.  

 To apply (5.2.5) to (5.2.4) we need first to symmetrise the summand in (5.2.4). 

The part )]...([
!

!...!
1

21 Yqq
N

NN
N  of the summand already has the symmetry required – 

it stays the same under any reordering of the Nqq ,...1 . But )......(ˆ
11 NN qq  does not. 

We therefore sum (5.2.4) over all permutations P  of the N ,...1  coordinates: 

 

  
P

N

qq

NN

P

N Yqq
N

NN
qqY

N

)]...([
!

!...!
)......(ˆ)...( 1

21

...

111

1

. 

 

By the symmetry of the wave function )...( 1 YN  this merely multiplies the LHS of 

(5.2.4) by !N . So we obtain 

 

  


















Nqq

N

P

NNN Yqq
N

NN
qqYN

...

1
21

111

1

)]...([
!

!...!
)......(ˆ)...(!  

 

where, by (5.2.2), the square bracketed summand is now symmetric. Applying (5.2.5) this 

becomes 
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1
21

11

21

1

1

)]...([
!

!...!
)......(ˆ

!...!

!
)...(!

Nqq

N

P

NNN Yqq
N

NN
qq

NN

N
YN . 

 

 Because of the form of the )......(ˆ
11 NN qq  in (5.2.2), P  may alternatively 

refer to all permutations of the Nqq ,...1  instead of the N ,...1 . And we can then replace 

the sum over all permutations P  of the Nqq ,...1  by a sum only over the distinguishable 

permutations ][P  provided we multiply by the number of ways of ordering the equal 

Nqq ,...1  values amongst themselves, i.e. provided we multiply by !...! 21 NN   
Hence we obtain 
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1
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and conclude that by defining the symmetrised transformation functions to be 

 

 
][

11
21

11 )......(ˆ
!

!...!
)]...[...(ˆ

P

NNNN qq
N

NN
qq    (5.2.6) 

 

we obtain the result (5.2.1). In (5.2.6), as we have already implied, ][P  indicates 

summation over the permutations of the Nqq ,...1  not counting permutations of equal 

values amongst themselves and ..., 21 NN  are functions of the parameters Nqq ,...1  (being, 

for any particular values of the Nqq ,...1 , the numbers of members in the various subsets of 

},...{ 1 Nqq  that share common values).  

 

 

5.2.1 Properties of the symmetrised transformation functions 

 

The transformation functions given in (5.2.6) are clearly symmetric with respect to an 

interchange of any two of the q  coordinates or of any two of the   coordinates – hence 

the term ‘symmetrised transformation functions’. As their notation (bar the hat) suggests, 

they are wave functions under the pure knowledge that the particles possess the q  

coordinates Nqq ,...1  though which particle has which coordinate value is unknown. This 

is confirmed by substituting ]...[ 1 NqqY   in (5.2.1) and using the orthogonality relation 

for transformation functions between proper bases, i.e. 

 

},...{},,...{11 11
)]...[]...([

NN qqqqNN qqqq       (5.2.1.1) 

 

where the delta function equals 1  when the sets },...{ 1 Nqq  and },...{ 1 Nqq   are the same 

and zero otherwise. Henceforth we can therefore omit the hat on the symmetrised 

transformation functions. 

 The symmetrised transformation functions are also orthonormal, i.e. 

 

},...{},,...{

...

1111 11

1

)]...[...()]...[...(
NN

N

qqqqNNNN qqqq 



    (5.2.1.2) 

 

This follows by direct substitution of (5.2.6) into (5.2.1.2). Changing the order of the 

summation and using the known orthonormality 

 

NN

N

qqqqNNNN qqqq 



  ,,
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11

1

 

 

the LHS of (5.2.1.2) becomes 
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][ ][

,,
2121 ...
!

!...!

!

!...!
11

P P

qqqq NNN

NN

N

NN
.     (5.2.1.3) 

 

For this to be non-zero we require that the set },...{ 1 Nqq  be the same as the set },...{ 1 Nqq   

otherwise the summand in (5.2.1.3) is zero for all permutations ][P  and ][P . This 

confirms orthogonality of the symmetrised transformation functions. 

 If the set },...{ 1 Nqq  is the same as the set },...{ 1 Nqq   and all the q  values are 

different, then for each permutation of the q  values there is only one permutation of the 

q  values that renders the summand in (5.2.1.3) non-zero and equal to 1 . The double sum 

is therefore a sum of !N  terms each equal to 1 . Also 1N , 2N …; 1N  , 2N … are all equal to 

1 , and as a result (5.2.1.3) is itself equal to 1 . 

 If the set },...{ 1 Nqq  is the same as the set },...{ 1 Nqq   and some of the q  values are 

equal then, for each distinguishable permutation of the q  values, there is still only one 

distinguishable permutation of the q  values that renders the summand in (5.2.1.3) non-

zero and equal to 1 . The double sum is therefore a sum of !...!! 21 NNN  terms each equal 

to 1 , and (5.2.1.3) is itself equal to 1 . This confirms normality of the symmetrised 

transformation functions. 

 The symmetrised transformation functions )]...[...( 11 NN qq  defined in (5.2.6) 

are also complete. That is, any wave function )...( 1 YN  (which must of course be 

symmetric with respect to the interchange of any two   values) can be expressed as a 

linear combination of the symmetrised transformation functions for different sets of q  

values. This follows because we already know that the functions )......(ˆ
11 NN qq  (with 

all possible q  values) are complete in the sense that any function of the   variables 

(symmetric or not) can be expressed as a linear combination of them. When restriction is 

made to symmetric functions, only the symmetric combinations of the )......(ˆ
11 NN qq , 

as on the RHS of (5.2.6), are needed in the linear expansion. 

 

 

5.2.2 Examples of the symmetrised transformation functions 

 

In the case of just two bosons (5.2.6) gives 
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In the case of three bosons it gives, when all three q  values are unequal 
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or if just two of the three q  values are equal, say 2q  and 3q , (5.2.6) gives 
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And in the case all three q  values are equal it gives 

 

)()()()(ˆ
!3

!3
)][( 131211111321111321 qqqqqqqqq  . 

 

 

5.3 Transformation functions between proper bases 

 

Finally we seek the transformation functions )]...[]...([ 11 NN qq  in Feynman’s law 
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which we know must hold between wave functions )]...([ 1 Yqq N  and )]...([ 1 YN  

over any (proper) bases ]...[ 1 Nqq  and ]...[ 1 N . Putting ]...[ 1 NqqY   in (5.1.3) we have 

directly using (5.2.6) the formula 
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or 
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qq    (5.3.2) 

 

In (5.3.2) ][P  indicates summation over the permutations of the Nqq ,...1  coordinates 

including the original arrangement Nqq ,...1  but not counting permutations of equal q  

values amongst themselves. ..., 21 NN   are the numbers of members in the various subsets 

of the  Nqq ,...1  that share common values. And ..., 21 NN  are the numbers of members in 

the various subsets of },...{ 1 N  that share common values. 

 

 

5.4 The validity of the various formulae when the bosons interact 

 

All results in sections 5.1 to 5.3 have been derived assuming the (identical) bosons do not 

interact with each other, though they may be moving in an external field. 

 However the assumption of non-interaction (i.e. of no inter-particle potentials) is 

not needed in the derivation of some of the results and therefore those results hold also 

when the bosons interact. This applies to relations (5.1.3) (or (5.1.4)) between improper 

wave functions and the corresponding proper wave functions. So these relations clearly 

hold just as well when the bosons interact. 

 Also, all the formulae and results of sections 5.2 and 5.3 will apply when the 

bosons interact provided the bases employed are restricted to bases referring to one and 

the same time and representing properties amenable to the principle of short time 

isolation (section 2.1 of Chapter III). Then (5.2.2) will still hold, allowing all results in 

sections 5.2 and 5.3 to be derived in exactly the same way as before. 

 

 

6. Processes involving non-interacting identical fermions 

 

6.1 The relation between proper wave functions and improper wave functions 

 

Let )...( 1 YN  be our wave function under pure knowledge Y  of any process 

involving N  identical and indistinguishable non-interacting fermions using any improper 
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basis N ...1  referring to time t .* We know this wave function is anti-symmetric under 

the interchange of any pair of   coordinates so, in particular, )...( 1 YN  is zero when 

any two   coordinates are equal. We seek the relation between )...( 1 YN  and the 

wave function )]...([ 1 YN  over the proper basis ]...[ 1 N . The latter wave function is 

also zero when any two   values are equal because then each proposition in the 

disjunction ]...[ 1 N  has zero probability, and by the sum rule the disjunction itself has 

zero probability. So in the case two (or more)   values are equal we have the relation 

 

0)]...([)...( 11  YY NN       (6.1.1) 

 

and henceforth we can restrict attention to cases in which all the coordinates N ,...1  are 

different. 

 To relate the wave functions over the bases N ...1  and ]...[ 1 N  when all the 

coordinates N ,...1  are different, we proceed as follows.  

 First we note that in the wave function )...( 1 YN , N ...1  is the proposition 

that (at time t ) the particle occurring earliest in the natural order of particles has 

coordinates 1 , the next 2  and so on. Since it is anti-symmetric, the wave function 

)...( 1 YN  can be expressed in terms of the values it takes when the   coordinate 

values are in their momentary dynamic order. These particular values of the wave 

function are denoted )......( Yi  where and the long arrow indicates that the coordinate 

values  N ,...1  are arranged (from left to right) in their dynamic order at the time in 

question. To reconstruct the general wave function )...( 1 YN  we have merely to set, 

for any given values of N ,...1 , 

 

)......()...( 1 YY iN         (6.1.2) 

 

where the set of   values on the RHS is the same as the set of   values on the LHS, the 

plus sign applying if an even permutation will put the N ...1  (on the LHS) in their 

dynamic order and the minus sign applying if an odd permutation is needed. 

 Now, whatever the values of N ...1  in (6.1.2) and whatever their dynamic order 

at the time in question, the proposition ...... i  is equivalent to the conjunction of the 

proposition ]...[ 1 N  and the proposition 1O  which claims the (fixed but unknown) 

natural order of the particles coincides at the time in question with the dynamic order of 

                                                 
* Although the fermions are non-interacting they may of course (as in the case of bosons in section 5) be 

moving under the action of an external potential field. 
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the   values they possess. Since ...... i  and 11 ]...[ ON  are proposition claiming the same 

physical property we claim they are fully equivalent, so that at any time, 

 

)]...([)......( 11 YOY Ni  .      (6.1.3) 

 

 We now claim that the propositions ]...[ 1 N  and 1O  are logically independent 

under knowledge Y  whatever that pure state of knowledge might be. This is because 

under knowledge Y , knowledge of 1O  (even though this is not actually possible) would 

seemingly in no way affect the probability of ]...[ 1 N  nor seemingly would knowledge 

of ]...[ 1 N  in any way affect the probability of 1O . Thus we claim (by (2.5.2) of Chapter 

I) that 

 
ik
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where k  is the phase characteristic of knowledge Y . And from (6.1.2) and (6.1.3) we 

therefore have 

 
ik
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where the plus sign applies if an even permutation will put the N ...1  in their dynamic 

order and the minus sign applies if an odd permutation is needed. 

 To evaluate )( 1 YO  we consider the more general parameterised proposition iO  

( !,...1 Ni  ), the case 1i  corresponding to proposition 1O  already introduced. The 

proposition iO  claims the natural order of the particles bears one or other of the !N  

relations to the order of the coordinate values they possess at time t . Clearly we are 

indifferent as to which of the iO  is true. And since the claims iO  are absolutely 

distinguishable the principle of indifference ((5.2.1) of Chapter I) applies to the 

propositions iO  !,...1 Ni   under knowledge Y . So by the general formula (2.2.1.8) of 

Chapter I we can set 
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        (6.1.6) 

 

where i  is the phase characteristic of iO  under knowledge Y .  

 We claim further that the problem of finding the probabilities )( YOi  !,...1 Ni   

under any one state of knowledge Y  is similar to that of finding the probabilities 

)( YOi
  !,...1 Ni   under any other state of knowledge Y  . This is because, even though 

we may claim to know the dynamic order of the   values over time, any knowledge Y  of 

the dynamical properties of the identical fermion system (even if it included knowledge 
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of the set of coordinates  N ,...1  at one time) clearly cannot help us in our calculation 

of the probabilities of the iO  !,...1 Ni   on account of our total lack of knowledge 

regarding the natural order of the particles themselves. Therefore in accordance with the 

similarity relation (5.1.4) of Chapter I we can write 

 

)()( GOeYGO i

ik

i         (6.1.7) 

 

where k  is the phase characteristic of knowledge Y  whatever that knowledge of 

dynamical properties of the system might be. 

 We claim further still, that the problem of finding the probabilities )( GOi  

!,...1 Ni   is similar to that of finding the probabilities )( 0GOi  !,...1 Ni   where 0G  

may differ from G  in declaring there to be no external field acting on the system of 

identical fermions. We can make this claim because the property of dynamic order of 

coordinates is one amenable to the principle of short time isolation, so that knowledge of 

the external field is redundant. As a result, by (5.1.5) of Chapter I, 

 

)()( 0GOGO ii          (6.1.8) 

 

no matter what external fields G  may claim. 

 We note that the probabilities )( 0GOi , with the iO  referring to time t , are 

independent of the origin of the time. For, shifting that origin by   can, by similarity, 

only change )( 0GOi  by a phase factor 
ie  where   (equal of course to zero when 

0 ) can only be a function of  . And since we have no parameter of the dimensions of 

time available,   can only be zero. 

 Finally we claim that the problem of finding the probabilities )( 0GOi  with the 

iO  referring to time t  is similar to that of finding the probabilities )( 0GOi  with the iO  

referring to another time t . Denoting these probabilities as )( 0GtOi  and )( 0GtOi
  

we thus have 

 
 i

ii eGtOGtO )()( 00  

 

where the phase   is independent of i  but possibly dependent on t  and t . Because the 

)( 0GtOi  are independent of the origin of the time,   can only be a function of tt   

(zero when tt  ) and since again we have no parameter of the dimensions of time 

available,   can only be zero. 

 By multiplying both sides of (6.1.6) by 
ike  and employing (6.1.7) and (6.1.8), we 

thus find the i  must be independent of the time t , as well as being independent of 

knowledge Y  and of any external field. Thus the i  might be characteristic only of the 

dynamic basis   (i.e. of the basis abstracted from the time). The i  in (6.1.6) are 
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certainly independent of the coordinate values  N ,...1 . Finally we choose to write i  

as )(i
 to indicate the possible dependence of the i  on the dynamic basis in question. 

We thus arrive, by (6.1.6), at the formula 
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showing ikeYO )( 1  is independent of the coordinate values  N ,...1 , of the time t  to 

which 1O  relates, of the knowledge Y  and of any external field. 

 Substituting this expression for 
ikeYO )( 1  into (6.1.5) and dropping the suffix 1  

on )(

1

 we obtain the relation 
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      (6.1.10) 

 

where the plus sign applies if an even permutation will put the N ...1  in their dynamic 

order and the minus sign applies if an odd permutation is needed. Now with a definite 

dynamic order of   values claimed, (6.1.10) establishes a complete enough relation 

between the wave functions over the bases N ...1  and ]...[ 1 N . Definite relative phases 

of one determine the relative phases of the other. Only the absolute phase of one or the 

other is left undetermined.* 

 Now the function )...( 1 YN , with the z  components of spin held constant, has 

to be a differentiable function of its continuous variables. We note however that the plus 

or minus sign in (6.1.10) will generally change under an infinitesimal change in the 

continuous variables. Hence, unlike in the case of bosons (see section 5.1), the wave 

function )]...([ 1 YN  will be a continuous differentiable function of its continuous 

variables only in special cases (as for example in (7.2.3)) below. 

 

 

6.2 The transformation functions between proper bases 

 

To obtain the form of the transformation functions )]...[]...([ 11 NNpp   connecting 

(through Feynman’s law) wave functions over contemporary bases ]...[ 1 N  and 

]...[ 1 Npp  (i.e. bases referring to the same time), we start by obtaining an expression for 

the improper wave functions )]...[...( 11 NN   at that time, the prime being used 

                                                 
* Note that it is not possible to achieve definite relative phases if we replace the supposed natural 

(dynamic) order of   values with a purely conventional one, for the relative phases of the 

)]...([ 1 YN  (for any given wave function )...( 1 YN )  would then depend on our arbitrary 

choice of this conventional order. 
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merely to distinguish the   values relating to the propositions of the improper basis 

N ...1  from those relating to the proper basis ]...[ 1 N . 

 Using (6.1.10) with ]...[ 1 NY   we have at once that 
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the plus sign applying when an even permutation will put the N...1  in their dynamic 

order and the minus sign applying when an odd permutation is required. 

 Now we can write 
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where P  indicates summation of the leading term 
NN   ,, ...

11
 and terms derived from it 

by making all possible permutations of the (all different)   values. Clearly only one term 

in the sum can be non-zero at once and this term is equal to 1  when (and only when) the 

sets },...{ 1 N  and },...{ 1 N  are the same. We can thus write 
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where the plus sign accompanies the leading term and all terms obtained from it by even 

permutations P  of the N ,...1 , and the minus sign accompanies the terms obtained by 

odd permutations. Result (6.2.1) holds whether or not the N ,...1  are in their dynamic 

order. 

 Carrying out the transformation to the p  representation we therefore obtain 
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P  and )(  now referring to permutations of the   values. Because of the form of the 

)......(ˆ
11 NNpp  , i.e. because 

 

)()...()......(ˆ
1111 NNNN pppp       (6.2.3) 
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the P  in (6.2.2) may instead indicate summation over permutations of the Npp ,...1  with 

)(  again applying to even and odd permutations respectively.  

 Now we can obtain an expression for the transformation function 

)]...[]...([ 11 NNpp  . We use relation (6.1.10) applied to the p  representation with 

]...[ 1 NY  , and then use (6.2.2) to give 

 

NN

P

NNi

i

N

P

NNi

i

NNiNN

pppp
e

e

pp
e

e

pp
e

N
pp

p

p

p

























...,...)......(ˆ)(                                 

...)......(ˆ)(                                 

)]...[...(
!

)]...[]...([

1111

111

1111

)(

)(

)(

)(

)(

 

                 …(6.2.4) 

 

 

6.3 The symmetrised transformation functions 

 

In section 6.2 we derived the expression (6.2.2) for the wave function 

)]...[...( 11 NNpp   in any representation p  given knowledge of the   values in any 

contemporary representation  . And the wave functions )]...[...( 11 NNpp   for 

different sets of values },...{ 1 N  serve as ‘symmetrised transformation functions’ taking 

us from a proper wave function )]...([ 1 YN  in any representation   to the 

corresponding improper wave function )...( 1 Ypp N  in any representation p . Thus even 

though Npp ...1  may not represent a possible state of knowledge it is always true that  
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This is because the summand is symmetric under an interchange of any two   values and 

vanishes when two   values are equal, so the sum is !1 N  times the sum over the   

values and, using (6.2.2) and (6.1.10) we obtain for the RHS of (6.3.1) the result 
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where N ...1  and where P  is supposed to refer to permutations of the p  values. 

This reduces to  
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and since this sum is over !N  equal terms we arrive at the LHS of (6.3.1) as required. 

 

 

 6.3.1 Properties of the symmetrised transformation functions 

 

Let ]...[ 1 N  and ]...[ 1 Npp  be contemporary bases then by (6.2.2) the wave functions 

)]...[...( 11 NN pp  are given by 
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where 
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The )]...[...( 11 NN pp  are symmetrised transformation functions between wave 

functions )...( 1 YN  and )]...([ 1 Ypp N  representing the same pure state of 

knowledge. That is, 
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always holds (cf. (6.3.1)). 

 The symmetrised transformation functions given by (6.3.1.1) are defined only for 

p  coordinates all different. They are clearly symmetric with respect to an interchange of 

any two of the p  coordinates and anti-symmetric with respect to an interchange of any 

two of the   coordinates. They are zero whenever two   coordinates are equal and they 

are improper wave functions under the pure knowledge that the particles possess the  

unequal p  coordinates Npp ,...1  though which particle has which coordinate value is 

unknown.  

 The moduli, and the relative phases of the transformation functions 

)]...[...( 11 NN pp  are fully determined by (6.3.1.1). Only the absolute phase (the value 

of 
)( pie 
) remains indeterminate.  

 The symmetrised transformation functions are orthonormal, i.e.  
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This follows by substitution of (6.3.1.1) into (6.3.1.3) taking P  and    to refer to the p  

coordinates. Changing the order of the summation and using the known orthonormality 
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the LHS of (6.3.1.3) becomes 
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For this to be non-zero we require that the set },...{ 1 Npp  be the same as the set 

},...{ 1 Npp   otherwise the summand in (6.3.1.4) is zero for all permutations P  and P . 

This confirms orthogonality of the symmetrised transformation functions. If the set 

},...{ 1 Npp  is the same as the set },...{ 1 Npp  , then for each permutation of the p  values 

there is only one permutation of the p  values that renders the summand in (6.3.1.4) non-

zero and equal to 1 . The double sum is therefore a sum of !N  terms each equal to 1 , and 

as a result (6.3.1.4) is itself equal to 1 . 

 The symmetrised transformation functions )]...[...( 11 NN pp  defined in 

(6.3.1.1) are also complete. That is, any wave function )...( 1 YN  (which must of 

course be anti-symmetric with respect to the interchange of any two   coordinates) can 

be expressed as a linear combination of the symmetrised transformation functions for 

different sets of p  values. This follows because we already know that the functions 

)......(ˆ
11 NN pp  (for any ordered p  values) are complete in the sense that any function 

of the   variables (anti-symmetric or not) can be expressed as a linear combination of 

them. When restriction is made to anti-symmetric functions only the anti-symmetric 

combinations of )......(ˆ
11 NN pp , as on the RHS of (6.3.1.1), are needed in the linear 

expansion. 

 As in the case of bosons, though orthonormal and complete, the symmetrised 

transformation functions are not transformation functions in the usual sense because the 

N ...1  do not generally form a proper basis. 

 

 

6.3.2 Examples of the symmetrised transformation functions 

 

Taking by convention 1
)(

 pie  in (6.3.1.1), and using (6.3.1.2), we obtain the following 

results. 

 In the case of just two fermions (6.3.1.1) gives 
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 In the case of three fermions (6.3.1.1) gives 
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6.4 The validity of the various formulae when the fermions interact 

 

As in the case of systems of identical bosons, results of sections 6.1 to 6.3 may hold also 

when the identical fermions interact. 

 The arguments leading for example to the momentary relation (6.1.10) between 

the improper and proper wave functions are quite independent of whether or not the 

particles interact. So (6.1.10) still holds when they are in interaction. 

 Also the arguments leading to the transformation functions between proper bases 

(section 6.2) and to the symmetrised transformation functions (section 6.3) are valid 

when the particles interact provided the   and p  bases refer to the same time and 

represent properties amenable to the principle of short time isolation. For then equation 

(6.2.3) on which the arguments depend will still be true. 

 

 

7. Wave functions for distinguishable and non-interacting identical particles 

 

We have said before that identical particles can sometimes have distinctive properties that 

enable us to distinguish between them and gain knowledge of which is which at any time 

during their motion. (See section 3.5 of Chapter III.) If, for example, two identical non-

interacting particles* are well separated in space, we are able to distinguish between them 

on account of this separation, and to have pure states of knowledge of each. If the state of 

complete separation is maintained over a time period our separate pure knowledge of 

each is also maintained. The question then arises as to how our wave function for the pair 

(which is the product of a function of the coordinates of one and a function of the 

                                                 
* Although the particles are non-interacting they may of course be moving under the action of an external 

potential. 



X. Systems containing identical particles 

 266 

coordinates of the other) is related to the wave functions over the proper or improper 

bases employed so far. 

 

 

7.1 Case of identical bosons 

 

Suppose, for example the particles are identical bosons, and one of them (we call particle 

A ) is known to be within a (generally moving) region A  and the other (we call particle 

B ) within a (generally moving) region B  always well separated from A . Under pure 

knowledge Y  and in sample spaces of the kind rS  of section 2.3 of Chapter III we may 

have wave functions )( YAA   and )( YBB   (moving wave packets confined to 

moving regions A  and B  respectively*) A  and B  being coordinates denoting a 

general volume element of space and z  component of spin for particles A  and B  

respectively. Since the particles are distinguishable and non-interacting the sample spaces 
A

rS  and BS r  for each are closed, and for the purposes of argument we suppose they are 

both confined to propositions referring to any one time t  only. Our wave function over 

the proper basis BA  in the sample space S  that is the combination BSS r

A

r 
 of the 

sample spaces for each particle is, by (2.2) of Chapter II 

 
ik

BBAABA eYYY )()()(        (7.1.1) 

 

where k  is the phase characteristic of knowledge Y . 

 But under the same pure knowledge Y  and making no claim with regard to the 

natural order of the particles, we expect there is (in the same sample space S ) an 

improper wave function )( 21 Y  expressing the probability that the particle occurring 

earliest (in the natural order of particles) has coordinates 1  and the other has coordinates 

2 . The question now arises as to what is the relation between )( 21 Y  and 

)()( YY BBAA  .   

 To find it by logical deduction we may reasonably argue that the proposition 

][ 21  (claiming the particle occurring earlier in the natural order of particles has 

coordinates 1  and the other 2  -or- the particle occurring later in the natural order of 

particles has coordinates 1  and the other 2 ) is fully equivalent to the proposition BA  

(of the basis BA  in S ) when  

 

( A1   and  B2 )  or  ( B1   and  A2 ). 

 

                                                 
* Of course the wave packets cannot remain totally non-overlapping over time, but we assume throughout 

section 7 (and elsewhere) that the degree of overlap of ‘well separates particles’ over the time periods 

considered is so weak as to be unimportant. 
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That is, under this relation BA 00

21 ][ , and the probability of ][ 21  under 

knowledge BA  is 1 . The probability is of course 0  if the coordinate relation is not met, 

so we have in general that 

 

ABBABABA  
212121 },{},,{21 )]([    (7.1.2) 

 

where clearly only one of the terms of the sum on the RHS can be nonzero at once. The 

contemporary bases BA  and ][ 21  are of the same dimension and we can apply 

Feynman’s law (3.5.1) of Chapter I to give 
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Substituting (7.1.1) and (7.1.2) in (7.1.3) we find  
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where only one of the two terms of the sum in the bracket can be nonzero at once.  

 Hence (7.1.4) is the required relation between wave functions )]([ 21 Y  and 

)()( YY BBAA   holding at any one time t  and by the general relation (5.1.4) we 

have 
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 which is the required relation between the wave functions )( 21 Y  and 

)()( YY BBAA   also holding at any time t . 

 

 

7.2 Case of identical fermions 

 

In the case of a pair of well separated fermions similar arguments apply. Under pure 

knowledge Y  we may then have wave functions )( YAA   and )( YBB  , in separate 

moving regions A  and B , where A  and B  are the coordinates of the fermions 

(specifying the general volume element of space and z  component of spin for particles 

A  and B  respectively). Our wave function for the pair (in sample space S  confined to 

any one time t ) is  
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 We again claim that BA 00

21 ][  when  
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( A1   and  B2 )  or  ( B1   and  A2 ) 

 

giving, for the contemporary bases ][ 21  and BA  in S , the transformation function 
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Feynman’s law  
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applies and gives, by (7.2.1) and (7.2.2) 
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This is the required functional relation between )]([ 21 Y  and )()( YY BBAA   

holding at any time t . And this relation is an example of a case in which the wave 

function )]...([ 1 YN  for fermions is a continuous (and differentiable) function of the 

continuous components of the coordinates. From the relation (6.1.10) we further have at 

any time t  that 
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where 
)(  is a constant phase for the dynamic basis   and is independent of 1  and 2 , 

and of t , and where, for example, the plus sign applies when 21   i.e. when 1 comes 

before 2  in the dynamic order of coordinate values at the time t  in question. 

 We now make the claim that during the motion of the particles, the dynamic order 

of   values of the identical fermions is at any time such that when 1  refers to region A  

and 2  to region B  we have 21  . Then of course when 1  refers to region B  and 2  

to region A  we have 12  .* 

 This choice of the dynamic order of   values is almost forced by the requirement 

that )( 21 Y  in (7.2.4) must be a continuous and differentiable function of the spatial 

components of the particle coordinates. It certainly ensures that this requirement is 

fulfilled. † 

                                                 
* We could of course claim instead that when 1  refers to region B  and 2  to region A  then 21  , 

and therefore when 1  refers to region A  and 2  to region B  12  . 

† Note that if we were to claim generally that the natural ‘dynamic order’ of   values was in fact constant 

in time, the present claim concerning the ‘dynamic order’, which is more or less forced on us, would lead to 
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 Since the functions )( 1 YA  , )( 2 YB  …etc in (7.2.4) are zero outside their 

regions we can now rewrite (7.2.4) as 
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eYYYY
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)(





.  (7.2.5) 

 

This is the required relation between the wave functions )( 21 Y  and 

)()( YY BBAA   in the case of a pair of separated fermions. And it holds at any time 

t . It is a relation indeterminate only with regard to the unimportant constant phase 

k )(
 which is conventionally taken to be zero.  

 

 

7.3 Generalisation 

 

The above theory generalises to the case of any number of bosons (or any number of 

fermions) in any kind of separate regions of the 4-D (3-D continuous plus 1-D discrete) 

space spanned by the   (or  ) coordinates. For example it generalises to the case when 

we can distinguish a number of fermions because we know their different z  components 

of spin, or to the case when we can distinguish a number of bosons because we know the 

different z  components of spin of some of them and the different regions of space 

occupied by the others. 

 

 

7.3.1 Generalised case for bosons 

 

Let the separate (generally moving) regions of the 4-D space be denoted by NA,...A1 . 

 Denoting the ‘regional’ coordinates (in the case of the N  bosons) by 
NAA  ,...

1
 

and the non-regional coordinates by N ,...1 , and by working in the combined sample 

space S  (of the N  particles) confined to any one time t  we easily prove that (7.1.2) 

generalises to 

 

  
P

AAN
NANAN

...)...]...([
1111  

 

where P  indicates summation over all the permutations of the N ,...1 . 

                                                                                                                                                 

contradiction. For let A  and B  be unmoving regions of fixed space initially coincident with the 

(moving) regions A  and B  respectively. The wave packets )( YAA   and )( YBB   then initially 

occupy the (unmoving) regions A  and B  of fixed space and could, after a time, be made (by application 

of appropriate external fields) to occupy the fixed regions B  and  A  respectively. So taking two 

coordinate values 1  and 2 , with 1  in region A  and  2  in B , we have initially 21   but finally 

12  . And this is inconsistent with the dynamic order of   values being constant in time. 
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 And using Feynman’s law  
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we get  
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Hence by (5.1.4) 
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and this is the required relation between the wave function )...( 1 YN  and the wave 

function )()...(
11

YY
NN AAAA  . 

 

 

7.3.2 Generalised case for fermions 

 

Now consider a system of N  fermions occupying separate regions of 4-D space again 

denoted by NA,...A1 . 

 Denoting the ‘regional’ coordinates by 
NAA  ,...

1
 and the non-regional coordinates 

by N ,...1 , and again working in the combined sample space S  (of the N  particles) 

confined to any one time t , we easily prove that the transformation function in (7.2.2) 

generalises to 
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where P  indicates summation over all the permutations of the N ,...1 .  

 And using Feynman’s law  
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we get 
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By (6.1.10) we therefore have 
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where the plus signs applies when the   values N ,...1  on the LHS are in the dynamic 

order or can be put in the dynamic order by an even permutation, and the minus applies 

when an odd permutation is required.  

 We now make the claim that the dynamic order of   values during the motion of 

the system of fermions can be taken such that   values in separate regions NA,...A1  of 4-

D space are always in ascending order. This means the   sign in (7.3.2.2) does not 

change when the N ,...1  are varied under the constraint that they remain confined to 

different regions NA,...A1 . Since only one of the terms of the summand in (7.3.2.2) can 

be non-zero at once, we can write (7.3.2.2) as 
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where P  indicates summation over all permutations of N ,...1 ,    being plus for even 

permutations and minus for odd permutations. 

 Thus (7.3.2.3) is the required general relation between the wave function 

)...( 1 YN  and the wave function )()...(
11

YY
NN AAAA  . It is a relation 

indeterminate only with regard to an unimportant constant phase )1()(   Nk  which 

may conventionally be taken to be zero. 

 

 

8. Wave functions for a number of non-interacting identical particles that start out 

distinguishable but then become indistinguishable 

 

Suppose we have two identical non-interacting bosons A  and B  initially well separated 

in space and, on account of this spatial separation alone, initially distinguishable as in 

section 7.1. They may possibly be moving under the action of known external potentials 

but we suppose they never interact with one another even when in time they approach so 

close to one another as to be no longer distinguishable. Now there are sample spaces A

rS   

and B

rS  of propositions about the orbital and spinning motions of each particle over the 
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time period when they are well separated and distinguishable. For times t  in the interval 

10 ttt   during which the particles are distinguishable, the sample spaces A

rS   and B

rS  

are closed and we suppose we have pure separable knowledge Y  of the particle motions 

represented by time evolving wave functions )( YAA   and )( YBB   of the particle 

coordinates A  and B  in sample spaces A

rS   and B

rS . These wave functions are moving 

wave packets well separated in space throughout the period 10 ttt  . Let us suppose 

these wave packets would, if they continued to evolve according to the Schrödinger 

equation, overlap during times 21 ttt  . Then the particles are no longer 

distinguishable, and that implies the description of our knowledge by means of wave 

functions )( YAA   and )( YBB   in sample spaces A

rS   and B

rS , or by means of the 

wave function )( YBA ik

BBAA eYY )()(   in the sample space B

r

A

r  SS , is no 

longer applicable. 

 Nonetheless we still have pure knowledge Y  of the motion of the pair of particles 

in a sample space S  (for the pair of particles covering times from 0t  onwards) which is 

closed in relation to other sample spaces. This pure knowledge can be represented by a 

wave function )( 21 Y  in S , where 1  and 2  are respectively the coordinates of the 

earliest particle in the natural order of particles and the remaining particle. The derivation 

of the expression (7.1.5) for this wave function in terms of the functions )( YAA   and 

)( YBB   is still valid during times 10 ttt   and, if we formally allow the functions 

)( YAA  , )( YBB   to continue to evolve according to the Schrödinger equations as if 

each particle was on its own, )( 21 Y  (as given by (7.1.5)) will also continue to satisfy 

the Schrödinger equation (in coordinates 21 ) for the particle pair. Therefore (7.1.5) is 

also valid during times 21 ttt   when the individual wave packets overlap and it serves 

perfectly well to express our pure state of knowledge in sample space S  covering the 

whole period  20 ttt  . 

 From (7.1.5) we may work out the modulus squared of )( 21 Y  getting 
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  (8.1) 

 

valid at any time during the process. In (8.1) the ‘interference terms’ are for certain zero 

only during the time 10 ttt   when the wave packets do not overlap.  

 Now (8.1) gives, at any time t  in the interval 20 ttt  , the expected frequency 

in repeated trials for the earliest particle (in the natural order of particles) to have 

coordinates 1  and the other particle to have coordinates 2  (see section 9 of Chapter II). 
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This is not a frequency that can be checked experimentally even if we could by chance 

get to know the coordinates of the particles at time t  because the natural order of the 

particles could not be ascertained. It is nonetheless an expected frequency.  

 If we were to suppose (contrary to the assertion near the end of section 3.6 of 

Chapter III) that we could claim to know the natural order of identical particles on any 

occasion, then, for any specified values of 1  and 2 , we could, in a large number of 

trials, come up with an ‘observed’ frequency at which the earliest particle in the ‘natural’ 

order had coordinates 1  and the other particle coordinates 2 . But being dependent on 

the choice of order made on each occasion the coordinates 1  and 2  were found to be 

occupied, this frequency would be ambiguous and would generally differ from the 

expected frequency as given by (8.1). There is therefore good reason for maintaining the 

rule that we cannot claim to know the natural order of identical particles when they are 

not clearly distinguishable throughout the process considered. 

 From the general relation (5.1.3) we have from (8.1), that  

 



 ...(8.2)        )()()()(                                             

)()()()(                                             

)()()()()1(                       

)()2()]([

2112

1221

2

12

2

21,2

1

2

21,

2

21

21

21

YYYY

YYYY

YYYY

YY

BABA

BABA

BABA

















 

 

and this equals the expected frequency, at time t , for one or other particle to have 

coordinates 1  and the other to have coordinates 2 . This frequency can be checked 

experimentally whenever the coordinates can by chance be measured, i.e. whenever 

][ 21  is a primary basis. 

 When we can check an expected frequency in quantum mechanics we expect to 

get agreement with theory. And we generally do. But this only means expected 

frequencies (properly calculated from probabilities) are generally found to be close 

enough to the frequencies at which the events in question are observed in a large number 

of trials. It does not imply the latter frequencies are predictable i.e. determined from the 

physical conditions we know to be present. Should we assume they were, we might be 

led falsely to claim that the expected frequency for one or other particle to have 

coordinates 1  and the other coordinates 2  was simply 

 

 2

12

2

21,2

12

21 )()()()()1()]([
21

YYYYY BABA  
 

 

on the grounds that, because the particles do not interact, this frequency is to be 

calculated directly from the frequencies 
2

)( YAA   and  
2

)( YBB   predicted for each 

particle moving separately. But this would be false reasoning, i.e. reasoning outside the 

logical and physical rules of quantum mechanics. And in practice we generally get close 

enough agreement between expected and observed frequencies only when the 

‘interference terms’ in (8.2) are included. 
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The above method for deriving the expected frequencies (8.2) of coordinate values for a 

pair of non-interacting identical bosons can clearly be generalised to the case of a system 

of any number of non-interacting identical bosons or fermions (possibly moving under 

the action of an external potential field) that start out distinguishable and then become 

indistinguishable. In the case of bosons we make use of the result (7.3.1.2) (valid when 

the bosons are distinguishable) and use it to calculate the improper wave function 

)...( 1 YN  for all time. From this we can get the proper wave function )]...([ 1 YN  

for all time using the general relation (5.1.3). In the case of fermions we make use of the 

result (7.3.2.3) and use it to calculate the improper wave function )...( 1 YN  for all 

time. From this we can get the proper wave function )]...([ 1 YN  for all time using the 

general relation (6.1.10). We then take the squared moduli of the proper wave functions 

to get the expected frequencies. 

 

 

8.1 Possibility of a return to distinguishable particles 

 

Identical particles that start out distinguishable, from time 0t  to time 1t  and become 

indistinguishable from time 1t  to 2t , may become distinguishable again from time 2t  

onwards. 

 For example the two identical bosons A  and B  above that started out 

distinguishable with our pure states of knowledge of each represented by the spatially 

separated but converging wave packets )( YAA   and )( YBB   may become 

distinguishable again from time 2t  onward when those packets, each formally evolving 

according to its own Schrödinger equation, have become (for ever) spatially separated 

again. 

 In the sample space S  covering motion of the two particles from time 0t  to 

infinity, the valid representation of our pure knowledge is afforded by the improper wave 

function )( 21 Y  (as given by (7.1.5)). After time 2t  when the wave packets A  and B  

have separated again, and with respect to the sample space S  covering times from 2t  

onward, we are at liberty to claim to know which particle (in the natural order of 

particles) occupies packet A  and which occupies packet B . Let 1Z  and 2Z  denote the 

propositions claiming respectively that the particle in packet A  is occurring first and 

second in the natural order of particles.*  

 If at time 2t  we choose to claim the truth of 1Z , then 1Z  becomes part of our 

knowledge of dynamical properties and we are performing (action-less) harmless 

conditioning over the basis 21  in S . Our wave function accordingly changes to 

)( 121 YZ  given by  

                                                 
* Of course, if 1Z  (or 2Z ) is true at time 2t  it will be true any time thereafter. For the particles clearly 

cannot change places in any infinitesimal time (say from t  to dtt  ) without moving infinitely fast. 
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where k  is the phase characteristic of knowledge Y  and A  denotes the region of 8-D 

( 32 -D continuous plus 12 -D discrete) 21  space occupied by wave packet A . The 

probabilities )( 1 YZ  and )( 2 YZ  are, by the principle of indifference,  
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where the phases 1  and 2  characteristic of 1Z  and 2Z  under knowledge Y  are 

indeterminate. Substituting (from (7.1.5)) for the wave function )( 21 Y  and (from 

(8.1.2)) for )( 1 YZ , (8.1.1) becomes 
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when A1  and zero otherwise. The second term in the brackets is clearly zero when 

A1 , and renaming the particle coordinates A  and B  instead of 1  and 2  we have 
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      (8.1.3) 

 

for our probability distribution over the basis BA  in S  for 2tt  .  

 The distribution (8.1.3) clearly qualifies as a wave function showing YZ1  

represents a pure state of knowledge, and because it factors, we hold a pure state of 

knowledge with regard to particle A  in A

rS  with wave function )( YAA   (to within a 

constant phase factor) and a pure state of knowledge with regard to particle B  in B

rS  

with wave function )( YBB   (to within a constant phase factor). 

 

Note however that it is not possible to prove that if 1  was in fact in the region of 

configuration space occupied by wave packet A  initially (i.e. for 10 ttt  ) it would 

necessarily have finally (i.e. for 2tt  ) to be in the region of configuration space 

occupied by the same (time evolved) wave packet A .  
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CHAPTER XI  

 

TIME REVERSAL, PARITY AND STATIONARY STATES  
 

 

1. The change in wave function under time reversal * 

 

Corresponding to any pure state of knowledge YG  relating to a quantum mechanical 

process there is a pure state of knowledge GY
~~

 relating to a time reversed version of the 

process. On passing from a pure state of knowledge YG  to its time reversed form GY
~~

 the 

wave function expressing our knowledge changes in a certain way, sometimes simply to 

its complex conjugate with the sign of the time changed. We show how the change in 

wave function can be calculated in specific cases. When applied twice, this change in 

wave function must return the wave function to its original form because (as noted in 

section 3.11 of Chapter III) any process time reversed twice is the same as the original 

process. 

 

 

1.1 Case of orbital motion of a particle moving under the action of general potentials  

 

Relative to a fixed coordinate system, the law of time reversal (section 3.11 of Chapter 

III) implies that to every possible motion )(tfr   of the particle under potentials ),( tV r  

and ),( trA  there is possible motion )( t fr  under potentials ),( tV r  and ),( t rA . 

Let our general knowledge G  and (on another occasion) G
~

 differ only with regard to our 

knowledge of the potentials. So under G  suppose we know that the potentials are ),( tV r  

and ),( trA , and under G
~

 suppose we know that the potentials are ),( tV r  and 

),( t rA .   

 Let our pure knowledge YG  be expressed by a wave function )0,(r  at time 

0t  in a (closed) sample space S  of all propositions about the particle motion in a time 

period 00 ttt  . During the time period covered by the sample space ),( tr  obeys the 

Schrödinger equation (4.2.4) of Chapter IV. With the calculated values of  ,,  and   

this equation is  
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,    (1.1.1) 

                                                 
* When we speak of ‘time reversal’ we do not of course mean that time itself is reversed. We refer instead 

to physical processes that take place in reverse.  
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 Now corresponding to YG , time reversed pure knowledge GY
~~

 is pure knowledge 

that is consistent with the particle motion being reversed.* And by of the law of time 

reversal (in section 3.11 of Chapter III), for every possible motion )(tfr   consistent 

with knowledge YG , there corresponds, under GY
~~

 a possible motion )( t fr  

consistent with knowledge GY
~~

 and vice versa. So for any possible value 1rr   at 1t  

(under knowledge YG ) resulting from one or other orbit )(tfr   (with 11)( rf t ) there 

corresponds the same value 1rr   at 1t  (under GY
~~

) resulting from the (time-reversed) 

orbit )( t fr  (since 11))(( rf  t ). And accordingly we claim the problem of finding 

),(~ tr  at any time t  ( 00 ttt  ) under knowledge GY
~~

 is similar to that of finding 

),( tr   at time t  under knowledge YG . 

 Therefore, by the similarity principle ((5.1.2) of Chapter I and its alternative form 

(8.1.2) of Chapter I) we should set either 

 

),(),(~ tt  
rr         (1.1.2) 

 

or 

 
 iett ),(),(~ rr         (1.1.3) 

 

where the real number   is independent of r  and t , and of the particular functions 

),( tV r  and ),( trA . 

 But the wave function ),(~ tr   must also satisfy the Schrödinger equation (1.1.1) 

with ),( tV r  and ),( trA  changed to ),( tV r  and ),( t rA . This is true of (1.1.2) but not 

of (1.1.3).  

 To see this we start by changing the sign of the time in (1.1.1). This gives 
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                ….(1.1.4) 

 

Taking the conjugate of this equation confirms that ),( t
r  unconditionally satisfies the 

Schrödinger equation with ),( tV r  and ),( trA  changed to ),( tV r  and ),( t rA . 

 But in order for  iet),(r  to satisfy the Schrödinger equation with ),( tV r  and 

),( trA  changed to ),( tV r  and ),( t rA , i.e. in order for  

                                                 
* For example, if Y  is the pure knowledge that the particle is at 0rr   at time 0t  then Y

~
 can be 

expressed as the pure knowledge that the particle is at 0rr   at time 0t . 
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to hold we require, by addition of (1.1.4) and (1.1.5) followed by division by 2 , that 
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and, by subtracting this from (1.1.4), that 
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And (1.1.6) and (1.1.7) must hold for all ),( tV r  and ),( trA . But then putting 0),( trA  

would force ),( t r  and ),( tV r  to be independent of t  neither of which is generally 

true. Therefore option (1.1.3) is ruled out and we conclude that relation (1.1.2) is the 

correct relation between ),(~ tr  and ),( tr . 

 

If, using (5.1) of Chapter VI, we work out the wave functions in momentum space 

corresponding to ),(~ tr  and ),( tr  we find these are related thus: 

 

),(),(~ tata  
pp         (1.1.8) 

 

which is consistent with the claim that the problem of finding ),(~ ta p  under knowledge 

GY
~~

 is similar to that of finding ),( ta  p  under knowledge YG . 

 

 

1.2 Case of spinning motion of a spin one-half particle in a uniform magnetic field 

 

In this case, a wave function under any pure knowledge Y  must satisfy the Schrödinger 

equation (8.2.3) of Chapter VII. With respect to any fixed Cartesian coordinate system O  

and with )(),( Ytt   this equation can be written as 
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where  
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  being the magnetic moment of the particle, )(tH i  ( zyxi ,, ) the Cartesian 

components (in O ) of the uniform but generally time dependent magnetic field, and i

  

( zyxi ,, ) the Pauli matrices (as in (8.2.5) of Chapter VII). 

 Let us work in the sample space S  of all propositions regarding the z  

components of spin in all fixed coordinate systems in the time period 00 ttt  . Now 

pure knowledge Y  is represented by the wave function )0,(  and can be, and we 

assume is expressed as knowledge of the value of the z  component of spin at time 0t  

in some fixed Cartesian coordinate system C  (not necessarily the same as O ).* And our 

general knowledge G  includes knowledge of the field components )(tH i  ( zyxi ,, ) in 

O  during the time period 00 ttt  . 

 Let C
~

 be the coordinate system formed by rotating C  through an angle   

about the y  axis of C . Similarly let O
~

 be the coordinate system formed by rotating O  

through the same angle about the y  axis of O .  

 Suppose knowledge Y
~

 differs from Y  just because the same known value of z  

component of spin refers to C
~

 rather than C . And suppose G
~

 differs from G  just 

because the magnetic field )(tH  has become )( t H . Then on account of the law of 

time reversal for spin (in section 3.11 of Chapter III) we claim that the problem of finding 

the wave function ),(~ t  at time t  in O
~

 under knowledge GY
~~

 is similar to that of 

finding the wave function ),( t  at time t  in O  under knowledge YG . Therefore, by 

the similarity principle ((5.1.2) of Chapter I) including its extension ((8.1.2) of Chapter I) 

we should set either 

 

),(),(~ tt           (1.2.3) 

 

or 

 
 iett ),(),(~         (1.2.4) 

 

where the real number   is independent of   and t , and independent of the function 

)(tH . 

 But the wave function ),(~ t  must also satisfy the Schrödinger equation (1.2.1) 

in O
~

 with )(tH  changed to )( t H . This is true of (1.2.3) but not of (1.2.4) as is shown 

as follows.  

 The function ),( t  satisfies (1.2.1). On changing the sign of the time this gives 

 

                                                 
* For proof of the generality of wave function )0,(  defined in this way see section 6 of Chapter VII. 
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where 
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Taking the conjugate of (1.2.5) we find 
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where, on account of y

  having purely imaginary elements 
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The Schrödinger equation for ),(~ t  in O
~

 with )(tH  changed to )( t H  (which 

means, in O
~

, that )(tH x  and )(tH z  become )( tH x   and )( tH z   while )(tH y  becomes 

)( tH y  ) is 
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where  
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So comparison of equations (1.2.7) and (1.2.8) with equations (1.2.9) and (1.2.10) shows 

that with the choice (1.2.3), ),(~ t  unconditionally satisfies the Schrödinger equation in 

O
~

 when )(tH  is changed to )( t H . 

 But for 
 iet),(  to satisfy (1.2.9) we require 
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and adding this to (1.2.5) gives 
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or 
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x     (1.2.12) 

 

and subtracting this from (1.2.11) gives 
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and (1.2.12) and (1.2.13) must hold for all )(tH . But putting )(tH x  and )(tH y  equal to 

zero then forces ),( t  to be constant (in (1.2.13) and forces )(tH z  to be zero (in 

(1.2.12)) when ),(),(
2

1

2

1
tt  , and neither of these is generally true. Therefore 

option (1.2.4) must be rejected and (1.2.3) gives the required change in wave function 

under time reversal in the case of spinning motion of a spin one-half particle in a uniform 

magnetic field. 

 

True, the new wave function refers to a new coordinate system (to O
~

 rather than O ) but 

we can find the new wave function (call it ),( t ) in the original coordinate system O  

simply by applying the transformation rule (3.6) of Chapter VII. In its inverse form this 

gives us 
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where, when O
~

 is formed by rotating O  through the angle   about the y  axis,  the 

Euler angles determining the values of the matrix elements are ),0,(),,(  . 

Accordingly 
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so the time reversed wave function (given by (1.2.3) in O
~

) is 

 
  2

1

)1)(,(),( tt        (1.2.14) 

 

in O .* 

 

 

 

                                                 
* cf. equation (60.2) of [12] in which (typographically) conjugation of  ,s  on the RHS is missing 
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2. The change in wave function under inversion 

 

Corresponding to any pure state of knowledge YG  relating to a quantum mechanical 

process there is clearly a pure state of knowledge GY
~~

 relating to an inverted version of 

the process. On passing from a pure state of knowledge YG  to its inverted form GY
~~

 any 

wave function expressing our knowledge of the process changes in a certain way, often 

simply by a change in sign of its independent dynamical variables. As in the case of time 

reversal we show how the change in wave function can be calculated in specific cases.  

 

 

2.1 Case of orbital motion of a particle moving under the action of general potentials  

 

Relative to a fixed coordinate system, the law of inversion (section 3.11 of Chapter III) 

implies that to every possible motion )(tfr   of the particle under potentials ),( tV r  and 

),( trA  there is possible motion )(tfr   under potentials ),( tV r  and ),( trA  . Let 

G  include the general knowledge that the potentials are ),( tV r  and ),( trA , and let G
~

 

include instead the general knowledge that the potentials are ),( tV r  and ),( trA  .   

 Let our pure knowledge YG  be expressed by a wave function )0,(r  at time 

0t  in a (closed) sample space S  of all propositions about the particle motion in a time 

period 10 tt  . During this time period ),( tr  obeys the Schrödinger equation (1.1.1).  

 Now corresponding to the pure knowledge Y , the inverted form Y
~

 must be pure 

knowledge consistent with the particle motion being inverted.* And by the law of 

inversion (in section 3.11 of Chapter III) for every possible motion )(tfr   consistent 

with knowledge YG , there corresponds the motion )(tfr   consistent with knowledge 

GY
~~

 and vice versa. We thus claim the problem of finding the wave function ),(~ tr  at r  

under knowledge GY
~~

 is similar to that of finding the wave function ),( tr  at r  under 

knowledge YG . Therefore, by the similarity principle ((5.1.2) of Chapter I and its 

alternative form (8.1.2) of Chapter I) we should set either 

 

),(),(~ tt rr           (2.1.1) 

 

or 

 
 iett ),(),(~ rr         (2.1.2) 

 

where the real number   is independent of r  and t  and of the functions ),( tV r  and 

),( trA . 

                                                 
* For example, Y  is the pure knowledge that the particle is at 0rr   at time 0t  then knowledge Y

~
 

can be expressed as knowledge that the particle is at 0rr   at time 0t . 
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 But the wave function ),(~ tr   must also satisfy the Schrödinger equation (1.1.1) 

with ),( tV r  and ),( trA  changed to ),( tV r  and ),( trA  . This is true of (2.1.2) but 

not of (2.1.1).  

 To see this we start by changing the sign of r  in (1.1.1). This gives 
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                ….(2.1.3) 

 

which confirms that  iet),( r  satisfies the Schrödinger equation with ),( tV r  and 

),( trA  changed to ),( tV r  and ),( trA  . 

 But in order for ),( tr  to satisfy the Schrödinger equation with ),( tV r  and 

),( trA  changed to ),( tV r  and ),( trA  , i.e. in order for  
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                ….(2.1.4) 

 

to hold we require, by addition of (2.1.3) and the conjugate of (2.1.4) and division by 2 , 

that 
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  (2.1.5) 

 

and, by subtracting this from (2.1.3), that 
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.     (2.1.6) 

 

And (2.1.5) and (2.1.6) must hold for all ),( tV r  and ),( trA . But then putting 0),( trA  

would force ),( tr  and ),( tV r  to be independent of t  neither of which is generally 

true. Therefore option (2.1.1) is ruled out leaving (2.1.2) as the only possibility. 

 

If, using (5.1) of Chapter VI, we work out the wave functions in momentum space 

corresponding to ),(~ tr  and ),( tr  we find these are related thus: 

 
 ietata ),(),(~ pp         (2.1.7) 
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which is consistent with the claim that the problem of finding ),(~ ta p  under knowledge 

GY
~~

 is similar to that of finding ),( ta p  under knowledge YG . 

 

 

2.2 Case of spinning motion of a spin one-half particle in a uniform magnetic field 

 

In this case, as we have said in section 1.2, a wave function under any pure knowledge Y  

must satisfy the Schrödinger equation (1.2.1) with the Hamiltonian in (1.2.2). 

 As before, pure knowledge Y  can be expressed as knowledge of the value of the 

z  component of spin at time 0t  in some fixed Cartesian coordinate system C  (not 

necessarily the same as O ). And our general knowledge G  includes knowledge of the 

field components )(tH i  ( zyxi ,, ) in O . 

 It is clear that under inversion, because the spinning motion does not change, 

knowledge Y
~

 is the same as knowledge Y  and, because the magnetic field does not 

change, on account of it being uniform, knowledge G
~

 is the same as knowledge G .  

 Therefore, by the second uniqueness principle in section 5 of Chapter I, we have 

simply 

 

),(),(~ tt          (2.2.1) 

 

i.e. our wave function remains the same on inversion.  

 

 

2.3 Parity 

 

In the case of any one quantum mechanical process it can likewise be demonstrated that 

under inversion the wave function (in the particle position/spin representation) undergoes 

a change in sign of all the particle position coordinates and generally gets multiplied (as 

in (2.1.2)) by a constant phase factor 
ie  independent of the position/spin coordinates, 

and of the potential functions and magnetic field and our state of knowledge of dynamical 

properties (before inversion). Because of the nature of inversion, if we invert a process a 

second time we return to the original process. So it must be that our wave function 

returns exactly to its original form. Hence 
2)( ie  must equal 1  or 

 

1ie          (2.3.1) 

 

If we can show 1ie  we say our knowledge regarding the process has ‘parity 1’ 

(or ‘even parity’), and if we can show 1ie  we say our knowledge has ‘parity 1 ’ (or 

‘odd parity’). 
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If the system potential and external potentials for each particle and the magnetic field 

remain the same under inversion*, so our general knowledge stays the same, and if our 

(pure) knowledge Y  is knowledge of a dynamical property that also does not change 

under inversion, then our wave function must stay the same under inversion.† And 

accordingly, on changing the sign of the position coordinates our wave function must stay 

the same (in the case of even parity) or change sign (in the case of odd parity). 

For example, in the case of a single particle moving in inversion-invariant 

potentials and magnetic field, let ),,( t r  be our wave function under inversion-self-

similar knowledge Y . Then under inverted knowledge GY
~~

 it is  iet),,( r . But as it 

stays the same we have ),,(),,( tet i  
rr  so ),,( t r  is an even or odd function 

of r  according as 
ie  is 1  or 1 , i.e. according as the parity is even or odd. 

 

 

3. Stationary states 

 

When the inter-particle potential function, external potential fields and external magnetic 

field experienced by the particles of a quantum mechanical system are not dependent on 

the time (and we assume this throughout the present section) ‘stationary’ pure states of 

knowledge of the process are possible. The propositions that express a stationary pure 

state of knowledge make no reference to dynamical properties of the system belonging to 

any particular time.  

Working in the (closed) sample space of all propositions about the motion in a 

certain time period let q  denote the set of particle position coordinates and their z  

components of spin all relating to a fixed Cartesian coordinate system, and let ),( tq  be 

our proper (or improper) wave function for any one stationary pure state of knowledge. 

We apply the method of transformation groups (section 5.3 of Chapter I) to find 

the form of the time dependence of ),( tq . Specifically we consider the effect of 

transforming the time variable by shifting the origin of the time by  . 

Letting ),(~ tq  be our wave function in the new time coordinate we claim that 

under stationary conditions, the problem of finding the probability distribution ),(~ tq  is 

similar to that of finding the probability distribution ),( tq  in the original time 

coordinate. Accordingly, by (5.1.1)‡ of Chapter I, we have the functional relation 

 
 ietqtq ),(),(~  

 

where   is a real number independent of q  and t , but possibly a function of  . And by 

the uniqueness of probability assignments we also have the identity 

 

),(),(~ tqtq   

                                                 
* i.e. if they have the right kind of spatial symmetry 
† This is simply because (as in section 2.2) our general knowledge G  stays the same (with or without 

inversion) and so does our knowledge Y . 

‡ where in the present case YGGYGY  )2()2()1()1(
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because t  on the LHS and t  on the RHS refer to the same absolute time. And the last 

two equations hold for all tq,  and  . Combining them gives 

 
 ietqtq ),(),(        (3.1) 

 

holding for all tq,  and  . Since wave functions are differentiable functions of their 

continuous variables,   is a differentiable function of   and of course when 0 ,   

must be zero also. Taking the case   is an infinitesimal (3.1) gives for  )),(( tq  

 





0.i

t
 

 

where 0  is   at 0 . Cancelling the  s and solving the differential equation 

gives 

 
Etieqtq  )0,(),(         (3.2) 

 

where 0  has been written as E . So (3.2) is the general form of the time dependence 

of ),( tq , E  being a real constant with the units of energy which we will soon show is a 

property of the quantum mechanical process in question. 

 Now ),( tq  must also satisfy the Schrödinger equation (e.g. in the case of a 

single spin zero particle it must satisfy (4.2.4) of Chapter IV, or in the case of pure 

spinning motion of a spin one-half particle it must satisfy (8.2.3) of Chapter VII). In 

general the Schrödinger equation has the form 

 





 H

ti
ˆ

         (3.3) 

 

where Ĥ  is the Hamiltonian operator always Hermitian and here assumed to be 

independent of the time. Substitution of (3.2) into (3.3) shows that therefore ),( tq  has 

the form 
Etieqtq  )(),(  with )(q  satisfying the equation  EĤ . Under 

requirements of symmetry (in the case some of the particles of the system are identical) 

and under boundary conditions imposed by physical constraints, this equation always has 

orthogonal solutions )()( qq nl  with corresponding real eigenvalues nE  of E . As is 

well known, the functions )(qnl  form a complete set in that any wave function for the 

system can be expressed as a linear combination of them, and the general wave function 

of a stationary state can be written 

 
tEi

nl
neqtq


 )(),(         (3.4) 
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where the )(qnl  are normalised thus* 

 

llnnlnnl dqqq 

  )()(        (3.5) 

 

and satisfy 

 

nlnnl EH ˆ          (3.6) 

 

nE  being a monotonic increasing function of n , with n  and l  standing for one (in the 

case of n ) and one or more (in the case of l ) real, constant, dimensionless (discrete or 

continuous) parameters that serve to label all the possible stationary pure states of 

knowledge we may hold of the system. In any case where the particles of the system are 

confined to a finite region of space, the parameters n  and l  are all discrete. 

 Because the stationary state wave functions (3.4) form a complete set of 

orthogonal functions of q  that are essentially time-independent (the time appearing only 

in the unimportant ( q -independent) phase factor, it follows, from the law of inferred 

dynamical properties (section 3.12 of Chapter I) that there is an associated timeless 

property nlP  quantified by the parameters nl . A stationary state of knowledge of the 

dynamics of a system therefore amounts to knowledge of a property of the system 

quantified by a definite value of nl . This involves knowledge of the ‘energy’ nE  of the 

system which being a function of nl  is itself a property going with the property 

represented by nl .  Energy is thus a property present in all systems.†  

 If our wave function ),( tq  at time t  under any pure state of knowledge Y  of the 

system dynamics is expanded in the wave functions (3.4) thus‡ 

 





nl

tEi

nlnl
neqatq


)(),(        (3.7) 

 

the squared moduli of the coefficients nla , which must satisfy 

 

                                                 
* The notation in (3.5) and elsewhere is of course symbolic in that the integral may need to a multiple 

integral or a combination of integrals and sums and the Kronecker deltas might have to be delta functions 

etc. 

† Even if a system’s Hamiltonian Ĥ  is a function of time equation (3.6) can still be employed to establish 

the existence of a set of orthogonal functions nl  at any one time t  and hence a time dependent inferred 

dynamical property )(tPnl  and an associated energy )(tEn . 

‡ Strictly speaking, since the set of possible l  values depends on n  we should write any sum 
nl

nlS  as 

 
n l

nlS )(  because the sums over l  and n  are not reversible. And of course a sum may become an 

integral in the case n  and/or l  are continuously variable parameters. 
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1
2


nl

nla ,         (3.8) 

 

are (as shown in section 6.3 of Chapter II) our degrees of belief that the property 

parameters take particular values n  and l . Although the general wave function in (3.7) 

does not represent a stationary state of knowledge, the nla  must nonetheless remain 

constant in time on account of (3.6) and the need for ),( tq  to satisfy the Schrödinger 

equation (3.3). We may relate the nla  to the pseudo wave function (under pure 

knowledge Y ) over the pseudo basis nlP  (where the nlP  are the propositions claiming the 

properties nlP ), i.e. we can put 

 
nli

nlnl eYPa


 )( .        (3.9) 

 

where nl  are constant indeterminate phases (cf. equation before (6.3.4) of Chapter II). 

And if tPnl  claims nlP  is present at time t  we naturally claim 

 

000

nlnl PtP           (3.10) 

 

for the property nlP  is timeless. By (3.10) the values of n  and l  stay constant in time and 

do so regardless of any knowledge we may hold about the motion. 

 But we cannot claim that the property nlP  quantified by nl  is a basic property and 

that the functions )(qnl  are the transformation functions from nlP  to q . For after 

normalisation, equation (3.6) only fixes the )(qnl  to within a phase factor nli
e


 where 

nl  may be an arbitrary real function of n  and l .*  

 

 

3.1 Stationary states of a particle moving under the influence of a time independent scalar 

potential 

 

In this case the differential equation (3.6) for functions )(rnl  of particle position r  takes 

the form 

 

nlnnlnl EV
m

 )(
2

2
2

r


,      (3.1.1) 

 

where m  is the mass of the particle. After normalisation, )(rnl  contains an unknown 

phase factor nli
e


. 

                                                 
* If we wanted to claim the )(qnl  were transformation functions we would have to determine the function 

nl  at least to within an indeterminate additive real constant. It is not clear how this can be done.  
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 In some cases (i.e. for some )(rV ), we will claim that the property nlP  is one that 

does not change under time reversal. Then since )(rV  is independent of the time and no 

vector potential is present, our knowledge YG  is the same as its time reversed form GY
~~

. 

Accordingly each wave function tiE

nl
ne


 must remain the same under time reversal, i.e.  

 

 


 )(
)()(

tEi

nl

tEi

nl
nn ee rr  

 

implying that the )(rnl  are all real functions of r . Then only real solutions to (3.1.1) are 

needed and the (real) )(rnl  no longer contain arbitrary phase factors nli
e


. They still 

however have indeterminate signs (i.e. they contain indeterminate factors 1 ) possibly 

different for different values of nl . So if we were to try to claim that the nlP  represent a 

basic property and that the )(rnl  are the transformation functions from nl  to r , we 

would still need to determine (i.e. to somehow derive) the sign of each of the )(rnl  or at 

least the relative signs of them. So far we know no way of doing this so we refrain from 

claiming that the nlP  represent a basic property. 

 

 

3.1.1 Particle in a box 

 

Taking )(rV  infinite outside a box and zero within it, taking Cartesian coordinates with 

origin O  at a vertex of the box and positive axes containing edges of the box, and leaving 

aside the arbitrary phase factor 321 nnni
e


, (3.1.1) has the well-known solution  

 

c

zn
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yn

a

xn

abc
zyxnnn


 321 sinsinsin

8
),,(

321
    (3.1.1.1) 

 

for r  lying inside the box, i.e. for ax 0 , by 0  and cz 0 , and  

 

0),,(
321

 zyxnnn  

 

for r  lying outside the box. In (3.1.1.1) 1n , 2n  and 3n  are numbers each taking the 

possible values ,...2,1 . The possible stationary state wave functions are accordingly 

 
tiE

nnn

nnnezyx 321

321
),,(


        (3.1.1.2) 

 

where, by (3.1.1), the possible (kinetic) energy values are* 

                                                 
* The relation between the parameters 321 nnn  and the parameters nl  in the general form (3.4) of a 

stationary state is difficult to formulate. We would have to put in order the (distinct) energy values in 

(3.1.1.3) and label them n  (with say  ,...2,1n ) and then distinguish parameter values 321 nnn  that 
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.      (3.1.1.3) 

 

 We now assume 321 nnn  represents a property invariant under time reversal. Then, 

as shown above, the 
321 nnn  are necessarily real and only the signs of the 

321 nnn  remain 

indeterminate. They are chosen conventionally to be all positive as in (3.1.1.1). 

 We note that the functions (3.1.1.1) (as is generally the case for eigenfunctions of 

the Hamiltonian) form a complete set of functions of yx,  and z  in so far as any allowed 

wave function (which, by continuity, must vanish at the inside surface of the box) can (by 

Fourier’s theorem) be expanded in terms of them. They are orthonormal in the sense that 

 

332211321321

0 0 0

),,(),,( nnnnnn

c b a

nnnnnn dxdydzzyxzyx 


     

 

From the form of (3.1.1.1) we see that our knowledge is separable into pure states 

of knowledge in the closed sample spaces xS , yS  and zS  of all propositions concerning 

the components of the particle motion in the yx,  and z  directions respectively. 

Corresponding to (3.1.1.1) our wave function in xS  for example is 
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n
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xn

a
tx 1

1
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),(


       (3.1.1.4) 

 

under the pure knowledge labelled by 1n  (taking values ...2,1 ) and for which the 

component of kinetic energy in the x  direction is  

 

2

2

1

22

21 a

n

m
En


 .        (3.1.1.5) 

 

 

If we parallel displace the coordinates so the new origin O  is at the centre of the box, 

then relative to the new coordinates yx ,  and z  we have  

 

                                                                                                                                                 

gave equal energies 
321 nnnE  by a parameter l  in some way. (True, in the special case 

22 ,  ba  and 
2c  

were incommensurable, there would be no degeneracy and l  would not be needed.) But rather than change 

the notation to the form nl  it is easier to work with the new parameters 21,nn  and 3n . 
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     (3.1.1.6) 

 

and similarly for the other factors in (3.1.1.1).  

Assuming knowledge 321 nnn  is knowledge of a property that does not change on 

inversion through the centre of the box we see, from (3.1.1.6) and its equivalent for the y  

and z  components, that the parity P  of knowledge 321 nnn  under such inversion is 
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1
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nnn
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i.e. the parity is even if 321 nnn   is odd and odd if 321 nnn   is even. 

 

Let us now change to the momentum representation in the central coordinate system. 

Using the x  component of the second of (5.1) of Chapter VI, our wave function in xS  (in 

the momentum representation) is 
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        (3.1.1.7) 

 

where, dropping the primes, suffix x  and suffix 1  for simplicity, we have by (3.1.1.6) 

and (3.1.1.4) 
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where the function 21)(  is defined as in Appendix A (so that i 21)1( ). Expanding the 

exponential into trig functions and dropping the odd part of the integral (which vanishes) 

we see we can let 
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where, on the RHS, ‘odd’ or ‘even’ refer to the  sign. And performing the integration 

we find 
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  (3.1.1.8) 
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where for n  odd )()1( 2 in   is more conveniently written as 2)1()1(  n . From (3.1.1.8) 

and (3.1.1.7), the momentum wave functions ),( tpa x
 , ),( tpa y

  and ),( tpa z
  are easily 

constructed. 

 

The possibility of periodic motion.  

 

Consider motion of the particle in the box, when our pure knowledge Y  of its motion is 

separable into pure knowledge of the components of motion in the yx,  and z  directions. 

Our general wave function relating to the x  component of the motion is a function 

),( tx . This can be expanded in the stationary state wave functions (3.1.1.4) thus 
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where 
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 .        (3.1.1.10) 

 

and the na  are independent of the time. The form (3.1.1.9) ensures ),( tx  satisfies the 1-

D Schrödinger equation. Now let Y  be the knowledge that the particle is at 0rr   at 

0t , so that )()0,( 0rrr   or equivalently )()0,( 0xxx  , )()0,( 0yyy   

and )()0,( 0zzz   where 0x  is the x  component of 0r  etc.  

At time Tt   where 

 




24ma
T          (3.1.1.11) 

 

we have, by (3.1.1.10), that 22 ntEn   so the factor 
tEi ne


 in (3.1.1.9) starts as 1  at 

0t  and returns to 1  at Tt  . As a result )()0,(),( 0xxxTx   and clearly 

 

)(),( 0xxNTx          (3.1.1.12) 

 

for any integer N . This shows the x  component of motion is periodic with period T . 

For (3.1.1.12) means that the proposition ‘the particle x  coordinate is 0x  at time 0t ’ 

implies the proposition ‘the particle x  coordinate is 0x  at time NTt  ’ with a 

determinate phase of implication (namely zero). And since the origin of the time and the 

choice of 0x  in the range ax  00  is arbitrary, the x  component of free particle motion 

in a box is naturally periodic with period T  given by (3.1.1.11). That is, it is periodic 
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regardless of any knowledge we may or may not have regarding the x  component of 

motion (in addition to our knowledge that ax 0 ).  

 The three-dimensional motion of a particle in a box is therefore naturally periodic 

with period T  if (and only if) multiples of the periods  
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4mb
T  and 
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4mc
T  

 

of the yx,  and z  components of motion are equal, i.e. if (and only if) 

 

TTNTNTN  332211  

 

where 21, NN  and 3N  are the smallest positive integers that produce the equality. This 

requires that 2

3

2

2

2

1 cNbNaN   or 
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i.e. that the squares of the sides are in integral proportions. Then we find, from (3.1.1.3), 

that 
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and accordingly any wave function  
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 (3.1.1.13) 

 

where the 
321 nnna  are arbitrary constants, is periodic with period T . 

Since the motion is continuous and the particle does not move infinitely fast, its 

periodic motion during the time T  must be motion along a closed path inside the box that 

leaves most of the box interior ‘unvisited’. We know little about the form of the path. It 

must be generally different each time the particle is prepared in a way that gives us a pure 

state of knowledge of its motion. (For example it must be generally different each time 

the ground state of stationary motion is prepared.) Otherwise there would be regions in 

which the particle was never found contrary to experience. In fact, under any pure 

knowledge, the wave function in any chosen 3-D region of the box interior is never zero 

at all times.* 

                                                 
* That the wave function may be zero in a 3-D region of the box at time 0t , cease to be zero just after 

and be zero again at time Tt   shows that the Schrödinger equation governing the complex-valued 

probability distribution over the position of a particle differs greatly from the diffusion equation governing 
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3.1.2 Particle in a centrally symmetric field 

 

With )(rV  equal to a function )(rU  of the distance r  of the particle from the origin of 

fixed coordinates, equation (3.1.1) has the well-known solution which, with an arbitrary 

phase factor included, takes the form 

 
klmi

lmmklklm erR


 )()()(       (3.1.2.1) 

 

where ,r  and   are the spherical polar coordinates of particle position,  

 
 im

m e21)2()( ,        (3.1.2.2) 
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and (real-valued) )(rRkl  satisfies the ordinary differential equation 
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dr
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   (3.1.2.4) 

 

  being the mass of the particle and klE  the energy going with the property klmP  

associated with the complete set of wave functions 
tiE

klm
kle


 . The possible energies are 

independent of m  and for continuity of the wave functions the parameters l  and m  are 

limited to the integer values 

 

lllm

l

,...,1,

...2,1,0




        (3.1.2.5) 

         

(The above results are derived for example in [12].*) As is well known the functions 

)(m  and )(lm  form complete sets of functions of   and   respectively which are 

orthonormal in the sense that 

 

                                                                                                                                                 
the (classical) probability distribution over the position of a (classical) particle in Brownian motion despite 

the fact that the mathematical derivations of the equations are formally similar (as shown in Appendix H). 

* The equation (3.1.2.3) differs from (28.5) in [12] in that a factor 
li  is omitted. The ‘associated Legendre 

function’ in (3.1.2.3) is defined as in the Mathematical Appendix §c of [12] i.e. as 
m

l

mmm

l dPdP )cos()(cossin)(cos   for lm 0  and )(cos)(cos0  ll PP  where the 

Legendre polynomials are 
llll

l xdxdlxP )1)(()!2()( 21  
 with 1)(0 xP , and 

m

l

mm

l PmlmlP ))!()!(()1( 
 for lml  . 



XI. Time reversal, parity and stationary states 

 295 

mmmm d 




 

2

0

)()(        (3.1.2.6) 

llmmmllm d 




 

0

sin)()(       (3.1.2.7) 

 

For any potential )(rU , suitable (normalised) solutions to (3.1.2.4) can be derived (as for 

example in (3.1.2.11) below) together with the possible eigenvalues of the energy klE  

and then the functions klm  given by (3.1.2.1) always form a complete set of orthonormal 

functions of ,r  and  . 

 The energy is then a known function of klm. And as well as the energy klE  we 

speak of )1( ll  being the ‘angular momentum’ of the particle with respect to the origin 

of coordinates and of m  being the ‘component of angular momentum’ in the z  direction. 

Both are measured in units of   so the actual physical values are )1( ll  and m  

respectively.  

 By (3.10), the properties of energy, angular momentum and its z  component are 

all constants of the motion, i.e. all constant during any motion the particle may undergo 

in the central field. And this is true no matter what knowledge we may or may not hold 

about that motion.  

 We claim that under time reversal the energy and angular momentum remain the 

same and the z  component of angular momentum changes sign. Therefore the problem 

of finding the wave function 
tiE

mkl
kle


  under knowledge klm is similar to that of 

finding the wave function 
tiE

mkl
kle



  under knowledge mkl  and accordingly we 

require, by (1.1.2), that  

 


  )(
)(  tiE

mkl

tiE

mkl
klkl ee  

 

or 

  klmmkl  which is fulfilled by (3.1.2.1) and (3.1.2.2) (since )(lm  and )(rRkl  are 

real, and )()(  

 mm ) provided only that we make the phases klm  in the phase 

factor klmi
e


 antisymmetric in m , i.e. provided 

 

klmmkl   . 

 

The values of the klm  are otherwise arbitrary but may, if we wish, be fixed by 

convention. 

 We also claim that any of the stationary states of knowledge is knowledge of a 

property that stays the same on inversion through the origin of coordinates. Accordingly 

the parity of our stationary state knowledge is 1  or 1  according as the wave function 
tiE

klm
kle


  is an even or odd function under the change of coordinates: 

 



XI. Time reversal, parity and stationary states 

 296 

),,(),,(  rr . 

 

Since )(rU  in (3.1.2.4) stays the same on inversion, )(rRkl  stays the same, while, by 

(3.1.2.2)  
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m

m

m

im

mm e . 

 

By (3.1.2.3), in which  cos)cos(cos   and )(cos)1()(cos   m

l

lmm

l PP * 

we have 
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lm . 

 

As a result the parity of the general stationary state of knowledge is l)1( . 

 

 

Case of a particle in a spherical cavity 

 

When 
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ar
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00
)(        (3.1.2.8) 

 

the particle is restricted to move within a spherical cavity of radius a . The energy of the 

particle can only be kinetic energy which we assume is necessarily positive or zero. 

Hence 0klE  and equation (3.1.2.4) becomes 
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where 

 


klE
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2

         (3.1.2.9) 

 

and the (real) solution finite for 0r  is  

 

)(
2 2

1 KrJ
Kr

AR
lklkl 


        (3.1.2.10) 

                                                 
* This is because  sinsin  while )(cos)1()cos()(cos  l

l

ll PPP  and 

mmmmm dddd )cos()1()cos(  . See previous footnote. 
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where the klA  are real numerical constants and 
2

1
l

J  are Bessel functions of fractional 

order (see p.437 of [21]).  

 The boundary condition that the wave function must (for continuity) vanish at 

ar    gives the equation 

 

0)(
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KaJ
l

  

 

for the possible values of K  and hence klE . We may choose the k  label as an integer 

...2,1,0  standing for the th)1( k  positive zero 
1,

2

1
 kl

j  of the function )(
2

1 xJ
l

 along the 

x  axis. The lowest value of klE  (the ground state) then occurs when 0 lk  

corresponding to the first zero of )(
2

1 xJ  which is at 141593.3
1,

2

1  jx  (see p.467 of [21] 

for the zeros of )(
2

1 xJ
l

 for 0x , ...2,1,0l ). We therefore write )(rRkl  as 
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where 
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jK
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1
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          (3.1.2.12) 

 

and therefore, by (3.1.2.9), the (all different) energy levels are 
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The )(rRkl  must be normalised so that the klm   in (3.1.2.1) are orthonormal; i.e. so the 

klm  satisfy 
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This requires 
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giving, by 11.4.5 of [21], 
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1

1,
))((
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1
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kllkl jJ
K

a
A        (3.1.2.15) 

 

where the prime stands for the first derivative of the Bessel function with respect to its 

argument and the indeterminate sign is (by convention) taken to be 1  for all kl . 

 

 

4. Quasi-static variation of a stationary state 

 

Of special interest in quantum statistical mechanics is the manner in which the wave 

function (initially representing a stationary state of knowledge of a system) changes when 

a parameter of the Hamiltonian is changed very slowly to a new value. The parameter in 

question, which we will denote as a , is a parameter referring to an external potential to 

which the particles of the system are subjected. It is a parameter under our control and 

our knowledge of the system can, strictly speaking, remain stationary only when it is held 

constant.*  

 The following theory of quasi-static parameter variation is based on the account 

given in p.409-414 of [22]. 

 

For a fixed value of a  our stationary state wave function must be of the general form 

(3.4) or, to make the a  dependence explicit, of the general form  

 
taEi

nl
neaqtq

)(
),(),(


        (4.1) 

 

where ),( aqnl  is an eigenfunction of the Hamiltonian )(ˆ aH : 

 

),()(),()(ˆ aqaEaqaH nlnnl        (4.2) 

 

and the eigenvalues nE  are functions of a  (and for each value of a  remain monotonic 

increasing functions of n ). The indeterminate phase factors 
)(ai nle


 in ),( aqnl  are 

supposed chosen in some conventional way so the ),( aqnl  are definite functions. 

 Now if the parameter a  is varied by us in a controlled way, it becomes a known 

function )(ta  of t  and our wave function ),( tq  under any pure knowledge of the 

system will have to satisfy the Schrödinger equation 

 

),())((ˆ),(
tqtaH

t

tq

i








.      (4.3) 

 

                                                 
* An example of a parameter would be the length of one side of a box in which a particle moved freely (as 

in section 3.1.1); this length could be slowly varied but our knowledge of the particle motion could, strictly 

speaking be stationary only when it was held constant. 
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Since the ),( aqnl , for all possible values of nl , form a complete set of orthogonal 

functions for any fixed value of a  it is possible to expand ),( tq  thus 

 

 
nl

nlnl aqtCtq ),()(),(        (4.4) 

 

where the )(tCnl  are suitable functions of the time t , and we take a  to equal )(ta  so a  

too is a function of time t  in (4.4). Substituting this is (4.3) gives, on account of (4.2) 
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When applied to functions of a , t  is the same as aa   so this becomes 
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Changing nl  to ln  , multiplying through by ),( aqnl

  and integrating over q  the 

orthonormality of the ),( aqnl , which holds for any value of a , gives us the differential 

equation 
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   (4.5) 

 

for the time variation of the nlC  in (4.4). 

 Now if the rate of change of a  is small enough the first term on the RHS of (4.5) 

will be negligible and the nlC  will change at least initially according to  

 

)(aECC
i

nnlnl  
        (4.6) 

 

which has the simple solution 

 








t
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i

tnlnl eCC 0

))((
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       (4.7) 

 

where only the phases of the nlC  are changing. In particular if we start out at 0t  with 

wave function ),()0,( 0aqq nl  (so llnntlnC  
0

) and make a slow change in a  

from 0a  at time 0t  to a  at time t , (4.7) means our wave function ),( tq  given by 

(4.4) is 
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      (4.8) 

 

reducing to (4.1) if there is no change in a  from time 0t  to time t . Result (4.8) means 

our wave function remains the same apart from its natural dependence on a  and the 

presence of a certain time dependent phase factor independent of the coordinates q .  

 However to ensure the truth of (4.7) and (4.8) we must take account of the fact 

that although a  is small in (4.5), it is present for a long time T  during which a 

substantial change in a  may occur. Formally we must consider the case when  

 

0a  and T          (4.9) 

 

while  
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remains constant and is not necessarily small. It then seems possible that (4.5) will in the 

end lead to a change in the amplitudes of the nlC  as well as a change in their phases and 

that nlC  values that start out zero for some nl  may, in the course of time, become non-

zero. To show this is in fact not the case and that (4.7) and (4.8) can hold quite generally 

under the required conditions (4.9) and (4.10) (apart from a need to change the phase 

factor in (4.8)), we start by rewriting the governing equations (4.5) in terms of the 

variable a  rather than t . So long as )(ta  is a monotonic function this is quite possible 

and we find that regarded as functions of a  (not t ) the equations for the nlC  are 
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to be satisfied for 10 aaa   where 
00 )(




t
taa  and 

Tt
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 )(1 . In (4.11) nlC , a , nE  

and the integral are all taken to be functions of a  rather than t  and the domain 

10 aaa   is now fixed and finite. Supposing a  is small for all a  between 0a  and 1a  the 

last term in (4.11) dominates suggesting the solution 
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equivalent to (4.7). But for generality we seek the solution of (4.11) in the general form 
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where the )(aFnl  need not be (and are not) explicitly dependent on a . Then (4.11) gives 

for )(aFnl  the equation 
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Integrating this gives 
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We now show that the RHS of (4.14) may be taken to tend to zero as 0a  for all a  

between 0a  and 1a . Then (4.13) reduces to (4.12) confirming (4.7) and (4.8).  

 Firstly, the summand on the RHS of (4.14) clearly tends to zero as 0a  

provided nn  . For then (since nE  is, for any a , a monotonic increasing function of n ) 

the difference nn EE   is not zero for any a  in the range 10 aaa  , so aEE nn
)(   

becomes larger and larger making the phase factor 
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a more and more rapidly fluctuating function of a  reducing the main integral over a  in 

(4.14) to zero. 

 Secondly, the summand term for which nlln   can be made to vanish even 

though nn EE   is then zero so no rapid fluctuation of the main integrand in (4.14) 

occurs. This can be done by choosing the constant phase factors allowed in the ),( aqnl  

so that 
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For by the normality of the nl  we have 
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where )(apnl  is a real function of a . So if (4.15) is not already satisfied we change from 

the nl  to the nl  defined by 
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and then (4.15) will be satisfied, i.e. we will have 
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nl
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This is easily confirmed by substituting (4.16) into (4.17). So by adopting an appropriate 

choice for the variation with a  of the previously mentioned (coordinate independent) 

phase factors )(anl  in the ),( aqnl  we can arrange that (4.15) is satisfied by the nl . 

(By (4.16) the constant phase factors in the wave functions ),( 0aqnl  at time 0t  are 

unaffected and may still satisfy any constraints that might be imposed by knowledge 

other than our knowledge of the variation of a  which is redundant as far as ),( 0aqnl  is 

concerned.) 

 Thirdly, the remaining summand terms in (4.14), i.e. those for which nn   but 

ll   vanish because 

 

0





 dq
a

ln
nl  

 

for any unequal values of l  and l . This is because of the orthogonality of the 

eigenfunctions nl  that share the same energy, i.e. because 

 

0 

 dqlnnl ,    ll   

 

and because differentiation of the factor ln   in the integrand with respect to a  does not 

change the orthogonal property. A general proof of the last claim is missing but its truth 
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is evidently not at all affected by whether or not a phase factor ))(exp(
0


a

a
nl daapi  has to 

be included in ),( aqnl , and it seems to be always true. For example, in the case of 

quasi-static variation of the stationary states of a particle in a box where the side of 

dimension a  is slowly changed (while dimensions b  and c  remain constant) it follows 

from (3.1.1.3) that for certain triplets 321 ,, nnn  sharing the same value of 1n  the energies 

say 
321 nnnE  and 

321 nnnE   may be equal (for all a ) because it may happen that 

 

2

2

3

2

2

2

2

2

3

2

2

2

c

n

b

n

c

n

b

n 



 . 

 

But in that case we will certainly have (with ),,(
321

zyxnnn  as in (3.1.1.1)) that 
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This easily follows from the product rule of differentiation and the orthogonality of trig 

functions (as in Fourier series). Similarly, in the case of quasi-static stationary states of a 

particle in a spherical cavity (section 3.1.2) with the radius of the cavity slowly changed 

 

lkkl EE   

 

for any radius a  of the cavity when klm and mlk   differ only in regard to the values of 

m  and m . But 
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when lkkl   and mm  , as easily follows from the orthogonality relation (3.1.2.6) and 

the fact that only )(rRkl  in (3.1.2.1) depends on a . 

 

In conclusion it seems always true that a quasi-static variation of a parameter a  in the 

Hamiltonian leaves a stationary state wave function unchanged except for a phase factor 

independent of the coordinates q  of the system. If our initial wave function is  
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then after quasi-static variation of a  from 0a  to some value )(ta  at time t  it becomes  
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where (as in (4.2)) ),( aqnl  is an eigenfunction of )(ˆ aH  the constant phase factor in 

which is fixed (for different values of a ) by convention in any way we choose, )(aEn  is 

the corresponding energy and  
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)(apnl  being necessarily real. The parameters nl  thus remain constant during quasi-

static variation of a , the probability of any other values ln   of the parameters at any 

time t  being zero. But of course the physical quantities quantified by nl  generally 

change because of their dependence on a . The phase factor in the wave function (4.19) 

reflects the peculiar manner of expressing our knowledge that leads to this wave function, 

i.e. the knowledge that the parameter a  is quasi-statically changed from its initial value 

0a  at time 0t  to its value )(ta  at time t . 
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CHAPTER XII  

 

APPROACHING THE CLASSICAL LIMIT  
 

 

In other branches of modern physics (in special relativity for example) the conditions 

under which the classical limit is approached can be established directly from the 

physical laws (from the relativistic laws in the case of special relativity). But in the case 

of quantum mechanics this is not possible because we do not know the detailed quantum 

mechanical laws of motion. Instead we need to claim that under certain specified states of 

knowledge of a quantum mechanical process the orbital motion of the particles proceeds 

(to classical accuracy) as it would in classical mechanics, i.e. the representation point in 

configuration space moves (to classical accuracy) along one or other of a set of 

specifiable classical paths* and a certain classical probability can be assigned to each of 

these paths.  

 According to the correspondence principle (section 3.4 of Chapter III) we may 

have a pure state of knowledge of a quantum mechanical process under which the 

particles in question move in an approximately classical manner and more and more 

precisely so in a certain limit. We call such pure states of knowledge ‘quasi-classical’ and 

we refer to the corresponding wave functions as ‘quasi-classical wave functions’. Then in 

the limit the modulus squared of the wave function over any property with classical 

analogue (the position of a particle or the momenta of a particle etc.) averaged over 

vanishingly small domains if necessary) gives the classical probability distribution we 

should hold for that property when interpreting our knowledge of the process in a 

classical manner. Each such distribution demonstratively changes in time in a way 

consistent with particle motion in classical orbits. We thus claim that quasi-classical 

states of knowledge are both pure states of knowledge of quantum mechanical motions 

and, in the limiting case, ordinary states of knowledge of the classical motions that the 

particles are expected to follow.  

 

 

1. Quasi-classical wave functions for a single particle  

 

1.1 The Hamilton-Jacobi equation 

 

We first note that in classical mechanics a set of possible motions of a particle under the 

action of potentials ),( tV r  and ),( trA  can be associated with a classical action function 

                                                 
* The acquisition of any one of the specified states of knowledge generally interferes with the process 

physically (on account of the uncertainty principle) and this brings about or ensures that the representation 

point moves (to classical accuracy) along one or other of a set of classical orbits. 
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),( tS r  (a function of position r  and time t ) which is a solution of the Hamilton-Jacobi 

equation 
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Having found a solution to this equation we define a set of particle motions by stipulating 

that at every point r  and time t  there is a particle with velocity  
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We then have many copies of our particle of mass m  moving together as a swarm of 

particles throughout the region of space and time in which ),( tS r  is specified. If we 

follow any one of the particles in its motion we can confirm that it does move classically. 

For the acceleration of it is 
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and the force on it is therefore 
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vvvv  v  equations (1.1.1) and (1.1.2) give 
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which is just as it should be (see end of section 1 of Chapter III). 

 

 

1.2 The simplest quasi-classical wave function 

 

In the closed sample space of all propositions concerning the orbital motion of the 

particle over a time period 0t  to 1t  the quasi-classical wave function over particle 

position and of the simplest kind is one of the form 

 
),(),(),( tSietat r
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where a  and S  are real valued functions with certain properties to be described. 

Inserting (1.2.1) into the Schrödinger equation 4.2.4 of Chapter IV with  ,,,  given 

their known values 0,1,1,
2

1
 , we see that a  and S  must satisfy 
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We now assert that wave function (1.2.1) (which, as it stands, is of course quite a general 

function of r  and t ) has a quasi-classical form whenever (i) A,V , a  and S  are changing 

relatively slowly with r  and t  (i.e. changing only over values of r  and t  considered to 

be classical distances and times), (ii) A  is not too large*, (iii) 1S  (so the phase is 

very rapidly changing with the values of r  and t ), and (iv) the fourth term in (1.2.2) is 

negligible to the degree that  
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Then (1.2.2) is the same as the Hamilton-Jacobi equation.  

 We assert that under the above conditions the particle moves (to classical 

accuracy) on one of the classical trajectories specified by ),( tS r  in the manner of section 

1.1, and that the classical probability for it being in one or other of the trajectories passing 

through any classical volume element r
3d  at time t  is rr

32 ),( dta  where r  is the 

position of r
3d .  

 The above assertion is consistent with the necessary classical probability 

continuity equation 

 

0).( 2
2





va

t

a
        (1.2.5) 

 

because (1.2.5) is a consequence of (1.2.3) and (1.1.2).  

 

 

The case of motion in a definite orbit 

 

The form (1.2.1) under the conditions (i)-(iv) stated above can be a quasi-classical wave 

function for motion in a definite classical orbit. This is the case when a  is of significant 

                                                 
* For example, a classical particle with a charge e  and momentum p  may move, in a uniform magnetic 

field H , in a circular orbit of radius Hp . If H  is too large, i.e. if its vector potential )( em ceAA  is 

too large, the radius of the orbit will be too small to be considered a classical dimension.  
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value only within a classically infinitesimal (moving) region V  of space and, while S  

takes values both within and outside of V , AS  is (to classical accuracy) constant 

within V . Then the momentum as well as the position of the particle is definite to 

classical accuracy at each moment in time. 

 If r  is the characteristic dimension of V  (and therefore of a ) we require, from 

(1.1.2) and (1.2.4) that  

 

1


mv

r
 

 

i.e. that 

 

rmv   .         (1.2.6) 

 

 We suppose that during the time period 0t  to 1t  our wave function is and remains 

a minimal wave packet in both position and momentum space. That is we suppose at all 

times that  

 

 pr          (1.2.7) 

 

where p  is the uncertainty in the momentum. Then we see from (1.2.6) that the particle 

kinetic momentum mv  is always large compared with p . 

 It is known that a solution of the Hamilton-Jacobi equation can always be found 

that includes any one specified classical orbit (see for example p.41 of [14]). Therefore a 

quasi-classical wave packet function of the form (1.2.1) always exists to represent 

classical motion on any one specified classical orbit. Of course, during its motion, such a 

wave packet expands on account of the quantum mechanical uncertainty in the initial 

particle momentum. Even though this uncertainty is (classically) ‘infinitesimal’ it still, in 

the course of time, threatens to convert the ‘infinitesimal’ r  into a non-infinitesimal. 

The initial uncertainty in momentum is p  and in time t  from the beginning of the time 

period considered the resulting wave packet expansion is of order mtp . This should 

not be large compared to r , so we require 

 

p

rm
t




~ .         (1.2.8) 

 

This imposes a limit (arising from quantum mechanics) on the concept of motion ‘in a 

definite orbit’ or on the time period 01 tt   during which such motion can be expected to 

occur. The particle may still move a fairly long way under the condition (1.2.8). For in a 

time of order prm   it moves a distance of order prvm   or rpmv  )(  which is 

large compared to r . 
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The case of extended wave packets 

 

As well as the ‘minimal’ wave packet form of a quasi-classical wave function 

representing motion in a definite orbit we have the ‘extended’ wave packet form. Here 

conditions (i)-(iv) of section 1.2 are still supposed to hold but the spacial dimension 
r

~
 

of the wave packet and the range p
~

 of particle momentum now represent classical 

uncertainties in position and momentum. In place of (1.2.7) we must now have 

 

 pr

~~
         (1.2.9) 

 

and, 
r

~
 and p

~
 are no longer classical ‘infinitesimals’.  

 The extended wave packet can be classically quite confined (and the momentum 

range quite small) but not so small that we have motion in a definite orbit. Rather we 

expect to have classical motion in one or other of a bundle of classical orbits fairly close 

to one another with a certain classical probability associated with each. The spreading of 

such a packet is expected (and is explicable classically) and poses no limit to the time 

period considered. 

 The extended wave packet can alternatively be spread more widely. It can for 

example take the form of an expanding spherical wave packet of wide radial thickness 

giving a (classical) probability distribution over (classical) uniform rectilinear particle 

motions in one or other direction away from (and after scattering by) a centre of force.  

 Whatever the form of the extended wave packet it must be such that conditions 

(i)-(iv) of section 1.2 are met and consequently ),( tS r  in (1.2.1) satisfies (1.1.1). This 

restricts the possible classical orbits to one or other of a set represented by a solution of 

the Hamilton-Jacobi equation. Therefore not every possible set of classical orbits can be 

represented by a quasi-classical wave function of the simplest kind. To represent any set 

of classical orbits by quasi-classical wave functions of the simplest kind superpositions of 

them are required. 

 

 

1.3 Superpositions of quasi-classical wave functions of the simplest kind 

 

We now claim that any number of normalised quasi-classical wave functions of the 

simplest kind may be sometimes superimposed (linearly combined) to represent another 

quasi-classical state of knowledge. (We take as an example two normalised quasi-

classical (spin-less) single particle wave functions ),(1 tr  and ),(2 tr .) The result is a 

quasi-classical wave function ),( tr  of the form 

 

),(),(),( 2211 tktkt rrr        (1.3.1) 

 

where 1k  and 2k  are (generally complex) constants consistent with ),( tr  being 

normalised. However the combination ),( tr  is only quasi-classical at times in which 
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the separate wave functions ( ),(1 tr  and ),(2 tr ) do not ‘seriously interfere’, i.e. when 

the modulus squared of ),( tr  averaged over classically infinitesimal regions of space is 

effectively given by 

 
2

2

2

2

2

1

2

1

2
),(),(),( tktkt rrr       (1.3.2) 

 

the bar representing the result of the averaging. In the absence of ‘serious interference’ 

the cross terms ),()),(( 2211 tktk rr    and  )),()(,( 2211 tktk rr  that should generally be 

included in (1.3.2) are either exceedingly small or very rapidly alternating in space so that 

they average to something exceedingly small. 

 The absence of ‘serious interference’ requires that when they cross, the waves in 

the wave packets ),(1 tr  and ),(2 tr  are nowhere waves of equal or nearly equal 

(vector) wave number so that constructive or destructive interference or ‘beating’ over 

classical distances is avoided. The waves in ),(1 tr  and ),(2 tr  should therefore have 

quite different wavelengths, or, if they have the same wavelengths, they should travel in 

opposite directions or cross one another at an angle that is not too shallow. 

 At times in which the combination (1.3.1) is quasi-classical we clearly have  

 

1
2

2

2

1  kk          (1.3.3) 

 

and we claim the following law: 

 

Law of superposition of quasi-classical wave functions 

 

The particle moves (to classical accuracy) either on one of the classical orbits 

associated with ),(1 tr  or on one of the classical orbits associated with ),(2 tr . 

The classical probability for it being in one of the first set of trajectories is 
2

1k  

times the classical probability that would apply to that trajectory under the quasi-

classical wave function ),(1 tr , and the classical probability for it being in one 

of the second set of trajectories is 
2

2k  times the classical probability that would 

apply to that trajectory under the quasi-classical wave function ),(2 tr .* 

 

As an example we consider the (often discussed) case of a particle passing through an 

interferometer (Figure 1.3.1). Let our pure state of knowledge be represented by an 

                                                 
* This law generalises naturally to many particle systems where the representation point in configuration 

space is expected to move in one or other of a number of classical trajectories associated with quasi-

classical wave packets moving in that space. 
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Figure 1.3.1 

 

extended monochromatic wave packet 1  approaching the first (half-silvered) mirror*. 

This mirror, being at o45  to the path of the packet, causes the packet to split into two 

packets 2  and 3  moving along two separate arms of the interferometer. These packets 

are perfectly reflected into the other two arms of the interferometer and arrive together at 

the second half-silvered mirror where, on passing through it, we suppose they interfere 

destructively to zero on one exit path and interfere constructively on the other. 

 After splitting of the wave packet by the first half-silvered mirror at time 1t  and 

before reaching the final half-silvered mirror at time 2t  the wave function in this 

example is a quasi-classical superposition of two extended wave packets. However, 

during passage through the second half-silvered mirror ‘serious interference’ takes place 

so the quasi-classical nature of our knowledge does not apply to the motion at this time. 

After passage through the second half-silvered mirror when only wave packet 4  is 

present the quasi-classical nature of our knowledge of the motion is present again. Of 

course our pure state of knowledge of the actual (quantum mechanical) motion applies 

throughout and is represented by the total wave function.  

 From the time 1t  when the wave packets leave the first half-silvered mirror to the 

time 2t  just before they arrive at the second, our wave function ),( tr  is the 

superposition  

 

),(),(),( 22

1

12

1
ttt rrr        (1.3.4) 

 

where ),(1 tr  and ),(2 tr  are separate (normalised) quasi-classical extended wave 

packets moving along the two arms of the interferometer. By our general law of 

superposition the wave function ),( tr  is quasi-classical over this period of time. And it 

follows that (to classical accuracy) the particle either moves in one or other of the orbits 

associated with ),(1 tr , or in one or other of the orbits associated with ),(2 tr , and that 

it moves (with equal classical probability) either along one arm of the interferometer or 

along the other. However this is certainly not the same as claiming that either wave 

function ),(1 tr  or wave function ),(2 tr  should apply with equal classical probability. 

                                                 
* The ‘mirrors’ of the interferometer can of course be modelled as potential barriers, infinitely high for 

perfect reflection and of a finite height for partial reflection. By a ‘monochromatic’ wave packet we mean 

one representing knowledge which includes very precise knowledge of the particle momentum (to classical 

accuracy). The wave packet is extended but classically confined so that its dimension is large compared to 

the de Broglie wavelength but small compared to the size of the mirrors. 

1 2 

3 

M 

4 
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That would amount to claiming we are in a (non-pure) mixed state of knowledge contrary 

to hypothesis and if this was so we would not predict the interference that is certainly 

present after passage through the second half-silvered mirror. 

 It is however true that between times 1t  and 2t , and when working to classical 

accuracy, our classical probability distribution should be either 
2

1 ),( tr  or 
2

2 ),( tr  

with a classical probability 
2

1
 for each case.* When working only to classical accuracy in 

this time period it is perfectly possible (in any trial) to determine which way the particle 

went after leaving the first half-silvered mirror without affecting the motion (i.e. the time 

dependence of properties with a classical analogue from time 1t  to time 2t ) in any way 

that could be considered significant.  

 As we have said before, acquisition of knowledge is not problematical in classical 

physics and classical probability theory. It is problematical in quantum physics and 

complex-valued probability theory, and this is why the above claim that either wave 

function ),(1 tr  or wave function ),(2 tr  should apply is invalid. If we work to 

quantum mechanical accuracy and determine by harmless conditioning (i.e. by null 

measurement along one of the possible paths) that the pure state wave function ),(1 tr  

should apply (to within an indeterminate phase factor) then the actual motion of the 

particle through the final half-silvered mirror is found to be different. The null-

measurement (i.e. the external field employed to make it†) seems to influence the motion 

of the particle near time 2t  and this is strikingly revealed in the interferometer because 

(under the null detection) the particle may pass either way through the final half-silvered 

mirror.‡  

 But before reaching the final half-silvered mirror (and without any harmless 

conditioning), let us suppose the wave packets are reflected by new fully silvered mirrors 

                                                 
* As we have said, it is generally necessary to average the squared modulus of a quasi-classical wave 

function over classically small regions before we have the classical probability distribution. But in the case 

of simple non-overlapping monochromatic wave packets this is not necessary because the modulus of the 

wave function is already smoothly distributed over space. 
† This might, for example, be a large potential gradient impulse applied at a time t  )( 21 ttt   to the 

region occupied by ),(1 tr , and designed to send the particle off at high speed (should it be in that 

region) to a particle detector. 
‡ The possible effect of the external field (employed in the null measurement) on the motion of the particle 

which might have passed through it (but did not) may appear mysterious. But note that it is not so different 

from the situation in the least action formulation of classical mechanics where the claim is made that the 

motion of a particle from point A  at time 1t  to B  at time 2t  is by the orbit that, of all possible orbits 

through the external potential field as a whole, is the one which minimises (or more generally represents a 

turning point in) the total action between times 1t  and 2t . For in that formulation of classical mechanics 

the motion of the particle seems also to be affected by the potential along orbits the particle might have 

taken but did not. (We note in passing that a generalised principle of least action for classical mechanics 

could allow for the particle to take one or more of widely different orbits between fixed points A  and B  

(each representing a local turning point of the action) with a probability assigned to each, calculated on the 

basis of Bayesian probability theory. In that case the potential field as a whole is also affecting our degrees 

of belief regarding which orbit the particle takes. For example, in a mirror symmetric potential field with 

just two possible particle orbits (one the mirror image of the other) the principle of indifference would lead 

us to assign (classical) probabilities of one-half to each orbit.) 
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and made to cross one another in perpendicular paths. As they cross, interference occurs 

and ‘fringes’ are present. But this is not ‘serious interference’ because it does not affect 

the value of the square of the modulus of the total wave function averaged over 

classically small volume elements. When viewed to quantum mechanical accuracy the 

interference is of course important.* But when viewed to classical accuracy it is not. 

 

Note that in the original interferometer geometry there are interference fringes near either 

of the fully silvered mirrors where the approaching wave packet and its reflection 

overlap. These too are important when we work to quantum mechanical accuracy but not 

important when working to classical accuracy. This is a new kind of superposition 

because it is a superposition of one wave packet on itself (during reflection) and not a 

superposition of two separate wave packets. In this new kind of superposition the quasi-

classical nature of the wave function still applies so long as the interference is again not 

‘serious interference’. 

 

 

1.4 Part-quasi-classical wave functions 

 

Sometimes a wave function ),( tr  demonstratively consists of the superposition of a 

quasi-classical wave function ),(qc tr  and a non-quasi-classical wave function ),(0 tr , 

where ),(qc tr  and ),(0 tr  are well separated in space and therefore essentially non-

overlapping functions of position during the time period considered.  Then we have 

 

),(),(),( qcqc00 tktkt rrr        (1.4.1) 

 

where 0k  and qck  are complex constants and ),(qc tr  and ),(0 tr  are both normalised.  

 The constants 0k  and qck  must clearly satisfy 

 

1
2

qc

2

0  kk         (1.4.2) 

 

and we claim that under the pure state of knowledge represented by ),( tr  and during 

the time period in question either the particle moves (to classical accuracy) in a classical 

manner in one or other of a set of classical orbits as if the wave function ),(qc tr  applied 

on its own, or the particle remains somewhere in the part of space in which ),(0 tr  has 

significant absolute value. And the probabilities for one or the other possibility are 
iekqc  

and iek0  respectively where   and   are an indeterminate phases.† 

                                                 
* Measurements of particle position to quantum mechanical accuracy would show the particle avoids places 

in the fringes where the total wave function is zero. 
† We stress that we are not supposing that one or other of the wave functions ),(qc tr  and ),(0 tr  

should apply. That would only be true after null detection of the particle in one or other of the separate 

regions of space occupied by ),(qc tr  and ),(0 tr . In particular, if we observe no particle moving 
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 We call this the law of motion under a part-quasi-classical wave function*. It 

generalises naturally to many particle systems, and it applies in cases in which the quasi-

classical part is a superposition of quasi-classical wave functions of the simplest kind. In 

the case of a single particle, each wave function in the superposition may include a factor 

of the form   representing a definite (but generally different) z  component of the 

particle’s spin relative to a fixed Cartesian coordinate system.† 

 

 

2. Quasi-classical stationary wave functions 

 

The wave functions tEi

nl
neq


 )(  of stationary states of knowledge (see section 3 of 

Chapter XI) become quasi-classical in the limit of large values of n  and l .‡ We consider 

particular cases. 

 

 

2.1 Case of a particle in a box 

 

The stationary state wave functions in this case are given in section 3.1.1 of Chapter XI. 

We start by considering the form of the momentum distribution formula (3.1.1.8) of 

Chapter XI. With n  large the two terms in the large bracket of that formula approach 

delta functions centred at anp   and anp  . For example, apart from a 

constant factor the first term in the large bracket is 

 

0

20 )(sin

pp

pp
a




         (2.1.1) 

 

where anp 0 . This peaks at 0pp   which for large n  is a momentum of classical 

magnitude. Because of the formal identity  

 

)(
sin

lim p
p

p



  

 

(see Representation 2 in Appendix B) and the extreme smallness of   in (2.1.1) we can 

set (2.1.1) equal to )( 0pp  .  

 Similar remarks apply to terms in the expression for 
2

)( pa . By (3.1.1.8) of 

Chapter XI  

 

                                                                                                                                                 

classically in regions where ),(qc tr  passes, we naturally claim our wave function should be changed 

from (1.4.1) to ),(0 tr  times an indeterminate phase factor. 

* This law will be needed in the modelling of measurements (Chapter XIII). 
† See section 3 of Chapter XIII. 
‡ This assumes of course appropriate ordering of n  and l  values. 
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where the cross term in the expansion of the square of the large bracket is for us 

negligible and therefore omitted. Formally in the limit as 0  (2.1.2) becomes 
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on account of the identity 
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(see Representation 3 in Appendix B). 

 Accordingly the momentum component xp  of section 3.1.1 of Chapter XI, is for 

large 1n  expected to be close to an 1  with likely error of order a . And for very 

large 21,nn  and 3n   

 

cnpbnpanp zyx   321 ,,    (2.1.4) 

 

or the absolute values of the components of momentum are expected to assume definite 

values to classical accuracy, the likely errors ba   ,  and c  (for classical box 

dimensions) being classically infinitesimal. The classical kinetic energy is 

mppp zyx 2)( 222   so  under (2.1.4) the quantum mechanical energy 
321 nnnE  in (3.1.1.3) 

of Chapter XI coincides with the classical expression consistent with the momentum and 

kinetic energy being each quantum mechanical properties with a classical analogue. 

 In the classical limit, and only then, we see that 21,nn  and 3n  represent the 

properties of absolute value of the momentum components and our state of knowledge 

consists of knowledge of these absolute values. Given only such classical knowledge of 

the particle dynamics we deduce, by the principle of indifference of classical probability, 

that the particle is equally likely to be in any one of equal (classically) infinitesimal 

volume elements filling the box. That is, the classical probability density over particle 

position is abc1  everywhere inside the box. This is in agreement with the form of the 

wave function (3.1.1.1) of Chapter XI, this wave function being now a quasi-classical 

wave function. Taking the modulus squared of this wave function we obtain 
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which (for large 21,nn  and 3n ) becomes, on averaging over classically infinitesimal 

volume elements, exactly abc1 . 
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2.2 Case of a particle in a spherical cavity 

 

We claim generally that the quantum mechanical property represented by parameters klm 

in section 3.1.2 of Chapter XI, namely the property of having simultaneously an angular 

momentum )1(  llL   with respect to the origin of coordinates, a z  component of 

angular momentum mM  , and an energy klEE  , is a property with classical 

analogue. When lk ,  and m  are large compared with 1  the stationary state wave function 

),,(  rklm  of section 3.1.2 of Chapter XI becomes quasi-classical and ML,  and E  

represent continuous classical properties.  

Since there is no particle potential in the spherical cavity case, E  is just the 

kinetic energy of the particle. And classically speaking, given just the values of ML,  and 

E  we should be able to deduce (using classical mechanics and classical probability 

theory) the probability density ),,( rp  over the particle position coordinates ,r  and   

inside the cavity. This probability density gives the probability )( LMEdVP  that the 

particle lies in volume element  ddrdrdV sin2  according to the formula 

 

 ddrdrrpLMEdVP sin),,()( 2
.     (2.2.1) 

 

And ),,( rp  should equal the modulus squared of ),,(  rklm  averaged over 

(classically) infinitesimal volume elements if necessary. We deduce ),,( rp  as follows. 

 

In the first place, given only ML,  and E  we are evidently indifferent with regard to the 

value of the coordinate   of the particle, so  

 

 dgLMEdP )()(  

 

with 

 




2

1
)(g . 

 

Knowing dr  and d  would make no difference to the probability )( LMEdP   and 

therefore )()()( LMEdPLMEdrdPLMEddrdP   and it remains to find 

)( LMEdrdP  . 

 Let L  be the vector angular momentum of the particle pointing out from the 

origin of coordinates in a direction specified by spherical polar angles L  and L . Then 

 

LLM  cos .         (2.2.2) 
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And as M  and L  are both given, so is L . Now L  is unknown but assuming it given at 

one moment in time we have L  at that time and hence know vr  , v  being the particle 

velocity and r  its position. And r  and v  must be in a plane P  through the origin and  

perpendicular to L . 

 In the plane P  take polar coordinates ),(   as follows. Let the polar coordinates 

share the same origin as our main coordinates and let the x  axis of the polar coordinates 

(i.e. the line  or  0 ) lie in the intersection of P  with the xy  plane of our main 

coordinates. And, as   increases (with   constant), let the point ),(   move in circular 

motion left-handed with respect to the L  direction. Given the radial coordinate   of the 

particle and the angular momentum angle L  we are clearly indifferent with regard to the 

value of its   coordinate, i.e. 

 

 dgLMEdP L )()(  

 

where  21)(g . Since the probability density )( LMEdP L  is independent of   

and L  we can say that 

 

 dgLMEdP )()(  

 

with 

 




2

1
)(g . 

 

For given LME  the   coordinate of the particle depends on   but not on   or L . 

Therefore the probability density )(f  in  

 

 dfLMEdP )()(  

 

can be found from the dependence of   on  . And since this distribution is independent 

of   and therefore of r , knowledge of dr  would not change our probability )( LMEdP   

and therefore  

 

)()()( LMEdPLMEdrPLMEdrdP   

 

Since the relation between   and   is independent of L  we may suppose that L  

and that the line 0 , 0  lies along the positive y  axis of our main coordinates. 

Taking a point ),(   in P  and calculating its z  coordinate in two ways we obtain 
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Lz  sinsincos . 

 

Hence 

 

 cossinsin L         (2.2.3) 

 

and as   ranges from   to  , the angle   always satisfies 
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and the same value of   occurs twice, once at say   and again at  . Hence the 

probability density )(f  over   is related to )(g  by 
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and using (2.2.3) 
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which (again by (2.2.3)) becomes 
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and clearly 0)( f  for   outside the limits given in (2.2.4).  

 As the particle is free it must move with constant velocity )2(  Ev  in the 

plane P  perfectly reflecting off the circular boundary C  formed by the intersection of P  

and the cavity wall. The centre point of the chord along which the particle moves is a 

distance LEr  from the origin where  
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and evidently 

 

LErrrp  00),,( .       (2.2.7) 
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And since LEr  cannot be greater than a  there is a necessary limitation of parameter 

values: 

 

a
E

L


2
.         (2.2.8) 

 

 As the particle moves along the chord C  at constant velocity it is equally likely to 

be in any element ds  of the chord length. Therefore the probability for the r  coordinate 

of particle position to lie between r  and drr   (for arrLE  ) is proportional to  

 




sin

dr
ds  

 

where   is the angle between the perpendicular to the chord (let fall from the origin) and 

the radius vector of position of the element ds , so that  rrr LE

22sin  . Therefore 

the probability distribution )(rh  over r  for arrLE   is given by cdsdrrh )(  where c  

is some constant. That is 
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        (2.2.9) 

 

and 0)( rh  for LErr 0 . For normalisation, the constant c  has to be  
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 .        (2.2.10) 

 

 We have found that the probability distributions over position coordinates ,r  

and   are logically independent, i.e. 

 

 dgdfdrrhLMEddrdP )(.)(.)()(  

 

where  21)(g . Comparison with (2.2.1) (in which proposition dV  is equivalent to 

proposition ddrd ) gives 

 






2

1
.

sin

)(
.

)(
),,(

2

f

r

rh
rp           (2.2.11) 

 

or by (2.2.5) and (2.2.9) 
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for 
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LLL

LE arr
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  if),()(

or 0  if,  

 

and zero for other values of r  and  . 

 

To show the correspondence principle applies we have to show that for large k , l  and 

m , the density ),,( rp  in (2.2.11) equals the modulus squared of the stationary state 

wave function ),,(  rklm  (in the form (3.1.2.1) of Chapter XI) averaged over 

(classically) infinitesimal volume elements if necessary.  

 This will evidently be so if (with bars denoting the required averaging over 

classically infinitesimal elements dr  or d ) we have 
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where the functions )(rRkl ,  )(lm  and )(m  are given by (3.1.2.10), (3.1.2.3) and 

(3.1.2.2) of Chapter XI, and )(rh  and )(f  are given by (2.2.9) and (2.2.5). 

 The last equality in (2.2.12) is evidently satisfied on account of the simple form of 

)(m  in (3.1.2.2) of Chapter XI. For the other two equalities to hold we require, by 

(3.1.2.10) and (3.1.2.3) of Chapter XI, and taking 
2
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 L , that for large k , l  and m  
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Expressions for klA  and K  are given in (3.1.2.15) and (3.1.2.12) of Chapter XI. Also LEr  

is given by (2.2.6) with )1(  llL  and E  equal to the klE  of (3.1.2.13) of Chapter 

XI. Hence 

 

1,
2

1

)1(






kl

LE
j

all
r         (2.2.15) 

 

and L  is given by (2.2.2) and is therefore 

 

)1(
cos 1


 

ll

m
L .        (2.2.16) 

 

 The demonstration of the equalities (2.2.13) and (2.2.14) could doubtless be 

accomplished analytically. But we content ourselves here with numerical illustrations. 

For 12k  and 30l  the LHS and RHS of (2.2.13) (without averaging of the LHS) are 

plotted in Fig 2.2.1. And for 50l  and 40m  the LHS and RHS of (2.2.14) (without 

averaging of the LHS) are plotted in Fig 2.2.2. In both figurers the dashed lines plot the 

RHS of the respective equation and the full lines the LHS (without averaging). Numerical 

experimentation with increasing values of lk ,  and m  confirms that (except increasingly 

close to the boundaries LErr   and L


2
 of the classical distributions) the left hand 

sides of (2.2.13) and (2.2.14) (even before averaging) become extremely small at values 

of r  and   for which the right hand sides are zero, and within the boundaries of the 

classical distributions the left hand sides of (2.2.13) and (2.2.14) approach squared sine-

wave-like forms of higher and higher frequency whose moving averages closely fit the 

corresponding classical probability distributions. 

 

 

 

Figure 2.2.1 

 

ar  
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Figure 2.2.2 

 

 

3. Generalisation 

 

The theory (in section 1) of quasi-classical wave functions for the orbital motion of a 

single particle may be generalised in a natural manner to cover orbital motions of two or 

more particles some of which may be identical. As is well known the (classical) 

Hamilton-Jacobi theory applies in the configuration space of a many particle classical 

system. Accordingly the ‘simplest quasi-classical wave functions’ over such a space can 

be specified in an analogous way. So can superpositions of them. Physical properties and 

probabilities relating to part quasi-classical and part ordinary wave functions can also be 

claimed for many particle systems. And quasi-classical stationary state wave functions 

can be identified much as in the single particle case (section 2). 

 When the particles of a many particle system are expected to move classically (to 

classical accuracy) in separate classical orbits, the identical particles can be distinguished. 

And while their natural order remains of course unknown, we are at liberty to claim a 

natural order of them if we wish.  

 When we theorise about the combined orbital and spinning motions of a system of 

two or more particles any claim that they move classically can only be applied to their 

orbital motions because spin is not a property with classical analogue. A quasi-classical 

wave function of a system of particles with spin must therefore take account of this fact. 

To represent well defined classical orbital motions of each particle under an inter-particle 

potential, slowly varying external scalar and vector potentials and a uniform magnetic 

field, the wave function can be of the form of a product of two functions, a quasi-classical 

wave function over position coordinates (represented by a wave packet moving in 

configuration space) and an ordinary wave function over the z  components of spin, the 

orbital and spinning motions then proceeding independently.* Extended wave packets and 

superpositions of wave packets are then possible with a classical interpretation (regarding 

the orbital motions) so long as the wave packets in configuration space do not ‘seriously 

interfere’. 

                                                 
* This can also apply (at least when there is no inter-particle potential) when the magnetic field is non-

uniform and the particles are each expected to closely follow a definite classical orbit. The magnetic field 

experienced by each particle is then a known function of the time. 
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CHAPTER XIII 

 

MODELLING THE ACQUISITION OF KNOWLEDGE  
 

 

We now consider the modelling of measurement processes, processes by which we may 

acquire knowledge of various dynamical properties of quantum mechanical systems to 

quantum mechanical accuracy. We assume that the dynamical properties of particles 

moving in the classical limit (properties, that is, that have a classical analogue (like 

position and momentum)) are directly observable (to classical accuracy) and that we need 

not inquire into how the acquisition of knowledge of these properties is accomplished.  

 We will not generally be modelling practical measurement techniques. Instead we 

will attempt to model the simplest possible processes which in principle accomplish the 

measurements required.* The kit available for modelling measuring apparatus may 

consist, in short, of anything possible in principle in quantum mechanics. It therefore may 

consist of particles of any mass, charge and magnetic moment, and of inter-particle scalar 

potential functions of any number of different kinds depending on particle positions and 

the time in a variety of ways, some particles being susceptible to some kinds of inter-

particle potential and others to others. Since different kinds of particles may, in quantum 

theory, occupy the same positions (whatever their spins), we are at liberty to construct 

background material filling all space yet having no effect on the quantum mechanical 

system under study. This background material can take the form of very many particles 

of high mass held closely together by inter-particle potentials to which the quantum 

mechanical systems under study are not susceptible. Since the masses of the particles can 

be as large as we please, such a structure can constitute classical material and serve as a 

coordinate system including synchronised clocks at every point if we wish.  

 We also assume we are at liberty to set up sources that can produce any external 

(generally time dependent) scalar and vector potential fields to which one or more kind of 

particle of a quantum mechanical system under study may be sensitive.† We assume 

sources themselves may penetrate the quantum mechanical systems under study without 

directly interfering with them.‡ 

 In section 2 and onwards we present models of some measurement processes. 

These serve to confirm the possibility previously claimed of acquiring knowledge of 

certain dynamical properties of quantum mechanical systems in a way which is consistent

                                                 
* Impractical but instructive demonstrations of the possibility of acquiring knowledge of physical variables 

are of course common in classical physics. In classical electrodynamics for example we may suppose that 

the electric field at every point in space could be measured to any degree of accuracy at any time. This 

could be done for instance by observing the momentary displacements of particles of vanishingly small 

mass and charge each fixed to one end of springs of vanishing mass, size and elasticity, the other ends of 

the springs being fixed to a rigid background material that does not interfere with the field etc. Clearly 

these conditions cannot be met in actual practice but are possible in principle. 
† This resembles the assumption in classical mechanics that we are able to apply any (generally time 

dependent) force to any particle of a system under study. 
‡ For example a macroscopic current density used to produce an external magnetic field may pass through a 

hydrogen atom under study without directly affecting it. See Note on the relativistic modelling of 

electromagnetic field sources in Appendix C. 
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with the laws of quantum mechanics and (complex-valued) probability theory. The cases 

covered are hopefully enough to convince us that we could model, and in principle carry 

out, any measurement assumed possible in theory. 

 First however (in section 1) we study the effects of certain impulsive actions on 

the wave function representing a pure state of knowledge of a particle’s orbital motion. 

This study is of interest in itself but it will also enable the reader more easily to follow the 

work of section 2 onwards. 

 

 

1. The effect of impulsive actions on a wave function 

 

1.1 Case of a free particle 

 

Consider the orbital motion of a free particle of mass m  under pure knowledge Y  

represented by a wave function ),( tr , r  being the particle position in fixed coordinates. 

We suppose ),( tr  always falls fast enough to zero as r  so that we can claim to 

know the particle is, at any time t , within a certain fixed finite region tW  of space. ( tW  

is, we may say, the region occupied by ),( tr  at time t .) During a short time at   to 

 at  let us apply an external scalar potential field V  (to which the particle is 

sensitive) given by 

 

kxV           (1.1.1) 

 

over the whole region aW .* Here k  is a real constant and x  is the x  coordinate of a point 

in aW . We will consider the limit as k  and 0  while k  remains finite. 

 The Schrödinger equation for ),( tr  during time at   to  at  is 

 





 kx

mti

2
2

2


       (1.1.2) 

 

but since k  only the term  kx  on the RHS matters. The solution of (1.1.2) is 

therefore 

 
)(),(),( atikxeat  rr   ata      (1.1.3) 

 

and in the limit we see that ),( ar  is instantly changed to ),( ar  given by* 

                                                 
* In the case the particle carries a charge, V  could be an electric potential created by a surface charge 

density source and surface dipole (i.e. double layer) density source distributed over the boundary of aW . 

The surface charge density would account for the discontinuity of the normal component of the electric 

field (from nV )(  to zero) and the surface dipole density would (independently) account for the 

discontinuity in V  (from V  to zero) across the boundary. 
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 ikxeaa ),(),( rr        (1.1.4) 

 

 Let ),( ta p  be the original (undisturbed) wave function ),( tr  in the momentum 

representation† so that 

 


 

aW

.i deaaa rrp
rp 323 ),()2(),(  .     (1.1.5) 

 

Let ),( ta p  be the momentum wave function going with ),( tr  for at   so that 

 


 

aW

.i deaaa rrp
rp 323 ),()2(),(       (1.1.6) 

 

Then by (1.1.4) – (1.1.6) 

 

),ˆ(),( akaaa ipp         (1.1.7) 

 

where î  is the unit vector in the x  direction. Hence ),( aa p  is the same as ),( aa p  

except for a boost îk  in momentum. 

 After the impulse has acted (i.e. for at  ) the wave function ),( tr  has changed 

to  

 

prppr
323 ]))(.([exp),()2(),( datEiaat        (1.1.8) 

 

where mpE 22 . This is because (1.1.8) satisfies (1.1.2) (with 0k ) and gives the 

correct expression for ),( tr  (the inverse of (1.1.6)) when at  . Substituting for 

),( ta p  using (1.1.7) gives 

 

prpipr
323 ]))(.[(exp),ˆ()2(),( datEiakat     .  

 

Changing (in the integral) the origin of momentum space to îk  this becomes 

 

                                                                                                                                                 
* Result (1.1.4) also follows from the general solution of the Schrödinger equation for a particle in a scalar 

potential of uniform gradient ((5.12) of Chapter VI). If we put (in (5.12) of Chapter VI) iv ˆk  (where v  

there represents the negative of the potential gradient) and t , and take the limit k  and 0  

while k  remains constant we confirm (1.1.4) in the case when 0a . This shows (1.1.4) holds if (in 

(1.1.2)) x  or   should (for isolated values of r  and t ) vanish in aW  so that  kx  would only almost 

always be the dominate term on the RHS of the Schrödinger equation. 
† we should not of course confuse the a  in ),( ta p  with the time at   
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piprippr
323 ]))()ˆ().ˆ[((exp),()2(),( datkEkiaat     . 

 

where  

 

mkkpmkkE 2)ˆ.2(2)ˆ()ˆ( 2222  ipipip . 

 

 Hence  
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where mpE 22

0  . Or since the undisturbed wave function ),( tr  is given by 

 

prppr
3

0

23 ]))(.([exp),()2(),( datEiaat      

 

(cf. (1.1.8)), we have 

 

),)(ˆ(),( )2)(.ˆ( 22

tmatket matkki  
irr

ri  .    (1.1.9) 

 

The wave function therefore evolves as it would have normally except that it is now 

being bodily propelled at velocity mk î  through space and phase modulated by the 

factor 

 
 )2).ˆ(2)2)(.ˆ( 222222 mtkkimaikmatkki eee   riri

 

 

which represents a constant phase factor 
maike 222

 and a wave 
).( tie rκ
of unit amplitude 

with wave number κ  and angular frequency   given by 

 

iκ ˆ k , mmk 2.222  κκ . 

 

The phase velocity of this wave is mk 2 κ  i.e. one half the velocity imposed on the 

wave function, and its formal group velocity is mkdd iκ ˆ  equal to that of the wave 

function itself.  

 

 

1.2 The effect of a second impulse of opposite sign 

 

Suppose at time bt   (with ab  ) we impose, all over the region bW   of space now 

occupied by the wave function, a second impulse of opposite sign to the one applied at 

time at  . Then we have over region bW   from time bt   to  bt  an external 

potential 
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kxV    

 

We again take the limit as k  and 0  while k  remains finite. 

 By the same reasoning as in section 1.1 our wave function ),( tr  (given by 

(1.1.9)) will at time bt   change to ),( br   given by 

 
  ikxebb ),(),( rr        (1.2.1) 

 

(cf. (1.1.4)). And for bt   it will be given by 
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(cf. (1.1.9)). Here, by (1.1.9) 
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so (1.2.2) becomes 

 

),)(ˆ(),( 2)(22

tmabket mabik  
irr

 .    (1.2.4) 

 

 The effect of a second impulse of opposite sign to the first is thus to remove the 

bodily motion of the wave function and remove the time and position dependence of the 

multiplying phase factor but to leave the wave function displaced by a distance 

 

mabkD )(          (1.2.5) 

 

in the x  direction. Apart from the constant phase factor 
mabike 2)(22 
 and the 

displacement, the wave function is (for bt  ) the same as it would have been had no 

impulses been applied. 

 

 

1.3 Effect of a third impulse equal to the second 

 

If at time ct   we apply another impulse equal to the second (i.e. equal to  k ) we will 

change our wave function ),( tr   abruptly at time ct   so that (cf. (1.2.2)) for ct   it 

will be given by 

 

),)(ˆ(),( )2)(.ˆ( 22

tmctket mctkki    
irr

ri  .   (1.3.1) 

 

or substituting for    using (1.2.4) 

 

),)(ˆ(),( ]2)(.ˆ[ 22
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irr

ri  .  (1.3.2) 
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The wave function is now set in motion with velocity mk î  equal and opposite to the 

velocity given to it by the first impulse (section 1.1). It is also multiplied by a phase 

factor representing a constant phase and a wave of unit amplitude with a phase velocity 

equal again to one half the velocity of the wave function itself. 

 

 

1.4 Effect of a fourth impulse equal to the first applied 

 

If at time dt   we apply a final impulse equal to the very first applied (i.e. equal to k ) 

we will change our wave function ),( tr   abruptly at time dt   so that for dt   it will 

be given by 

 

),)(ˆ(),( )2)(.ˆ( 22
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irr
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(cf. 1.1.9) or substituting for    using (1.3.2) we find that 
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The bodily motion of the wave function is again removed but the wave function is 

displaced from its position at time at   by a distance 

 

mabcdk ))((          (1.4.2) 

 

in the x  direction. It is also multiplied by the constant phase factor 
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 .         (1.4.3) 

 

otherwise it continuous to evolve (for dt  ) as if no impulses had been applied. 

 

 

1.5 Possibility of returning the wave function to the location it had at time at   

 

If we choose to make the time intervals between the first and second and between the 

third and fourth impulses equal, i.e. if we make  

 

cdab           (1.5.1) 

 

the displacement (1.4.2) is zero and the net bodily displacement of the wave function is 

zero. It thus evolves (for dt  ) just as it would have done had no impulses been applied 

at all. The only difference is that its absolute phase is changed because of the phase factor 

(1.4.3). 
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1.6 The possibility of instantly displacing and returning a wave function to its original 

position 

 

For simplicity let us assume the times of the second and third impulses coincide, i.e. that 

 

bc             (1.6.1) 

 

(This is equivalent to replacing the second and third impulses by one impulse twice as 

strong, i.e. by an impulse of magnitude kd2 .) Under condition (1.5.1) our wave 

function is now (by (1.4.1)) 
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        (1.6.2) 

 

valid for dt  . Here, at time dt  , ),( tr  differs from its form ),( ar  at the time of 

the first impulse because of the natural evolution of the wave function between times a  

and d . 

 But there is nothing stopping us making time ad   small compared with the 

characteristic time   of variation of the undisturbed wave function ),( tr . By the free 

particle Schrödinger equation ((1.1.2) with 0k )  

 



22 


m
         (1.6.3) 

 

where   is the characteristic distance of spatial variation of ),( ar . So henceforth we 

assume 

 



22 


m
ad .        (1.6.4) 

 

 This does not necessarily mean that the bodily displacement D  (in (1.2.5)) 

produced by the impulses is small. In fact it can if we like be made larger than   and 

larger than the characteristic spatial dimension 
aW  of the region aW  occupied by 

),( ar .* With application to the measurement of a particle’s spin component† in mind, 

we suppose this to be the case, and (since )(2 abad  ) a necessary condition for it is 

(by (1.2.5)) that  

 




m

adk

2

)(
        (1.6.5) 

                                                 
* Clearly   must be less than or of the order of 

aW  and we assume here that   and 
aW  are of the same 

order. 
† See section 3.1. 
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 Now (1.6.4) and (1.6.5) together are equivalent to  
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which implies 
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k
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 The magnitude of madk 2)(22   is, by (1.6.6) and (1.6.7), large compared to 

1 . Therefore by choice of k  the constant phase in (1.6.2) can certainly be set (modulo 

2 ) to any phase from 0  to 2 . So under condition (1.6.6) the wave function ),( tr  can 

be changed suddenly at time at   to the same function multiplied by a constant phase 

factor 
ie  of our choosing. Formally we put 
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       (1.6.8) 

 

where   is the required constant phase in the range 0  to 2  and n  is an integer, and all 

conditions are satisfied when we let n , k  and 0ad  while 

madkD 2)(   stays constant and larger than 
aW  and in fact as large as we may 

wish.  

 

When using this method of instantly displacing and returning, and instantly changing the 

absolute phase of a wave function, we are not changing our knowledge regarding the 

dynamical properties of the particle and we can say that, for  at  (i.e. just after the 

change in phase), our knowledge of these properties is just the same as it would have 

been had we not applied our impulses at all.  

 

 

1.7 The possibility of returning the particle to its original position 

 

In section 1.6, although the impulses are applied at time at   and the wave function is 

bodily displaced and returned in a vanishingly small time, this action does not essentially 

change our probability distribution over particle position. The wave function at time 

 at  is essentially the same as it was at time  at . And this is true whatever the initial 

wave function ),(  ar . Our pure knowledge concerning the dynamical properties of the 

particle is not changed by the action of the impulses. So our knowledge that the impulses 

act at time at   is redundant; it does not constitute new knowledge of the dynamical 

properties of the motion for  at , and has the effect at most of introducing a known 

constant phase factor to the wave function. 
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 Now consider a series of wave functions ),( tr  for which ),(  ar  tends to the 

wave function )( 1rr   which of course represents knowledge that the particle is at 1r  at 

time  at . Each wave function in this series will be essentially the same at  at  as it 

was at  at . And formally the limiting form )( 1rr   at  at  will give )( 1rr   times 

a known constant phase factor at  at . Hence, the proposition ‘particle is at 1r  at time 

 at ’ together with our general knowledge of the laws of particle motion logically 

implies the proposition ‘particle is at 1r  at time  at ’ with a determinate phase of 

implication. By the first law of extreme values of probability, this means the impulses (as 

applied in section 1.6) must return the particle to its previous position regardless of our 

particular knowledge of its motion, i.e. whatever the wave function ),(  ar  might be. 

The impulses therefore instantly displace the particle a certain distance but also instantly 

return it exactly to the point it occupied just before the impulses were applied. 

 

 

1.8 Generalisation to cases in which the particle is moving under the action of known 

natural potentials 

 

Returning to the beginning of section 1, suppose our particle (known initially to be in 

region aW ) is not free but is moving under the action of natural local potentials ),( tV r  

and ),( trA . We suppose these potentials are zero outside regions 
V

W  and 
A

W  

respectively (both regions enclosing region aW ) and we let 
V

  and 
A

  stand for the 

respective characteristic dimensions of regions 
V

W  and 
A

W . 

 The Schrödinger equation for  ata  during which the first impulse is 

applied is now 
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.    (1.8.1) 

 

As we are taking the limit k  and 0  while k  remains finite it is still the case 

that  kx  dominates on the RHS of (1.8.1) leading again to the expression (1.1.4) for 

the sudden change produced by the impulse on the wave function at time at  . So again, 

as in (1.1.4) 

 
 ikxeaa ),(),( rr        (1.8.2) 

 

and again (as in (1.1.7)) 

 

),ˆ(),( akaaa ipp  .       (1.8.3) 

 

 But for at   we cannot generally apply the free particle Schrödinger equation. 

We can of course set 0k  on the RHS of (1.8.1) for at  , and if we substitute ),( ar  
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(of (1.8.2)) for   on the RHS of (1.8.1) we see that if k  is finite but large, the dominant 

term on the RHS is  
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The runner-up term is 
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Since the wave function is expected to move bodily at the high velocity mk  for at   it 

will spend a time no longer than 
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in the ),( trA  field, and during this time that field is expected to change   by an amount 

  given (from (1.8.1)) by 
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This is a fractional change of order 
A

A  which does not become small as k  is made 

larger and larger. On the other hand the terms V  and 2A  in (1.8.1) are not expected 

to be significant when k  is large. The fractional changes these produce being  
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which both become small when k  is large. 

 In order for all the analysis in sections 1.1 to 1.7 to remain true when natural 

potentials are present it is therefore necessary for us to add a vector potential of our own 

equal and opposite to ),( trA  for at   or rather for the time period dta   during 

which our impulses are applied. We will also need to ensure that k  is large enough for 

the effect of the scalar potential to be negligible, i.e. we will have to insist (by (1.8.4)) 

that 

 

1




k

mV
V


         (1.8.5) 
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for dta  . That done, equation (1.1.9) for the evolution of ),( tr  for at   will hold 

well enough and so will the analysis of the effects of the second, third and fourth 

impulses up to and including the expression (1.4.1) for the wave function after 

application of the fourth impulse, and the possibility (when abcd  ) discussed in 

section 1.5 of returning the wave function to the position it occupied at time  at  still 

applies. In section 1.6 we made the assumption that bc   and that the inequalities (1.6.4) 

and (1.6.7) hold, or formally that (in (1.6.8)) 0ad , n  and k  while the 

displacement madkD 2)(   produced by the impulses stays finite and larger than the 

width 
aW  of the region aW  occupied by the wave function at time at   and, we can 

now say, larger than the width 
V

  of the region covered by V . These assumptions are 

quite in keeping with (1.8.5) whose adoption therefore poses no problem with regard to 

the validity of the conclusions drawn in section 1.6 or in section 1.7. And at time  at  

after all four impulses have been applied the particle will still be returned to the position 

it occupied at time  at  just before the impulses were applied. At time  at  we should 

of course remove the vector potential used to cancel out the natural vector potential 

),( trA  so for at   the wave function ),( tr  may (apart from a possible change in 

absolute phase) continue as if no pulses had been applied. 

 

We now pass to the modelling of measuring processes. 

 

 

2. Measurement of a particle’s position 

 

2.1 Harmless conditioning with regard to particle position 

 

Suppose we have a pure state of knowledge regarding the orbital motion of a particle 

moving perhaps under the action of known local potentials ),( tV r  and ),( trA . Let 

),( tr  be the wave function over position representing this pure knowledge. We suppose 

),( tr  tends to zero fast enough as r  so that we may effectively claim we know 

the particle lies within a finite region W  of fixed space for a certain period of time. Then 

at any specified time at   during that period we have claimed (see section 3.6 of 

Chapter I) that we may, by chance, be able to establish that the particle is in fact in a 

prescribed smaller region 1W  (within W ). And we can do this harmlessly with regard to 

particle position at the time in question. We now model a method for doing this. 

 

 

Method: 

 

Everywhere in W  we temporarily apply a vector potential ),( trA  equal and opposite to 

),( trA  so as to reduce the net vector potential to zero, and from time at   to  at  

we apply to the region 1WW   (which we call 2W ) a scalar potential with a large constant 

gradient k  and take the limit as k  and 0  while k  remains finite (and large). 
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Then if no particle in classical motion is observed far away shortly after time at  , we 

remove our applied vector potential ),( trA  and establish, harmlessly with regard to 

particle position at the time in question, that the particle is in 1W  at time at  . 

 

 

Modelling of the method:  

 

During the small time interval  ata  let the applied potential be  

 

kxV           (2.1.1) 

 

everywhere in the region 2W  and zero everywhere else* (see Figure 2.1.1). In (2.1.1) k  is 

a real positive constant so the potential gradient is in the negative x  direction of the fixed 

coordinates. We take the limit k  and 0  while the ‘impulse’ k  in the positive 

x  direction remains finite and large. The impulse field is illustrated by the arrows in 

Figure 2.1.1. 

 
Figure 2.1.1 

 

 For at   let the wave function be split into two parts: 

 

),(),(),( 21 ttt rrr         (2.1.2) 

 

where ),(1 ar  equals ),( ar  in region 1W  but is zero in region 2W , and ),(2 ar  equals 

),( ar  in region 2W  but is zero in region 1W . For at   let ),(1 tr  evolve according to 

the Schrödinger equation under the action of both the natural potentials and the applied 

potentials and let ),(2 tr  evolve according to the Schrödinger equation under the action 

                                                 
* In the case the particle carries a charge, V  could be an electric potential created by sources in the 

boundary between 1W  and 2W  and in the boundary between 2W  and the surrounding space (cf. first 

footnote in section 1.1). 

2W  

y  

x  

W  

1W  
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of both the natural potentials and the applied potentials. The sum ),(),( 21 tt rr   will 

then satisfy the Schrödinger equation with all potentials present.  

 In the evolution of ),(1 tr , for  ata , there will be vanishingly small 

penetration of ),(1 tr  into 2W * so ),(1 tr  is hardly changed. But in 2W  the applied 

potential dominates over all other terms on the RHS of the Schrödinger equation. So we 

have, for ),(2 tr : 

 

2
2 




 kx

ti


        (2.1.3) 

 

with solution 

 
)(

22 ),(),( atkxieat  rr .     

 

Since 0  we can say the impulse k  of the applied potential changes ),(2 ar  

instantly to 

 
 kxieaa ),(),( 22 rr        (2.1.4) 

 

within region 2W  and leaves it zero inside region 1W . The wave function ),(2 ar  has 

become a wave packet ),(2 ar  containing many de Broglie wavelengths and the work 

carried out in section 1.1 (and its generalisation in section 1.8) shows that because we are 

taking k  to be large  the wave function ),(2 tr  for at   is given by 

 

),)(ˆ(),( 2

)2)(.ˆ(

2

22

tmatket matkki  
irr

ri  .   (2.1.5) 

          

 

where on the RHS the function ),(2 tr  denotes the (comparatively slowly changing) 

wave function evolving from its form ),(2 ar  at at   assuming zero net vector 

potential present and no impulse applied. This confirms that ),(2 tr  remains for all time 

a wave packet containing many de Broglie wavelengths, and one moving with a high 

velocity v  given by  

 

iv ˆ
m

k
 .         (2.1.6) 

 

 At very short times after the action of the impulse our total wave function is 

  

),(),(),( 21 ttt rrr         (2.1.7) 

                                                 
*  See Appendix G for a quantitative study of the rate of penetration of a wave function into a region where 

it is initially zero. 
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where ),(1 tr  is hardly different from its initial form ),(1 ar  (which is confined to 

region 1W ) and ),(2 tr  is a fast moving (unnormalised) quasi-classical wave packet* 

already far from region 1W  and therefore not overlapping ),(1 tr . By the law of motion 

under a part quasi-classical wave function (see section 1.4 of Chapter XII) the particle 

may (to classical accuracy) be moving classically as it would under the quasi-classical 

wave function ),(2 tr  alone. And the modulus squared of the probability for this is  

 

  rr
32

2 ),( dt , 

 

where the integral is over all space. Such a motion would be directly observable and in 

the event that, by chance, no such motion is observed we learn that the particle must be in 

region 1W . Furthermore, by the first law of potential action (section 3.2 of Chapter III), 

its motion could not have been affected by our applied potential gradient because the 

particle (not moving infinitely fast) could not (during the action of the applied potential) 

have moved into the region 2W  where the potential was applied. Therefore, in the 

absence of a particle observed in classical motion very shortly after the applied potential 

impulse, we have acquired the knowledge (that the particle occupies region 1W  at time 

at  ) harmlessly with regard to the particle’s position at time at  . Our initial wave 

function ),( ar  collapses (effectively instantaneously†) to ),(1 ar  (as defined by 

(2.1.2)) multiplied by a positive normalisation factor and an indeterminate constant phase 

factor (as follows from the general result (4.2) of Chapter II). Our applied vector potential 

),( trA  (used to cancel out the natural vector potential ),( trA ) may now be removed.  

 

We thus see how the proposed method for performing harmless conditioning with regard 

to particle position operates in a way wholly consistent with the laws of quantum 

mechanics. 

 

 

2.2 Exact measurement of particle position 

 

A particular case of harmless conditioning with regard to particle position is of course the 

case in which the volume 1W  in section 2.1 is taken arbitrarily small so it becomes (in the 

limit) an infinitesimal volume element at a position 1r . We thus see how, when starting 

                                                 
* Clearly, the expression (2.1.5) for ),(2 tr  for at   has the form of the simplest kind of quasi-classical 

wave function ((1.2.1) of Chapter XII) since its phase (like ),( aS r  in (1.2.1) of Chapter XII) is 1  

and changes very rapidly with r  and t . The modulus squared of ),(2 tr  is the classical probability 

distribution over particle position when its motion (under knowledge ),(2 tr ) is viewed to classical 

accuracy. 
† This requires of course that k  is large enough for us to be able to null-detect a particle in classical 

motion in a time short compared to the characteristic time in which ),(1 tr  varies significantly. 
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out with pure knowledge of a particle’s motion, we might find (by chance) the position 

actually occupied by the particle at a given time. This confirms the possibility in principle 

of measuring the (primary) basic property of particle position to quantum mechanical 

accuracy at any time during single particle motion under a pure state of knowledge. The 

effect of such a measurement is to instantly collapse our wave function ),( ar  to 

)( 1rr   times a generally indeterminate phase factor (as in the special case (4.3) of 

Chapter II). 

 

 

2.3 Generation of the impulsive potentials 

 

In preparation for the arguments in section 2.4 and out of general interest we consider 

how the potential in (2.1.1) might be generated in the case it is an electric potential and 

the particle undergoing measurement carries a unit charge. 

 Since nature provides us only with charged particles, not with continuously 

distributed charge (either over volumes or surfaces) we must seek to model potential 

generation using charged particles. These may be of any charge* and mass and taking 

their masses to be extremely large they can be assumed to move classically under the 

action of any applied (non-electromagnetic) forces we please. They can therefore move in 

any manner we please and are not themselves affected by the electric fields they generate 

or by the particles they are set up to interact with. 

 To create the potential (2.1.1) during the time period  ata  we assemble a 

swarm of N  charged particles half of which have charge q  and half of which have 

charge q . We distribute the particles of +ve charge (and those of –ve charge) uniformly 

in regions R  of space of constant thickness l  over the inside of the boundary of 1W  and 

over the outside of the boundary of 2W  (Figure 2.3.1).  

 
Figure 2.3.1 

 

                                                 
* Although the particles of nature may have charges that are multiples of the charge of the electron, there is 

nothing in quantum mechanics that dictates this must be the case. That is, in principle, quantum mechanical 

particles may have any charge (as well as any mass). 
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On taking the limits 

 

0q , N , 0 , const.l       (2.3.1) 

 

where   is the order of magnitude of the distance between any one charge and its 

neighbour and taking 

 

)2(~  pq p ,    
3

1
~


N        (2.3.2) 

 

where ~ is used to denote the ‘same limiting order as’, we ensure the electric potential 

and electric field is effectively zero everywhere. This is because the net charge density in 

R is always zero so no overall field is produced, and the average electric field at a point 

P  in R is of the order 

 

2

3

0

2

23
~

11 







 

pqdrr
r

q
 

 

where r  is the distance from P  to the nearest source particle, and 02  p
.* Put another 

way, if an electric field of strength E  (or greater) is considered significant (with regard to 

its effect on the particle undergoing measurement) then such a field strength is present 

only within a distance d  from a source charge where 

 

E
d

q


2
 

 

i.e. only within a distance 21)( Eqd   of a source charge. But the relative volume of 

space to which this applies is of order 

 

3
2

3

2

3

3

23

3

3

~
)( 







p

E
Eqd

 

 

which tends to zero in the limit 0  for any assigned value of E  however small.† 

 The charges assembled in this way are supposed to be present and so assembled 

up to time at   and from time  at  onward. During these times they have no effect 

on the particle undergoing measurement. But during time  ata  we suppose the 

                                                 
* The average electric potential is likewise or order 

1p
 and also tends to zero in the limit. 

† Similarly, if a potential   (or greater) is considered significant, then with dq , 
33333 ~   pd  

tends to zero for any  . 
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assembled charges are moved suddenly (at time at  ) to new positions and returned (at 

time  at ) to their original positions.* 

 During times  ata  we suppose the same charges lie within a region R  

like R  (in Figure 2.3.1) but of thickness )( ll  . The charges of +ve sign are no 

longer uniformly distributed (in R ). A measure of charge separation has occurred, both 

within the thickness of layer R  and over it, so as to produce a net surface charge density 

and a net (normally directed) dipole density as needed to generate the potential (2.1.1). 

There will now be a normally directed electric field E  inside R  creating a potential 

jump of order lE   across layer R  (varying of course from place to place over the 

layer). Since the required potential gradient in 2W  is k  we must have 

 

kLE l           (2.3.3) 

 

where L  is the characteristic length of W . This makes 

 

kE   

 

indicating that the charge separation across the thickness l  of the layer R  is almost 

complete over most of R . Because of this, a simple application of Gauss’s theorem 

gives 

 

2L

Nq
E           (2.3.4) 

 

Combining (2.3.3) and (2.3.4) we get 

 

kL
L

Nq
l 

2
         (2.3.5) 

 

giving us the order of magnitude of Nq  required to generate any needed electric field 

strength k  in region 2W . 

 Applying the necessary limiting process ((2.3.1) and (2.3.2)) we see that 

 

3

3
~

1
~ 


ppNq  

 

and by further proposing that  

 

)0(  ss

l         (2.3.6) 

 

                                                 
* These sudden motions cause no currents with associated magnetic potentials in our (non-relativistic) 

electrodynamic theory (in Appendix C) but they might do so (and cause problems for us) in measurement 

theory in relativistic quantum theory. 
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we have 

 

sp

l
L

Nq
k  3

3
~         (2.3.7) 

 

and we can arrange for k  (as required) by insisting that 03  sp . Then of 

course, since k  remains constant we have 

 
sp  3~          (2.3.8) 

 

tending to zero in the limit. 

 Because the number of source particles at any step in the limiting process is the 

same for  ata  as for at   and  at , we have 

 
23 LN l     and    23 LN l       (2.3.9) 

 

where   is the order of magnitude of the distance between any one source particle and 

its nearest neighbour again assuming uniform order of magnitude of   (everywhere in 

R ). From (2.3.9) we obtain 
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or 
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         (2.3.10) 

 

 

 We note finally the absence of any direct effect of any source particle on the 

particle undergoing measurement. For during time  ata  the average electric field 

at a point P  near any one source charge is 
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which tends to zero* provided 

 

                                                 

* Likewise the average potential 
1

3~




s
p

q  tends to zero under (2.3.11). Or, if E  is considered 

significant then with Edq 2
, 0~

3
2

3

33 
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d ; and if   is considered significant then with 

dq , 0~ 3333  spd . 
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02
3

2


s
p .        (2.3.11) 

 

 Taken all together, the requirements for p  and s  are 
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        (2.3.12) 

 

These can be satisfied simultaneously by taking the Cartesian coordinates ),( sp  of a 

point in the ps  plane to lie in the triangle )),(),0,3(),0,2((
5

3

5

12
. 

 

 

2.4 The possible effect of the measurement of a particle’s position on its momentum 

 

We claimed in section 2.1 that the process of harmless conditioning with respect to 

particle position, i.e. the successful instant location of particle position somewhere within 

region 1W , does not affect the particle’s motion because the particle could not have 

moved (in the vanishingly short time  ) from region 1W  to region 2W  and therefore 

could not have experienced the applied potential. 

 This would suggest that the particle’s momentum as well as its position is always 

left unaffected by the measurement. However, at least in the case the particle carries 

charge (we take to be of unit magnitude for simplicity) and the potential (2.1.1) is an 

electric potential, there is reason to think the particle’s momentum could be affected. This 

is because of the presence of a large electric field E  inside the boundary between 1W  

and 2W . In fact E  in the limiting process in section 2.3 and does so faster than k  

does and in such a way that lE   and kL  stay the same in order of magnitude even as 

0l  (see (2.3.3)). And this leads us to expect the momentum of the particle might be 

affected. 

 To be more specific, consider the case our position measurement is specialised to 

a measurement of the x  coordinate of the particle. That is, suppose 1W  is a region  
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Figure 2.4.1 

 

bounded within W  by planes P  and Q  perpendicular to the x  axis distance 1L  apart 

(Figure 2.4.1). Take the origin of coordinates half way between P  and Q . To realise the 

potential (2.1.1) over 2W  the order of magnitude of lE   in the parts of R  over planes 

P  and Q  must be equal to the jump in potential (in W ) from zero at distance l  to the 

right of P  and distance l  to the left of Q  to 21kL  just to the left of P  or just to the 

right of Q . So in those parts of R  we have in place of (2.3.3) 

 

1kLE l  .         (2.4.1) 

 

In order for the particle to remain either in 1W  or in 2W  during the measurement it is 

necessary that under its natural drifting velocity xv  it should not have time to travel 

distance l . That is, the time   must be less than xl v . So   must tend to zero faster 

than l , i.e. by (2.3.8) and (2.3.6) 

 

ssp  3          (2.4.2) 

 

which is quite possible (under (2.3.12)) and we assume it is the case.*  

Immediately after successful harmless conditioning leading to knowledge that the 

particle’s x  coordinate lies between 12

1
Lx   and 12

1
Lx   our (un-normalised) wave 

function is 1  (as defined in (2.1.2)) and our relative degree of belief the particle 

occupied (during action of the applied potential) a point in the part of R  over plane P  or 

                                                 
* If instead of claiming momentum is an internal property of a particle we were to claim it was a property 

associated with its drifting velocity through space, the field E  would (if the particle was in region R ) 
produce a large increase in this drifting velocity and it would not be possible to ensure the particle stayed in 

region 1W  if it started there during measurement. That is, harmless conditioning with respect to particle 

position would be impossible. 
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Q  is of the order 22

1 Ll  and our expected value xp  for the x  component of 

momentum imparted to it by E  in the time   is  
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the last step following from (2.4.1). The time Mt  of the measurement must have been 

long enough for the wave function 2  to have been moved well clear of the region W . 

Since the velocity imparted to 2  was mk  we need 

 

Lt
m

k
M 


. 

 

But, for harmless conditioning, the same measurement must also have been performed in 

a time small compared to the time 2

1mL  of natural evolution of 1 , i.e. 
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Hence 
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If we write 1L  as x  to represent our uncertainty in the x  coordinate of the particle after 

the measurement, the above result (with (2.4.3)) gives 

 

1

1.
L

L
Lkxpx  .       (2.4.4) 

 

And because LL 1  and our uncertainty in xp  is at least equal to xp , result (2.4.4)  

conforms to the uncertainty principle relation 2 xpx  between standard deviations 

x  and xp  (as derived for example in section 11.8 of [10]). We note that (2.4.4) 

represents a degree of uncertainty in position and momentum much greater than is 

actually dictated by the uncertainty principle itself. This has to do with our requirement 

for harmless conditioning with regard to particle position.* 

                                                 
* In perfect harmless conditioning 1  generally falls abruptly to zero on crossing planes P  and Q  out of 

region 1W  into region 2W , and the standard deviation xp  in the momentum representation of state 1  is 
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 The relationship between the uncertainty principle and the degree of disturbance 

inflicted by measurements is not simple. One has to distinguish between the alteration in 

uncertainty due to a change in our knowledge (resulting from a measurement) and the 

physical disturbance produced by the measurement. If for example the wave functions 1  

and 2  in (2.1.2) were confined to regions well within 1W  and 2W , then 1  would be 

zero in R  and instead of (2.4.3) we would have 0 xp , i.e. successful harmless 

conditioning would leave the particle’s momentum (as well as its position) unchanged. 

The alteration in the probability distribution over momentum (generally associated with 

the change from   to 1 ) is then a result of the change in our knowledge alone. So 

according to our interpretation of quantum mechanics acquisition of more exact (pure) 

knowledge of one of a pair of properties (knowledge of which is limited by the 

uncertainty principle) does not always affect the other property physically. And our 

knowledge of that other property may become less precise or more precise.* 

 

 

3. Measurement of a particle’s spin component as well as its position 

 

3.1 Harmless conditioning with respect to a particle’s spin component 

 

Suppose we have a pure state of knowledge regarding the orbital and spinning motion of 

a particle of spin s  moving perhaps under the action of known natural (finite) potentials 

(including a finite magnetic field of any known space and time variation). Let our pure 

knowledge be represented by the wave function ),( tr  over position r  and spin 

component   relative to a fixed Cartesian coordinate system,   of course taking values 

sss ...,1,  . We suppose that, for all  , ),( tr  tends to zero rapidly enough as 

r  so that we may again effectively claim we know the particle lies within a finite 

region W  of fixed space for a certain period of time.  

 Now ),( tr  is a (generally inseparable) wave function in the combined sample 

space rSS  of the complete sample spaces rS  and S  of propositions regarding the 

orbital and spinning motions respectively relative to fixed Cartesian coordinate systems. 

As we have said before, a basis in 
rS  claiming one or other particle position coordinates 

at any particular time is a primary basis, so is a basis in S  claiming one or other particle 

spin component in the same coordinate system at any particular time, therefore the basis 

                                                                                                                                                 

accordingly infinite. This is consistent with (2.4.3) when we consider that k  must tend to infinity for 

perfect harmless conditioning. 
* For example, if 1  and 2  are wave packets each representing fairly well known (and different) particle 

momenta, and these packets lie (at time at  ) well within 1W  and 2W  respectively, then after harmless 

conditioning (which is harmless both with regard to particle position and its momentum) our knowledge of 

particle momentum becomes more precise (not less precise). Such is the situation in the particle 

interferometer of section 1.3 Chapter XII when we null detect (fail to detect) the particle in one arm of the 

interferometer –our knowledge of particle momentum is then instantly made more precise, but at a later 

time, when the particle has left the interferometer, our knowledge of the momentum becomes as uncertain 

as it was just before the null measurement. 
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in rSS  claiming one or other position coordinate and one or other spin component at any 

particular time is a primary basis.  

 Accordingly, in sample space rSS  and with regard to our chosen fixed Cartesian 

coordinate system, it must be possible for us to establish by chance, at any specified time 

t , that the particle has in fact a particular spin component 1  or that its spin component 

is one or other of a certain set },...{ 1 n  of n  different spin component values. And we 

can do this harmlessly with regard to its spin component and its position at the time in 

question. This is harmless conditioning with respect to the spin component in rSS . We 

now model a method for doing this which (like the method proposed by Feynman et al in 

section 5-1 of [7]) employs a magnetic field with a large spatial gradient.  

 

 

Method: 

 

Everywhere in the region W  where the particle is known to be we temporarily apply a 

vector potential equal and opposite to any vector potential present, and for a vanishingly 

short time from at   to  at , we apply a magnetic field in the z  direction with a 

gradient k  in the x  direction. We take the limit as k  and 0  while the 

‘impulse’ k  remains finite. (Classically this would produce an impulse on the particle 

proportional to its z  component of spin and arising from the fact that (from at   to 

 at ) the energy of its magnetic moment in the field changes rapidly with its x  

coordinate implying a large force on the particle in the x  direction.) At bt  , shortly 

after at  , the result, for a large enough impulse k , is a separation of the wave function 

),( tr  in space into as many separate parts as there are possible spin component values 

 . During a further vanishingly small time interval from bt   to bt  we take away 

the high velocity of those separate wave packets for which },...{ 1 n  by applying to 

them (and only to them) a magnetic field impulse equal and opposite to the one we first 

applied. And if the set },...{ 1 n  excludes the case 0  we apply a scalar potential 

gradient pulse over region W  to send the particle to infinity if its spin is zero. Finally, to 

return the wave functions ),( tr  for which },...{ 1 n  to their initial forms we 

subject them immediately to another magnetic field impulse equal and opposite to the one 

we first applied to send these wave functions on their way back and after the short time 

interval ab , when they have arrived back, we bring them to rest using a magnetic field 

impulse the same as the one we first applied. Provided the whole operation is completed 

in a vanishingly short time and provided no particle is observed in classical motion far 

away we can conclude that },...{ 1 n  both at time  at   (before all our fields were 

applied) and just after (when the natural vector potential may be restored), and we have 

achieved our objective of harmless conditioning with respect to the spin component.  

 

 

Modelling of the method:  

 

Take the origin of coordinates somewhere in W (see Figure 3.3.1.) and let our first  
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Figure 3.1.1 

 

magnetic field H  be applied in the region between two planes P  and Q which are 

parallel to the yz  plane and positioned on either side of region W  with H  given 

everywhere in W  by 

 

kH ˆkx          (3.1.1) 

 

where k  is a constant and î , ĵ  and k̂  stand for the unit vectors in the yx,  and z   

directions. This H  field must be due to an electromagnetic vector potential which in W  

is of the form 

 

jA ˆ)const.( 2

2

1

em  kx        (3.1.2) 

 

the curl of which gives k̂kx .* (If the particle has charge q  this will add orbital terms to 

the Schrödinger equation associated with the particle vector potential cq emAA  .) 

 Since H  has only a z  component in W  the Schrödinger equation during time 

at   to  at  is (by (6.2.6) of Chapter IX)  
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     (3.1.3) 

 

                                                 
* Since, by (3.1.1), jH ˆk  a uniform current density in the y  direction must be present throughout 

W  where the particle is situated. That this can be done without affecting the particle motion directly is 

argued in the part of Appendix C headed Note on the relativistic modelling of electromagnetic field 

sources. To obtain the required values of emA  in W  the current density between planes P  and Q  need 

not extend all the way to infinity in the y  and z  directions but can be terminated at distances far enough 

away from W . 
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where V  is the (finite) natural scalar potential (the natural vector potential and the vector 

potential cq emA  (if present) are assumed to be cancelled out) and zH  is as given in 

(3.1.1). We thus have a separate Schrödinger equation for each spin component 

sss ...,1,  .*  

 Since we are taking the limit as 0  and k  while k  remains finite, the 

first two terms on the RHS of (3.1.3) will have zero effect and can therefore be omitted, 

giving 
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       (3.1.4) 

 

Thus for 0  the magnetic field applied during time at   to  at  leaves   

unchanged but for  0  the wave function ),( tr  is changed in the same way as 

),( tr  is changed in section 1.1 under a net effective potential V  given by 
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s
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          (3.1.5) 

 

So ),( tr  (for any value of  ) becomes (cf. (1.1.4))  
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eaa ),(),( rr        (3.1.6) 

 

representing (when 0 ) a quasi-classical wave packet of high velocity (assuming, as 

we do, that k  is large).  

 Shortly after time at    and on account of k  being large, the wave function 

),( tr  is therefore the sum of several parts well separated in configuration space, i.e.  

 




 
s

s

tt ),(),( rr .       (3.1.7) 

 

Each term ),( tr   in the sum is a (unnormalised) wave function representing 

knowledge of a particle moving with a distinct spin component   in a separate region of 

space. The term with 0  (i.e. ),(00 tr ) represents knowledge of a particle with 

zero spin component unaffected by the applied impulse but still well separated in space 

                                                 
* If there is a natural magnetic field H  present we do not generally have a separate Schrödinger equation 

for each spin component. Instead the equations for the time derivatives of the wave functions for each spin 

component are linked by terms involving xH  and yH  (see for example the Schrödinger equation (9.1.4) 

of Chapter VII). However, as the applied field zH  tends to infinity, the terms involving xH  and yH  

linking the wave functions with different spin components become negligible like the term involving V  in 

(3.1.3). 
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from the regions occupied by the other terms. The terms with 0  (taken together) 

form a superposition of quasi-classical wave functions any one of which is for a classical 

particle with a definite spin component and a very high velocity proportional to its spin 

component. For times shortly after time at   the expression for the spatial factor 

),( tr  of any of the wave functions in the summand of (3.1.7) is  
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  (3.1.8) 

 

(cf. (1.1.9)) where ),( tr  denotes the wave function ),( tr  (with  ) evolving 

comparatively slowly and naturally from its original form ),( ar  at at   with no net 

vector potential and no applied impulse.  

 Shortly after time at   at time bt   the spatial factors ),( tr  of wave 

functions ),( tr   will be well separated in the x  direction and those for which 

},...{ 1 n  and 0  may, during time bt   to  bt , be brought to rest by 

application to each of them of a magnetic field gradient impulse equal and opposite to the 

one first applied. The ),( br  (for 0 ) are thus instantly changed to 
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(cf. (1.2.1)), and for bt   they take the form 
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(cf. (1.2.2)), and substituting for   using (3.1.8) gives, for bt  , 
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   (3.1.9) 

 

(cf. 1.2.4). And (3.1.9) holds also when 0 , i.e. for the wave function ),(0 tr   

unaffected by our magnetic field impulses. So the velocities of    (for 0 ) are now 

stopped but they each remain displaced (in the x  direction) from their original position 

by distances )( ab
m

k

s
D 


  which (by choice of k ) we are supposing large enough 

to spatially separate the functions    for all the various values of  . Since successive 

  values differ by 1  this requires 
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for sss ...,1,   where   is the dimension of the region of space occupied by the 

wave function  .  

 If },...{ 1 n  excludes the spin component 0  we now apply a scalar potential 

field impulse over the region occupied by ),(0 tr  to send this wave function on its way 

to infinity. And to those wave packet functions    for which },...{ 1 n  and 0  

we immediately follow up the negative magnetic field gradient impulse by another one 

equal to it. This changes the functions    (for },...{ 1 n  and 0 ) to functions 

   moving on their way back to their original positions. And at time )( abbd   

when they have arrived back we bring the    to rest by application of a final impulsive 

magnetic field gradient equal to the very first impulsive magnetic field gradient applied. 

(The ‘rejected’ functions    (i.e. those with },...{ 1 n ) which were sent flying by 

the first applied magnetic impulse or by the scalar potential impulse) are by now so far 

away as to be unaffected by the final applied magnetic impulse.) The net result is to 

change the    in (3.1.9) for },...{ 1 n  to iv

  given by 
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(cf. (1.6.2)). And we make iv

  exactly the same as   by choosing the value of k  so 

that  
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        (3.1.11) 

 

where n  is an integer. Since   is an integer or half-integer the phase factor is then equal 

to 1  for all values of  . 

 To avoid significant natural evolution of ),( tr  for },...{ 1 n  during time 

dta   we assume 

 

22




m
ad         (3.1.12)  

 

where 
 is the characteristic distance of spatial variation of ),( tr  (cf. (1.6.4)). 

Formally we should ideally let 0ad  and k  while the displacement D  

remains finite and large enough for separation. But we choose to keep k  finite though 

extremely large. 

 Our measurement process is now effectively instantaneously carried out at time 

at  , and after it (i.e. for at  ) the particle wave function is 
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where in the first summand the ),( tr  are the same as if we had left the particle alone, 

and in the second summand the ),( tr  (for 0 ) are given by (3.1.8) and represent 

very fast moving wave packets set in motion by our first applied impulsive magnetic field 

gradient (or in case 0  a very fast moving wave packet set in motion by our applied 

impulsive scalar potential field gradient).  

 By the law of motion under a part-quasi-classical wave function the particle may 

be moving classically (to classical accuracy) as it would under one or other of the quasi-

classical wave functions ),( tr   for one or other of the values of   outside the set 

},...{ 1 n  (each of these motions being one with a definite spin component). And the 

modulus squared of the probability of this is 
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32

1

),(
n

dt rr , 

 

where the integral is over all space and the sum is restricted to values of   outside the 

set },...{ 1 n . Such a motion would be directly observable and in the event that, by 

chance, no such motion is observed we learn that the particle must (just after time at  ) 

have been left behind in or returned to the region W  of space, and therefore the point in 

configuration space ),( r  representing the particle motion must lie in the region of that 

space spanned by r  values in W  and   values in the set },...{ 1 n . We can then restore 

the natural vector potential we temporarily removed and assuming we have not changed 

the values of particle coordinates r  and  , we have achieved harmless conditioning in 

rSS . And by section 4 of Chapter II our wave function just after time at   is 
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with 
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where   is an indeterminate constant phase.  

 To verify that our measurement does not in fact change the values of the particle 

coordinates r  and   (i.e. to show that the propositions claiming values of these just 

before and just after our measurement imply one another with determinate phases), we 

suppose our initial wave function ),( tr  is  
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)( 11
rr   

 

where 1r  is a fixed point in region W  and 1  a particular spin component. Or more 

exactly we consider a sequence of ordinary initial wave functions of the form 

)(),(
1

rr   t  that tend to )( 11
rr  . Then the procedure above for removing 

cases in which the spin component is outside any given set },...{ 1 n  that includes 1  

will leave any one of this sequence of ordinary wave functions unchanged and therefore it 

will leave the limiting wave function unchanged.* We deduce that the proposition 

‘ 11, rr  ’ expressing our initial pure state of knowledge (together with the 

proposition representing our general knowledge) implies the truth of the proposition 

‘ 11, rr  ’ immediately after the measurement, and it does so with a determinate 

phase of implication (namely zero). And by the general principle of reciprocity, the latter 

proposition implies the first with a determinate phase of implication (also zero). 

Propositions ‘ 11, rr  ’ just before and just after our measurement therefore claim 

correlated properties independently of our initial state of knowledge or whatever was our 

initial wave function ),( tr . 

 We have thus successfully modelled a method which allows us at any time at   

to perform instantly, in rSS , harmless conditioning with regard to a particle’s spin 

component. Just after successful application of the method our wave function ),( ar  

collapses to the form (3.1.13), or in case we seek to find the exact spin component 1 , to 

the form 
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         (3.1.15) 

 

where   is an indeterminate phase. 

 

We finish by reviewing the conditions required for carrying out the above procedure of 

harmless conditioning with respect to the spin component. These are (3.1.10), (3.1.11) 

and (3.1.12). The first and last together are  
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which can clearly be satisfied by first choosing ab  so that
22)( 

 mab  and 

then making k  sufficiently large. Then, since 
  is less than or of the order of  , 

                                                 
* There are clearly no quasi-classical parts to the wave function moving out to infinity in these cases. Note 

also that in taking the limit (of )(
1

r  to )( 11
rr  ) it will clearly be necessary to increase k  

indefinitely because the natural rate of change of initial wave functions in the sequence increases 

indefinitely. 
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(3.1.6) gives sk     showing the middle term in (3.1.16) must certainly be large 

compared with 
2s  so (3.1.11) can clearly be satisfied along with (3.1.10) and (3.1.12). 

 

 

3.2 Simultaneous measurement of a particle’s spin component and position 

 

Finally we model a method for achieving, by chance, the simultaneous measurement of a 

particle’s spin component and position at any time at  .  

 Starting with a pure state of knowledge represented by a wave function ),( tr  

we first apply the method of section 3.1 to find, by chance, the spin component of the 

particle at time at  . From the work in section 3.1 we see that, this leads (just after time 

at  ) to a collapsed wave function (in sample space rSS ) of the form (3.1.15) which to 

within indeterminate phase factors separates into a wave function 
1  in S  and a wave 

function ),(
11 aC r  in 

rS  where 
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  being itself an indeterminate phase. 

 We next apply the method of section 2.1 by chance to further collapse the wave 

function ),(
11 aC r  in rS  to 
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where  
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  being another indeterminate constant phase. Since our knowledge in S  and rS  

remains separate during the second measurement process (the applied scalar potential 

having no effect on the spin component) our wave function in rSS  is now 
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where 12CCC   and (as in section 2.1) the position of the particle cannot have been 

affected by the measurement.  



XIII. Modelling the acquisition of knowledge 

 353 

 We have thus achieved harmless conditioning in rSS . Taking 1W  to be 

arbitrarily small our collapsed wave function becomes simply 

 


  ie)( 11
rr         (3.2.5) 

 

where 1r  is the location of the volume element r
3d  to which 1W  has been reduced and   

is an indeterminate constant phase, and we have achieved precise measurement of the 

particle’s spin component and position without altering either. 

 

All the above conclusions follow from the laws of quantum mechanics and complex-

valued probability which therefore together confirm that instantaneous measurement of a 

particle’s spin component and position by the method suggested above is both harmless 

with regard to position and spin component and immediately repeatable (i.e. 

reproducible) in principle. 

 

 

3.3 The effect of measurement of one spin component on another 

 

When we use the methods in sections 3.1 or 3.2 to harmlessly measure a particle’s spin 

component in one particular fixed Cartesian coordinate system O  we alter its spin 

component in any other coordinate system whose z  axis lies on a different line through 

the origin of O , and alter it in an unpredictable way.  

If for example we know initially the value of the z  component   in coordinate 

system O  (whose z  axis lies on a different line from the z  axis of O ) we cease to know 

the value of   in O  after measuring the value of   in O . This is because the magnetic 

field H  applied in the z  direction of O  to find the value of   causes all spin 

components (in other coordinate systems) to undergo precession about the z  axes of O  

at a rate sH  radians/unit time (as shown in section 8.3 of Chapter VII in the case of 

spin one-half)   being the magnetic moment of the particle, s  its spin and H  the 

magnetic field at the point occupied by the particle at any stage of the measurement. 

After the first magnetic gradient impulse is applied the value   in O  is then the z  

component of spin in a coordinate system O  which when rotated about the z  axis of O  

through the angle sH  coincides with O . As a result the value of   in O  

becomes uncertain because it is that which previously belonged to a coordinate system 

(namely O ) wherein the spin component was initially unknown.* Subsequent magnetic 

field impulses produce further uncertainties in  . 

 For things to be otherwise (e.g. for us to be able to maintain our knowledge of the 

value of   in O  in the above example) it would have to be that the angle   whose 

order of magnitude is by (3.1.1) 

 

                                                 
* The magnitude of H  and therefore of   is also uncertain because of the uncertainty of the position of 

the particle in the high gradient of the magnetic field. 
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(where   is the width of the region W  in the x  direction of O ) was very small 

compared to 1 , i.e. that  
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But this contradicts the necessary conditions for successful harmless measurement of   

in O  as expressed in (3.1.10) and (3.1.12).  

To confirm this contradiction we first note that when we initially know that   

has value 1  our initial wave function is of the form )(
1

rf  in O  and because of the 

separated form )()()( rr fg   of the corresponding initial wave function in O , the 

  in (3.1.10) are all equal to   and the 
  in (3.1.12) is a characteristic dimension of 

)(rf  and independent of   and accordingly we write it as f . So (3.1.10) and (3.1.12) 

are for present purposes 
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where )(2 abad  . And since  f  it easily follows from (3.3.3) that (3.3.2) 

cannot be fulfilled. 
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CHAPTER XIV 

 

MIXED STATES OF KNOWLEDGE 

 

 

With regard to an isolated quantum mechanical system in motion with known particle 

composition and known particle potentials*, the pure states of knowledge (of the system 

dynamics) considered so far are very special and only rarely arise in practice. Certain 

more general states of knowledge of the system dynamics are referred to as ‘mixed 

states’.† The representation of mixed states of knowledge by ‘arrays’ and the principles 

for assigning ‘arrays’ and for calculating probability distributions under mixed states of 

knowledge are given in the present Chapter XIV of the monograph. They have 

application of course to quantum statistical mechanics. 

 

 

1. The representation of mixed states of knowledge 

 

With regard to an isolated quantum mechanical system S  with known particle 

composition and known particle potentials we know that a pure state of knowledge of the 

system dynamics is generally represented by a wave function )( Yxi  over a basis ix  

( Ni ,...1 ) in a sample space S  (for S ) covering a time period 1t  to 2t , N  being the 

dimension of all bases in S . ( N  is allowed to tend to infinity in certain cases but is taken 

as finite in the formulation of all basic theory– see section 3.1 of Chapter I.) A mixed 

state of knowledge of the system dynamics can be represented by a set of wave functions 

over a basis ix  with associated weights that add to one. Following Jaynes [20] we denote 

this as an ‘array’ 

 

 mmii wwYxYx ,...);(),...( 11        (1.1) 

 

where )( ji Yx  ( mj ,...1 ) are wave functions that would apply under generally different 

pure states of knowledge jY , and jw ( mj ,...1 ) are associated weights. The weights 

must always satisfy 

 

1,0
1

 


m

j

jj ww         (1.2) 

                                                 
* We include the possibility that the particles move under the action of known external potentials as well as 

known inter-particle potentials. In saying the potentials are ‘known’ we mean of course that the laws of  

potential (the potentials as functions of particle positions and possibly the time) are known, not the actual 

values of the potentials. 
† As in the case of pure states, the kinds of knowledge that constitute mixed states are learnt by experience. 
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 In (1.1) the )( ji Yx  ( mj ,...1 ) may be any (normalised) wave functions 

whatever, the weights jw  ( mj ,...1 ) may be any real numbers satisfying (1.2), and the 

number m  of wave functions (or of their associated weights) may be any number from 1  

to  .* Weight jw  is associated with wave function )( ji Yx  and no other. (The wave 

functions )( ji Yx  ( mj ,...1 ) need not form an orthogonal set or a complete set, they 

need not be linearly independent, and they may have indeterminate absolute phases.) 

 

Law of equivalence of arrays 

 

Two arrays represent the same mixed state of knowledge of system S  dynamics 

if and only if their ‘density matrices’ with respect to the basis in question are 

equal†, the density matrix for the general array (1.1) being defined as 

 





m

j

jnjkjkn YxYxw
1

)()(      (1.3) 

 

A density matrix is evidently always a square matrix of size NN   where N  is the 

dimension of all bases in the sample space S . It is also Hermitian, i.e. it’s transpose is 

equal to its conjugate: 

 
 knnk          (1.4) 

 

The elements of a density matrix clearly have determinate amplitudes kn  and 

determinate absolute phases kn  even if the wave functions themselves only have 

determinate relative phases. For if we multiply the )( jk Yx  by ji
e


, the j  being any 

constant (determinate or indeterminate) phases, we do not alter kn . 

 

Law of equivalence of arrays (cont.) 

 

 If we take another basis py  ( Np ,...1 ) in S  (which may refer to the 

same time or to another time during the period  1t  to 2t  covered by S ) an array in 

the y  representation that represents the same mixed state as array (1.1) is 

 

 mmpp wwYyYy ,...);(),...( 11   

                                                 
* Any case in which the number of wave functions (or weights) is infinite can be dealt with by starting with 

m  finite and taking the limit as m . Certain sums, like those in (1.2) and (1.3), must then of course 

converge to finite values. 
† We stress that equality of the density matrices is all that is required. We do not require the number of 

wave functions (or weights) in the corresponding arrays to be equal. 
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where the weights jw  ( mj ,...1 ) are the same as in (1.1) and the wave functions 

)( jp Yy  ( mj ,...1 ) correspond to the same pure states of knowledge as the 

)( ji Yx  and are therefore related to the latter by Feynman’s law 
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Note however that the density matrix 
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in the y  representation is not necessarily equal to the density matrix kn  in the x  

representation. That is, a density matrix is (like a wave function) dependent on the 

representation.  

 Of course two arrays in the y  representation represent the same mixed state of 

knowledge when their density matrices in the y  representation are equal. And, for 

consistency, we require for two different sets of pure states jY  ( mj ,...1 ) and jY 
  

( mj  ,...1 ) and corresponding weights, that when 
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we also have  
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To show (1.7) follows from (1.6) we substitute (in (1.6)) for )( jp Yy  and )( jp Yy 
  

using (1.5) to get 
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    (1.8) 

 

Here and henceforth we often omit (under summation signs) the limits of parameters like 

i  and i  in (1.8), that run from 1  to N . By multiplying (1.8) through by 
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)()( qnpk yxyx   and summing over p  and q  we change )()( iqip xyxy 
  to 

niik  , and obtain (1.7) as required. 

 

A simple consequence of the first part of the law of equivalence of arrays is that if one of 

the weights of an array is zero, it, and its corresponding wave function can be removed 

from the array and it will serve just as well to present our mixed state of knowledge. Also 

any number of new weights (all equal to zero) may be included in an array, the new wave 

functions corresponding to them being chosen in any way we please. 

 

Finally we note the following consequence of the second part of the law of equivalence 

of arrays. If the basis ix  employed in an array is taken to refer to a time dependent 

property (i.e. to be a time-dependent basis in our sample space S  covering a time period), 

then a mixed state of knowledge represented by the array (1.1) and the mixed state of 

knowledge represented by the array 

 

 mmii wwYxYx ,...);(),...( 11
       (1.9) 

 

where the ix  refer to the same property as the ix  but at a different time in the time period 

covered by S , are the same. This is because the wave functions )( 1Yxi  and )( 1Yxi
  

are related by Feynman’s law under the transformation functions )( ji xx , while the 

weights stay the same. We therefore have the following law: 

 

Law of natural evolution of an array 

 

 Any array (1.1) whose basis is time-dependent represents the same mixed state of 

knowledge of a freely evolving (i.e. unmeasured) system if its wave functions 

evolve in time according to the Schrödinger equation while its weights remain the 

same. 

 

 

2. The calculation of probabilities under mixed states of knowledge and the first law 

of array assignment. Knowledge relating to part of a system. 

 

2.1 The calculation of probabilities under mixed states of knowledge  

 

Under a mixed state of knowledge Z  of a system S  represented by an array of the form 

(1.1) the probabilities for the truth of propositions py  ),...1( Np   of any basis y  in our 

closed sample space S  can be calculated from the following law. 

 

The law of probabilities of the propositions of any basis 

 

 If our mixed state of knowledge Z  is represented by array (1.1) using a basis x  
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then the probability we should assign to any one proposition py  of a basis y  in S  

is  

 

pi
m

j

jpjp eYywZy




 
1

2

)()(      (2.1.1) 

 

the p ),...1( Np   being generally indeterminate and unrelated phases. 

 

We also claim a law that gives the probabilities for different values of a dynamical 

property of S  that may (among other things) be claimed by the propositions jY . As these 

values might be the same for two or more values of j , it is convenient to re-label the jY  

as nlY  (and the jw  as nlw ) where parameters n  and l  may themselves (like j ) stand for 

a number of parameters. So for each j  there is a unique nl  and vice versa. Now if the 

nlY  claim property nv  (so that lnY   with ll   also claims property nv ) then we have the 

following law. 

 

Law of probabilities of parametric properties 

 

 If our mixed state of knowledge Z  is represented by array 

  ,...),...;...,(..., nlnli wYx  and nlY  claims (among other things) that dynamical 

variable v  of S  has value nv  then 
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l

nln ewZv


 )(       (2.1.2) 

 

where the n  are phases generally indeterminate and unrelated for different n . 

 

We stress that we do not require that the )( nli Yx  be orthogonal and/or from a complete 

set of wave functions though this may sometimes be the case in applications. Law (2.1.2) 

holds quite generally. 

 The expected value of any function )( nvf  of nv  is by definition 

 

 
n

nn Zvvff
2

)()(        (2.1.3) 

 

which by (2.1.2) is 

 

  









n l

nln wvff )(        (2.1.4) 

 



XIV. Mixed states of knowledge 

 360 

where the range of values of parameter l  may depend on the value of n . 

 The expected value of the deviation of f  from its expected value f , or the 

‘standard deviation’ f  is defined as* 
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nnf Zvfvfff
222 )())(()(     (2.1.5) 

 

and is accordingly given by 

 

  









n l

nlnf wfvf 2))(( .      (2.1.6) 

 

 

2.2 The first law of array assignment 

 

To help us establish arrays of the form (1.1) for representing mixed states of knowledge 

of an isolated system S  to which our closed sample space S  refers (with the ix  forming 

a basis in S ) we have laws of array assignment that play a role similar to the principles of 

probability assignment employed in connection with wave functions representing pure 

states. We give below the first of the laws relating to array assignment. 

 

First law of array assignment  Whenever we could if we wished acquire 

(harmlessly with respect to any proposition in S ), 

one of a certain set of pure states of knowledge jY  

( mj ,...1 ) of S , and our degrees of belief j  

( mj ,...1 ) for acquiring one or other of the states 

of knowledge jY  ( mj ,...1 ) are known to us, we 

are in a mixed state of knowledge (with respect to 

the propositions of S ) represented by array (1.1) 

with jjw   ( mj ,...1 ). And taking this array to 

represent our (mixed) state of knowledge, 

knowledge of the possibility of harmless acquisition 

of one or other of the pure states of knowledge jY  

etc. becomes redundant as far as our knowledge of 

the system dynamics itself is concerned.† 

                                                 
* Note that whenever we employ the term ‘expected value’ (e.g. ‘expected energy’,…etc.) we mean of 

course the probabilistic average and ‘expectation’ here bears no relation to the logical expectation 

associated with propositions whose probabilities have unit moduli and indeterminate phases (section 2.2.2 

of Chapter I). 
† We stress that the converse of the first law of array assignment is not true. That is, holding a mixed state 

of knowledge of a system’s dynamics represented by an array  mmpp wwYyYy ,...);(),...( 11   does 
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Now in order to be able to acquire harmlessly with respect to any proposition of S , one 

or other of a set of pure states of knowledge jY  ( mj ,...1 ) of S  it is necessary that 

information in the form of observable macroscopic states of matter be available to us for 

the purpose of determining which pure state of knowledge to adopt. This is the case if, for 

example, somebody else tells us they have prepared the system S  so that, with regard to 

it, they themselves are in a one or other pure state of knowledge jY  ( mj ,...1 ) without 

telling us which. If we are able to calculate a degree of belief j  ( mj ,...1 ) for each 

possible choice of that person, then (by the first law of array assignment) we are in a 

mixed state of knowledge represented by (1.1) with weights jjw   ( mj ,...1 ). 

Harmless acquisition by us of a pure state of knowledge jY  could then be simply 

achieved (if we so wished) by asking the other person which choice they made. 

 When the first law of array assignment applies there is a simple way to calculate a 

degree of belief distribution over the propositions ix  of basis x  in S  which agrees with 

the law of probabilities of the propositions of any basis (section 2.1). Under our mixed 

state of knowledge Z  our degree of belief in any of the propositions ix  of the basis x  in 

S , may now be calculated using the sum rule (2.3.2) of Chapter I and the product rule 

(2.4.1) of Chapter I. We have by the sum rule that 

 
22

1

2

1

2

1

2

)(...)()...())...(()( ZYxZYxZYxYxZYYxZx miimiimii 

                …(2.2.1) 

           

The product rule 
)(

)()()( jki

jijji eZYxZYZYx


  where k  and j  are respectively 

phases characteristic of knowledge Z  and jY , applies for mj ,...1  because it is possible 

in principle (in our special case) to acquire knowledge of jY  (or its equivalent) 

harmlessly with respect to S  so ix  and jY  are compatible. Putting 
jj ZY 

2

)(  and 

jjw  , and noting that Z  is redundant in )( ZYx ji  we find from (2.2.1) that  

 





m

j

jiji YxwZx
1

22

)()(        (2.2.2) 

 

in agreement with the general rule (2.1.1). We likewise easily find agreement with 

(2.1.2). 

 

 

 

                                                                                                                                                 

not in itself imply the possibility of getting to know harmlessly which state of pure knowledge jY  we can 

adopt. 
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2.3 The case of a pure state 

 

We claim (as part of our general knowledge) that a mixed state of system dynamics is 

also a pure state if and only if it can be represented by an array of the form (1.1) in which 

the wave functions associated with the non-zero weights (say n  in number, with of 

course mn1 ) are all the same –all say )( Yxi . A ‘pure state’ array thus takes the 

form 

 

 0,...0,,...,0,...0;)(),...(),(),...(),(),...( 111   nppminpiiipii wwYxYxYxYxYxYx  

                …(2.3.1) 

 

where the equal wave functions (and their weights) are grouped together for convenience. 

 By the first law of array assignment, if we knew that the thp  wave function 

)( Yxi  in a set of n  identical wave functions should apply with degree of belief pw , 

and other wave functions ( nm   in number) should apply with degree of belief zero, then 

our total degree of belief in the wave function )( Yxi  applying would be 

1... 1  npp ww . And this is consistent with the claim that (2.3.1) represents a pure 

state of knowledge.  

 The density matrix for (2.3.1) is clearly 

 

)()()()(
1

YxYxYxYxw nk

np

pj

nkjkn






       (2.3.2) 

 

and since arrays with the same density matrix in the same representation represent the 

same mixed state of knowledge we can say, for example, that an array of the form 

 

 0,...0,1,0,...0;)(),...( 1 mii YxYx        (2.3.3) 

 

in which all but one (say the thp ) weight is zero represents a pure state of knowledge 

with wave function )( pi Yx . When we consider mixed states represented by arrays in 

which the wave functions )( ji Yx  ( mj ,...1 ) are a certain set of orthogonal wave 

functions forming a complete set, these mixed states can clearly only be pure states when 

all but one of the weights is zero (as in (2.3.3)).  

 

 

2.4 The case of knowledge relating to part of a system 

 

In section 8 of Chapter II we gave an example of a mixed state of knowledge. This 

related to knowledge regarding a part of a system when knowledge of the whole system 

was pure. The connection between the observations of section 8 of Chapter II and the 

work of the present section is as follows.  
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 As in section 8 of Chapter II, suppose 
)1(S  (of order 1N ) and 

(2)S  (of order 2N ) 

are contemporary and complete sample spaces of propositions about the dynamical 

properties of non-interacting systems 
)1(

S  and 
(2)

S  respectively, and suppose basis )1(

ix  

and primary basis )2(

jx  are bases in 
)1(S  and 

(2)S  respectively pertaining to the same time 

t . Using basis )2()1(

ji xx  in 
(2))1( SS , let our wave function, under knowledge Y  (pure and 

inseparable in relation to the sample space (2))1( SS  of the whole system) be )( )2()1( Yxx ji .  

 Let )1(

ky  be a primary basis in 
)1(S , then (see section 7 of Chapter II) the moduli of 

the probabilities )( )1( Yyk  are calculable and there is the possibility that we could, 

harmlessly with respect to 
(2)S , by chance acquire knowledge that )1(

ky  was true, after 

which our wave function in 
(2)S  would be )( )1()2( Yyx ki  which is also calculable (see 

section 7 of Chapter II). We claim that under knowledge Y  of the whole system 
(2))1( SS  

we are in a mixed state of knowledge regarding the dynamical properties of the system 
)2(S , and an array representing our mixed state of knowledge with regard to 

)2(S  is  

 

 ...,)(...,;...),(...,
2

)1()1()2( YyYyx kkj       (2.4.1) 

 

i.e. the array of wave functions )( )1()2( Yyx ki  1,...1 Nk   with associated weights 

2
)1( )( Yyk .*  

 The formula 

 

ji

k

kjkj eYyxYyYx


 
2

)1()2()1()2( )()()(  

 

derived in section 8 of Chapter II, for the probability distribution over the 
)2(

jx  given Y , 

is (as required) in agreement with the general law (2.1.1) (applied to (2.4.1)) for 

calculating the probability distribution over the basis employed in an array representing a 

mixed state of knowledge.  

 

 

3. The product rule for arrays 

 

In analogy with the product rule for wave functions under pure states of knowledge 

(section 3.7 of Chapter I) we assume the truth of the following product rule for arrays. 

                                                 
* Note that, although we can by chance acquire knowledge that 

)1(

ky  is true, we cannot acquire this 

knowledge on demand, so it does not automatically follow that (under knowledge Y ) we are in a mixed 

state of knowledge with regard to 
)2(S . But we can (and do) claim we are. 
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 Let 
)1(

S  and 
(2)

S  be two quantum mechanical systems or distinct aspects of one 

system and let their properties be referred respectively to separately closed sample spaces 
)1(S  and 

)2(S .  

 If )1(Z  is our mixed state of knowledge of system )1(
S  in relation to sample space 

)1(S  and )2(Z  is our mixed state of knowledge of system 
)2(S  in relation to sample space 

)2(S , and if 
)1(S  and 

)2(S  are known (or assumed to be) logically independent under 

knowledge )2()1( ZZ *, then )2()1( ZZ  is a mixed state of knowledge of the combined system 
(2))1( SS  in relation to the combined sample space (2)(1)SS . And if 

 

 )1()1(

1

)1()1()1(

1

)1(

11
,...);(),...( mmii wwYxYx        (3.1) 

 

and  

 

 )2()2(

1

)2()2()2(

1

)2(

22
,...);(),...( mmii wwYxYx       (3.2) 

 

are arrays representing our mixed states of knowledge )1(Z  and )2(Z  respectively, an 

array representing our mixed state of knowledge )2()1( ZZ  is relation to 
(2)(1)SS  is 

 

 

 ,......,),...;()(..., )2()1()2()2()1()1(

qpqjpi wwYxYx       (3.3) 

 

where p  and q  take all possible values (from 1  to 1m  in the case of p  and from 1  to 2m  

in the case of q ). Clearly the weights 
)2()1(

qp ww  in array (3.3) satisfy the conditions 

 

1
1 2

1 1

)2()1( 
 

m

p

m

q

qp ww  

0)2()1( qp ww , 

 

required of any array. We call (3.3) the product rule for arrays. 

 The density matrices going with arrays (3.1) to (3.3) are 

 





1

1

)1()1()1()1()1()1( )()(
m

p

pnpkpkn YxYxw ,      (3.4) 





2

1

)2()2()2()2()2()2( )()(
m

q

qsqrqrs YxYxw ,     (3.5) 


 

 
1 2

1 1

)2()2()1()1()2()2()1()1()2()1( )()().()(
m

p

m

q

qsprqnpkqprskn YxYxYxYxww . (3.6) 

                                                 
* Note that there is no law (like the law of absolute logical independence under pure knowledge) that would 

make 
)1(S  and 

)2(S  necessarily logically independent. 
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and we note that 

 
)2()1(

nskrrskn  .        (3.7) 

 

 Conversely, if in relation to the combination (2)(1)SS  of separately closed sample 

spaces 
)1(S  and 

)2(S  we have a mixed state of knowledge represented by an array of the 

(factorized) form (3.3)* over basis )2()1(

ji xx  of 
(2)(1)SS , and therefore one whose density 

matrix rskn  factors as in (3.7), then our knowledge separates into logically independent 

mixed states of knowledge )1(Z  and )2(Z  in relation to 
)1(S  and 

)2(S  respectively 

represented by arrays (3.1) and (3.2). 

 

 

4. Diagonalisation of the density matrix and the law of orthogonal representation of 

mixed states of knowledge 

 

Any square Hermitian matrix (and therefore the general density matrix kn  in (1.3)) can 

be diagonalised by means of a unitary transformation (see for example chapter 10 of 

[10]). So for any density matrix   with elements kn  a unitary matrix U  with elements 

pkU  and inverse 
1U  with elements 11)(   nqnq UU  can always be found such that 

 

pqppq

kn

nqknpk ddUU  1        (4.1) 

 

where pqd  is a diagonal matrix with diagonal elements pd . 

 From (4.1) we have  

 

  
p

lppqp

knp

nqknpklp UdUUU 111  

 

or 

 
11   lqq

n

nqnl UdU .        (4.2) 

 

So the columns Nq ,...1  of 
1

nqU  are eigenvectors of nl  with eigenvalues qd . 

 By (4.1)  

                                                 
* Of course, if the weights pqw  of an array over basis 

)2()1(

ji xx  factor as in (3.3) they can only factor in one 

way. For if 
)2()1()2()1(

qpqppq wwwww   for all p  and q , then by summing 
)2()1()2()1(

qpqp wwww  over 

say q  we obtain 
)1()1(

pp ww   for all p . 
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q

nl

nqnlql dUU  1         (4.3) 

 

Substituting for nl  using (1.3) we get 

 

q

m

j nl

nqjnjlqlj dUYxYxUw  




1

1)()(      (4.4) 

 

or 

 

q

m

j n

jnnq

l

jlqlj dYxUYxUw  




1

1 )()( . 

 

Here, by the unitary property 

 
  qnnq UU 1

         (4.5) 

 

the sum over n  is the conjugate of the sum over l  so 

 

q

m

j l

jlqlj dYxUw  
1

2

)(  

 

showing that 

 

0qd           (4.6) 

 

for all q . Also summing (4.4) over q  gives 

 

  




q

q

m

j nl

jnjlnlj dYxYxw
1

)()(  

 

and since the )( jl Yx  are normalised and the jw  add to 1  we have 

 

1
q

qd .         (4.7) 

 

 Now the eigenvector columns of 
1

nqU  in (4.2) can be used to define N  new wave 

functions )( pk Yx   under new pure states of knowledge pY  . Thus we put 
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pp i

pkpk

i

pkkp eYxUeYxU
  )(or)(1     (4.8) 

 

where the pY   are the pure states of knowledge that would result in wave functions 

)( pk Yx   equal to 1

kpU  multiplied by a phase factor pi
e


 independent of k . The unitary 

property of U  makes the wave functions orthonormal because  

 

  

k

qkpk

k

qkpk

k

kqpkpq YxYxUUUU )()(1    (4.9) 

 

 Also the array 

 

 NNii ddYxYx ,...);(),...( 11
        (4.10) 

 

of the new wave functions with respective weights equal to the diagonal elements of the 

diagonalised density matrix has a density matrix kn  equal to the original density matrix 

kn . For 

 

  

p

pnpkpkn YxYxd )()(  

 

which, using (4.1), can be written (with harmless inclusion of a factor 
)( qpi

e


 in the 

summand) as 

 










nkqp

i

qn

i

pkqnnkkp

qp

qnpk

i

pqqkn
qpqp eYxeYxUUYxYxed )()()()( 1)(
. 

                   …(4.11) 

 

And by (4.8) this is  

 







nkqp

qnpkqnnkkpkn UUUU 1        (4.12) 

 

in which 

 

kk

p

pkkpnn

q

qnqn UUUU 




   ,1 , 

 

giving knkn  . 

 Hence array (4.10) represents the same mixed state of knowledge as array (1.1). 

And there follows the general possibility of ‘orthogonal representation’ of any mixed 

state of knowledge in relation to any closed sample space S : 
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Law of orthogonal representation of mixed states of knowledge 

 

A mixed state of knowledge of the dynamical properties of an isolated quantum 

mechanical system can always be represented by an array of N  orthogonal wave 

functions with associated weights, N  being the dimension of bases in the sample 

space S  or the order of the sample space S . 

 

Note well, however, that the N  orthogonal wave functions mentioned in this law cannot 

be just any N  orthogonal wave functions of our choice. They are generally dependent on 

the mixed state in question. 

 Being the eigenvalues of the matrix nl , the qd  ( Nq ,...1 ) are always the same 

set of numbers no matter what unitary transformation U  is used to diagonalise kn , but 

the orthogonal functions )( qi Yx   with which they are associated in (4.10) are not always 

the same. If (and only if) there is degeneracy of the qd  values (i.e. if some are the same 

as others) there is more than one unitary matrix U  that will diagonalise kn  and each will 

give rise to a different set of orthonormal functions )( qi Yx  . The density matrix kn  is 

however not affected by this freedom in the choice of the diagonalising unitary 

transformation. As we have demonstrated kn  always remains the same as the original 

density matrix kn .  

 As a consequence of the existence of more than one unitary transformation in the 

case of degeneracy of the qd  values, we are at liberty (without changing the qd  values) 

to replace the mutually orthogonal wave functions )( qi Yx   for any set of q  values for 

which qd  are equal, by any other set of mutually orthogonal wave functions that remain 

orthogonal to the wave functions )( qi Yx   for all other q  values.  

 To show this explicitly, suppose the first r  values of the qd  in (4.10) are equal 

and let us perform a unitary transformation qqU   taking the orthogonal wave functions 

)( qi Yx   for rq ,...1  to new orthogonal wave functions for rq ,...1  while leaving the 

remaining )( qi Yx   the same. That, is let 

 

Nrq

rq

Yx

YxU
Yx

qi

r

q

qiqq

qi

,...1

,...1

)(

)(
)

~
( 1





















    (4.13) 

 

where the rr  square matrix qqU   is unitary. With the same weights this new set of wave 

functions gives the density matrix 

 

 
q

qnqkqkn YxYxd )
~

()
~

(~ . 
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This will clearly be the same as the original density matrix if  

 








 
r

q

qnqk

r

q

qnqk YxYxYxYx
11

)()()
~

()
~

(     (4.14) 

 

but this is evidently the case because on substituting for the )
~

( qi Yx  using (4.13) we get 

for the LHS of (4.12) 

 

 
 











r

q

r

q

qnqq

r

q

qkqq YxUYxU
1 11

)()(  

 

which reduces to the RHS of (4.14) on account of the unitary property of qqU   that makes 

 

qq

r

q

qqqq

r

q

qqqq UUUU 









 

1

1

1

. 

 

The transformation (4.13) is equivalent to a transformation of the ‘vector’ of all the N  

wave functions by a NN  unitary matrix qqU   whose elements are, for rq ,...1  and 

rq ,...1  identical to those used above, and for other values of q  and q  are equal to 

qq  . We can clearly make, in succession, unitary transformations that ‘rotate together’ in 

any way we please the wave functions associated with each set of q  values for which the 

qd  have the same value. The result will be a net unitary transformation of the vector of 

the original set of N  orthogonal wave functions by means of a NN  unitary matrix. 

And so in connection with the above law of orthogonal representation of a mixed state of 

knowledge we have the following law of equivalence: 

 

Law of equivalence of orthogonal representations of a mixed state of knowledge  

 

If, in an orthogonal representation of a mixed state of knowledge the wave 

functions fall into sets each associated with weights of equal value, it will make 

no difference to the density matrix, nor invalidate the representation of our mixed 

state of knowledge, if we apply a unitary transformation to the wave functions 

that ‘rotates together’ in an arbitrary manner the wave functions of each set 

independently. 

 

 

5. The second law of array assignment or the method of maximum entropy 

 

When we have a pure state of knowledge about the dynamical properties of a quantum 

mechanical system we are, as we have said before, on the boundary of possible 

knowledge under the uncertainty principle. Under a mixed state of knowledge about the 
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dynamical properties of a quantum mechanical system our knowledge generally falls 

short of being pure. The degree to which it falls short, i.e. the amount of our ignorance of 

the dynamical properties over and above the natural limits imposed by the uncertainty 

principle is axiomatically measured by a real number S  called the ‘information entropy’ 

or the ‘entropy’ for short. And this ‘entropy’ is calculated as follows (Jaynes [20]). 

 Let our mixed state of knowledge be represented by an array of the form (1.1). To 

calculate the information entropy for this state of knowledge we start by applying the 

method of section 4 to obtain an array (4.10) of N  orthogonal wave functions with the 

same density matrix. As we have said before, although there may be more than one 

unitary transformation for carrying out the procedure in section 4, the resulting weights 

Ndd ,...1  in the new array are always the same, being, as they are, the eigenvalues of the 

original density matrix. Only the wave functions with which they are associated may 

differ (in the case of degeneracy). In terms of the set of id  values whatever they may be, 

the information entropy is  

 





N

i

ii ddS
1

ln         (5.1) 

 

it being understood that if one of the id  values (say jd ) is zero the value of the summand 

for ji   is zero. 

 In the case of a pure state of knowledge all the id  values must be zero except one 

(as in (2.3.3)), and the value of S  is accordingly zero. This is clearly the minimum value 

the information entropy can take.  

 The maximum value that S  can take is found by maximising the RHS of (5.1) 

subject to the constraint (4.7). That is, following Lagrange, we maximise 

 

 
 i

i

N

i

ii dddL
1

ln  

 

subject to no constraint and then fix the constant   by imposing the condition (4.7). This 

gives 

 

N
d i

1
   

 

and so 

 

N
NN

S
N

i

ln
1

ln
1

1

max  


.       (5.2) 

 

That is, the maximum possible value of the information entropy is the natural logarithm 

of the dimension of bases in the sample space. This is the value of the information 
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entropy that applies when we are completely ignorant of the dynamical properties of the 

quantum mechanical system (see section 6). 

 The second law of array assignment or the method of maximum entropy can now 

be stated as follows. 

 

Second law of array assignment or the method of maximum entropy 

 

With regard to an isolated quantum mechanical system with known particle 

composition and known particle potentials, if our mixed knowledge regarding 

dynamical properties of the system can be expressed as constraints imposed upon 

the unknown weights Ndd ,...1  in a representative array of N  known orthogonal 

wave functions, then the values of the weights can be found by maximising the 

information entropy 



N

i

ii ddS
1

ln  subject to the constraints. 

 

Like the method of maximum entropy in classical probability theory the second law of 

array assignment is a natural consequence of the assumption that information entropy 

measures the amount of ignorance. To assign values to the Ndd ,...1  that satisfy the 

(known) constraints but do not maximise S  would be to claim to know more about the 

system dynamics than we actually do. 

 

 

6. Case of complete ignorance of dynamical properties and the third law of array 

assignment 

 

Let the dynamical properties of a quantum mechanical system S  be represented by 

propositions in a closed sample space S  of order N .  In connection with the case of 

complete ignorance of the dynamical properties we introduce a third law of array 

assignment which extends the principle of indifference (section 5.2 of Chapter I): 

 

Third law of array assignment If we are totally ignorant of the dynamical  

properties of the system, our state of knowledge is 

mixed and can be represented by an array of any set 

of N  orthogonal (allowed) wave functions with 

equal weights associated with each.* 

 

The weights are then, by (1.2) simply 

                                                 
* Note that, when we are ‘totally ignorant’ of the dynamical properties of a system, we suppose we still 

have knowledge of the unchanging properties of that system, e.g. knowledge of the system potential 

function. And that knowledge may imply certain limited knowledge of the system dynamics. For example, 

for a single particle system, if we know the potential field it moves in is infinite in a certain region of space, 

then we know the particle cannot be in that region. But the third law of array assignment can still be taken 

to apply in such cases provided we understand that the N  orthogonal wave functions are allowed wave 

functions, i.e. wave functions that are allowed when we take into account our knowledge of the unchanging 

properties of the system. So in the single particle example, any set of orthogonal wave functions in the 

particle position representation must be wave functions that vanish within the region of infinite potential. 
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N
w j

1
 .         (6.1) 

 

 To prove consistency of this third law we need to show that the resulting density 

matrix 

 





N

j

jnjkkn YxYx
N1

)()(
1

      (6.2) 

 

is the same for any orthogonal set of wave functions )( jk Yx  Nj ,...1 . Letting the 

wave functions be represented by a matrix A  with elements kjA  given by 

 

kjjk AYx  )(  

 

the orthogonality of the wave functions gives 

 

jj

k

jkkj AA 



   

 

showing that 

 
11)(   jkjkkj AAA  

 

and therefore, by (6.2), 

 

kn

j

jnkjkn
N

AA
N

   11 1 .       (6.3) 

 

So the density matrix is just N1  times the unit matrix and must therefore be the same 

whatever set of orthogonal wave functions )( jk Yx  is chosen. 

 Taking the orthogonal wave functions to be kjjk Yx  )(  (corresponding to pure 

states of knowledge jj xY   ( Nj ,...1 )) we find, from the general result (2.1.1), that 

under a state of knowledge Z  representing complete ignorance of the dynamical 

properties of the system, 

 

NN
Zx

N

j

iji

11
)(

1

22

 


.       (6.4) 
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So the probabilities for the truth of the propositions ix  ( Ni ,...1 ) of any basis x  in our 

sample space each have moduli 
N

1  and indeterminate phases. 

 Consider any set of pure states of knowledge jY  ( Nj ,...1 ), the wave functions 

)( jk Yx  of which form an orthogonal set. By the law of inferred dynamical properties 

(section 3.11 of Chapter I), knowledge jY  amounts to knowledge that the value of a 

(generally inferred) property P  of the system is quantified by j  (or that property jP  

applies). In the (mixed) state of complete ignorance of the dynamical properties of the 

system we thus assign equal weights to each possible value j  of property P . 

 

As a simple example, suppose we are given an isolated spin one-half particle and have no 

information whatsoever about its component of spin in any direction. Then with regard to 

its spinning motion we are in a mixed state of knowledge which can be represented by the 

array 

 

 
2

1

2

1

2

1

2

1 ,);(),(          (6.5) 

 

where the wave functions are functions of the z  component of spin   in any one fixed 

Cartesian coordinate system O  under pure states of knowledge 
2

1
  and 

2

1
  in 

another fixed Cartesian coordinate system O . That is, the wave functions in (6.5) are the 

transformation functions )(   for 
2

1
  and 

2

1
 , and are of course necessarily 

orthogonal to each other. Our density matrix is therefore the 22  matrix 

 



















  )()()()(
2

1

2

1

2

1

2

1

2

1

nknkkn     (6.6) 

 

where the k  ( 2,1k ) stand respectively for spin components 
2

1
  and 

2

1
  in O  

and the n  ( 2,1n ) also stand respectively for spin components 
2

1
  and 

2

1
  in 

O .  By the formulae for the transformation functions for spin one-half (Chapter VII) the 

RHS of (6.6) equals kn
2

1
 in agreement with (6.3). To the proposition claiming the z  

component of spin   in O  is 21 , we should assign (by (6.4)) a probability of modulus 

21  and indeterminate phase.  

 We note that, by the first law of array assignment, our state of knowledge 

regarding the particle spin is in this example the same as it would be if we were told 

somebody else had prepared the particle with a definite component   of spin relative to 

a specified fixed Cartesian coordinate system O  without revealing whether   was 
2

1
 or 

2

1
 . By the principle of indifference we would then calculate a degree of belief of 

2

1
 for 

each possible choice of that person and hence form the array (6.5). But in the absence of 

any knowledge about the spinning motion we should anyway form array (6.5) to 

represent our knowledge. And if we were then to acquire the above knowledge regarding 
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the preparation of a definite spin component by someone else, this new knowledge would 

be quite redundant as far as our knowledge of the spinning motion itself was concerned. 

It would add nothing to that knowledge. The ‘new’ knowledge would take different forms 

depending on the particular coordinate system O  revealed to us by the other person. 

Different pure states would have been prepared in each case but our knowledge of the 

spinning properties of the particle would remain the same. We note this would be 

difficult to understand if pure states were taken to be physical states of the system rather 

than states of our knowledge of the system.  

 

 

7. The fourth law of array assignment  

 

We introduce a fourth law of array assignment which extends the principle of similarity 

(sections 5.1 of Chapter I). With regard to an isolated quantum mechanical system with 

known particle composition and known particle potentials, let S  be a closed sample 

space of order N  and let )1(

ix  Ni ,...1 , and 
)2(

jx Nj ,...1  be different bases in S . Then 

 

Fourth law of array assignment If mixed state of knowledge )1(Z  in relation to basic 

property )1(

ix  is recognisably similar to mixed state 

of knowledge )2(Z  in relation to basic property 
)2(

jx , we should set our density matrix )1(

kn  in the 

)1(

ix  representation equal to our density matrix )2(

kn  

in the 
)2(

jx  representation. 

 

We show in section 8 how the fourth law of array assignment can help in deriving the 

canonical distribution of quantum statistical mechanics. 

 

 

8. Modelling of a thermodynamic system in equilibrium 

 

The purpose of this section is to indicate how quantum statistical mechanics may be more 

clearly developed using our Bayesian interpretation of quantum mechanics. The 

advantages of a Bayesian approach to statistical mechanics have been constantly pointed 

out by Jaynes (see for example [28]). Many problematic concepts like ‘ergodic 

hypotheses’, ‘heat baths’ etc. can be avoided entirely. But with the more rigorous theory 

of mixed states made possible in the present interpretation of quantum mechanics the 

advantages of the Bayesian approach are even more apparent.  

 A real macroscopic system in thermal equilibrium (like a gas at a definite 

temperature in a closed container) may be modelled as an isolated quantum mechanical 

system of particles moving under known inter-particle potentials and external potentials.* 

                                                 
* In this way we avoid the need for a ‘heat bath’ (in thermal contact with the system) whose effect on the 

system is hard to take into account. We assume that errors arising from our having to guess the exact 

numbers of particles of the various kinds we take to be present are negligible. We will not here be 
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In particular the external potentials that constrain the particles to occupy a definite 

volume of space may be supposed known as well as any additional external fields to 

which the particles of the system may be subjected.  

 A system so modelled as a quantum mechanical system will have a Hamiltonian 

which may be time dependent (if the external conditions are changing). Whether the 

Hamiltonian is time dependent or not, there is a property of the system associated with 

the Hamiltonian called the energy E  taking discrete values nE  generally a function of 

the time. This was explained in section 3 of Chapter XI. We identify the quantum 

mechanical energy E  of the system with its classical thermodynamic internal energy, the 

only difference being that while the quantum mechanical energy has theoretically a 

definite value, the classical thermodynamic internal energy contains an arbitrary additive 

constant, or rather its zero point is chosen in a conventional way. 

 With regard to a system in thermodynamic equilibrium*, when we know the 

(constant) classical thermodynamic internal energy U  to classical accuracy (as we may 

do in practice) we claim that we are then in a mixed state of knowledge regarding the 

quantum mechanical dynamical properties of the system involving effective knowledge 

of the expected energy E  of E  given by 

 

0UUE           (8.1) 

 

where 0U  is a constant that can always be identified at a later point. We now make the 

following fundamental claim of (equilibrium) quantum statistical mechanics.† 

 

Claim regarding knowledge of the expected energy 

 

Supposed knowledge of the expected value E  of the quantum mechanical energy 

E  of the system amounts on its own to a mixed state of knowledge of the 

quantum mechanical system dynamics sufficient to account for all macroscopic 

thermodynamic properties of the system. 

  

Therefore any additional information we may have about the classical thermodynamic 

properties (e.g. knowledge of the temperature or of the pressure (in the case of a gas)) is 

redundant.  

 So when we suppose our knowledge of the system dynamics consists only in the 

knowledge of the expected energy E  of the system, we are in a mixed state of 

knowledge. And by the law of orthogonal representation of mixed states of knowledge 

this can be represented by an array of N  orthogonal wave functions where N  is the 

dimension of any basis in the sample space of all propositions about all the quantum 

mechanical dynamical properties of the system. We write this array as 

                                                                                                                                                 
developing the grand canonical ensemble in which only the expected number of particles is taken as known 

(see p.10 of [28]). 
* Any external conditions may still be subject to change, for example the known volume occupied by the 

system may be gradually changed while maintaining thermal equilibrium. We consider such (adiabatic) 

changes later on but for the present we assume the external conditions are fixed (and known). 
† This will lead us to the canonical distribution. 
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 NNii wwYxYx ,...);(),...( 11        (8.2) 

 

and we seek suitable candidates for the orthogonal wave functions and the correct values 

for the weights. 

 

 

8.1 Determination of a suitable set of orthonormal wave functions 

 

Now in (8.2) we may take the ix  to refer to a basic time-dependent property at a time t  

during the time covered by our sample space (which can be as long as we please). Now 

consider the array 

 

 NNii wwYxYx ,...);(),...( 11
       (8.1.1) 

 

where the wave functions (for the same pure states of knowledge NYY ,...1 ) are over a 

basis ix  that refers to the same property (as ix ) but at a later time t  during the time 

covered by our sample space. As noted in section 1, array (8.1.1) represents the same 

mixed state of knowledge of system dynamics as array (8.2), the weights being the same 

and the wave functions )( ji Yx  in (8.2) and )( ji Yx  in (8.1.1) being related by 

Feynman’s law, or equivalently, the wave functions )( ji Yx  being the time evolved 

forms of the )( ji Yx  (as determined by the Schrödinger equation for the system). We 

cannot however immediately claim that the density matrices associated with arrays (8.2) 

and (8.1.1) are equal because the representations (based on ix  and on ix ) are different. 

 But, because the system is in thermodynamic equilibrium our mixed state of 

knowledge in relation to the truth or falsity of any of the propositions ix  ( Ni ,...1 ) 

referring to time t  is evidently similar to our mixed state of knowledge regarding the 

truth or falsity of any of the propositions ix  ( Ni ,...1 ) referring to time t . By the fourth 

law of array assignment the density matrix for array (8.2) must therefore equal that for 

array (8.1.1), or, put another way, the density matrix for array (8.2) must remain the same 

when the wave functions in it evolve according the Schrödinger equation while the 

weights remain constant. We can write the Schrödinger equation as 

 










k

jkkkjk YxHYx
ti

)()(


      (8.1.2) 

 

the kx  referring to a general time t  and the NN  matrix kkH   standing for the 

Hamiltonian. We know the Hamiltonian matrix is Hermitian, i.e. that it always satisfies 

 

  kkkk HH .         (8.1.3) 
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And in our modelling of the thermodynamic system we assume the particle potentials do 

not depend on the time explicitly, therefore kkH   is independent of t . 

 The density matrix going with our array (8.2) is 

 

 
j

jnjkjkn YxYxw )()(       (8.1.4) 

 

where the sum goes from 1j  to Nj   and as usual the limits are omitted for brevity. 

 Since kn  must be independent of time, its partial derivative with respect to t  

must vanish. Differentiating (8.1.4) with respect to t  remembering the weights are 

constant, we find by (8.1.2) that* 

 

  


























j n

jnnnjk

k

jkkkjnjkn YxHYxYxHYxw
ti

)()()()(


.  (8.1.5) 

 

Setting the RHS equal to zero, multiplying through by )()( jkjn YxYx 



   and summing 

over n  and k  gives, on account of the orthogonality of the wave functions )( ji Yx  for 

different values of j , the result 

 

0)()()()( 







 















j nn

jnnnjnjj

kk

jkkkjkjjj YxHYxYxHYxw  

 

or 

 

0)()()()(  
















nn

jnnnjnj

kk

jkkkjkj YxHYxwYxHYxw . 

 

But here the two sums are equal because of the Hermitian property (8.1.3) and so we 

obtain the requirement 

 

0)()()(  








kk

jkkkjkjj YxHYxww  

 

or 

 

0)()()(   








k k

jkkkjkjj YxHYxww .    (8.1.6) 

                                                 
* This is the general law of evolution of the density matrix representing any mixed state of knowledge. It 

can evidently be written in the ‘operator’ form 










 
n

nknn

k

nkkkkn HHti)(   which 

bears a similarity to the Schrödinger equation (8.1.2) which of course is the general law of evolution of the 

wave function representing any pure state of knowledge. 
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 The condition (8.1.6) means the function 



k

jkkk YxH )(  of k  must be 

orthogonal (in function space) to the function )( jk Yx   whenever 
jj ww   .  

 So if all the weights have different values the function 



k

jkkk YxH )( , i.e. the 

result of applying the Hamiltonian operator to any one of the functions )( jk Yx  , must 

be orthogonal to all the other functions )( jk Yx   jj  . Since the )( jk Yx  form a 

complete orthogonal set 



k

jkkk YxH )(  can therefore only be a constant times 

)( jk Yx   itself, i.e. )( jk Yx   can only be an eigenfunction of the Hamiltonian. Thus, 

when the weights are all different, the set of orthogonal functions in our density matrix 

are necessarily eigenfunctions of the Hamiltonian i.e. they must satisfy 

 

)()( jkj

k

jkkk YxEYxH 



  ,      (8.1.7) 

 

where jE   is the corresponding eigenvalue of the Hamiltonian matrix. 

 If some of the weights are the same, condition (8.1.6) tells us only that the 

function 



k

jkkk YxH )(  of k  must be orthogonal to the functions )( jk Yx   for which 

jj ww   .  It must therefore lie in the subspace spanned by the functions )( jk Yx  of the 

array for which the corresponding weights are equal to jw  . Supposing just the first r  

weights are equal (and all the others unequal) we can therefore write 

 








 
r

j

jkjj

k

jkkk YxAYxH
1

)()( ,   rj ,...1     (8.1.8) 

 

where the jjA   are complex constants. But the functions )( jk Yx  in this subspace can be 

‘rotated together’ in any way we please without changing the density matrix. That is we 

are free to make a unitary transformation to new wave functions )
~

( jk Yx  given by 

 





j

jkjjjk YxUYx )()
~

( ,         (8.1.9) 

 

where we now adopt the convention that j  parameters are summed from 1  to r  (while k  

parameters will still be summed from 1  to N ). The transformation inverse to (8.1.9) is 

 

  



j

jkjjjk YxUYx )
~

()( 1
,   rj ,...1 .     (8.1.10) 
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With the new wave functions, the effect of the Hamiltonian operating on one can be 

written 

 

 

  







 



 



 











v
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jkjjjjjj

j j

jkjjjj

j k

jkkkjj

k j

jkjjkk

k

jkkk

YxUAUYxAU

YxHUYxUHYxH

)
~

()(

)()()
~

(

1
 

 

So if we can choose our unitary transformation in a way that makes matrix jjA   diagonal 

we will have 

 

)
~

()
~

()
~

( jkj

j
jkjjj

k

jkkk YxAYxAYxH
v

vv 



      (8.1.11) 

 

where jA   are the diagonal elements resulting from the diagonalisation of matrix jjA  . 

 So if diagonalisation of matrix jjA   is possible we see that when the first r  

weights are equal, it is (by (8.1.11)) still the case that the wave functions of our 

representative array can be taken to be eigenfunctions of the Hamiltonian. And by similar 

arguments this can clearly be shown to be true also when any set of the weights are equal 

rather than the first r  weights, and when there are several sets of equal weights. 

Relations of the kind (8.1.8) must hold for the wave functions associated with each set of 

equal weights, and unitary transformations could be applied to each to guarantee they 

were eigenfunctions of the Hamiltonian. 

 It remains only to show that the matrix jjA   can always be diagonalised by means 

of a unitary transformation. Starting with (8.1.8) as representative of the general case of 

an equal set of weights, we multiply through by )( jk Yx 
  and sum over k : 

 

  







kj

jkjjjk

kk

jkkkjk YxAYxYxHYx )()()()( . 

 

Orthonormality of the )( jk Yx  makes the RHS equal to jjA   so we find 

 








 
kk

jkkkjkjj YxHYxA )()(  

 

and since the Hamiltonian matrix is Hermitian this shows that matrix jjA   is also 

Hermitian, i.e. that 

 

rjjAA jjjj ,...1,  
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and therefore can always be diagonalised by a unitary transformation. 

 

We have thus found suitable candidates for the orthogonal wave functions of our 

representative array (8.2). They can be taken to be a complete set of N  orthonormal 

eigenfunctions of the system’s quantum mechanical (time independent) Hamiltonian. 

Next we must find the values of the corresponding weights. 

 

 

8.2 Determination of the weights in the representative array 

 

Taking up the notation in section 3 of Chapter XI, the orthonormal (time independent) 

eigenfunctions of the system Hamiltonian are written as )(qnl  were q  stands for the 

coordinates of the system (i.e. the particle position coordinates and the z  components of 

particle spins relative to a fixed Cartesian coordinate system), parameter n  quantifies the 

energy nE  of the system and parameter l  quantifies the other properties of the system 

associated with the complete set of orthogonal wave functions tiE

nl
neq


 )(  (see section 3 

of Chapter XI). Since the present system occupies a finite volume of space the possible 

energies form a discrete set of values so we may take n  to have integer values with nE  

increasing monotonically with n . The parameter l  also has discrete values but generally 

stands for a number of discrete parameters. The possible values of l  are generally 

dependent on the value of n  (as we saw, for example, in section 3.1.2 of Chapter XI). 

 To represent our mixed state of knowledge of the quantum mechanical system 

(used to model the macroscopic thermodynamic system in equilibrium) we adopt the 

array  

 

 nlnl wq);(          (8.2.1) 

 

where )(qnl  stands for the set of functions )(qnl  for all possible values of n  and l , and 

nlw  stands for the set of corresponding weights. The array (8.2.1) will serve for all times 

during which our system is in thermodynamic equilibrium. The time factor 
tEi ne


 need 

not be included in the wave functions of array (8.2.1) because it does not alter the density 

matrix 

 

  



nl

nlnlnlqq qqw )()(        (8.2.2) 

 

where the summation is over all values of l  for given n  and then for all values of n .* 

Any phase factor nli
e


 that may attend the wave functions also does not affect the density 

                                                 

* Strictly speaking we should write any sum of the kind 
nl

nlS  as   








n l

nlS  because the possible 

values of l  are dependent on the value of n  and the order of the summations is not reversible. We refrain 

from doing this only in the interests of simplification. 
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matrix. So the absolute phases of the eigenfunctions )(qnl  can be chosen in any way. 

The number of possible values of n  is infinite (the number of parameters l  being finite 

for each value of n ). In any particular case we will need to show that the summation in 

(8.2.2) converges to a finite value for all q  and q . 

 In terms of the array (8.2.1) the expected value E  of the system energy is, by 

(2.1.4), 

 


nl

nnl EwE          (8.2.3) 

 

with standard deviation 

 
2)( 

nl

nnlE EEw .       (8.2.4) 

 

 To find the values of the weights nlw  we apply the method of maximum 

information entropy (section 5). Accordingly the nlw  are the values that maximise 

 


nl

nlnl wwS ln         (8.2.5) 

 

subject to the constraints 

 

1and  
nl

nl

nl

nnl wEwE .     (8.2.6) 

 

in which E  is supposed known. Using Lagrange’s method we maximise 

 

 
nl

nl

nl

nnl

nl

nlnl wEwww ln      (8.2.7) 

 

subject to no constraints then apply (8.2.6) to determine the parameters   and  . Setting 

to zero the change in (8.2.7) under a variation nlw  in nlw  we get 

 

0)
1

ln(  
nl

nl

nl

nnl

nl

nl

nl

nlnlnl wEww
w

www  

 

or 

 

0)1(ln 
nl

nlnnl wEw . 

 

Since this must hold for all small variations we must have  

 



XIV. Mixed states of knowledge 

 382 

01ln  nnl Ew  

 

or replacing 1  by   and   by   (i.e. by redefining the parameters) we have, for the 

required weights in our representative array, the expression 

 
nE

nl ew


           (8.2.8) 

 

with formulae 

 




















EEe

ee

nl

n

E
nl

E

n

n      

        (8.2.9) 

 

for the parameters   and   in (8.2.8). 

 A proof that (8.2.9) has only one solution for   and  , and that this solution 

maximises S  in (8.2.5) rather than minimising it, is given in Appendix E. 

 We note that the required weights, as given by (8.2.8) conform to the well known 

canonical distribution in the usual theory of statistical mechanics.  

 In remains only to identify the parameters   and  . 

 

 

8.3 Identification of   and   with certain thermodynamic properties 

 

Note that in (8.2.9) we have 

 

 












n

n

E

n l

E

nl

E
Leee nnn       (8.3.1) 

 

where 

 


l

nL 1         (8.3.2) 

 

(i.e. 1  added to itself as many times as there are l  values for given n ) is the degeneracy 

of the energy level nE . 

 By (8.2.9) the quantity   is given by  

 





nl

Eneln         (8.3.3) 

 

and we identify this and   with macroscopic thermodynamic properties as follows.  

 As   is by (8.3.3) a function of   and the nE  we will have formally, for any 

infinitesimal variations the relation 
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where, by (8.3.3) 
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the last step being a consequence of (8.2.9). Also, by (8.3.3) 
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where by (8.2) 
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and in (8.3.4) 
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so using (8.2.8), (8.3.4) becomes 

 


nl

nnldEwdEd        (8.3.5) 

 

where by the second of (8.2.9) we have 

 


nl

nnl EwE          (8.3.6) 
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 If we start (say at time 1t ) making known reversible adiabatic variations in the 

external conditions (i.e. making slow changes to the external fields) this in no way 

changes our mixed state of knowledge in relation to times 1tt   when the external fields 

are fixed. This is because knowledge of future external fields is redundant. Therefore 

assuming only that our knowledge remains mixed, the array  nlnl wq);(  (with the same 

weights) serves just as well to represent our knowledge in relation to times 1tt   so long 

as the functions )(qnl  are (for each n  and l ) now changing appropriately with time.      

The continuity of representation by array  nlnl wq);(  is guaranteed by the law of natural 

evolution of an array claimed in section 1 because the )(qnl  (or rather their correct 

forms as on the RHS of (4.19) of Chapter XI which differ in a way unimportant as far as 

the density matrix and therefore the representation by  nlnl wq);(  is concerned) satisfy 

the Schrödinger equation under the changing external fields.  

 Since the nlw  remain constant during reversible adiabatic variations, for any small 

(quasi-static) variations of that kind (8.3.6) gives 

 


nl

nnldEwEd         (8.3.7) 

 

and (8.3.5) gives EddEd   or 

 

0)(  Ed .        (8.3.8) 

 

So the quantity E  remains constant under any reversible adiabatic variation. This 

leads is to identify E  with the thermodynamic entropy S  of the system, because the 

entropy is the thermodynamic property that stays constant under reversible adiabatic 

changes. Actually any function of the entropy will also stay constant and we should 

identify E  as some function )(S  of S  but of S  alone. 

 The form of the function )(S  can be found (as in p.13 of [27]) by considering 

two separate thermodynamic systems A  and B  at the same temperature. Modelling both 

as quantum mechanical systems with expected energies AE  and BE  assumed known, we 

are in a mixed state of knowledge with regard to each. Formulae (8.2.8) and (8.2.9) will 

apply to each with   written as A  and B , and   written as A  and B  accordingly, 

and we can identify AAA E  and BBB E  as functions )( AA S  and )( BB S  of the 

thermodynamic entropies AS  and BS  of systems A  and B  respectively. 

 But we are also at liberty to regard systems A  and B  as together forming a single 

system at a uniform temperature and to apply the same theory to it. We take all the 

equations and terms in section 8.2 to refer to that system. Now assuming (as it seems we 

may) that the sample spaces referring to systems A  and B  are logically independent 

under all our knowledge, the stationary state wave functions )(qnl  will be the products 

)().( BlnAln qq
BBAA

  of those for each component system and the corresponding weights 



XIV. Mixed states of knowledge 

 385 

nlw  will be the products 
BBAA lnln ww .  of the weights of each component system (see section 

3).  

 It is useful for the present purpose to relax our notation according to which, in for 

example )(qnl , n  is a single parameter quantifying the corresponding energy nE . 

Instead we allow parameters nl  to label (uniquely) the wave functions )(qnl  in any way 

with the corresponding energy values denoted nlE  some of which may be the same. So 

letting nl  stand for BBAA lnln  and we will have 

 

BBAA lnlnnl EEE  . 

 

Therefore, by (8.2.8) 

 
)(

BlBnAlAn EE

nl ew


  

 

and since 

 

BBAA lnlnnl www .  

 

the formula (8.2.8) applied to systems A  and B  on their own gives 

 

BlBnBAlAnABABlBnAlAn EEEE

nl eew



)()(

 

 

for all AAln  and all BBln  independently.* This can only mean that 

 









BA

BA
         (8.3.9) 

 

Therefore for all systems at the same temperature,   has the same value. That is   is a 

function of the temperature only. And   is an additive property for systems at one and 

the same temperature. It follows that E  is also additive and since the 

thermodynamic entropy S  is additive in the same sense we must have 

 

)()()( BAABBBAA SSSS   

 

                                                 
* Note also that by substituting 

BBAA lnlnnl www .  in (8.2.3) in which nE  is now nlE  (
BBAA lnln EE  ) 

and nl  stands for BBAA lnln  we easily show that BA EEE  . That is, the expected energy is an 

additive property for systems at one and the same temperature. 
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where AB  is E  written as a function of the entropy S  of the combined system. 

Since AS  and BS  are independently variables, differentiating this equation with respect 

to AS  and with respect to BS  we find 

 

)()()( BAABBBAA SSSS   

 

showing that )(S  can only be a universal constant say k1 . So kSS  )(  and for any 

thermodynamic system modelled quantum mechanically 

 

SE
k

1
          (8.3.10) 

 

 By inserting (8.2.8) into (8.2.5) and applying (8.3.6) we see that E  equals 

the information entropy, i.e. the degree of our ignorance of system dynamics given we 

know only the expected energy. (That is, the degree of our ignorance over-and-above our 

unavoidable ignorance due to the uncertainty principle.) Hence (8.3.10) gives a relation 

between the thermodynamic entropy of an isolated system and our information entropy. 

The first is just k  times the second. 

 Now under slow (reversible) injection of heat into the system with external 

conditions held constant (e.g. with the volume occupied by a gas held constant) we have 

the thermodynamic relation dWTdSdU   in which T  is the absolute temperature (in 

Ko ) and the work done is zero, i.e. 0dW . Identifying the change dU  in internal 

energy with Ed  we therefore expect 
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where the partial derivative refers to constant external conditions (constant volume in the 

case of a gas). Applying this to (8.3.10) we find 
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.       (8.3.11) 

 

Since external conditions are fixed the wave functions )(qnl  in our representative array 

 nlnl wq);(  together with the associated energy eigenvalues nE  remain constant (only 

the weights nlw  change). Hence 
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which by (8.2.9) is just E . So (8.3.11) gives 
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kT

1
          (8.3.12) 

 

and by (8.3.10) 

 

E
T

Sk
1

          (8.3.13) 

 

which relates   to the thermodynamic entropy, the absolute temperature and the 

expected energy of the system. The latter we have identified with the internal energy as in 

relation (8.1). This identification is only specified to within an additive constant ( 0U  in 

(8.1)) so   too is identified only to within a (related) additive constant.* 

 

 

8.4 The value of the constant k  and the case of the perfect gas 

 

For the purpose of finding the value of k  and of illustrating the derivation of equations of 

state, we consider the simple case of the perfect gas, or more precisely the case of many 

non-interacting spin-less (non-identical) particles of the same mass enclosed in a box. We 

need consider only the case in which external conditions may be changed by adjusting the 

length a  of one side of the box. 

 With coordinates chosen as in section 3.1.1 of Chapter XI the wave functions 

)(qnl  in our representative array  nlnl wq);(  are products of the wave functions 
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in (3.1.1.1) of Chapter XI, for all N  particles present. The energy associated with (8.4.1) 

is, by (3.1.1.3) of Chapter XI 
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* It is not the case that by (8.3.13) E  is necessarily zero at absolute zero because as 0T  we have by 

(8.3.12) that   and therefore (by (8.2.9))  . In multiplying (8.3.13) through by T  and 

letting 0T  it is then not necessarily the case that 0T . 
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In our array  nlnl wq);(  we now replace the parameters nl  by the parameters 
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1 ... NNN nnnnnn  i.e. for the combined triplets 321 nnn  for each particle, each n  

taking values ...2,1 .* And the energy going with the stationary wave function )(qnl  is 
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We thus have for the value of 
e  in (8.2.9) the expression 
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Substitution of (8.4.3) into this gives a product of sums of the form 
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with different (positive) values of   independent of n . The values of   are in practice 

usually exceedingly small compared to 1 enabling us to use the approximation 
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where the error is (as indicated) of order 1 . The integral has the analytical value 

)2(   so the condition for replacing the sum by the integral is that† 
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 Using the integral approximation (8.4.4) becomes 
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* To maintain the original parameters nl  would be again to create quite unnecessary difficulties. It is often 

sufficient to remember that any sum over parameters nl  is a sum over all the possible stationary state 

labels. 

† In the modelling of gases   is, as can be verified later, generally of the order of 
1610

 (see for example 

p. 41 of Rushbrooke [29]) and this condition is well satisfied. 



XIV. Mixed states of knowledge 

 389 

where V  )( abc  is the internal volume of the box. Hence 
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     (8.4.5) 

 

 From the thermodynamic relation pdVTdSdU   and the relation  
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T
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derived from (8.3.13) assuming a constant temperature, we obtain, on identifying Ed  

with dU , the result 
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giving by (8.4.5) the equation of state 

 

NkTpV  .         (8.4.6) 

 

 Comparing (8.4.6) with the well known (classical thermodynamics) equation of 

state for a perfect gas in the form 

 

nRTpV   

 

where n  is the number of moles of gas present and KJ/  315.8 oR  is the universal gas 

constant we obtain for k  the value 
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NT

nRT
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where )( nNNA   is Avogadro’s number (the number of molecules per mole) equal to 
2310022.6  . This gives for k  (which is of course Boltzman’s constant) the value 

KJ/  10380.1 o23k . 

 Finally we derive the formula for the internal energy E . By (8.2.9), since the 

possible energy levels of the system remain the same when the volume is fixed (meaning 

the dimensions of the box are kept the same), we can write 
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Using (8.4.5) for  , we therefore obtain  

 

NkTNE
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         (8.4.7) 

 

for the internal energy of the gas. If we define the classical thermodynamic internal 

energy U  of a perfect gas (i.e. choose its additive constant) to be such that U  vanishes at 

absolute zero then E  and U  coincide exactly. 

 Differentiating (8.4.7) with respect to T  keeping the volume constant gives the 

specific heat at constant volume as 
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 .        (8.4.8) 

 

 

8.5 The likely deviation of the system energy from its expected value 

 

When we suppose knowledge of the expected energy E  of the system (viewed as a 

quantum mechanical system) we claim (as we have said) to be in a mixed state of 

knowledge regarding system dynamics and on that basis we have deduced the form of an 

array  nlnl wq);(  representing that state of knowledge. As explained in section 2 we are 

therefore in a position to calculate our degree of belief distribution over the property 

values nl . This degree of belief distribution is none other than the function nlw  of nl  

which is calculated to be as given in (8.2.8) in which   and   are given by (8.2.9). This 

distribution will (by summing over l ) give us also our degree of belief distribution over 

the possible energy levels nE  of the system. And with regard to that distribution its mean 

value (given by the first of (8.2.6)) is of course known already.  

 But of interest also is the standard deviation E  (defined in (8.2.4)) of the actual 

energy from its expected value. An expression for this in terms of thermodynamic 

properties can now be obtained assuming the validity of the identification of E  with the 

internal energy and of   and   with other thermodynamic properties as explained. 

 Expanding the bracket in (8.2.4) we find 
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nnlE EwwEEEwEEw )2()( 2222    (8.5.1) 

 

where the last term in the summand gives simply 2E  and the second term in the 

summand gives 22E . To evaluate what the first term in the summand gives we start 

again with the equality 
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which comes from (8.2.9) and differentiate it with respect to   keeping the external 

conditions (and therefore the nE  values) constant. This provides the equation 

 

2

2

2








































nl

E

nl

E

n

nl

E

nl

E

n

n

n

n

n

e

eE

e

eE
E

. 

 

Here the last term is 2E  so the equation gives 
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Substituting this in (8.5.1) we find 
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Since   is simply related to the temperature by (8.3.12) we have 
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so we have  
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where  

 






E
C  

 

is the specific heat of the system under constant external conditions, i.e. without external 

work. The ratio of the standard deviation to the expected energy itself can therefore be 

expressed as 
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         (8.5.2) 

 

and for consistency of the whole theory we require this to be exceedingly small compared 

to 1 . 

 In the case of the perfect gas, we have (8.4.7) for E  and (8.4.8) for the specific 

heat at constant volume. With these values we find from (8.5.2) that 
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As N  is generally of the order of Avogadro’s number 
2310022.6   the requirement for 

EE  to be small is fulfilled well enough. In fact the whole distribution over the 

possible energy values is highly concentrated near to E . 

 At first sight it is unclear from the simple exponential form of the distribution nlw  

in (8.2.8) how our degree of belief distribution over energy values can be so sharp (so 

concentrated around E ). The reason is that the number of stationary quantum states 

whose energies lie in a classically small range E  to EE   grows rapidly with E . For 

example, in the case of the modelling of a perfect gas in section 8.4, the stationary 

quantum states are represented by points in a discrete N3  dimensional space 

corresponding to (natural number) coordinates )(

3

)(

2

)(

1

)1(

3

)1(

2

)1(

1 ,,,...,, NNN nnnnnn  and if the 

sides ba,  and c  of the box are equal, the energy of the stationary states is proportional to 

the square of the distance r  from the origin of the N3  dimensional space. The number of 

stationary states for which r  lies between r  and rr   (where r  represents a 

classically small energy spacing) is proportional to the volume of space between the 

hyperspheres of radii r  and rr   or to the surface area of the hypersphere radius r  

times the distance r , i.e. proportional to rr N 13 . By (8.2.8) the weight to be attached 

to stationary states in this ‘spherical shell’ is therefore proportional to rer rN  213
 where 

  is a positive constant. And since E  is proportional to 2r  our degree of belief 

distribution over E  is proportional to EN
eE 1

2

3

 where   is positive constant. So E2  

follows a chi-square distribution with N3  degrees of freedom, its mean value being N3  

and its standard deviation N6 . Since N  is so very large, this chi-square distribution is 

essentially a normal distribution so the whole distribution is concentrated very close to its 

mean value, i.e. there is no significant part of it (or no significant tail extending out) far 

from the mean value.  

 

 

9. Harmless conditioning under mixed states of knowledge 

 

The possibility of harmless conditioning generalises to the case of mixed states. Having 

obtained mixed knowledge Z  of a system S  referred to sample space S  covering a time 

period 0t  to 1t , we claim we can, by observation learn by chance at time 2t  (where 
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120 ttt  ) the truth of a disjunction A  of propositions ix  of any primary basis x  of S  

referring to time 2t . This can be achieved instantly and harmlessly with respect to the 

properties claimed by the propositions of the basis x  (but not of course harmlessly with 

respect to other bases in S ).  

 From time 2t  we are then in a mixed state of knowledge AZ  in relation to S  

which includes only the propositions of S  that relate to times 2t  to 1t . If our original 

state of knowledge Z  is represented by array (1.1), where we suppose ix  is a primary 

basis, then our mixed state of knowledge AZ  will be represented by the array 

 

 mmii wwAYxAYx ,...);(),...( 11        (9.1) 

 

where the weights remain the same and the wave functions are those that would apply 

after the same harmless conditioning under the pure states of knowledge jY  ( mj ,...1 ). 

Those wave functions take the form calculated for them in section 4 of Chapter II, i.e. 
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where jk  is the (indeterminate) phase characteristic of knowledge jY . 

 

 

10. Quasi-classical mixed states of knowledge 

 

In addition to quasi-classical pure states of knowledge of a quantum mechanical process, 

under which we expect that over a time period the particles in question move 

approximately in a classical manner and more and more precisely so in a certain limit 

(see leading paragraphs in Chapter XII), there are quasi-classical mixed states of 

knowledge where the same applies. The correspondence principle in section 3.4 of 

Chapter III holds true for quasi-classical mixed states as well as for quasi-classical pure 

states. 

 The general quasi-classical mixed state of knowledge is represented by an array of 

the form (1.1) in which the wave functions, formally represented by )( ji Yx  ( mj ,...1 ), 

are all quasi-classical over the time period. During that time period we claim that (to 

classical accuracy) the n  particles of the system follow classical paths under the system 

potential or the representative point in the n3  dimensional particle position configuration 

space follows a classical path in that space which is one of the possible classical paths 

associated with one of the wave functions )( ji Yx . And the degree of belief we should 

assign to such a path is the degree of belief we would apply if we were in the quasi-
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classical pure state of knowledge (represented by )( ji Yx ) times the corresponding 

weight jw  in our array. 

 This rule for the degree of belief in the classical orbits assumes that the classical 

orbits represented by the )( ji Yx  ( mj ,...1 ) are different (each orbit unique to one 

wave function). If this is not the case some of the degrees of belief will have to be 

compounded (added) to give the net degree of belief to assign to a particular orbit.  

In any case when the degree of belief of each orbit is calculated, the degree of 

belief density at any point and any time in n3  dimensional particle (position) 

configuration space can be calculated as can the degree of belief density in n3  

dimensional particle momentum space, or in the n6  dimensional particle 

position/momentum space. In particular, we see the possibility, when working to classical 

accuracy, of holding a joint probability distribution over position r  and momentum p  of 

a single particle when our knowledge of the dynamical properties of the particle is of a 

certain kind. 

 

 

11. Part-quasi-classical mixed states 

 

As well as quasi-classical mixed states of knowledge of a quantum mechanical system 

over time there are part-quasi-classical mixed states of knowledge. These generalise the 

part-quasi-classical pure states of knowledge in section 1.4 of Chapter XII. 

 A part-quasi-classical mixed state of knowledge of the orbital motion of a system 

of n  particles over a time period is represented by an array  mmii wwYxYx ,...);(),...( 11   

(of the form (1.1)) in which each wave function )( ji Yx  ( mj ,...1 ) is a part-quasi-

classical wave function, i.e. one which may be expressed thus: 

 

)()()( )qc(

0

)0(

jiqcjjijji YxkYxkYx       (11.1) 

 

(cf. (1.4.1) of Chapter XII) where we take the basis ix  to represent the coordinates of all 

the n  particles of the system in configuration space. The (normalised) quasi-classical part 

)( jiqc Yx  is (for any j ) well separated (in configuration space) from the non-quasi-

classical part )(0 ji Yx  (which is also normalised). 

 We claim that under the part-quasi-classical mixed state of knowledge and during 

the time period in question, either the particles are moving (to classical accuracy) in a 

classical manner as they would under the mixed state of knowledge  

 

 mmmii wlwlYxYx ,...);(),...( 11qc1qc        (11.2) 

 

or the particles are occupying regions of space as they would under the mixed state of 

knowledge  
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 mmmii wpwpYxYx ,...);(),...( 11010        (11.3) 

 

the factors jl  in (11.2) and jp  in (11.3) being given by 
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And the probabilities for one or other possibility are 
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respectively,   and   being indeterminate phases. Since (for each j ) 
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in (11.1), we have by (11.5) and (1.2) that (as required) 
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The above law of part-quasi-classical mixed states is meant to include cases in which 

some of the 
(qc)

jk  or the 
(0)

jk  are zero, i.e. to cases where some of the wave functions of 

the array representing our part-quasi-classical mixed state of knowledge are simply 

ordinary wave functions or simply quasi-classical wave functions (not superpositions of 

these types). Then (11.1)-(11.7) still formally apply and some of the weights in arrays 

(11.2) and (11.3) are zero and their corresponding wave functions may be set equal to any 

wave functions we choose (see the penultimate paragraph of section 1). 

 In particular if all the )( ji Yx  ( mj ,...1 ) are quasi-classical except for one (say 

the wave functions corresponding to 1j ) then all the weights in (11.3) are zero except 

for the first (which is equal to 1) while just the first weight in (11.2) is zero. Since arrays, 

some of whose weights are zero, can be reduced by leaving out those weights and their 

corresponding wave functions, it follows that in this case (11.3) is an array representing 

the pure state of knowledge )( 10 Yxi . 

 Note that we are not generally claiming that we should be either in the mixed state 

of knowledge represented by array (11.2) or in the mixed state of knowledge represented 

by (11.3). But we do claim that if we should fail to observe particles in classical motion 

in the regions where they might be expected, then this ‘null measurement’ should lead us 

to adopt the array (11.3) to represent our revised mixed state of knowledge.  
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 The theory of part-quasi-classical mixed sates of knowledge will be of importance 

in connection with the realisation of pure states (in the next section). 

 

 

12. The acquisition of pure states of knowledge 

 

In our interpretation of quantum mechanics we have claimed that it is always possible, in 

principle, for us to be in a pure state of knowledge (regarding the dynamical properties of 

a quantum mechanical system) represented by any one wave function specified to within 

an arbitrary constant phase factor. For completeness, we need to show how this is 

possible. We can do this by modelling preparation processes that assume only easily 

acquired (non-pure) prior knowledge of a system’s dynamics but demonstratively result 

in (posterior) pure knowledge of the system’s dynamics. We give examples below. Of 

course, in these examples, and generally, pure states are ideal states of knowledge that 

can never be exactly realised, but only realised to ‘quantum mechanical accuracy’. 

 Since a wave function changes (according to the Schrödinger equation) whenever 

the system in question moves under the action of a known inter-particle potential and 

known external fields, there are (over time) very many wave functions associated with 

the same pure state of knowledge. Therefore, having realised a particular wave function 

(for example the wave function representing knowledge of a particle’s momentum at one 

time) we have, in time, realised every wave function into which the original wave 

function evolves in given external fields. Indeed, having realised any one wave function 

referring to one time, we may assume that any other wave function for the same system 

may be eventually realised if only the external fields to which the system is subjected are 

suitably chosen. So it is sufficient to show how to realise any one (‘primary’) wave 

function of a system (referring to a basic set of properties at one time) in order to show 

that any wave function for that system could be realised.  

 We give below only methods for realising ‘primary’ wave functions for a single 

particle. But of course, using the methods to be described, primary wave functions for 

several particles might be realised simultaneously and independently (in different regions 

of space) to give multi-particle wave functions separable into single particle wave 

functions. And then, by letting the particles move in external fields and interact with each 

other under supposed known time-dependent inter-particle potentials, we might (in 

principle) realise any inseparable multi-particle wave function. 

 

 

12.1 Preparation of a pure state of knowledge of a particle’s position 

 

Suppose we know only that the particle is enclosed (on its own) in a ‘box’ as defined in 

section 3.1.1 of Chapter XI. This is arguably a feasible initial state of knowledge to be in 

from a practical point of view, and for convenience we take the sides of the box to be of 

equal length. 

 By the third law of array assignment (section 6) our mixed state of knowledge is 

represented by an array containing any complete set of (allowed) orthogonal wave 

functions and equal weights. Taking the wave functions to be those in (3.1.1.1) of 
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Chapter XI labelled by the ordered integers ),,( 321 nnn  each going from 1  to N  (and 

letting N  eventually) the array representing our initial knowledge can be written 

 

 ,......,;),...,,(...,
321321 nnnnnn wzyx       (12.1.1) 

 

where the weights 
321 nnnw  are all equal.  

 To avoid having to take the limit as N  we might instead assume we know 

that (i) the particle is in the box and (ii) its kinetic energy is (for all time) less than a 

certain value 0E . This is arguably also a feasible initial state of knowledge. Then, 

claiming this state of knowledge qualifies as a ‘mixed state’ and noting that this state of 

knowledge is time independent, we can argue (in the way we did in section 8.1) that the 

stationary state wave functions ),,(
321

zyxnnn  may be employed in the array representing 

our mixed state of knowledge. The weights in our array can then be found by applying 

the second law of array assignment, our constraints on the weights being 

 

1  and   :for   ,0
321

321321321 0  
nnn

nnnnnnnnn wEEw .    (12.1.2) 

 

The second of these is straightforward normalisation. The first is a consequence of the 

general law of probability of a parametric property (see (2.1.2)) and the fact that the  

kinetic energy is known to be greater than or equal to 0E . Since the energy 
321 nnnE  

associated with ),,(
321

zyxnnn  is (by (3.1.1.3) of Chapter XI) proportional to the sum of 

the squares of 1n , 2n  and 3n  (the sides of the box being equal), the first constraint 

amounts to the requirement that the weights 
321 nnnw  are zero for points ),,( 321 nnn  (in a 

representative 3-D space) lying outside a certain sphere whose centre is at the origin. Let 

the number of such points lying within the sphere be 0N . Then the information entropy in 

the second law of array assignment is maximised when the 0N  weights (one for each 

representative point within the sphere) are all equal. So our array has the same form as in 

(12.1.1) except that the number 0N  of wave functions ),,(
321

zyxnnn , and of weights 

321 nnnw , is finite, each weight being equal to 
0

1

N
, and the wave functions (and weights) are 

of course limited to those for which the points ),,( 321 nnn  in 3-D representative space lie 

inside the sphere. 

 

To prepare the particle so that we have a pure state of knowledge of its position we can 

proceed as follows.  

 At time t  let the external potential providing the ‘walls’ of the box be ‘switched 

off’ and let us, at the same time, attempt, by the method of section 2.2 of Chapter XIII, to 

locate the particle position at a point ),,( 000 zyx  at which none of the 
321 nnn  in (12.1.1) 

vanish. Accordingly, we apply, within the box (from time t  to time t ) and in all but a 

vanishingly small region around ),,( 000 zyx , a scalar potential with a large gradient k  in 
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the x  direction, taking the limit as k  and 0  while k  remains finite and large 

and then the limit k  as the small region around ),,( 000 zyx  becomes a (quantum 

mechanical) infinitesimal. Then, if no particle in classical motion is observed far away 

shortly after time t  we establish, harmlessly with regard to particle position, that the 

particle is at ),,( 000 zyx  at time t . That is, we establish a wave function 

 

)()()(),,( 000 zzyyxxzyx       (12.1.3) 

 

expressing our (now pure) state of knowledge that the particle is at ),,( 000 zyx . 

 That this method will work, i.e. will result in a pure state of knowledge 

represented by (12.1.3), follows from the law of natural evolution of an array 

representing a mixed state of knowledge (section 1) and from the law of part-quasi-

classical mixed states (section 11). By the first law, each wave function in our array 

evolves according to the Schrödinger equation while the weights remain constant. In the 

short time from t  to time t , therefore, each wave function ),,(
321

zyxnnn  in our initial 

array (12.1.1) evolves into a part-quasi-classical form: 

 

),,()()()(),,(
321321321321

)qc(
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)0( zyxkzzyyxxkzyx nnnnnnnnnnnn   (12.1.4) 

 

where ),,(
321

zyxnnn  is a normalised quasi-classical wave function of the form of a fast 

travelling wave packet soon enough far away (far away from the region of space initially 

occupied by the box), and the k s are non-zero complex constants. If we observe no 

classical particle far away (in the region of space where the ),,(
321

zyxnnn  have 

significant value, then, by the law of part-quasi-classical mixed states of knowledge, the 

array representing our knowledge collapses to  

 

 ,......,),...;()()(...,
321321000 nnnnnn wpzzyyxx      (12.1.5) 

 

where the wave functions are all the same. Regardless of the values of the weights in 

(12.1.5), this array represents a pure state of knowledge of particle dynamics with wave 

function given by (12.1.3) to within a constant phase factor (see section 2.3). So we have, 

in principle, achieved what we set out to do. 

 

 

12.2 Preparation of a pure state of knowledge of a particle’s spin component 

 

Let the particle have spin s  so that its z  component of spin (in a fixed coordinate system 

O ) takes one of the 12 s  values sss ,...1,  . 

 Suppose we know initially, as in section 12.1, that (i) the particle is in a box and 

(ii) its kinetic energy is (for all time) less than a certain value 0E . And suppose we know 

(iii) that there is no external magnetic field, and we know nothing about the z  component 

of the particle’s spin. We again claim we are in a mixed state of knowledge (in relation to 
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closed sample space rS  which is the combination of closed sample spaces 
rS  and S ), 

and since this is knowledge that remains the same in time, the array representing our 

knowledge may employ a complete set of orthogonal stationary wave functions of the 

system. We thus take the wave functions to be 
4321

),,( nnnn zyx  where the ),,(
321

zyxnnn  

are as in section 12.1 and 4n  is a new parameter taking values sss ,...1,  . Applying 

the second law of array assignment we have (in a way very similar to that in section 12.1) 

that the array representing our knowledge has the form 

 

 ,......,;,...),,(...,
)12(

0

1

4321 
sNnnnn zyx       (12.2.1) 

 

where the weights are all equal and are now )12(0 sN  in number. 

 We note that the array (12.2.1) factors (in the sense of section 3) and therefore 

represents a state of knowledge the same as having a mixed state of knowledge in rS  

with array 

 

 ,......,;),...,,(...,
0

1

321 Nnnn zyx        (12.2.2) 

 

and a mixed state of knowledge in S  with array 

 

 ,......,;,......,
)12(

1

4  sn         (12.2.3) 

 

the weights in each array being equal among themselves. 

 

To prepare the particle so that we have a pure state of knowledge in S  regarding its spin 

component, we can proceed as follows. 

 At time t  let the external potential providing the ‘walls’ of the box be ‘switched 

off’ and let us attempt to instantly establish that the particle’s z  component of spin in O  

has some particular value 0  by employing the method of section 3.1 of Chapter XIII.  

 That method requires us to apply (from time t  to time t ) a magnetic field in 

the z  direction with a gradient k  in the x  direction. We take the limit as k  and 

0  while k  remains finite and large. This will cause wave functions 

4321
),,( nnnn zyx   for which 04 n  to move (as wave packets 

4321
),,( nnnn zyx  ) rapidly 

in the x  direction into regions far off (wave functions 
4321

),,( nnnn zyx   with the same 

value of 4n  sharing the same region). If we are seeking to establish that 0  (i.e. if 

00  ) we apply no more impulsive fields. But if we are seeking to establish that 0  

where 00  , we apply, immediately after the magnetic impulse, an ordinary potential 

gradient impulse to the wave functions 0),,(
321  zyxnnn  (which have not been moved by 

our magnetic impulse), to send them off to infinity in a different direction. Now, when 

00  , we apply to the region occupied by the wave functions 
0321

),,(  zyxnnn  and to 

no other region, a magnetic field gradient impulse of opposite sign and twice as great as 
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that initially applied. This will send those wave functions back to the region where the 

box was situated and as they arrive back we bring them to rest by applying a final 

magnetic field gradient impulse equal to that first applied. The result (whether or not 

00  ) is that the wave functions 
0321

),,(  zyxnnn  are returned to their original forms 

while the others (those for which 04 n ) are sent flying.  

 The array (12.2.1) representing our initial state of knowledge accordingly changes 

to one with the same weights (all equal) but with the following wave functions. We have 

0N  ordinary wave functions 
0321

),,(  zyxnnn  which are the same as they where in 

(12.2.1) and sN 2.0  wave functions 
4321

),,( nnnn zyx  (where 04 n ) which are now 

flying wave packets far away (see section 3.1 of Chapter XIII). We write this array as 

 

 ,......,;,...),,(,...,),,(...,
)12(

0

1

03214321  
sNnnnnnnn zyxzyx    (12.2.4) 

 

where, for convenience, all the wave packet wave functions come first and all the 

ordinary (returned) wave functions come after. 

 Array (12.2.4) represents a part-quasi-classical mixed state of knowledge (section 

11) in which some of the wave functions are ordinary wave functions and some are quasi-

classical wave functions carrying the definite spin component value 0 . We accordingly 

know the particle is moving (to classical accuracy) in one or other of the classical paths 

associated with the quasi-classical wave functions 
4321

),,( nnnn zyx  (where 04 n ), as 

under the mixed state of knowledge represented by the array 

 

  ,......,;,...),,(...,
2.

0

1

4321 sNnnnn zyx   )( 04 n     (12.2.5) 

 

or the particle is somewhere in the region where it was initially under the mixed state of 

knowledge represented by the array 

 

 ,......,;,...),,(...,
0

1

0321 Nnnn zyx  .      (12.2.6) 

 

Our degrees of belief for these alternatives are (by (11.5)) the relative number of wave 

packet wave functions in (12.2.4) and the relative number of non-wave-packet wave 

functions in (12.2.4). These are respectively the same as the relative numbers of 

associated spin components, i.e. 
12

2

s

s  and 
12

1

s
. 

 If we fail to observe, just after time t , a particle in classical motion far away, the 

array representing our mixed state of knowledge collapses from (12.2.4) to (12.2.6), (see 

the end of section 11). Further, our collapsed array (12.2.6) factors into mixed state array 

 

 1;
0          (12.2.7) 

 

in S , and mixed state array 
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 ,......,;),...,,(...,
0

1

321 Nnnn zyx        (12.2.8) 

 

in 
rS . The first represents a pure state of knowledge now held in S , namely knowledge 

that the z  component of spin of the particle is 0 . So we have achieved what we set out 

to do. The second array represents a mixed state of knowledge now held in 
rS  which is 

just the mixed state that would apply had we disregarded our knowledge that the particle 

has spin. Clearly we may now switch back on the potentials providing the walls of the 

box and hold (after time t ) the pure state of knowledge represented by the array (12.2.7) 

in S  and the mixed state of knowledge represented by the array (12.2.8) in 
rS . 

 

 

12.3 Preparation of a pure state of knowledge of a particle’s momentum 

 

We now model a method for preparing a particle (mass m ) so that when the particle 

moves freely after time 0t  we hold (pure) knowledge (in the sample space 
rS ) of its 

constant momentum p  relative to a fixed coordinate system O . The following method is 

related to the heuristic procedure used by Feynman and Hibbs (p. 97 of [16]) for deriving 

the wave function in the momentum representation from the wave function in the position 

representation. 

 Let 0r  denote a position in our fixed coordinate system O  related to the required 

momentum p  by 00 rprp  . So the vector 0r  points (from the origin) in a direction 

opposite to that of p . At time pmrt 00   let us suppose we have located the particle at 

0r  so that at time 0t  we are in a pure state of knowledge of its position represented by the 

wave function  

 

)( 0rr  .         (12.3.1) 

 

We can do this using the method given in section 12.1. 

 Allowing the particle to move freely after time 0t  our wave function at time t  

(with 0tt  ) is, by (1.20) of Chapter IV 

 

)
)(2

)(
(exp)

)(2
()(

0

2

0230

00 tt

m
i

m

tti
tt




 



 rr
rr

     (12.3.2) 

 

where   has been put equal to its known value of 
2

1 . More correctly, our wave function 

),( tr  is, by the first of (1.2) of Chapter IV, 

 

Vtt t  )(),(
00

rr r         (12.3.3) 
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where V  is the volume element at 0r  in which we initially located the particle. (Ideally 

0V  or rather V  is an infinitesimal.) 

 Now at time 0t  let us suppose we establish, by harmless conditioning (as in 

section 2.1 of Chapter XIII) that the particle is inside a volume V  of space containing the 

origin of our coordinates. We will suppose point 0r  is so far away from V  that V  

subtends a small solid angle from 0r . But, be this as it may, our wave function (12.3.2) 

collapses to  

 

V
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edV
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    (12.3.4) 

 

(cf. (4.2) of Chapter II) where k  is the phase characteristic of our knowledge that the 

particle is at 0r  at time 0t  and   is our phase of belief that under the same knowledge the 

particle is in V  at time 0t . Of course k ,   and  k  are indeterminate. 

 By (12.3.2) 

 

V
m

pmr
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And (12.3.4) becomes 
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   (12.3.5) 

 

 

Now in (12.3.5) 
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and since 00 rprp  , we have, in (12.3.5) that 

 

0

2
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2

0

2
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1
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r

rr
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pmr
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rr
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The second term on the RHS of (12.3.6) represents (in (12.3.5)) an unimportant constant 

phase factor 02

1
pr  plus a phase factor 0

2

2

1
rpr  which is 1  for all Vin    r  provided 
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0r  is chosen large enough, and accordingly 0t  made large enough so that p ( 00 tmr ) 

remains the same. If D  is the dimension of V  (so that 
3DV  ) we make 

 

p
D


    and   1

2

1

0

2


r

D
p


. 

 

The first is to ensure there are very many de Broglie wavelengths within V  and the 

second is to ensure 0

2

2

1
rpr  is 1 . The two requirements are together equivalent to 

 

0

2

2

1

r

D

p
D 


        (12.3.7) 

 

which can be met (for any aimed-at-value of p ) by first making D  large enough 

compared to p  and then making 0r  large enough in comparison to D  (with 0t  chosen 

so that ptmr 00 ). 

 Then, in V , we have from (12.3.5) and (12.3.6) that 

 

).exp()0,( 21   iiV rpr       (12.3.8) 

 

where   is an indeterminate constant phase. Allowing V  to tend to infinity (as we have 

seen we may) (12.3.8) has the same form as the derived ideal wave function representing 

knowledge that the momentum p  lies in an infinitesimal element p
3d  of momentum 

space, i.e. the same form as the wave function 

 

 ).(exp)2()0,( 323
prpr di   . 

 

See the first of (3.10) of Chapter VI where the indeterminate constant phase factor was 

conventionally taken as 1 . So we have achieved a pure state of knowledge of the 

particle’s momentum. 
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CHAPTER XV 

 

THE RESOLUTION OF PARADOXES 
 

 

The interpretation of quantum mechanics we offer in the present work is not a hidden-

variables theory in the sense that we provide laws that certain hidden variables must 

follow and deduce the formalism of quantum mechanics from these laws using classical 

probability theory. It is however a hidden-variables theory in the sense that we take all 

properties (as represented, in the usual formalism, by complete sets of commuting 

observables in component Hilbert spaces) to have definite (usually hidden) values. (So, 

for example, the position of a particle is considered to exist objectively and its 

momentum too is considered to exist objectively, and so on. The position vector r  and 

momentum vector p  of each particle in a particle system are thus assumed to have 

definite values at any time regardless of any knowledge we may or may not have of the 

system dynamics.) We do not claim to know the detailed laws of evolution of properties 

but instead claim to know only certain general laws governing their evolution (such as the 

possibility of time-reversal). And on the basis of this limited knowledge we deduce the 

equations of the usual quantum mechanical formalism using a new (rational-Bayesian) 

probability theory.  

 Now various arguments have been put forward to show that hidden-variables 

theories (of any kind) are untenable; that they are not consistent with the usual formalism 

of quantum mechanics. In this Chapter we consider some of these arguments in order to 

show that they are not providing reasons why the present interpretation must be 

inconsistent.  

 

 

1. The Kochen-Specker paradox 

 

Accounts of the Kochen-Specker paradox are given by Belinfante [26] and Redhead [4]. 

In its general form (section 3.5 of [26]), and in our notation, the Kochen-Specker paradox 

relates to sets of orthogonal wave functions )( ji Px  of the kind discussed in section 

3.12 of Chapter I in connection with the law of general dynamical properties and 

associated probabilities. We claimed there that to any complete set of orthogonal wave 

functions )( ji Px  ( Nj ,...1 ) of unspecified absolute phase there corresponds a 

dynamical property P  of our system S  quantified by j  ( Nj ,...1 ), and each state of 

knowledge jP  (associated with the wave function )( ji Px ) is represented by 

proposition jP  claiming that P  is quantified by j . And in the expansion of any wave 

function )( Yxi  in the )( ji Px , i.e. in 
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j

jiji PxaYx )()(        (1.1) 

 

the squared moduli of the coefficients give the degrees of belief we should hold for P  

being quantified by j  under knowledge Y , so that 

 
22

)( jj aYP  .        (1.2) 

 

Now to derive the Kochen-Specker paradox we need to suppose that: 

 

 If jP  ( Nj ,...1 ) and kP   ( Nk ,...1 )  are properties of S  corresponding to two 

complete sets of orthogonal wave functions )( ji Px  and )( ki Px   (of 

indeterminate absolute phase) which share a common member, so that for a 

particular value of j  and a particular value of  k  

 
 i

kiji ePxPx )()(  for all i       (1.3) 

 

(  being some constant phase) then (for that particular value of j  and that 

particular value of k ) 

 

kj PP  .        (1.4) 

 

That is, under relation (1.3), and under our general knowledge G , proposition jP  

(claiming P  is quantified by j ) implies proposition kP  (claiming P  is quantified by k ) 

and vice versa, independently of any knowledge we may or may not hold with regard to 

the dynamical properties of the system S .* 

 Under this supposition a contradiction arises. For we may picture the wave 

functions )( ji Px  and the wave functions )( ki Px   as orthogonal sets of unit vectors 

from the origin of a function space of dimension N , and under any state of knowledge Y  

in S  (pure or not) can imagine each vector of the set )( ji Px  to be labelled 1  or 0  

according as P  is (under knowledge Y ) in fact quantified by j  or not. And we can 

                                                 
* We would naturally take this to be true if we were to regard wave functions as representing states of the 

system under given physical conditions rather than probability distributions going with states of our 

knowledge. Then (1.3) would imply the same state of the system accompanied properties jP  and kP . So 

when property jP  is present state )( ji Px  is present and therefore property kP  is present also. (For if 

lP   (with kl  ) was present instead the system would be in state )( li Px   different from the state 

)( ji Px .) 
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imagine similar labelling applied to the set of vectors )( ki Px   or )( ki Px   …etc. formed 

by rotating the set )( ji Px  (as a whole) in function space in any manner we please*. 

Then, of course, whenever the set )( ki Px   shares a common member with another set 

)( ki Px   there would be need, on account of result (1.4), to assign the same value (1  or 

0 ) to the shared vector. But such labelling of vectors in a function space is precisely 

what Kochen and Specker have shown to be impossible for 3N . 

 However, in the present interpretation of quantum mechanics, (1.4) does not 

follow from (1.3). We can show (as done in section 6.3 of Chapter II), that for the 

particular value of j  and the particular value of k  for which (1.3) applies 

 
 i

kj ePP )(    and    i

jk ePP )(  

 

where   and   are indeterminate phases. But by the first law of extreme values of 

probability, it follows from this (as explained in section 6.3 of Chapter II) only that the 

acquisition of knowledge of the truth of kP  (or of jP ) by measurement or system 

preparation brings about or ensures the truth of jP  (or of kP  respectively). Ordinarily, the 

properties jP  and kP  do not necessarily occur together. So the Kochen-Specker paradox 

does not arise because, in the proposed labelling, the common vectors from sets )( ji Px  

( Nj ,...1 ) and )( ki Px   ( Nk ,...1 ) need not be assigned the same value (1  or 0 ).  

 In the present interpretation of quantum mechanics we are thus free to claim that 

all properties have definite values without giving rise to the Kochen-Specker paradox. 

 

 

2. Nonlocality and Bell’s theorem 

 

Bell’s theorem (or Bell’s inequality) has been much discussed in the literature on the 

interpretation of quantum mechanics and formulated in different ways (see for example 

Chapter 4 of [4]). It relates to measurements made by two observers widely separated 

from each other in space each measuring spin components of one of the two spin one-half 

particles immerging from a source (midway between the observers) in a ‘singlet spin 

state’. And it shows why certain general kinds of local-action statistical hidden-variables 

theories cannot account for the measurements made by the observers in repeated 

experiments. Certain statistical correlations between their measurements (predicted by the 

quantum theory and confirmed in practice) are shown to be necessarily different from the 

statistical correlations that any hidden-variables theory of the kind considered could come 

up with.  

 This has led some to the conclusion that a measurement of a spin component of 

one particle must instantly change a spin component of the other even though the 

particles may be as far away from each other as we please. Only in that way, they reason, 

                                                 
* This assumes any such rotation results in orthogonal functions that qualify as wave functions as is very 

often the case. 
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could the observed correlations be realistically explained. To these people (instant) 

‘action at a distance’* or ‘nonlocality’ is sometimes present in quantum mechanical 

processes. 

 In the present interpretation of quantum mechanics Bell type inequalities are not 

derivable because they employ classical probability which according to us does not apply 

at the quantum mechanical level. The classical laws of probability are not expected to 

apply to the probability distributions over quantum mechanical variables (like spin 

components) or to hidden-variables that might be associated with processes occurring at a 

deeper level. Accordingly we are not led to the belief in (instant) ‘action at a distance’ or 

‘nonlocality’. 

 It is of interest however to consider what the present interpretation of quantum 

mechanics has to say about some of the mathematical relations that arise in connection 

with measurements performed on a system of the kind envisaged by Bell.  

 

 

2.1 The system considered with measurements viewed as harmless conditioning 

 

We suppose, with Bell, that somehow a system composed of two non-identical spin one-

half particles 1  and 2  is prepared (set moving in free space) in a way that leads to our 

state of knowledge of its dynamical properties being represented, at any time (from time 

0t  onward), by a wave function in sample space 
2121

SS rr
 of the form 

 

))(,(),(
2

1

2

1
22

1
12

1
22

1
1

21 
 tt BA rr      (2.1.1) 

 

1r , 2r , 1 , 2  being the positions and z  components of spin of the particles in a fixed 

Cartesian coordinate system O , and A , B  normalised functions describable as separate 

wave packets moving away from the origin of O  in opposite directions along the x  axis 

of the coordinates. Since this wave function is a product of a function of 1r , 2r  and a 

function of 1 , 2 , and since 
21

S rr
 and 

21
S   are each closed sample spaces, our 

knowledge separates into pure knowledge in relation to the orbital motion of the particles 

and pure knowledge Y  relating to the spinning motion of the particles. And henceforth 

we speak theoretically only about our knowledge of the spinning motions, and we refer 

only to propositions in the sample space 
21

S  .  

 Our wave function in 
21

S   is 

 




 ieYt )(

2

1
)(

2

1
22

1
12

1
22

1
1

21      (2.1.2) 

 

where   is an indeterminate constant phase. Since there is no magnetic field, the 

Hamiltonian in (4.3) of Chapter VIII is zero so wave function (2.1.2) is independent of 

                                                 
* an action that, notably, cannot be used to communicate messages 
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time. And the component pair 21  (i.e. the values of 1  and 2 ) are naturally constant 

in time because the Schrödinger equation gives the result that the proposition 

‘
2

1

2

1

21   at time 0t ’ for example (which can be used to express a pure state of 

knowledge with wave function 
2

1
22

1
1

)(
02

1

2

1
21 

  tt ) implies ‘
2

1

2

1

21   at time 

t ’ (for any t  greater than 0t ) with a determinate phase of implication (namely zero) and 

therefore regardless of any knowledge we may or may not hold about the spinning 

motions; and similar remarks apply with regard to all other values of 21 .  

 Theoretically, the basis 21  is a primary basis so it is possible to perform 

harmless conditioning in 
21

S  . We suppose therefore that at some time 0tt   (when the 

particles are far apart) we harmlessly get to know the spin component 1 , finding that it 

is in fact 
2

1 . A question of interest is what does this tell us about 2  in the sample space 

21
S 
  following our harmless conditioning? To answer this question, we start by working 

out the probabilities for the possible values of 2  after we got to know that 1  was 
2

1 . 

 From the general result (4.2) of Chapter II, our wave function in 
21

S 
  just after 

the harmless conditioning at time t  is 
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where k  is the phase characteristic of our (initial) knowledge Y  and, by the sum rule 
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     (2.1.4) 

 

where   is the phase characteristic of proposition 
2

1

1   under knowledge Y . 

 Substituting (2.1.4) and (2.1.2) into (2.1.3) we find 

 
)(

2

1

121
2

1
22

1
1

)( 


 ieY       (2.1.5) 

 

and, because this is a product of a function of 1  and a function of 2  and the sample 

spaces 
1

S
  and 

2
S
  are closed, our knowledge splits into pure knowledge in 

1
S
  referring 

to particle 1  and pure knowledge in 
2

S
 referring to particle 2 . 
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 Applying (as we clearly may) the general result (1.4.4) of Chapter II to (2.1.5) 

with 
2

1

1   we should put for our wave function in 
2

S
 with our pure knowledge 

expressed as Y
2

1

1  : 

 
)(

2

1

12
2

1
2

)( 


 ieY       (2.1.6) 

 

where   is the phase characteristic of knowledge 
2

1

1  . Here  ,  and   are 

indeterminate and unrelated constant phases, and the total phase   in (2.1.6) is 

also indeterminate. Also, on account of the general rule (2.2.1.21) of Chapter I, we should 

put for our wave function in 
1

S
 with our knowledge expressed in the same way:* 

 
ikeY 




2

1
1

)(
2

1

11        (2.1.7) 

 

 Since there is no magnetic field, wave functions (2.1.6) and (2.1.7) hold for all 

times greater than t  and by the natural conservation of spin components in the absence 

of a magnetic field, 
2

1

1   and 
2

1

2   are necessarily true for all times greater than t . 

 Now on account of the indeterminate phase factor in (2.1.6) the first and second 

laws of extreme values of probability suggest that the acquisition of knowledge Y  and 

then of knowledge 
2

1

1   at time t  physically brings about or ensures the property 

2

1

2   thereafter. (And by a similar argument the acquisition of knowledge Y  and then 

of knowledge 
2

1

1   at time t  would physically bring about or ensure the property 

2

1

2   thereafter). Now we know, as we have said, that (on account of 21  being a 

primary basis) we can (as in (2.1.6)) get to know the value of 1  without affecting the 

value of 2  or of 1  itself. So it would have to be that the acquisition of knowledge Y  

alone was sufficient to ensure opposite spin components. That this is in fact the case (i.e. 

that opposite spins are ensured after acquiring knowledge Y  alone) may be directly 

confirmed as follows.  

 We calculate the wave function (under knowledge Y ) using the basis s  of total 

spin s  and its z  component  . This is done by transforming )( 21 Yt  to )( Yts  

using the transformation function in (3.5) of Chapter VIII. This gives, in the matrix 

notation 

 

                                                 
* Note that by the product rule for wave functions, the product of (2.1.6) and (2.1.7) should be the wave 

function )))(((
2

1

12

1

121 YY   in 
21

S 
 . Since, by (1.3) of Chapter II, 
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1 Y  with k , this is in agreement with (2.1.5). 
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Therefore, conversely, under supposed pure knowledge Z ‘ 0s  and 0  at time 0t ’ 

we find 
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which apart from a constant phase factor is the same wave function as (2.1.2). And 

because of the 1-1 correspondence (to within a constant phase factor) between wave 

functions (in basis 21 ) and pure states of knowledge of system dynamics, pure 

knowledge Z  is the same as pure knowledge Y . That is, we can be certain that 21   

under knowledge Y , and we can indeed claim that acquisition of knowledge Y  brings 

about or ensures the truth of the equality 21   from time 0t  onwards. 

 

 

2.2 The Bell-Wigner inequality and its implications 

 

We now consider an inequality that goes with Bell’s theorem but is more direct than the 

original Bell inequality in that it involves probabilities of spin component measurement 

results rather than correlations between such measurements. This ‘new’ inequality is due 

to Wigner and is described for example in section 6.7 of [30]. 

 In connection with the process of section 2.1, we now work in an alternative basis 

21  where 1  and 2  are the z  components of spin of particles 1  and 2  in stationary 

coordinates O  and O   respectively which share their x  axes with the x  axis of the 

original coordinates O  but have their z  axes rotated about the x  axis through angles   

and   respectively. 

 To obtain the wave function )( 21 Y  which corresponds to wave function 

(2.1.2) in the original basis we need the transformation function )( 2121   which 

will be the product of the transformation functions )( 11   and )( 22   given, in the 

matrix notation, by 
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as follows from the general transformation function in (3.5) and (5.16) of Chapter VII. 

Forming the product we obtain 
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And by Feyman’s law, the wave function (2.1.2) corresponds to the following wave 

function in the 21  basis: 

 









































 




   

    

    

    

0

0

coscossincoscossinsinsin

sincoscoscossinsincossin

cossinsinsincoscossincos

sinsincossinsincoscoscos

)(
2

2

22222222

22222222

22222222

22222222

21 ie

ie

iiii

iiii

iiii

iiii

Y


























 

 

 

 



2

2

2

2

sin

cos

cos

sin

2

1
                   

i

i

ei       (2.2.3) 

 

 Our degrees of belief that 
2

1

2

1

21   , 
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1

2

1
 , 

2

1

2

1
  or 

2

1

2

1
 , under knowledge Y , 

(i.e. that the (un-measured) system possesses these values under knowledge Y ) are 

therefore 
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And in particular the result  

 

2

22
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1
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 Y        (2.2.5) 

 

for our degree of belief that the z  components of spin of particles 1  and 2  are each 
2

1  in 

coordinate systems O  and O   respectively must hold for any angles   and   of the 

z  axes of O  and O   relative to the original coordinate system O . And this is deemed to 

be inconsistent with any local-action classical statistical theory claiming (as we do) 

possessed values of 1  and 2  for all angles   and  . 
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 For suppose, the argument goes, we take three directions ba,  and c  out from the 

origin (of our original coordinates O ) in the yz  plane. Taking the z  axis of O  in one or 

other of the directions cba ,,  and the z   axis of O   in one or other of the directions 

cba ,, , there should (under knowledge Y ) be definite (classical) probabilities for the spin 

components being 
2

1  (or 
2

1
 ) in each direction. Let a

1 , b

1 , c

1  be the 1  spin components 

of particle 1  with z  in the directions cba ,,  respectively, and let a

2 , b

2 , c

2  be the 2  

spin components of particle 2  with z   in the directions cba ,,  respectively. Then, 

thinking still in terms of a statistical hidden-variables theory, we might want to claim that 

under knowledge Y  there is a joint classical probability distribution 

),,;,,( 222111

cbacbap   over the values 
2

1

1 a
,

2

1

1 b
,…

2

1

2 c
, or (more briefly 

expressed) over the values a

1 , b

1 ,… c

2 . But assuming (as demonstrated 

above) full correlation of opposite values of spin components in any one direction, the 

probabilities ),,;,,( 222111

cbacbap   must be zero when, for example, both a

1  and a

2  

are  . Accordingly the non-zero probabilities  
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add to 1  and, by the sum rule of classical probability, the probabilities )(abp , )(bcp  and 

)(acp  for spin components of particles 1 and 2 to be   in directions a  and b  

respectively, b  and c  respectively, and a  and c  respectively are 

 

)4()2()(

)6()2()(

)4()3()(

ppacp

ppbcp

ppabp







        (2.2.7) 

 

From which we can deduce the inequality 

 

)()()( bcpabpacp         (2.2.8) 

 

known as the ‘Bell-Wigner inequality’. 

 But this inequality is not satisfied by the quantum mechanical degree of belief 

values in (2.2.5) for all choices of the directions ba,  and c . For example taking direction 

a  to be defined by 
o60  for particle 1 (or 

o60   for particle 2), direction b  to be 

defined by 
o0  for particle 1 (or 

o0   for particle 2) and direction c  to be defined 

by 
o60  for particle 1 (or 

o60   for particle 2), we find 
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   (2.2.9) 

 

from which it follows that  

 
222

)()()( YbcYabYac        (2.2.10) 

 

contradicting (2.2.8). 

 

What are the implications of this contradiction? Does it mean our interpretation of 

quantum mechanics must be wrong? Well hardly, because we do not consider classical 

probability to be valid under quantum mechanical conditions. In particular, joint 

(complex-valued) probability distributions over incompatible properties simply do not 

exist in the new logic of science (see near the ends of sections 2.1 and 3.2 of Chapter I). 

So there is no probability distribution )( 222111 Ycbacba   from which a degree of belief 

distribution 
2

222111 )( Ycbacba   might be calculated and used in place of the supposed 

classical probability distribution ),,;,,( 222111

cbacbap   employed above. 

 However, suppose we take all Bell and Wigner’s classical probabilities to be the 

actual relative frequencies in one set of very many trials in which knowledge Y  is 

present in each trial. Then (2.2.7) and (2.2.8) certainly apply as relations between these 

frequencies. And if we take the calculated degrees of belief in (2.2.5) as giving the actual 

relative frequencies for spin components being both 
2

1  in O  and O   (as would appear 

to be the case from measurements) the contradiction between (2.2.8) and (2.2.10) is back! 

Back, that is, if the ‘probabilities’ in (2.2.6) and the degrees of belief in (2.2.9) are the 

actual frequencies in the set of very many trials. But we avoid the contradiction by simply 

not claiming that our calculated degrees of belief must necessarily give actual 

frequencies in very many trials. And support for never making this claim is provided by 

all inequalities of the Bell type. 

 Of course, we do claim to know expected frequencies in the set of very many 

trials. (Expected frequencies are often calculable as shown in section 9 of Chapter II.) 

And in the above example, the degree of belief values in (2.2.9) are the expected 

frequencies for spin components being both 
2

1  in O  and O   for each direction pair ab , 

bc  and ac . We may therefore say that our calculated probability (under knowledge Y ) 

for the proposition 1P ‘the relative frequency (in the set of very many trials) for the spin 

components being 
2

1  in O  and O   is 
8

1  for direction pair ab ’ has modulus 1 . But it has 

an indeterminate phase. And we only logically expect 1P  to be true given knowledge Y  
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of system dynamics in each trial.* Exactly the same remarks apply with regard to 

proposition 2P ‘the relative frequency in the same set of trials for the spin components 

being 
2

1  in O  and O   is 
8

1  for direction pair bc ’ and with regard to proposition 

3P ‘the relative frequency in the same set of trials for the spin components being 
2

1  in 

O  and O   is 
8

3
 for direction pair ac ’.  

 Now clearly we cannot logically expect the truth of the conjunction 321 PPP  in the 

face of (2.2.8) understood, as we are supposing, as an inequality between relative 

frequencies. We cannot logically expect something that is plainly contradictory! But we 

do not have to because the propositions 1P , 2P  and 3P  claim incompatible properties. So 

while we logically expect the truth of 1P , 2P  and 3P  separately, we should not (by the 

law of logical expectation of a conjunction and disjunction in section 2.2.2 of Chapter I) 

logically expect the truth of their conjunction. Therefore no contradiction is actually 

demonstrable.  

 Does the difference between the (2.2.10) and (2.2.8) lead us to doubt the truth of 

1P , 2P  and 3P  separately since they certainly cannot all be true at once? Well yes, but we 

had our doubts already, and the difference between the (2.2.10) and (2.2.8) need not alter 

our logical expectation that any one of 1P , 2P  and 3P  is true. And while the truth of 1P , 

2P  or 3P  could be tested (and confirmed) experimentally, the truth or falsity of 321 PPP  

could of course never be tested experimentally because it would require the measurement 

of incompatible properties. 

 

The paradoxes arising from other inequalities of the Bell type can be resolved in a way 

similar to that employed above in connection with the Bell-Wigner inequality. And in 

each case, the Bell inequality demonstrates our inability to predict actual frequency 

distributions in repeated trials and the invalidity of taking calculated expected frequencies 

to be actual frequencies. 

 

 

2.3 The validity of the EPR argument 

 

According to the present interpretation of quantum mechanics the argument of Einstein, 

Podolsky and Rosen is perfectly correct, at least with regard to the system dynamics in 

section 2.1. 

 For we clearly see the possibility (at any one time t  greater than 0t ) of finding, by 

measurement on particle 1 , the spin component 
a

2  of particle 2  in coordinates O   with 

z   in any direction specified by 
a  . We simply measure (for example by harmless 

conditioning as in section 2.1) the spin component 
a

1  of particle 1  in coordinates O  

(i.e. with 
a ) then we know 

a

2  has the value equal and opposite to the known value 

                                                 
* As noted before, we therefore expect the truth of 1P  while allowing that (owing to our limited 

knowledge) we might be wrong. 
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of a

1 . This measurement can always be performed remotely and has no effect on the 

spinning motion of particle 2 . And under our now pure knowledge regarding particle s'2  

spin we are free to make an immediate follow up measurement (by harmless 

conditioning) on particle 2  itself to find its spin component b

2  in coordinates O   

specified by 
b  . Then we have acquired knowledge of a

1 , a

2  and b

2  at time t . 

And since all (unmeasured) spin components are constant in time (there being no 

magnetic field) these values of spin must have been possessed by the particles all the time 

from 0t  to t . We thus see that the uncertainty principle does not necessarily prevent us 

from learning the possessed values of incompatible variables retrospectively for we have 

shown here that we can know the values of both a

2  and b

2  over the time 0t  to t .* Of 

course in carrying out our measurements we might well have changed the spin 

components of particle 1  in directions other than a , and we might well have changed the 

spin components of particle 2  in directions other than b . So with respect to the future we 

cannot simultaneously hold knowledge of spin components of a particle in more than one 

direction. And ‘violation’ of the uncertainty principle is only possible with respect to the 

past. Is does not apply to the future, and after all the measurements mentioned, our states 

of knowledge of the spinning motions of each particle have become logically independent 

(and therefore uncorrelated), preventing us from repeating a similar set of measurements 

at a time t  greater than t  in order to try to acquire retrospective knowledge also of a 

further set of incompatible spin component values. So the uncertainty principle is still 

operating to limit the retrospective knowledge we may hold. Nonetheless the fact that we 

may simultaneously hold knowledge of say a

2  and b

2  retrospectively supports the belief 

that spin components (in all directions) are real properties possessed by particles at all 

times and are not merely products of the process of measurement. 

 Note that when we hold knowledge of a

2  and b

2  from times 0t  to t  

retrospectively (as above), we cannot then claim our knowledge over this period is pure 

even though it was pure once (under knowledge Y  before we performed our 

measurements). Our additional knowledge (concerning spin during the period 0t  to t ) 

renders our previous knowledge impure. And it would seem then that a probability 

distribution (or degree of belief distribution) over the possible values of components of 

spin c

2  in another direction c  (between times 0t  and t ) is indeterminate. At least, it is 

not yet clear how it might be calculated.  

 

 

 

 

 

                                                 
* Since the first (indirect) measurement (of 

a

2 ) left particle 2  untouched, it must also be the case that the 

spin component 
b

1  that particle 1  had in the b  direction before our measurement of 
a

1  must have been 

equal and opposite to the directly measured value of 
b

2 . So as well as getting to know 
a

2  and 
b

2  from 

0t  to t  we also get to know 
a

1  and 
b

1  from 0t  to t . 
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3. Bell’s theorem without inequalities 

 

By considering a more complicated system in which four spin one-half particles are 

prepared in a certain way, Greenberger et al [19] have come up with a more direct way of 

theoretically disproving the EPR notions of locality, reality and completeness. Instead of 

deriving an (unfulfilled) inequality involving correlation coefficients or probabilities they 

derive straight contradictions in the predicted relations between spin components of the 

particles assuming only simple possession of spin components by the particles. 

 We now show why the present interpretation of quantum mechanics disallows the 

derivation of contradictions of this kind. 

 

 

3.1 The system considered by Greenberger et al 

 

Four distinguishable spin one-half particles are present in a space free from any magnetic 

field. We assume we have pure knowledge Y  of their spinning motions represented by 

the wave function 
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in the closed sample space 
4321

S   using the z  components of spin basis 4321   

whose natural order is 
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   (3.1.2) 

 

 

3.2 Calculation of the wave function in more general coordinates 

 

 When we refer spin components of particles 4,3,2,1  (of section 3.1) respectively 

to fixed coordinate systems 4321 O,O,O,O  of orientations generally different from that of 

our original coordinate system O  (in which (3.1.1) holds), our wave function changes to  

 





4321

)()()( 4321432143214321 YY   (3.2.1) 

 

where 

 

)()()()()( 4433221143214321    (3.2.2) 
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in which (by (5.16) and the first of (3.6) of Chapter VII) each factor on the RHS has the 

form 
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,  and   being the Euler angles (defined in section 2 of Chapter VII) of coordinate 

rotation from O . Let the Euler angles for each coordinate system 321 O,O,O  and 4O  be 

denoted 111 ,,  ; 222 ,,  ; 333 ,,   and 444 ,,  , and let 
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so that in the matrix notation 
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and similarly for the other factors on the RHS of (3.2.2). 

 To develop the corresponding transformation function )( 43214321   in 

matrix form we need to work out the Kronecker product 

 

)()()()( 44332211  .    (3.2.5) 

 

The product of the first two terms is  

 

 





































2
2

2
2

2
2

2
2

2
1

2
1

2
1

2
1

2

1

2

1
ii

ii

ii

ii

eie

iee

eie

iee
 

 

Working this out and doing the same for the product of the last two factors in (3.2.5) we 

have 
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This is a 1616  matrix, but without working out all the elements of it, the RHS of (3.2.1) 

in matrix form is evidently 
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where we use the abbreviation: 
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And the RHS of (3.2.6) is our wave function with regard to coordinates with orientations 

specified by the values of 1 , 2 , 3  and 4 . 

 

 

3.3 Expected relations between spin components  

 

 From (3.2.6), whenever 4321   is equal to 0  or   we obtain 

respectively 
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In the first case the probability is only non-zero for odd numbers of negative spin 

components among the 4321  , while in the second case the probability is only non-

zero for even numbers of negative spin components.  

 Whenever 4321   is equal to 0  the probability for an odd number of 

negative spin components is 
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                … (3.3.1) 

 

where   is indeterminate on account of the sum rule.   

 And whenever 4321   is equal to   the probability for an even number 

of negative spin components is 
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where   is indeterminate. And this is as much as we can say about   and  .*  

                                                 
* If the wave function on the RHS of (3.1.1) is realisable only when an indeterminate phase factor is 

included (as seems likely since the wave function does not go with knowledge of a basic property of the 
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 We are thus unable to determine the phases of the probabilities for an odd number 

of negative spin components, in the first case, or for an even number of negative spin 

components in the second. But because the moduli of the probabilities are equal to 1 , we 

do expect an odd number in the first case and we do expect and even number in the 

second case. 

 

 

3.4 Greenberger et al’s contradiction 

 

 Following the argument of Greenberger et al, we define a function )( 1A  to be 

1  according as 
2

1

1  , i.e. according as the spinning motion of particle 1  actually 

processes the property that its z  component of spin in 1O  is 
2

1
 . Similarly we define 

functions )(),( 32  CB  and )( 4D  in relation to the z  components of spin 32 ,  and 

4 . Then, from the definition of these functions, and on account of the results (3.3.1) and 

(3.3.2), we expect 

 

1)()()()( 4321  DCBA        (3.4.1) 

 

whenever 04321   and 

 

1)()()()( 4321  DCBA        (3.4.2) 

 

whenever  4321 . 

 Now we may list the following implications of (3.4.1): 

 

1)()()0()2(

1)()0()0()(

1)0()()0()(

1)0()0()0()0(









DCBA

DCBA

DCBA

DCBA

       (3.4.3) 

 

  being an arbitrary angle. 

 But we must depart from Greenberger et al when they start to reason with results 

(3.4.3) taken together. On the present theory we are blocked from doing this because of 

the law of logical expectation of a conjunction and disjunction (section 2.2.2 of Chapter 

I) and the fact that the four results in (3.4.3) refer to coordinate systems of different 

orientation (to different sets of 1 , 2 , 3  and 4  values) and are therefore claims 

concerning incompatible properties. So we expect the truth of the claim represented by 

any one of the equations in (3.4.3), but should not expect the truth of the claim 

represented by the set of equations taken together.  

                                                                                                                                                 
four spin one-half particle system) then   in (3.3.1) is (like   in (3.3.2)) indeterminate for more than one 

reason. 
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 If we disregard the law of logical expectation of a conjunction and disjunction we 

do indeed get contradiction as Greenberger et al show. For the first and second of (3.4.3) 

give 

 

)0()0()()( CACA   

 

and the first and third give 

 

)0()0()()( DADA   

 

so that 

 

)0(

)0(

)(

)(

D

C

D
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or since the value of the reciprocal of any one of the functions )( 1A , )(),( 32  CB  or 

)( 4D  is the same as its original value (the possible values being only 1 ) we have 

 

)0()0()()( DCDC  . 

 

The last result taken together with the first and last of (3.4.3) gives 

 

  allfor  const.)0()2( AA       (3.4.4) 

 

which, with 
2


 , contradicts part (ii) of the fourth kinematic property of spin one-half 

claimed in section 2 of Chapter VII. For the latter implies that )0(A  and )(A  are equal 

and opposite because they refer to z  components of spin in coordinate systems whose z  

axes point in opposite directions. 

 A further contradiction arises using (3.4.2) to give 

 

1)0()()0()(  DCBA  

 

for any angle  . This together with the second of (3.4.3) (with   replaced by  ) gives 

 

)()(  AA  

 

contradicting (3.4.4) when 
2


  and 0 . 

 However, as we have said, we cannot arrive at these contradictions because of our 

law of logical expectation of a conjunction and disjunction. Nor, of course, are the 

predictions (3.4.1) and/or (3.4.2) for different sets of   values together confirmable by 

measurement, because this would necessitate measurement of incompatible properties 

which is forbidden by the uncertainty principle. We can however confirm our expectation 

of the truth represented by (3.4.1) or (3.4.2) for any one set of qualifying   values 
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because, as we have said before, (theoretically valid) expectations under pure states of 

knowledge seem always to be confirmed by measurement.  

 But the argument of Greenberger et al serves to show that we definitely cannot 

claim that expectations (3.4.1) and (3.4.2) (for beta values satisfying 

04321   and  4321  respectively) reflect physical laws 

controlling the numbers of positive and negative spin components. Although physical 

laws can be the reason for the probabilities of events having moduli 1  and indeterminate 

phases, they evidently are not the reason in this case. For, if they were, all of (3.4.3) 

would apply jointly, and contradictions would arise.* 

 But how can it be that the four properties of the system expressed by equations 

(3.4.3) cannot all be present (because this would lead to the contradiction (3.4.4)), yet the 

presence of any one of them seems always to be confirmable by measurement? It seems 

that we may not conclude, from the fact that any one property is often (and no matter how 

many times) confirmed by measurement, that it would always be so confirmed and so 

must always be present. That is, philosophical ‘induction’ as a process of reasoning is not 

valid, at least in the present context; for if it were we would arrive again at the 

contradiction (3.4.4). 

 Since all four properties (as expressed by equations (3.4.3)) cannot be present, at 

least one must be absent (on any one occasion) so we might expect at least occasionally 

to find one of the properties absent. Why do we not? Well to account for why we do not 

we should calculate the probability for finding one of the properties absent. But this we 

have already done using our new probability theory and the result is zero. So we do not 

expect to find one of the properties absent and it seems we never do. This may appear 

amazing but it does not point to a contradiction. No contradiction between theory and 

experiment can actually be demonstrated. And that is surely all that matters. 

 

 

4. An alternative to the final part of the first law of potential action 

 

We have claimed, as the final part of the first law of potential action (section 3.2 of 

Chapter III), that when a particle moves in a scalar potential field its orbital motion 

during any particular time interval t  to dtt   is sometimes influenced by the potential 

field values at positions that (given our knowledge of its motion) the particle might have 

occupied before time t . This law was generalised to include similar possible influence of 

any vector potential and of any inter-particle potential in a system of any number of 

particles.  

                                                 
* The expectation (with 04321  ) that the number of negative spin components will be 

odd, and the expectation (with  4321 ) that the number of negative spin components will 

be even, amount to expected relations between the spin components. (If, for example 

04321   and three of the spin components are positive, we expect the fourth to be 

negative.) But these expected relations are different in kind from the relations between the spin components 

in the system in section 2.1. There (with regard to the two particles present) equal and opposite spin 

components (in coordinate systems of the same orientation) were a physical consequence following 

acquisition of the pure knowledge Y  in section 2.1. Equal and opposite spin components were not just 

expected, they were considered to be certain. 
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 We also claimed (see for example section 9.2 of Chapter VII) that the spinning 

motion of a particle during any particular time interval t  to dtt   is sometimes 

influenced by the magnetic field at points the particle might have occupied in the past. 

 Why did we make this claim about the possible action of passed potentials and 

magnetic fields? Well, it served to provide a reason why a particle can pass the ‘wrong 

way’ out of an interferometer when a measurement fails to find the particle in one arm of 

the interferometer. (See towards the end of section 1.3 of Chapter XII.) And at the same 

time it did not need to feature in the derivation of the Schrödinger equation because of 

our previous claim (made in section 3.2 of Chapter I) that, under a pure state of 

knowledge Y  in a sample space S  covering a time period, knowledge of the potential 

fields, system potentials functions and magnetic field at times before the time covered by 

S  is redundant. 

 

But if the final part of the first law of potential action should seem paradoxical (or 

unphysical) we can offer another reason a particle is found to leave an interferometer the 

‘wrong way’ after null detection in one arm. 

 In Figure 4.1 we reproduce the Figure in section 1.3 of Chapter XII used in 

connection with our discussion there about the interferometer in question. We note that  

 

 
 
Figure 4.1 

 

the interferometer is such that when no measurement is performed during its operation 

the similar wave packets 2  and 3  on passing simultaneously through the final half-

silvered  mirror result in a wave packet 4  (of squared amplitude double that of wave 

packet 2  or 3 ) and a wave packet 5  of zero amplitude. This is the result of evolution of 

the wave function according to the Schrödinger equation. If between times 1t  and 2t  (at 

which the particle enters and leaves the interferometer) we null detect the particle in the 

path followed by wave packet 2 , packets 4  and 5  have equal amplitude (equal to 21  

times that of 4  previously), while if we carry out no measurement packet 5  is of zero 

amplitude as we have said. 

 Instead of claiming that the potential used to null detect the particle (in one arm of 

the interferometer) causes the particle to sometimes leave in packet 5  rather than always 

in packet 4 , we can claim that the particle is completely unaffected by our null 

measurement potential, and that the fact that the particle is always found to leave in 

packet 4  (when no measurement is performed) is simply consistent with our logical 

expectation that the particle will be in packet 4  after time 2t .  

1 

3 

M 

5 
4 

2 
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 This is legitimate because when we work out (using the sum rule) the probability 

that the particle lies in packet 4  after time 2t  (i.e. the probability that the particle lies in 

one or other of the volume elements making up the region occupied by packet 4  at a time 

after time 2t ) we get a probability of unit amplitude and indeterminate phase. Likewise 

the probability that the particle lies in one or other of the volume elements making up 

packet 5  after time 2t  is zero; and zero is also a probability that has an indeterminate 

phase. So we may just logically expect the particle to always leave in packet 4 when no 

measurement is performed.* 

 Thus the final part of the first law of potential action may not be needed. But it 

can be maintained if we wish, and used to account for the particle behaviour in an 

interferometer when null detection is achieved in one arm. For (as commonly found in 

classical physics) there is generally more than one way of soundly formulating a physical 

theory.  

 

 

                                                 
* As we have said before logical expectations under pure knowledge are seemingly always borne out by 

observation, so this approach agrees well enough with our observations. 
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APPENDIX A. Evaluation of an integral 
 

With the power-one-half function defined by 
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(so the cut in the complex plane is taken along the negative x  axis) we prove the result 
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for all real 1x  and 3x , provided 0  and 

 

0)Im(     or   0)Im()Im()Im(  .     (A.2) 

 

 

Proof: 

 

One or other of conditions (A.2) is clearly necessary for the integral in (A.1) to converge 

at infinite 2x  (for any real values of 1x  and 3x ). Completing the square in 2x  we have 

that 
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Denoting the integral in (A.1) by I  we thus have 
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Now, by (A.3), 2

21))(2( dxdu   so in (A.6) we can replace 2dx  by 

du21))(2(   and regard J  as a contour integral (in the complex u  plane) along the 

contour C  given by the locus (A.3) in which 2x  is taken as a real parameter going from 

  to  . Hence 
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ui

dueJ
2

221))(2( .        (A.7) 

 

Under (A.2), and in the complex u  plane, C  is either (i) (when 0)Im(  ) a straight 

contour of positive slope as 2x  increases or (ii) (when 0 ) a contour along the y  

axis directed in the positive y  direction or (iii) (when 0 ) already a contour along 

the x  axis directed in the positive direction as 2x  increases. In cases (i) and (ii) we can 

change the contour to one (in the positive direction) along the x  axis. This is because 
2

2
ui

e



is regular everywhere and on the circular arcs  ieRu  where R  is constant we 

have 
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which tends to zero very rapidly for R  when 20   or 23 , i.e. on 

the arcs needed to demonstrate the equivalence of the original contour C  and a contour 

along the x  axis. Hence 
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where the value 21)2( i  of the integral follows from 7.3.1, 7.3.2 and 7.3.20 of [21]. 

 Collecting together results we now easily confirm the truth of (A.1) under 

condition (A.2). 
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APPENDIX B. Representations of the delta function 
 

Let )(xf  be any normal function, bounded and integrable over a real parameter x . 

Along with or in connection with functions of this kind we use certain representations of 

the delta function )(x  at various places in this monograph. We give here proofs that 

each of these representations holds true in the sense that  
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Representation 1. 

 

We prove first that in order for  
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i.e. in order for the function 
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x
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2

21
 of a real variable x  (where ,k  and   are 

complex parameters and the power-one-half function is defined as in Appendix A) to 

equal or represent the delta function )(x  (for any complex value of  ) it is necessary 

that  
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and that we take the limit  
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Proof: 

 

We require that 

 







  )0()(

2

21 fdxekxf
xi

x
i

       (B.5) 

 

for all normal integrable functions )(xf  whose moduli (we suppose) are bounded above. 
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 Note that   cannot be zero because (B.5) is then undefined. By putting 
 ire  

where 0r  and  , (B.5) becomes 
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or with ryx   
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This integral exists only if 0)Im( ie  (or 0 ) and this confirms the need for 

(B.2). Now (B.6) can only be satisfied by letting 0r  so that the LHS of (B.6) 

becomes )0(f  times a constant and this confirms the need for (B.4). Finally in order that 

the constant is equal to 1 we need 
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The integral here is a special case of the integral in (A.1) of Appendix A and therefore 

equals 221)(  iei and so we confirm the need for (B.3). QED. 

 

 

Corollary1: 

 

If (B.1) is required only for real  , (B.2) can be relaxed to  

 

0)Im(  ,         (B.8) 

 

This is because with   real the integral in (B.6) now exists when 0  and, under (B.3), 

(B.7) still holds when 0 . 

 

 

Corollary2: 

 

If (B.1) is to hold for 0)Im(   and 0 , then   must be restricted to real values, i.e. 

 

0)Im(  .         (B.9) 

 

And (B.3) is still the necessary value for the constant k . 
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Representation 2. 

 

We show that for real   
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Proof: 
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can be evaluated by putting tx   transforming it to 
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(See 4.3.141, p78 of [21].) QED. 

 

 

 

Representation 3. 

 

Similarly we show that for real   
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Here 
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Putting zt 2  the integral in the square brackets becomes (using integration by parts) 
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(See 4.3.141, p78 of [21].) QED. 

 

 

Representation 4. 

 

We have 
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in the sense that the LHS is 
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which by (B.10) is )(x .   QED. 
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APPENDIX C. The electromagnetic field in non-relativistic 

quantum mechanics. 
 

 

Quantum mechanical charge and system potentials 

 

A quantum mechanical particle may carry a charge. And this acts as a source of electric 

potential much in the same way as a charged particle does in classical electromagnetism. 

But (unlike in classical electromagnetism) a quantum mechanical charged particle in 

motion does not produce a magnetic field or an electromagnetic vector potential.*  

 Charge is responsible for (electromagnetic) quantum mechanical inter-particle 

(scalar) potentials and for quantum mechanical particle (scalar and vector) potentials in 

any external electromagnetic field produced by macroscopic sources. Let the charges 

carried by the N  particles of a quantum mechanical system be iq †, Ni ,...1  and let the 

particle coordinates in a fixed coordinate system O  be ir , Ni ,...1 . With respect to O , 

if the electric potential of the external electric field is ),( tr , then in the formula for the 

system potential in (2.1) of Chapter V, we will have (in the absence of other (i.e. non-

electromagnetic) potentials)  
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 )(         (C.1) 

 

and 

 

),(),( tqtV iiii rr  .        (C.2) 

 

And if the external electromagnetic field includes a vector potential ),( trA ‡ each particle 

experiences a quantum mechanical vector potential ),( tii rA  given by 

 

ctqt iiii ),(),( rArA          (C.3) 

 

c  being the velocity of light in vacuo. 

                                                 
* By supposing charged particles in quantum mechanics produce no electromagnetic vector potentials or 

magnetic fields we make impossible the quantum mechanical modelling of the macroscopic sources of such 

fields. This is a shortcoming of non-relativistic quantum mechanics that can be overcome only after its 

relativistic generalisation.  
† Unless otherwise stated, we employ (for electromagnetic quantities) Gaussian units as in [12] and [15].  
‡ In the main text we denote the electromagnetic vector potential by emA  (rather than A ) to distinguish it 

from the quantum mechanical vector potential A . But in this Appendix it is appropriate to use A  rather 

(than emA ) in keeping with the usual notation in electromagnetic theory. 
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The external electromagnetic field equations 

 

In non-relativistic quantum mechanics external electromagnetic fields are the product of 

macroscopic matter (forming macroscopic sources). The essential properties of that 

matter and the electromagnetic fields it produces are (like the kinematic properties of 

coordinate systems) not subject to the uncertainty principle.  

 For use in connection with non-relativistic quantum mechanics we state the 

following three laws governing the sources and their fields relative to any rest frame O  

in which position is denoted by r  and time by t .  

 

Law 1.   There are distributed and effectively continuous macroscopic charges and  

currents with densities ),( tr  and ),( trJ  respectively and we suppose (in 

our modelling) that these densities are under our control. We consider the 

charges and currents to be carried in (generally moving) rigid bodies that 

have themselves no effect on the electromagnetic fields. We assume the 

motion of these bodies is also under our control. The source densities are 

assumed to satisfy conservation equations according to which, at any one 

time t  
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       (C.4) 

 

where Q  is a constant (independent of t ), the first (volume) integral is 

over all space and the second (surface) integral may be over any closed 

surface or any surface dividing space into two parts. 

 

Law 2.   If the body carrying charge is supposed to move with an extra uniform  

velocity v , and is coincident with its previous position at time 0t , then 

),( tr  changes to ),( ttvr  . If the body carrying current likewise moves 

with an extra velocity v  then ),( trJ  changes to ),( ttvrJ   and an 

additional charge source of density*  

 

  2),(. cttvrJv   

 

                                                 
* This additional charge source is in fact a relativistic effect. It arises because of the difference in Lorentz 

contraction of the spacing between the positive and negative charge carriers (constituting the current 

source) on account of those charges moving at different speeds (see pp. 333-334 of [13]). This is one of the 

reasons a relativistic quantum theory is needed to model the macroscopic sources. 
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  arises within the body.* 

 

Law 3.   The sources produce a scalar electric potential field ),( tr  and a vector  

magnetic potential field ),( trA  in O  according to the rules† 
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.       (C.6) 

 

which give the potentials   and A  at any point P  in fixed space and at 

any moment in time. In (C.5) and (C.6)   and J  are the charge and 

current densities at the time in question and r  is the distance from P  to 

the general spatial volume element d  in the integrals. 

 

 It follows from the relations ((C.2) and (C.3)) between the electromagnetic 

potentials and the quantum mechanical potentials that when a particle of the quantum 

mechanical system carries a charge q , has become free of the influence of the other 

particles of the system and moves in the classical limit in the external electromagnetic 

field specified by potentials fields   and A , it is expected to do so as if it obeyed 

Newton’s second law of motion and experienced a force F  given by‡ 
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q       (C.7) 

 

where u  is the particle velocity relative to O  and   and A  are the electric and magnetic 

potentials in the vicinity of the point occupied by the particle at the time in question, 

tA  denoting the local rate of change of A  (not the rate of change of A  following the 

particle). 

 

Galilean invariance of the external field equations 

 

We can demonstrate that the external field equations are Galilean invariant.  

 The transformation equations under a velocity boost of coordinates are  

 

vuu           (C.8) 

FF           (C.9) 

                                                 
* The first condition in (C.4) is not violated by the appearance of this additional charge density because 

  dtt ),(. vrJv  can be expressed as the sum of fluxes of J  through plane surfaces perpendicular to the 

vector v  and by the last of (C.4) each of these fluxes is zero. 
† These are the same as the well known formulae of the quasi-static and quasi-stationary potential fields of 

classical electromagnetism. 
‡ see near the end of section 1 of Chapter III 
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ii qq            (C.10) 

JJ            (C.11) 

AA           (C.12) 
2. cJv          (C.13) 

Av  .
1

c
         (C.14) 

 

where (C.8)-(C.10) relate to (C.7). And the same external field Laws 1,2 and 3 above (as 

well as the force rule (C.7)) apply under this transformation, which is from coordinate 

frame O  to coordinate frame O , where O  moves with constant velocity v , the origin 

of O  being at tv  at time t . The un-primed variables on the LHS of (C.8)-(C.14) refer to 

position r  in O  at time t  and the primed variables on the RHS to position r   in O  at 

time t  with tvrr  . 

 Now (C.8), (C.10) and (C.11) are evidently true from classical kinematics and the 

assumed invariant character of particle charges and current sources. (C.12) accords with 

(C.6) and (C.11). (C.13) follows from Law 2 on account of the fact that observers O  and 

O  differ in regard to what they consider to be fixed space - so if O  considers the body 

carrying the current density to be at rest, O  considers it to be in motion with velocity v , 

and in general O  considers it to have an additional velocity v . Observers O  and O  

therefore differ with regard to the distribution of charge density and therefore to the value 

of the electric potential which O  finds by applying (C.5) and O  finds by applying the 

first of the potential formulae 
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in O . Using (C.15) with (C.13) we have 

 

Av
Jv







  .
1. 2

c
d

r

c
d

r
 

 

agreeing with the transformation formula (C.14). 

 Finally the invariance, as in (C.9), of the force (C.7) is shown as follows. First 

note that by (C.12)  
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and, by (C.14), ).(
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and since )().().( AvAvAv   on account of v  being constant, this becomes 
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in agreement with (C.9) under (C.10). 

 

The external electric and magnetic fields and Maxwell’s equations 

 

We can define the electric field E  and magnetic field H  as* 
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AH           (C.17) 

 

From (C.5) and (C.6) and the fact that 0. J  it follows that 
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and therefore that  
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which are the quasi-static/quasi-stationary form of Maxwell’s equations. 

 The effective force (C.7) on a quantum mechanical particle of charge q  in the 

classical limit becomes 

 

)
1

( HuEF 
c

q         (C.25) 

 

which is the Lorentz law. 

 The transformation equations for the electric and magnetic fields under a velocity 

boost of coordinates are, by (C.16), (C.17), (C.12) and (C.14) 

 

                                                 
* In the units employed we have also (in the assumed vacuum) HB   and ED  . 
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HvEE 
c

1
        (C.26) 

HH           (C.27) 

 

 

Orders of magnitude 

 

Using a large enough steady current density source we can produce a strong constant 

magnetic potential field to interact with a quantum mechanical system. Also, using a 

large enough charge density source we can produce a strong static electric potential field 

to interact with a quantum mechanical system, and by varying the charge or current 

sources or moving the bodies carrying them, we can produce time varying fields, for 

example alternating fields.*  

 

The limits of applicability of the quasi-static/quasi-stationary field equations adopted can 

be got from comparison with the full Maxwell equations with charge and current sources 

and the full Lorentz transformation equations. In MKS units the full Maxwell equations 

are (see for example [13]) 

 

0.  E          (C.28) 

0. B          (C.29) 

t BE         (C.30) 

t EJB 000        (C.31) 

 

where HB 0  and the (almost) full Lorentz transformation equations are 

 

BvEE          (C.32) 
2cEvBB          (C.33) 

2. cJv          (C.34) 

vJJ           (C.35) 

 

in which only the factor )1( 22 cv  has been simplified to 1 in keeping with our 

non-relativistic treatment. 

 In the quasi-static/quasi-stationary approximation we are neglecting the last terms 

in (C.31), (C.33) and (C.35). To see how this is reasonable, suppose that within a cubical 

body of dimensions  m1m1m1   (i.e. one cubic meter) we have source densities   and 

J  capable of producing, in or near to the body, electric fields of order 1kVm1   and 

magnetic flux densities of order T1 . Then by (C.28) and (C.31) 

 

                                                 
* Modelling of the scattering of electromagnetic waves by quantum systems is not possible because we are 

assuming that quantum mechanical particles produce no magnetic fields and we are neglecting the 

displacement current term in Maxwell’s equations. Such modelling can anyway only properly be handled in 

relativistic quantum mechanics. 
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Then in (C.35), (C.33) and (C.31), if f  is the typical frequency of variation of E  (or B ) 

we have (putting 18 ms103 c ) 
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The first two are clearly very small compared to 1 on account of our assumption that 

cv  . The third is small compared to 1 up to radio frequencies at which the 

corresponding wavelength of electromagnetic waves is (as required) still large compared 

with the dimensions of the source body (i.e. m1 ). 

 On the other hand, in (C.34), (C.32) and (C.30) we have 
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where l  is a typical dimension of the source distributions. None of these ratios is 

necessarily negligible. 

 

The second law of potential action 

 

Relative to inertial frame O  considered to be at rest, let ),( tr  and ),( trA  be 

electromagnetic potential fields generated by (macroscopic) sources. These give rise, by 

(C.2) and (C.3), to quantum mechanical external potentials  

 

),()( tqV iiii rr          (C.36) 

ctqt iiii ),(),( rArA          (C.37) 

 

on the 
thi  particle of a quantum mechanical system. We have postulated in Law 2 above 

that if the bodies carrying the sources are given a velocity boost v  and have the same 

positions in space at time 0t , then the sources change from ),( tr  and ),( trJ  to  
2),(.),( ctttt vrJvvr   and ),( ttvrJ  . By (C.5) and (C.6) the potential fields thus 

change to ctttt ),(.),( vrAvvr   and ),( ttvrA  . Accordingly the quantum 

mechanical potentials (C.36) and (C.37) change from )( iiV r  and ),( tii rA  to 
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),(.)( tttV iiii vrAvvr   and ),( ttii vrA   in agreement with the second law of potential 

action (section 3.2 of Chapter III).  

 So when the external potentials are electromagnetic in origin the second law of 

potential action (section 3.2 of Chapter III) is a consequence of the electromagnetic field 

equations in their quasi-static/quasi-stationary form. 

 

The internal electromagnetic field equations 

 

In any quantum mechanical system containing charged particles (e.g. a hydrogen atom) 

there is an internal (electric) potential field. The sources of this field are the charged 

particles themselves. If the 
thi  particle has charge iq  it causes an internal electric 

potential at position r  given, at any time t , by 

 

i

i
i

q

rr 
  

 

where ir  is the position of the 
thi  particle at time t . It is this potential that gives rise to 

the inter-particle potential ijV  in (C.1). Since the value of ir  is generally unknown and 

subject to the uncertainty principle, so is the value of i  at any given point r . 

 In non-relativistic quantum mechanics the internal (electric) potential can be 

thought of as quasi-static. The charged particles of a quantum mechanical system are 

moving at speeds small compared to the speed of light and, as we have said, they are 

assumed not to generate electromagnetic vector potential fields (even weakly). 

 When considering the total electromagnetic field we should of course include the 

internal electric potential field along with any external electromagnetic potentials that 

may be present. Accordingly the total electromagnetic scalar and vector potentials at any 

point P  and any time t  are given by 

 

 





i i

iq
d

r rr
,        (C.38) 

  d
rc

J
A

1
.         (C.39) 

 

in place of (C.5) and (C.6). Here r  is the position coordinate of P  and  , J  and r  have 

of course the same meanings as they have in (C.5) and (C.6), i.e. r  is the distance from 

P  to the general volume element d  and,   and J  are the charge and current densities 

of the macroscopic sources. 

 We note that since the ir  may be non-differentiable functions of the time, t  

is now generally non-existent. But this is of no consequence because t  does not 

feature in essential equations. The spatial derivates, i.e.  , still exist (except at the 

positions of the particles themselves). And so, therefore, do the electric and magnetic 

fields (as defined in (C.16)-(C.17) with   now given by (C.38)). The Galilean 
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transformation equations (C.11)-C.14) remain valid, i.e. they apply to the total 

electromagnetic fields. And so do the quasi-static/quasi-stationary Maxwell’s equations 

(C.16)-(C.24) with   now replaced by 

 

 
i

iiq )( rr . 

 

 

Note on the relativistic modelling of macroscopic electromagnetic field sources 

 

In the introductory paragraphs of Chapter XIII we claimed that a macroscopic source (set 

up to produce an external potential field of any kind to interact with a quantum 

mechanical system) may penetrate that system without affecting it directly. Only the field 

produced by the overall source affects the system. 

 To show this claim is reasonable we briefly consider here the relativistic 

modelling* of the macroscopic charge and current densities sources ),( tr  and ),( trJ  

considered in this Appendix. We consider only the case of time independent and uniform 

  and J  in the region R  between two fixed parallel planes the direction of J  being 

parallel to the planes. We model these by supposing they arise from a swarm of charged 

quantum mechanical particles of very large mass half of which carry charge 1q  and half 

of which carry charge 2q . Being of very large mass we may assume the particles are at 

rest or moving classically in uniform motions. We suppose the particles of a common 

charge ( 1q  or 2q ) are distributed uniformly in R , the particles of charge 1q  are all at rest, 

and those of charge 2q  all move with a uniform velocity u  (with 122 cu ) in the 

direction of the required current density. We take the limit as the number of particles 

tends to infinity, and the charges tend to zero, while 21 qq , u  and the average charge 

density (of particles of either charge) stay constant. 

 Let P  be a point lying somewhere between the particles. By the laws of 

electrodynamics in special relativity, the scalar electric potential   at P  due to the 

nearest particle (or to a fixed number of neighbouring particles) is of order rq  (and the 

electric field E  is of order 2rq ) where q  is either 1q  or 2q  and r  is the distance  

between P  and the nearest particle (the same order as the distance between neighbouring 

particles). In the limit we are taking, r  tends to zero and in order for the average charge 

density (of particles of either charge) to stay constant it is necessary that 3~ rq . 

Therefore in this limit both   and E  generally tend to zero, the only exception occurring 

when P  remains within a distance   of the nearest particle where q  (or 2q  in the 

case of the electric field) stays constant during the limiting process. That requires 
3~ r  

(or 
23~ r  in the case of the electric field). The fraction of the volume of space in R  

where this is true is 33 r  which is of order 6r  (or 23r  in the case of the electric field). 

Therefore in the limit we may say the electric potential   (and the associated electric 

                                                 
* The modelling has to be relativistic. See first footnote in the earlier section headed ‘The external 

electromagnetic field equations’. 
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field) at any point P  in R  is almost always zero. As a result the total electric potential 

(and the total electric field) at any point P  in R  may be said to be no way due to the 

neighbouring particles and to result only from the accumulative effect of all the particles 

of the source. 

 Exactly similar considerations apply to the magnetic (vector) potential field and 

the magnetic field produced by the moving particles making up the electromagnetic 

source in R . At any point P  in R  these fields too are almost never due to particles close 

to P  and result only from the accumulative effect of all the particles of the source. 

 Now suppose we place in R  a quantum mechanical system of particles, say a 

hydrogen atom, composed of two particles, an electron and a proton (modelled as 

material points of zero size). Each of these particles will almost always lie in the space 

between particles of the source and so will not be affected by the closest particles of the 

source but only by the electromagnetic field arising from the source particles as a whole. 

We have no need to impose zero probability for the electron (or the proton) to occupy the 

same point in space as a particle of the source. For in section 3.7 of Chapter III we have 

claimed that any number of particles may occupy the same volume element of space with 

non-zero probability regardless of their kind or their spin components. Therefore even 

when a quantum mechanical system lies within region R  the quantum mechanical theory 

of its motion can proceed on the basis that only the electromagnetic fields produced by 

the sources ),( tr  and ),( trJ  have an effect on the motion and there is no direct effect 

from the sources themselves. 

 Supposing R  is m1 wide, then to produce electric fields 1kVm1   we need a 

charge density 3

0

3 Cm10    (see section ‘Orders of magnitude’ above). That is we need 

3

0

3

2211 Cm10   qnqn  where 1n  and 2n  are the number of particles of charge 1q  and 

2q  respectively per unit volume. (As we have said we take 21 nn  .) We have seen (in 

section ‘Orders of magnitude’ above) that a velocity u  (with 122 cu ) given to the 

charge density 22qn  produces only a negligible current density uqn 22  if 22qn  is of order 
3

0

3 Cm10   . Therefore we need (in our model of electromagnetic sources) to take 

3

0

3

22 Cm10  qn  in order that J  can be large enough to produce magnetic fields of 

order T1 . This can be achieved (while maintaining 3

0

3

2211 Cm10   qnqn ) only by 

taking 11qn  and 22qn  large in absolute value but opposite in sign (so 11qn  and 22qn  are 

nearly equal and opposite).* 

 If the system of source particles (of charges 1q  and 2q ) is given a uniform 

velocity boost in the direction of the current density, charges 1q  also produce a current 

density and the net current density becomes 222111 uqnuqnJ   where 1u  and 2u  are the 

net velocities of the particles of charge 1q  and 2q  respectively. The Lorentz contraction 

of the spaces between particles of either charge is quite negligible here because we 

assume still that the velocities of the particles are small compared to the speed of light 

                                                 
* This is of course the actual situation in a current carrying conductor where the negative charge density of 

the free electrons is very large but is cancelled out by the (also very large but positive) combined charge 

density of the nuclei and bound electrons of the metal atoms. 
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(i.e. that 122

1 cu  and 122

2 cu ) and the terms 111 uqn  and 222 uqn  in the expression 

for J  are not nearly cancelling. 

 However when it comes to the value of the charge density 2211 qnqn  , this is 

affected by the Lorentz contraction. Here the terms 11qn  and 22qn  do nearly cancel and 

we need to consider more exactly the values of 1n  and 2n , and how they change with 

velocity. Let 1n  and 2n  be the number densities when 021  uu . Let the particles start 

with velocities 1u  and 2u  (both c ). Then the Lorentz contraction changes 1n  to 

)1(
22

2
1

1
c

u
n   and 2n  to )1(

22

2
2

2
c

u
n   (neglecting higher order correction terms) and the net 

charge density becomes 222

2
2

2122

2
1

1 )1()1( qnqn
c

u

c

u
 . If a boost v  is applied, the Lorentz 

contraction increases the number densities to )1(
22

2)
1

(

1
c

vu
n


  and )1(

22

2)
2

(

2
c

vu
n


 , so the net 

charge density grows by 222

2
2

2122

2
1

1222

2)
2

(

2122

2)
1

(

1 )1()1()1()1( qnqnqnqn
c

u

c

u

c

vu

c

vu



 or 

by 22
2

212
1

1 qnqn
c

vu

c

vu
  neglecting terms 122

2

1 qn
c

v
 and 222

2

2 qn
c

v
 because they nearly cancel. 

This increase in charge density equals J
c

v

2  in agreement with the second law of 

electromagnetic fields introduced in The external electromagnetic field equations section 

of this Appendix. 
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APPENDIX D. The gravitational field in non-relativistic 

quantum mechanics. 
 

Although the gravitational field does not feature in most accounts of non-relativistic 

quantum mechanics it can of course have observable effects. We know, for example that 

any free quantum mechanical particle or particle system (such as a single atom) near the 

surface of the earth falls (like any free classical particle) with an acceleration of 1-g. And 

the earth’s gravity has been found to affect the motion of neutrons in slow neutron 

interferometers. Therefore we need to introduce macroscopic sources of gravitational 

fields just as we introduced macroscopic sources of electromagnetic fields in Appendix 

C. But this time only sources of gravitational scalar potential are needed.* The only 

gravitational vector potential that may be present in our theory is a (source-less) constant 

background vector potential 0A  accompanying a (source-less) constant background 

scalar potential 0V  as described in section 1 of Chapter III. 

 

Quantum mechanical mass and system potentials 

 

A quantum mechanical particle always carries a (non-zero and positive) mass. And this 

we suppose acts as a source of gravitational scalar potential much in the same way as a 

charged particle acts as a source of electromagnetic scalar potential.†  

 Particle masses are responsible for (gravitational) quantum mechanical inter-

particle potentials and for quantum mechanical particle scalar potentials in any external 

gravitational field produced by macroscopic sources. Let the masses carried by the N  

particles of a system be im  Ni ,...1  and let the particle coordinates in a fixed coordinate 

system O  be ir  Ni ,...1 . With respect to O , if the gravitational potential of the external 

gravitational field is ),( tr  (which may include a contribution from the constant 

background potential 0V ), then in the formula for the system potential in (2.1) of Chapter 

V, we will have (in the absence of potentials other than gravitational)  

 

ji

ji

jiij

mm
GV

rr
rr


 )(        (D.1) 

 

where G  is a constant (
-2211 kg m N 10672.6 G ), and 

 

),(),( tmtV iiii rr  .        (D.2) 

                                                 
* We do not suppose that there are gravitational vector potentials due to sources.  
† Therefore we are able to model (fully and quantum mechanically) macroscopic sources of gravitational 

fields. 
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Also, as we have said before (see section 1 of Chapter III) if a constant background 

external gravitational vector potential field 0A  is present in O  each particle experiences 

a constant quantum mechanical vector potential iA  given by 

 

0AA ii m .         (D.3) 

 

The external gravitational field equations 

 

In non-relativistic quantum mechanics external gravitational fields are the product of 

macroscopic matter (forming macroscopic sources). The essential properties of that 

matter and the gravitational fields it produces are (like the kinematic properties of 

coordinate systems) not subject to the uncertainty principle.  

 For use in connection with non-relativistic quantum mechanics we state the 

following three laws governing the sources and their fields relative to any rest frame O  

in which position is denoted by r  and the time by t .  

 

Law 1.   There is distributed and effectively continuous macroscopic (and generally  

moving) mass of density ),( tr  and we suppose (in our modelling) that 

this density is under our control. The source density is assumed to satisfy a 

conservation equation, according to which at any time t  

 

  Md         (D.4) 

 

where M  is a constant (independent of t ), the (volume) integral being 

over all space.  

 

Law 2.   If the macroscopic mass is supposed to move with an extra uniform  

velocity v , and is coincident with its previous form at time 0t , then 

),( tr  changes to ),( ttvr  .  

 

Law 3.   The macroscopic mass source produces a scalar gravitational potential  

field ),( tr  in O  according to the rule* 

 

   


 d
r

G ,       (D.5) 

 

which gives the potential   at any point P  in O  and at any moment in 

time. In (D.5)   is the mass density at the time in question and r  is the 

distance from P  to the general spatial volume element d  in the integral. 

 

                                                 
* This is the same as the well known formula for the gravitational potential field of classical mechanics. 
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 It follows from the relations ((D.2) and (D.3)) between the gravitational potentials 

and the quantum mechanical potentials, that when a single quantum mechanical particle 

of mass m  moves in the classical limit (see section 1 of Chapter III) in an external 

gravitational field specified by potential field  , it does so as if it obeyed Newton’s 

second law of motion and experienced a force F  given by 

 

 mF          (D.6) 

 

where    is the potential in the vicinity of the point occupied by the particle at the time in 

question. The result (D.6) is of course in agreement with the classical law. 

 

Galilean invariance of the external field equations 

 

We can prove that the external gravitational field equations are Galilean invariant.  

 The transformation equations under a velocity boost of coordinates are  

 

FF           (D.7) 

ii mm           (D.8) 

           (D.9) 

           (D.10) 

 

((D.7) referring to (D.6)). And the same laws (D.4)-(D.6) apply under this transformation 

which is from coordinates O  to coordinates O , where O  moves with constant velocity 

v , the origin of O  being at tv  at time t . The un-primed variables on the LHS of (D.7)-

(D.10) refer to position r  in O  at time t  and the primed variables on the RHS to position 

r   in O  at time t  with tvrr  . 

 Note that (D.8) and (D.9) follow from the assumed absolute character of mass. 

(D.10) results from (D.5) applied to O  (to give    drG )( ) and (D.9). And (D.7) 

results from (D.6), (D.8) and (D.10).  

 

The external gravitational force field equations 

 

We can define the gravitational force field g  as 

 

g .         (D.11) 

 

From (D.5) it follows that 

 

 G42
,         (D.12) 

 

and therefore that  

 

 G4.g .         (D.13) 
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And (D.11)-(D.13) are the same as the gravitational field equations in classical 

mechanics. 

 The effective force (D.6) on a quantum mechanical particle of mass m  in the 

classical limit becomes 

 

gF m          (D.14) 

 

which is the classical law. 

 The transformation equation for the gravitational force field under a velocity 

boost of coordinates is, by (D.11) and (D.10) simply 

 

gg            (D.15) 

 

 

The internal gravitational field equations 

 

In any quantum mechanical system (e.g. a hydrogen atom) there is an internal 

gravitational field. The sources of this field are the masses of the particles themselves. If 

the 
thi  particle has charge im  it causes an internal gravitational potential at position r  in 

O  given, at any time t , by 

 

i

i
i

m
G

rr 
  

 

where ir  is the position of the 
thi  particle at time t . It is this potential that gives rise to 

the inter-particle potential ijV  in (D.1). Since the value of ir  is generally unknown and 

subject to the uncertainty principle, so is the value of i  at any given point r . 

 In non-relativistic quantum mechanics the internal gravitational potential can be 

thought of as quasi-static (like the electric potential due to the charges of particles). The 

particles of a quantum mechanical system are moving at speeds small compared to the 

speed of light and, as we have said, they are assumed not to generate gravitational vector 

potential fields (even weakly). 

 When considering the total gravitational field we should of course include the 

internal gravitational potential field along with any external gravitational potential that 

may be present. Accordingly the total gravitational scalar potential at any point P  and 

any time t  is given by 

 

0V
m

Gd
r

G
i i

i 





  rr
,      (D.16) 

 

in place of (D.5). Here r  is the position coordinate of P , r  is the distance from P  to the 

general volume element d  and   is the mass density of the macroscopic source. 



APPENDIX D. The gravitational field 

 446 

 We note that since the ir  may be non-differentiable functions of the time, t  

is now generally non-existent. But this is of no consequence. The spatial derivates, i.e. 

 , still exist (except at the positions of the particles themselves). So does the 

gravitational force field (as defined in (D.11)). The Galilean transformation equations 

(D.7)-(D.10) remain demonstrable. And so do the gravitational force field equations 

(D.11)-(D.13) with   now replaced by 

 

 
i

iim )( rr . 

 

 

Orders of magnitude 

 

Using a large enough mass source we can, at least in theory, produce a strong 

gravitational field to interact with a quantum mechanical system, and by varying the mass 

density or by moving the mass sources, we can produce time varying fields. We can, for 

example, model the fall of atoms or molecules in the combined gravitational fields of the 

earth and moon. 

 As is well known, the magnitude of the gravitational inter-particle potentials 

(compared with the electrostatic inter-particle potentials of charged particles) is far too 

small to be worth modelling. Take for example the case of a system consisting of two 

protons. The gravitational inter-particle potential is given by (D.1) and is of the order  

rGm2  while the electrostatic inter-particle potential is given by (C.1) of Appendix C, or 

in MKS units by 

 

ji

ji

jiij
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04
)( . 

 

The order of magnitude of the latter is )4( 0

2 rq  . The ratio of the order of magnitudes 

is therefore 22

04 qGm  where -2211 kg m N 1067.6 G , kg1067.1 27m ,  

C 106.1 19q  and -112

0 mF 1085.8  , giving 3722

0 1008.84  qGm  which is 

far too small for inter-particle gravitational potentials to be of any significance in atomic 

and molecular theory. However, we should retain the idea that quantum mechanical 

particles produce gravitational potential fields, because this enables us to model 

macroscopic sources of gravitational potential which on account of the huge number of 

particles making up a large body like the earth are significant.  

 

The second law of potential action 

 

Relative to inertial frame O  considered to be at rest, let ),( tr  be the gravitational 

potential field generated by (macroscopic) sources. These give rise, by (D.2), to quantum 

mechanical external potentials  
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),()( tmV iiii rr          (D.17) 

 

on the 
thi  particle of a quantum mechanical system. We have postulated in law 2 above 

that if the source mass distribution is given a velocity boost v  but is the same at time 

0t  then the source density changes from ),( tr  to  ),( ttvr  . By (D.5) the potential 

field ),( tr  thus changes to ),( ttvr  . Accordingly the quantum mechanical potentials 

(D.17) change from )( iiV r  to )( tV ii vr  . And since there is no vector potential in this 

case, this is in agreement with the second law of potential action (section 3.2 of Chapter 

III).  

 So when the external potentials are gravitational in origin the second law of 

potential action (section 3.2 of Chapter III) is a consequence of the gravitational field 

equations. 
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APPENDIX E. Results relating to section 8.2 of Chapter XIV 
 

In this Appendix all equation numbers refer to Chapter XIV. 

 

Proof of the uniqueness of  . 

 

The equation for   is, by (8.2.9) 
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in which E  and the nE  are supposed known. We show the LHS is a monotonic 

decreasing function of   and therefore can equal the RHS only for one value of  . 

 

To show that the LHS is monotonic decreasing we differentiate it with respect to   

getting 

 
2

2

































nl

E

nl

n

E

nl

E

nl

n

E

n

n

n

n

e

Ee

e

Ee

 

 

which equals 
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which is negative for all  . QED. 

 

Proof that   and   derived from (8.2.9) make S  in (8.2.5) a maximum 

 

We use the method given by Jaynes (pp 45-47 of [28]). Accordingly we start with the fact 

that 

 

x
x

1
1ln    for all 0x * 

                                                 
* Note that the curves xln  and 

x

1
1  touch one another at 1x  without crossing each other. 
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the equality holding only when 1x . This means that for any distribution nlw  satisfying 

the constraints (8.2.6) but differing from the nlw  given by (8.2.8) 
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the equality holding only when nlnl ww   for all nl . Substituting for nlw  as given by 

(8.2.8), i.e. putting nE

nl ew


  on the LHS we get 
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or 

 

0ln  Eww
nl

nlnl . 

 

Therefore 

 

Eww
nl

nlnl  ln . 

 

Here the LHS is the value of the information entropy going with the nlw  and the RHS is 

the value of the information entropy for nlw  given by (8.2.8) because 

 

EEwww
nl

nnl

nl

nlnl   )(ln . 

 

Therefore   and   derived from (8.2.9) make nlw  (as given by (8.2.8)) maximise S  in 

(8.2.5). QED. 
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APPENDIX F. Expected frequencies and actual frequencies 
 

The relationship between expected frequencies (derived using classical probability 

theory) and actual frequencies is much discussed in [2] (see for example Chapter 9 of 

[2]). But it will be useful to reconsider this question here. To this end we consider a 

specially constructed example in classical probability and we rework this example using 

complex-valued probability theory instead. Finally we consider what we should do if 

actual frequencies differ from expected frequencies.  

 

A specially constructed example in classical probability 

 

Suppose we have written a computer program that outputs the following determinate 

sequence of zeros and ones 

 

01 011 00 01 10 11 011 011 000 001 010 100 011 101 110 111 011 011 011 011 011 011 

0000 0001 ...  … 

 

constructed as follows. The program outputs all possible ways of writing zeros and ones 

first signally, then in an ordered pair, then in an ordered set of three, then in an ordered 

set of four etc (these are the underlined digits in the sequence). But between these the 

program enters 011 first once, then 2! times, then 3! times etc.  

 We define a process NP  of order N  ( ...3,2,1N ) as one resulting in a string of 

N  consecutive digits selected at random from this sequence. For example, with 4N , 

the process when ‘run’ could give 0101 (the first four consecutive digits) or 0011 (the 7th 

to 10th  consecutive digits) or any four consecutive digits in the sequence. By the 

construction of the sequence we see that  

 

(i) A process NP  may result in any ordered set of N  numbers (each number being a 

zero or a one). 

(ii) For N  the relative frequency (or relative number) of zeros is 31  and that of  

ones 32 . 

 

For example (i) is satisfied when 3N  because a process of order 3 could start at any 

point in the third underlined part of the sequence and so result in any given ordered triplet 

of zeros and ones. By the construction of the sequence it is clear that (i) is satisfied just as 

well for any value of N . Also (ii) is evidently satisfied because for large N , wherever 

the process starts, many more cases of the not-underlined digits will occur than of the 

underlined digits, and the more so the larger N . 

 

Now suppose we give to somebody else (person B) the knowledge Y  that a certain 

physical process ‘of order N ’ will be run resulting in one of N2  possible outcomes and 

that these possible outcomes are numbered using binary numbers Nrr ...1  each r  being 

either 0 or 1. Thus the binary numbers representing the possible outcomes range from



APPENDIX F. Frequencies, expected and actual 

 451 

 0...00...1 Nrr  (all zeros) to Nrr ...1  1...11  (all ones). 

 Person B does not know that the digits in the binary number will be a series of N  

consecutive digits drawn at random from our series. Nonetheless we can ask person B to 

calculate their probability for the digit 1r  being 1. Similarly we can ask person B for their 

probability for 1r  being 1  and 2r  being 0 . In fact we can ask for the probability of any 

proposition concerning r  values in the binary number representing the outcome of the 

process. Person B calculates their probabilities on the basis only of the information Y  we 

have provided. 

 Applying classical rational-Bayesian probability theory person B assigns, by the 

principle of indifference, equal probabilities to each of the N2  possible outcomes of the 

process. Accordingly person B gets, for any ordered set Nrr ...1  of r  values, the 

probability 

 

NN YrrP
2

1
)...( 1          (F.1) 

 

Person B then calculates, using the sum rule, that the probability for a particular value of 

(say) 1r  is 
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Similarly person B gets, for the probability of any particular values of 1r  and 2r  the result 
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and they find 

 

3

3
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1321
2

1
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  N

NN

rr

YrrPYrrrP
N

    (F.4) 

 

…etc. And using the fact that the probability of each outcome is 
N21 and employing the 

sum rule, person B can also deduce in the familiar manner that the probability for exactly 

n  zeros in the binary number labelling the outcome of a process of order N  is 

 
nNn

nN CYnP  )()()zeros (
2

1

2

1
       (F.5) 

 

and hence, as N , that the expected relative frequency (or relative number) of zero 

digits in the binary number is 21 . That is one-half of the digits are expected to be zero. 

More precisely person B can deduce that given any fixed positive number   however 
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small the probability that the frequency of zero digits lies inside the range 
2

1
 to 

2

1
 

tends to one as N . 

 

The same example using complex-valued probability 

 

The above result can just as well be derived by applying complex-valued probability. In 

place of (F.1) person B then writes (from the complex-valued form of the principle of 

indifference) that 

 

 i

N
N eYrr

2

1
)...( 1  

  

where the phase   is independent of the Nrr ...1  values because B is absolutely indifferent 

with regard to which of the outcomes might occur. Person B’s degree of belief for Nrr ...1  

is thus 

 

NN Yrr
2

1
)...(

2

1   

 

the same as in the classical probability case.  

Using the complex-valued form of the sum rule, person B then derives all the 

same formulae (F.2)-(F.5) with )(P  replaced by 
2

)( . And person B deduces that for 

N  their expected relative frequency (or relative number) of zero digits in the binary 

number is 
2

1
, or their degree of belief for a relative frequency of zero digits inside the 

range 
2

1
 to 

2

1
 tends to one as N . So again, one-half of the digits are expected 

to be zero. The phase of belief associated with this degree of belief is indeterminate 

because of the use of the sum rule in the calculations and the fact that person B cannot 

claim their knowledge is pure and that   has a determinate value.  

 

An advantage of complex-valued probability  

 

The above example shows clearly that an expected frequency (correctly calculated from 

the laws of classical or complex-valued probability) may be quite different from the 

actual frequency. Expected frequencies depend on the extent of our knowledge while 

actual frequencies do not.  

 In classical probability theory, when the probability of a proposition is equal to 1  

this is usually interpreted as meaning the proposition in question is certainly true. But in 

that case person B, in the above example, could prove that the actual frequency of zero 

values for N  was 21  and this would be in contradiction to the actual value of 31 . 

This is a major problem because clearly somebody with valid knowledge should not be 

able to prove something false! 

 When applying our complex-valued probability theory to the same example the 

situation is clearer. For although our degree of belief for the expected outcome frequency 
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is equal to 1  in the limit N , our associated phase of belief is necessarily 

indeterminate. So we are unable to claim the expected frequency must certainly be the 

actual frequency in the limit N . We can claim only that we logically expect a 

particular frequency to be present (as N ) with the (usual) caveat that this 

expectation is based on limited knowledge and could be wrong. The thing is that in our 

complex-valued probability theory (which is supposed to be universally applicable) we 

have a mathematical way of distinguishing certainty from expectation, while no such way 

is present in classical probability theory. 

 

What to do if actual frequencies differ from expected frequencies 

 

If person B is told the numbers of zeros and ones in each binary number obtained when 

many particular processes of larger and larger orders are run, they will soon notice that 

the relative frequency of zero digits in the binary number is close to 31  for large N  and 

generally approaches 31  more and more closely as N  increases.  How then should 

person B react? Person B should first check their calculations and when these are found 

to be perfectly correct, person B should consider that they have more to learn about the 

nature of the process in question. They may choose to postulate certain additional 

physical properties of the process which taken together with the knowledge they already 

had would lead to the calculation (for N ) of an expected relative frequency of zero 

digits of 31  rather than 21 .  

 

Given pure knowledge of a quantum mechanical process, we have seen in section 9 of 

Chapter II how expected frequencies of outcomes (i.e. of certain possessed properties of 

the system in question) in repeated trials of that process can be rigorously calculated on 

the basis of complex-valued probability theory. In that calculation use is made of the law 

of absolute logical independence under pure knowledge. Under pure knowledge we 

cannot generally claim that our expected frequencies are indicative of actual frequencies 

of the outcomes in a large number of trials. We do however expect the observed results in 

many trials to conform approximately to the expected frequencies and generally more 

and more closely so as the number of trials increases. If this is found not to be the case 

we may consider we have reason to doubt the validity of our logical reasoning or to doubt 

the validity of the physical assumptions we have made before applying probability theory 

to the process in question. Only in this sense are probabilistic predictions of quantum 

theory confirmable (or not) by observations. Happily, provided we adopt the correct laws 

of probability (or of logic in general) and make the correct physical assumptions, 

agreement is achieved well enough and we have no reason to worry. 
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APPENDIX G. Evolution of a wave function initially zero in 

one half of space and of unit value in the other 
 

 

We consider the evolution in free space of a single particle wave function ),( tr  

(referred to a fixed coordinate system) which initially (at time 0t ) is zero for 0x  and 

equal to 1  for 0x . Clearly ),( tr  will be a function ),( tx  only of the particle’s x  

coordinate and of the time t . And ),( tx  must satisfying the Schrödinger equation 

 

xmti 2

22
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        (G.1) 

 

 for 0t , and at time 0t  we have  
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        (G.2) 

 

Applying the Laplace transform method (see for example [23]), we put 
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with inverse formula 
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where the (real) constant   may take any value greater than the real parts of the 

singularities of  , and the integral is along the contour parallel to the imaginary axis 

passing through )0,( . Multiplying (G.1) through by 
pte

 and integrating over t  from 0  

to   (using integration by parts in the case of the term 
t


) gives 
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where 
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m2
 .         (G.6) 

 

The solutions of (G.5) finite for x  and x  respectively are 
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the cut for the square root function being along the negative real axis of the complex 

plane so that for example 

 

)1(
2

1
ii   

 

and p  will have a non-negative real part whatever the value of  . Imposing the 

boundary condition that   (and its first derivative in x ) be continuous at 0x  we find 

p
BA

2

1
  so by (G.7) 
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From a table of Laplace transforms (p.229 and p.245 of [24]) we thus find 
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or using the relations  
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(see for example p.297 and p.301 of [21]) where )(zC  and )(zS  are Fresnel integrals 

defined and graphed in [21], we arrive at the solution of the problem in the more 

manageable form 
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A plot of the real and imaginary parts of the RHS of (G.10) together with the step form of 

  at time  0t  is given in Figure G.1.  

 

The form of   from time 0t  changes markedly only for say 102  tx  i.e. for 

 txt 210210 . For short times this is but a small range and smaller and 

smaller the shorter the time.  

 

If we define the probability (or rather degree of belief) current density i  by 
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as on p.57 of [12], we have in relation to   in (G.10) that 
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Evaluating this at 0x  we find 
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The flux of degree of belief (from 0x  to 0x ) across unit area of the yz  plane from 

time 0t  to time t  is therefore 
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So this flux is small for small   and grows only as the square root of  . 

 

Figure G.1 
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APPENDIX H. Classical probability applied to Brownian motion 
 

Consider the classical motion of a dilute suspension of very tiny (classically identical) 

particles in an unbounded stationary fluid (Brownian motion). Since the suspension is 

dilute, the motion of any particular particle proceeds in a manner physically independent 

of the motion of the others. Let ),( tr , which we write as )( tr  for short, be the 

probability density for the particle position r  at time t .  

 In a way that closely resembles our derivation of the free particle Schrödinger 

equation in section 2 of Chapter IV using complex-valued probability, we can derive a 

differential equation (the diffusion equation) for )( tr  using classical probability on the 

basis of the following assumptions. 

 

(i) Space is homogeneous and isotropic and time is homogeneous. 

 

(ii) The particle does not move infinitely fast.  

 

(iii) Relative to fixed Cartesian coordinates, the yx,  and z  components of the motion  

of the particle are logically independent. So for example, propositions about the x  

component of motion of the particle are logically independent of propositions 

about the y  and z  components of the motion.  

 

(iv) There is just one quantity physically characterising the motion of the  

particle. This is the real and positive ‘diffusion coefficient’ which has units 12TL   

but whose actual value (for any given fluid) we take to be unknown. 

 

 We first seek the probability distribution )( 11

3

22

3 tdtdP rr  for the particle to be in 

volume element 2

3
rd  at time 2t  given it was in volume element 1

3
rd  at time 1t ( 2t ). We 

can write this as 

 

2

3

112211

3

22

3 );()( rrrrr dttftdtdP        (H.1) 

 

where  

 

1);( 2

3

1122  rrr dttf .        (H.2) 

 

From assumption (i) above we deduce the form 

 

),(),();( 12121122  Rrrrr fttfttf  

 

where 12 rrR   and 12 tt  . This is shown in exactly the same way that (1.6) in 

Chapter IV was shown. 

 Rotations form a transformation group so, following the steps leading to (1.8) of
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 Chapter IV, we must similarly have 

 

),(),(  RR ff . 

 

 The form of (H.1) means that ),( Rf  must have dimensions -3L . But the only 

quantities at our disposal are ,R  and the diffusion coefficient which we denote by D . 

So dimensional analysis gives us )()(),( 223-  DRhDf R , or since ),( Rf  is 

positive we can write 

 

))(exp()(),( 223-  DRgDf R .      (H.3) 

 

where g  is some real-valued function. 

 The linearity of g  can be demonstrated using assumption (iii). The steps in the 

derivation of (H.3) are repeated for the logically independent yx,  and z  components of 

the motion. The distributions  
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result in which, by similarity, the  functions ig  (for 3,2,1i ) are all one and the same 

function. The product of these distributions for the component motions must equal 

),( Rf  in (H.3). As a result 
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where A  and B  are real constants. So we find 
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where, by assumption (ii) A  must be negative.  
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 Now );( 1122 ttf rr  has to satisfy (H.2), and using the result  
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for 0a  we find 1))(( 23  AeB  and therefore  
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where )( A  is a positive constant. 

 Since we do not know the value of D  the constant   can be absorbed into D  or 

set equal to any positive real number. We choose to put 41  and finally obtain 
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This closely resembles the result (1.20) of Chapter IV. 

 Now given the probability density )( 11tr  for the particle position at time 1t , the 

probability density )( tr  at time t  later on will, by the sum and product rules of classical 

probability, clearly be 
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and since the distribution );( 11ttf rr  given by (H.5) satisfies the differential equation 
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so too does )( tr . That is, the general probability density )( tr  for particle position must 

always satisfy the differential equation  
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 This completes the derivation of the differential equation for )( tr  in which we 

may determine the value of D  from experiments. 
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APPENDIX I. The geometric representation of propositions,  

phases of implication and phases characteristic of 

knowledge 
 

In order to visualise propositions and picture how (in the new logic) one proposition 

might imply another with a phase of implication, we construct an (extended) Venn 

diagram with an intrinsic ‘metric’ and equate phases of implication to metrical properties 

in the diagram. We put into 1-1 correspondence abstract concepts in the new logic with 

geometrical concepts in the Venn diagram. And in this way we provide a degree of 

confidence in the feasibility and consistency of the general rules we claim (in the main 

text) for phases of implication and phases characteristic of knowledge. 

 

Introduction 

 

By way of introduction we first consider an ordinary Venn diagram in the plane (Figure 

I-1). Here propositions A , B ,…etc. claiming dynamical properties of the physical world, 

are represented by regions within a region P . We can think of each point (or tiny region) 

of P  as representing a ‘possible world’, i.e. a possible (hypothetical) history of all 

dynamical properties of the physical world expressed to quantum mechanical accuracy. 

Any proposition, such as A , claims that one of the possible worlds within region A  is 

the actual world. The proposition represented by P  is thus the proposition which makes 

no specific claim regarding which (out of all the worlds known to be possible) is the 

actual world. 

 

 
Figure I-1 

 

 If one proposition implies another, the region representing the first lies entirely 

within the region representing the second (so for example BA  in Figure I-1). It is 

geometrically evident that if BA  and CB  then CA . Further, if we identify the 

area between A  and B   (measured modulo 2 ) with the phase of implication with which 

A  implies B  then it is clear that if BA   and CB   then CA   as we have 

A 

B 

C 

D 

P 
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claimed in (2.2.1.2) of Chapter I. 

 We note that if DA   and CD   (where D  differs from B ) then we deduce 

that CA  . And this is consistent with CA   because of the geometricalequality 

 . We note also that instead of employing the actual area between 

propositions to represent the phase of implication we can introduce a metric or notional 

density (generally non-uniform) over the plane and employ the notional weighted area 

(the area weighted by the density*) between the propositions (again measured modulo 

2 ). Clearly that would do just as well, and there are any number of different ways of 

measuring phases of implication in this way according to the manner in which the density 

varies from point to point over the plane, and it may vary in a continuous or 

discontinuous way. 

 

Extension of the Venn diagram 

 

 But in this ‘model’, if two propositions are equivalent (i.e. represented by the 

same region in the Venn diagram) they must imply one another with zero phase of 

implication since the area (weighted or not) between the representative regions is zero. 

We therefore need to modify the model somehow to accommodate equivalence with non-

zero phases of implication. This we do by extending the Venn diagram into the 

 

 
 

Figure I-2 

 

third dimension. We claim (see Figure I-2) that there may be further propositions 

occupying positions in planes parallel to the plane of the original Venn diagram which we 

now refer to as the ‘home plane’. So propositions are represented not only by regions A  

or B ,…etc in the home plane but also by regions A , B ,…etc. or A  , B  ,…etc. which 

lie directly below or directly above what we call their ‘projections’ A , B ,…etc in the 

                                                 
* or if you like, the ‘mass’ of the area. 
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home plane.* To measure the phases of implication between equivalent propositions 

(represented always by regions which lie directly above or below each other) we employ 

the vertical displacement between those propositions. In Figure I-2 for example we say 

AA    where   is the vertical distance A  to A   measured positive downwards 

(modulo 2 ). Or, introducing a new fixed metric or density (generally a function of 

distance below the home plane), we can say AA    where   is the weighted 

length† of any vertical line joining the plane occupied by region A  to the plane occupied 

by region A  , and measured positive downwards (modulo 2 ). 

 Clearly any one proposition implies another if its projection on the home plane 

lies within the projection of the other. For example, in Figure I-2, BA  , and we may 

say it does so with a phase of implication equal to   where   is the phase 

with which A  implies A ,   is the phase with which A  implies B , and   is the phase 

with which B  implies B . Here   is the (weighted) area between A  and B  in the home 

plane and   and   the (weighted) vertical displacements from A  to A , and from B  

to B . 

 There seems now, however, little point in maintaining the dependence of phases 

of implication on the areas between the projections of propositions in the home plane. We 

may obtain any phase of implication we might want simply by changing the vertical 

positions of the propositions in question. At any rate, from now on we set the weighting 

of areas in the home plane equal to zero. So, for example, in Figure I-2 we say BA  , 

with a phase of implication equal to  . 

 

The occupation of positions by propositions 

 

Any proposition about dynamical properties of the physical world is supposed to occupy 

a position (i.e. an area in a horizontal plane at a certain height) in the Venn diagram. But 

it is possible that not all positions in the Venn diagram are occupied by propositions 

about dynamical properties of the physical world. However, it will be useful (and 

harmless) for labelling purposes, to consider all positions to be occupied by propositions 

even if some of the propositions occupying positions cannot be expressed in ordinary 

language. We call the latter kind of proposition ‘unreal’. 

 With regard to any proposition A  in the home plane whether that proposition be 

real or unreal, there is always of course a real proposition A  lying somewhere directly 

above or below its projection A . This proposition A  expresses in ordinary language the 

claim that one or other of the possible worlds covered by A  is the actual world. As well 

as A  the propositions AA  , AAA  , AAA  ,… etc. are real propositions logically 

equivalent to A  (not necessarily fully equivalent to A ) but not all propositions A   with 

projection A  are propositions expressible in ordinary language. 

 

  

                                                 
* Note that in this Appendix we distinguish, for clarity, propositions definitely on or normally off the home 

plane by using primed capitals for the latter and un-primed capitals for the former. This convention is not 

however used in the main text of the monograph. So in the main text a proposition with or without (one or 

more) primes should not be given the significance it would have in this appendix. 
† or if you like, the ‘mass’ 
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Characteristic values 

 

For the purpose of modelling phases characteristic of knowledge later on, and for the 

purpose of expressing phases of implication algebraically, we suppose there is a 

‘characteristic value’ )(c A  of any proposition A  according to its vertical position in the 

(extended) Venn diagram. If the area occupied by the proposition A  lies in the home 

plane (so A  coincides with its projection A  on that plane) then )(c)(c AA   and 

 

0 )(c A .         (I.1) 

 

If A  lies distance   below its projection A  we define )(c A  as follows: 

 

)(c A , where   is the displacement of A  below A .   (I.2) 

 

In (I.1) and (I.2) and henceforth, we take for granted that the vertical displacements are 

weighted (in a fixed way) without mentioning this every time. And we always measure 

the (weighted) displacements modulo 2 . So propositional characteristic values can have 

any real value modulo 2 : 

 

 )(c A  modulo 2 .      (I.3) 

 

This means that a proposition A   related to A  by AA    where n 2  (where 

n  is any integer) is the same as proposition A , or at least fully equivalent to it. 

  If BA   we take it to do so with phase of implication given by the rule: 

 

If BA  , then BA  
 where )(c)(c AB   modulo 2 .  (I.4) 

 

But of course the converse is not generally true, i.e. given  )(c)(c AB , it does not 

follow that BA    or even that BA  . We note that (I.4) demonstrates the 

feasibility of the claims (2.2.1.1) and  (2.2.1.2) of Chapter I. 

 Any proposition which makes no claim, or no significant claim regarding 

dynamical properties because its truth is already known from our general knowledge* we 

identify with the proposition P  in our Venn diagram, and we take its characteristic value 

to be zero modulo 2 . Thus 

 

0)(c P  modulo 2 .        (I.5) 

 

So if one proposition P  making no real claim implies another proposition P   making no 

real claim it does so with zero phase of implication (since P  and P   are both identified 

with P ), or in our Venn diagram there are no propositions P  lying directly above or 

directly below the proposition P  in the home plane. 

                                                 
* For example the proposition claiming a particular particle in the physical world has one or other of all 

possible positions in space at a particular time. 
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The disjunction of two or more propositions 

 

When propositions are positioned in the home plane, their disjunction is defined in the 

normal way. So the disjunction BA  of A  and B  is represented by the area of the 

home plane covered by the regions representing A  and B  taken together. 

 To define the disjunction BA   of two propositions A  and B  not necessarily 

on the home plane we introduce a positive weight for every atomistic proposition 

,..., 21 aa  in the home plane* and define the weight of any proposition A  (in the home 

plane) as the sum of the weights of the atomistic propositions making it up. We denote 

the weight of A  by Aw , the weight of B  by Bw  and so on. (If A  and B  are mutually 

exclusive then of course BABA www  , but we do not here assume that A  and B  are 

necessarily mutually exclusive). For reasons that will become apparent soon we need 

(notionally) to assign the weights to the atomistic propositions in a certain kind of way. 

We do it so that mutually exclusive propositions in the home plane always have weights 

of different orders of magnitude. For example we may take the weights to be as follows. 
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 Using these weights we define the disjunction BA   in the following way. First 

we project A  and B  onto the home plane and form the disjunction BA  of their 

projections (see Figure I-3 where AA   and BB  ).  

 

 
Figure I-3 

 

                                                 
* We picture these atomistic propositions as many small areas finite in number covering the home plane 

with the view that we can, if necessary, take the limit as their number tends to infinity.  
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 We then move the area representing the disjunction BA  down a distance   

given by 

 

 BA ww ,;,         (I.8) 

 

which is shorthand for saying that we take   if BA ww   and we take   if 

AB ww  . This displaced area represents the disjunction BA  . Note that the choice 

(I.6) for the weights of the atomistic propositions ensures that either BA ww   or 

BA ww   is true; indeed it ensures that every proposition in the home plane has a unique 

weight. 

 The only kind of disjunction that remains to be specified is the kind in which 

propositions A  and B  coincide or lie directly one below the other. Then BA ww   and 

we need some other way to fix  . We do it by expressing the drops   and   (of A  and 

B  below A  and B ) in the range  20  and  20 , putting   equal to   or   

according to which of   and   (so expressed) is the smallest (or, in another way, 

according to which of   and   (so expressed) is the largest). If   and   are equal we 

simply put   equal to either one (for example to  ). 

The displacement, as given by (I.8) or by the rule just stated, is of course zero 

when A  and B  lie in the home plane (since   and   are then zero).  

We now have a definite rule for formulating disjunctions of any two propositions. 

But we need to qualify it in one respect. For whenever the projections of the two 

propositions onto the home plane fill the region P , their disjunction can only be equal to 

P . It cannot equal P  displaced up or down by some distance because by convention we 

rule out such locations for propositions. So, if the projections A  and B  of A  and B  fill 

P  we take the disjunction BA   to be P . It is clear that our (qualified) general rule for 

forming disjunctions demonstrates the feasibility of the idempotence and commutation 

rules (as in the second and fourth claims of (2.2.1.5) and in the first and third claims of 

(2.2.1.6) in Chapter I). 

 To form the disjunction of three or more propositions we take a pair of them and 

apply the above rule (for the disjunction of a pair of propositions) to this pair to form a 

single proposition and continue in this way till we are left with a single proposition 

representing the disjunction of them all. We clearly always finish up with a proposition 

which is the disjunction of all the projections of the propositions moved up or down a 

certain distance. This distance can depend on the order in which we form pairs of 

propositions but the shape of the region representing the disjunction of them all will 

always be the same, and the result of pairing in one way will always lie directly above or 

below (or in the same plane as) the result of pairing in another way. So the association 

rule for disjunctions will hold in the sense of equivalence, and this demonstrates the 

feasibility of the sixth claim in (2.2.1.5) of Chapter I. 

 

We say that propositions are ‘mutually exclusive’ when their projections on the home 

plane are mutually exclusive in the usual sense. 
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 If propositions A , B  and C  are mutually exclusive but not exhaustive and are 

at distances  ,   and   below the home plane, then, by (I.8) we have for the distance   

of CBA  )(  below the home plane the formula 

 

  CBABA wwww ,;,,;,        (I.9) 

 

But because A , B  and C  are mutually exclusive but not exhaustive the weights 

Aw , Bw  and Cw  will be different and ordered, and the proposition depth finally selected 

will be the one associated with the largest weight. Or if A , B  and C  are mutually 

exclusive and exhaustive the proposition depth finally selected will necessarily be zero. 

In any event the result is the same regardless of the order in which we pair off the 

propositions. We have thus shown the feasibility of the fifth of (2.2.1.6) of  Chapter I. 

 

Finally we note (as is easily demonstrated) the feasibility also of the Constancy of the 

phase of implication between disjunctions of similarly equivalent but not exhaustive 

propositions claimed in section 2.2.1 of Chapter I. 

 

The conjunction of propositions 

 

Any two propositions A  and B  that are not mutually exclusive, and therefore overlap in 

the home plane, have a ‘classical conjunction’ which we write as AB  and which is 

defined in the usual way and is therefore represented by the area of overlap of A  and B  

in the home plane. The characteristic value )(c AB  of AB  is accordingly zero. The 

conjunction BA   of any two propositions A  and B  is that of their projections A  and 

B  in the home plane (i.e. the conjunction AB ) moved down a distance  ,   and   

being the displacements of A  and B  from  A  and B  as shown in Figure I-4. 

 It is evident in Figure I-4 that )(c BA  , )(c A  and )(c B . From 

 

 

 
 

Figure I-4 
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which we derive 

 

)(c)(c)(c BABA  .       (I.10) 

 

So (I.10) is a general rule applying to any two propositions A  and B  that are not 

mutually exclusive.  

 Under this model definition of conjunction we clearly have 

 

ABBA  00  

 

as in the second of (2.2.1.6) of Chapter I. And if A , B and C  overlap each other, we also 

evidently have  

 

CBACBA  )()( 00  

 

because, by (I.10), the difference in the drops of )( CBA   and CBA  )(  from the home 

plane is 

 

0))(c)(c)(c()(c)(c)(c

))(c)(c()(c)(c))((c))((c





CBACBA

CBACBACBACBA
 

 

Hence, by rule (I.4), the fourth claim of (2.2.1.6) of Chapter I is justified. 

 We clearly have also, by repeated application of (I-10), the general rule 

 

...)(c)(c...)(c  BABA        (I.11) 

 

for the characteristic value of the conjunction of any number of propositions whose 

projections on the home plane overlap one another. 

 

From the general rule (I.4) for phases of implication we can justify the first claim in 

(2.2.1.7) of Chapter I to the effect that if CA  
 and DB   , and A  and B overlap, 

then DCBA    because 

 

  )(c)(c)(c)(c))(c)(c()(c)(c)(c)(c BDACBADCBADC . 

 

Also,  

 

If YA   then, in YAA kk   , we have )(c Yk  ,   (I.12) 

 

because 

 

)(c)(c)(c)(c)(c)(c YAYAAYAk  . 
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 Since, for any propositions A  and Y   we have AYA  , it must be that  

 

In AYA k    we have )(c Yk  ,      (I.13) 

 

because 

 

)(c))(c)(c()(c)(c)(c YYAAYAAk  . 

 

 Finally we note here the general rule (which follows from (I.4)) relating to any 

pair of equivalent propositions like A  and A   in Figure I-2: 

 

If AA     then  )(c)(c AA  .     (I.14) 

 

But of course the converse is not generally true, i.e. given  )(c)(c AB , it does not 

follow that A  and B  are equivalent and that BA   . 

 

Negation 

 

The negation A  of any proposition A  in the home plane is taken, in the classical way, to 

be represented by the area between A  and P  in the home plane. The negation A  of any 

proposition A  equivalent to A  but with a (positive or negative) displacement   below 

A , is taken to be represented by the area A  in the home plane displaced vertically a 

distance  . So A  and its negation A  are either both in the home plane, or, on 

opposite sides of and equidistant from the home plane. And clearly 

 

AA  00             (I.15) 

 

as claimed in (2.2.1.6) of Chapter I. 

 Since A  and A  fill region P  we have:  

 

PAA 00            (I.16) 

 

 The general duality rules in (2.2.1.5) of Chapter I are clearly reflected in our Venn 

diagram model on account of the fact that negations, disjunctions and conjunctions of 

propositions are always equivalent to the negations, disjunctions and conjunctions of their 

projections on the home plane.  

 Since A  and A  are equidistance from and on either side of the home plane we 

always have that  

 

)(c)(c AA          (I.17) 
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Identification of the phase characteristic of knowledge with the characteristic values of 

the associated propositions 

 

Not all propositions in our Venn diagram represent possible states of knowledge (pure or 

otherwise) even though they may be logically legitimate claims. A proposition (proposed 

by us at a certain time) might for example, claim incompatible properties and not qualify 

as a possible state of knowledge on that account. So, not all propositions in our Venn 

diagram have characteristic phases even though they do have characteristic values. 

Nonetheless, by means of the identification 

 

)(c)(ch YY           (I.18) 

 

which we suppose applies whenever Y   could represent a state of knowledge, the claims 

made (in the main text) regarding phases characteristic of knowledge will be seen to be 

feasible. 

 Suppose for example that YY    then we have, by (I.14) that 

 

 )(c)(c YY  

 

and if Y   (and therefore Y  ) represent possible states of knowledge we have, by (I.18), 

that 

 

 )(ch)(ch YY         (I.19) 

 

in agreement with the second addition rule for phases characteristic of knowledge 

derived at the beginning of section 1 of Chapter II. 

 If knowledge A  is compatible with knowledge B , and states of knowledge A  

and B  are compatible with knowledge C  etc, then we could hold the combined 

knowledge ...BA   and by the identification (I.18) 

 

...)(c...)(ch BABA  ,   )(c)(ch AA  ,   )(c)(ch BB  ,… . 

 

But by (I.11) 

 

...)(c)(c...)(c  BABA  

 

so we arrive at 

 

...)(ch)(ch...)(ch  BABA       (I.20) 

 

which shows the feasibility of the first addition rule for phases characteristic of 

knowledge claimed in section 2.4 of Chapter I. 

 In a similar manner we can show from (I.12) and (I.13) the feasibility of the 

claims made in (2.2.1.20) and (2.2.1.21) of Chapter I. For example, in AYA k  
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where Y   represents a possible state of knowledge, we have, by (I.13) that )(c Yk   and 

using (I.18) 

 

)(ch Yk   

 

as claimed in (2.2.1.21). 
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Gauge invariance, 170-172 
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Knowledge (mixed states of), 72, 355- 

403  
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law of natural evolution of, 358 

product rule for, 363-365  

pure knowledge arrays, 362  
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371, 374  

calculation of probabilities under,  

358-360  

cases of total ignorance of  
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law of orthogonal representation of,  
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Knowledge (mixed states of) (cont.) 

method of maximum entropy under,  

371  

in relation to part of a system, 362- 

363  

part quasi-classical, 394-396  

quasi-classical, 393-394 

representation of, 355-356 

Knowledge (pure), ix, 18, 19, 21  

essentially pure, 33  

preparation of states of, 396-403 

separability of, 27  

stationary states of, 285-298  

for systems containing identical  

particles, 241  

quasi-classical, 305ff  

quasi-static variation of, 298-304  

Kochen-Specker paradox, viii, 63n,  

404-406 
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100  

of continuous particle motion, 91  

fundamental unit, 94  
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97-98  

of inversion, 99-100  
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of momentum increase, 93-94  
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of motion under a part-quasi-classical  

wave function, 314  
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limit), 86, 146, 150  

of potential action, 91-94  

principle of equivalence, 96  

of time reversal, 98-99 

Logic  

historical variation of, xiin  

law of bivalence in, 9n  

laws of pure, 5-6, 8  

Magnetic moment, 88, 173, 217 

 

 

Measurement(s), viii, ix, 1  

demonstrations of the uncontrollable  

effect of, 341- 344, 353-354  

harmless, 1  

null x, 423  

modelling of, 323-354  

of particle position, 333-334  

exact, 336-337  

of particle position and spin, 352-353 

of particle spin, 344-345 

Mixed states (see Knowledge (mixed  

states of))  

Momentum (quantum mechanical), 

conservation of, 151  

constancy under coordinate  

displacement, 135  

generalised, 147  

kinetic, 160  

classical, 161  

in relation to moving coordinates, 

162  

law of increase of, 93-94, 153  

nature of, 85, 135  

in uniformly moving coordinate  

system, 153 

Momentum-space representation, 17n,  

25n, 89, 144-153, 166-170, 239, 278, 

283, 314-315 

Natural law(s), (see Law(s) (natural)) 

Natural ordering of particles and systems  

of them, 95, 240 

Nonlocality, 406-407 

Observational equivalence, 29, 97, 170 

Parity, 284-285 

Pauli spin matrices, 194 

Periodic motion of particle in a box,  

292-293 

Phase(s) of belief, vii, 2, 7  

indeterminate, xi, 12, 13  

relatively indeterminate, xi, 72, 359  

Phase(s) characteristic of knowledge 6-7  

cases when zero, 7  

first addition rule of, 13  

relation to a phase of implication, 45 

second addition rule of, 44 
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Phase(s) characteristic of propositions  

under knowledge, 6  

rule for, 44 

Phase(s) of implication  

cases when zero, 4, 5, 6, 8  

general rule of addition of, 4 

indeterminate, 4, 9  

law of constancy, of 8  

in physical laws, xii, 5  

rules for, 4, 6  

Potential(s)  

background, 85  

external, 85  

law(s) of potential action, 91-94  

alternative to the last part of the 

first, 422-424  

replacement (for uniformly moving 

coordinate system), 160  

sources of, 85  

system, 85 

Potential field(s) (see Potential(s)) 

Principle  

of equivalence (quantum  

mechanical), 96  

application of, 127-129, 155,  

166 

of the excluded middle, 9n  

of indifference, 17n, 37  

of least action, 312n  

generalisation of, 312n  

of maximum entropy, x, 17n, 39  

Precession, 195-197 

Probability  

calculation of, x  

classical, x, xii, 94  

coexistence of complex-valued and  

classical, 38-39  

complex valued, v  

Bayesian interpretation of, v, vii, viiin 

indeterminate, x-xi  

interference of, 25, 56, 272  

serious, 310, 322  

and frequency, 450-453  

laws of extreme values of 9-10, 42-43 

logical theory of, vii  

non-existent, x-xi, 3, 20 

Probability (cont.) 

principles of assignment of, 33-38  

product rule of, 13  

sum rule of, 12  

uniqueness principles of, 33-34  

Probability assignment  

by method of transformation groups,  

38  

by principle of indifference, 37-38  

by principle of maximum entropy,  

39-40  

similarity principle of, 34-37, 41-42 

uniqueness principles of, 33-34 

Product rule  

for distributions in logically  

independent sample spaces, 52  

of probability, 13 

for pseudo wave functions, 67  

for transformation functions, 55  

for wave functions, 27 

Properties  

with classical analogue, 84, 94  

compatible, 3  

directly observable, 323  

incompatible, ix, 3, 11  

inferred, 31-33  

non-possession, of ix  

possession of, viii  

represented by a complete set of  

commuting observables, viii, 58,  

66  

Proposition(s)  

atomistic, 15  

basic sets of xi, 16  

equivalent, 4  

equivalence transformation of, 7  

fully equivalent, 4  

independence of, 14-15 

law of substitution of, 9  

plain expression of, 5  

types of, 2  

Pure states (see Knowledge (pure))  

Reciprocity  

general law of, 30  

consequences of, 83  

of transformation functions, 22  
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Sample space(s), 15  

closed, 18, 86  

examples, of 87-89  

combinations of, 16  

complete, xi, 16  

contemporary, 18  

extension of, 29  

independent, 15-16  

logically independent, 86-87  

order of, 17, 240-241  

separate, 15  

Schrödinger equation  

for free particle motion, 110  

similarity to diffusion equation, 

111n, 457-459  

general, 286  

for general spin, 235  

for many particle system, 133  

is not a law of motion, 119n  

for particle under general potentials,  

126  

for spin one, 213  

for spin one-half, 194  

for spin one-and-one-half, 234  

for spin and orbital motion, 199, 213  

236, 237  

for spin zero, 214  

for total spin, 208  

for two spin system, 207, 231  

under time dependent parameter, 298  

in uniformly moving coordinate  

system, 159  

Serious interference (see Probability,  

interference of) 

Sources  

of electric potentials, 324n, 334n, 337  

modelling of, 337-341, 439-441  

effects of motion of, 92, 93  

of gravitational potentials, 443  

modelling of, 446  

of magnetic field, 346 

Spin  

combination of a pair of (spin)  

systems, 219-235  

combination of three (spin one-half)  

systems, 225  

Spin (cont.) 

law of component addition, 218  

matrices, 194, 235, 236  

nature of, 16n, 84, 87, 88, 89, 98, 99,  

100, 173, 215, 217  

one, 210-214  

one-half, 173-200, 232  

one-and-one-half, 233  

operators, 184-187, 236  

properties of, 175, 211, 220  

absence of spin/orbit interaction,  

174n  

absence of spin/spin interaction, 201n  

total, 201  

kinematic properties of, 202  

yx,  and z  components of, 184-187  

zero, 214-216 

Spinorial character of coordinate  

systems, 96-97 

Stationary states (see under Knowledge 

(pure))  

Statistical mechanics, 374-392 

Sum rule  

of probability, 12  

for transformation functions, 23-24  

for wave functions, 31, 241 

Transformation functions, 21-24  

between proper wave functions for  

identical particle systems, 256, 262 

completeness of, 23  

for improper wave functions, 240,  

244-246  

orthonormality of, 22-23  

momentum/momentum, 139  

between stationary and uniformly  

moving coordinate systems, 156  

between coordinate systems  

moving uniformly at the same 

velocity, 157  

momentum/position, 143  

phase normalisation of, 22  

position/position, 108, 116, 125  

in uniformly moving coordinate  

system, 155  

position-spin/position-spin, 198  

product rule for, 55  
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Transformation functions (cont.) 

pseudo, 67  

reciprocity law of, 22  

spin/spin, 182, 212, 214, 216, 223,  

226, 235  

sum rule for, 23-24  

total-spin/spin, 205, 228  

total-spin/total-spin, 206, 229  

under external fields, 144  

unit determinate rule for, 22 

Transformation functions (symmetrised)  

for bosons, 251-255  

for fermions, 262-265 

Transformation group(s) (the method of) 

 x, 38, 42  

applications of, 103-104, 104-105,  

106, 242-243, 285  

Uncertainty principle, v, ix, xi, 1, 19-20,  

25, 343 

Velocity of quantum mechanical  

particle, 160-161  

in relation to moving coordinates, 162 

Venn diagram(s), 15, 460  

use of to picture phases of implication  

and phases characteristic of 

knowledge, 460-470 

Wave functions (improper), 240  

differentiability of, 240  

for pair of distinguishable identical  

particles, 267, 269  

relation to proper wave functions,  

249-250, 256-260  

sum rule for, 241  

symmetry properties of, 248-249  

for systems of bosons, 249-256  

for systems of fermions, 256-265 

Wave function(s) (proper), viii, ix, 90-91  

after harmless conditioning, 54  

allowed, 21  

change in under inversion, 282, 283,  

284  

change in under time reversal, 277,  

278, 281,  

collapse of, vi, ix  

correspondence with pure states of  

knowledge, 21  

Wave function(s) (proper) (cont.) 

diffusion of,  454-456  

inseparable, 69  

law of partial orthonormal  

decomposition of, 69  

new kind of, 68  

normalisation of, 20, 90, 103n  

as the physical state of a system, ix 

possibility of conjugation of, 40-41,  

146n  

separable, 27  

sum rule for, 31 

Wave functions(s) (pseudo), 66-67 

Wave function(s) (quasi-classical)  

of simplest kind, 306-309, 322, 336n  

superpositions of, 309-313, 322  

part quasi-classical, 313-314, 322  

stationary, 314, 315, 316, 322 
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