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Annotation 
It is noted that the known solution for a spherical 

electromagnetic wave does not satisfy the law of conservation of 
energy (it is retained only on the average), the electric and 
magnetic intensities of the same name (by coordinates) are in 
phase, only one from system of Maxwell's equations is satisfied, 
the solution is not wave solution, there is no flow of energy with 
real value. A solution is offered that is free from these 
shortcomings. 

 

1. Introduction 
In [1] a solution of the Maxwell equations for a spherical wave in 

the far field was proposed. Next, we consider the solution of Maxwell's 
equations for a spherical wave in the entire region of existence of a wave 
(without splitting into bands). Such a problem arises in the solution of 
the equations of electrodynamics for an elementary electric dipole-
vibrator. The solution of this problem is known and it is on the basis of 
this solution that the antennas are constructed. However, this solution 
has a number of shortcomings, in particular [2], 

1. the energy conservation law is satisfied only on the average, 
2. The solution is inhomogeneous and it is practically necessary to 

divide it into separate zones (as a rule, near, middle and far), 
in which the solutions turn out to be completely different, 

3. In the near zone there is no flow of energy with the real value 
4. The magnetic and electrical components are in phase, 
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5. In the near zone, the solution is not wave (i.s. the distance is not 
an argument of the trigonometric function), 

6. The known solution does not satisfy Maxwell's system of 
equations (a solution that satisfies a single equation of the 
system can not be considered a solution of the system of 
equations). 

 

In practice, these drawbacks of the known solution mean that they 
(mathematical solutions) do not strictly describe the real characteristics of 
technical devices. A more rigorous solution, when applied in the design 
systems of such devices, must certainly improve their quality. 
 

2. Solution of the Maxwell’s equations 
So, we will use spherical coordinates. Fig. 1 shows the spherical 

coordinate system (  ,, ). Next, we will place the formulas in tables 

and use the following notation: 
T (table_number) - (column_number) - (line_number) 
Table 1-3 lists the expressions for the rotor and the divergence of 

the vector E in these coordinates [3]. Here and below 
E - electrical intensities,  
H - magnetic intensities,  
  - absolute magnetic permeability, 

  - absolute dielectric constant.  
 

Next, we will look for the solution in the form of the functions 

HE, , presented in Table 2-2, where the actual functions of the form 

 g  and the complex functions of the form     hе ,
 
are to be 

calculated, and the coefficients  ,,
 
are known. 


 ,T

 
Fig. 1. 
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Under these conditions, we transform the formulas (T1-3) into 

(T1-4), where the following notations are adopted: 

  










e
e ,      (1) 

  









g
ĝ ,      (2) 

       exp(...)   geЕ ,   (3) 

      exp(...)   eЕT ,    (4) 

where 

   







 



 


 eie
e

e ,    (5) 

 
 
 

 







 




 g

g
ˆ

tg
.     (6) 

The function (3) is formed from a function of the form

 
















 ЕЕ
 

 
The Maxwell equations in spherical coordinates in the absence of 

charges and currents have the form given in Table 3-2. Next, we 
substitute the rotors and divergences from Table 2-4 and the functions 

HE,
 
from Table 2 (after differentiation with respect to time) in Table 

3-3. Next, we rewrite the equations from Table 3-3 in Table 4-2. In this 

case, we also reduce the common factors of the form  ...exp  and use 

the formulas (1-6). 
As a result of these transformations, we obtained an 

overdetermined system of 8 partial differential equations with respect to 

6 unknown functions with two arguments   and  . 

The solution of the system of Maxwell equations, in addition to the 
natural requirement of the feasibility of all equations of the system, must 
satisfy the basic physical laws: 

1. the law of conservation of energy (not on average in time, but at 
each moment of time), 

2. The phase shift experimentally established in electrical 
engineering between electric and magnetic intensities, 

3. experimentally established wave character of the propagation of 
electric and magnetic intensities in space, 
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4. The solution should not allow the existence of an infinite value 
of any intensity. 

Mathematically, these patterns should not be a consequence of 
solving the system of Maxwell equations, but additional conditions that 
transform the overdetermined system of Maxwell's equations into a 
strictly defined system. However, a solution can also be found without 
taking these conditions into account, since even a certain (and even more 
so, overdetermined) system of partial differential equations can have 
many solutions. In this set of solutions, there is only one that satisfies the 
above laws. The greatness of Maxwell's system of equations is that there 
is always a solution that describes reality. But how does nature find such 
a solution? The answer, perhaps, lies in the fact that there exists a 
functional (with a saddle point) relative to the intensities, in which the 
first variations in the intensities, when converted to zero, coincide with 
the Maxwell equations. The descent along the functional in the direction 
of these variations is equivalent to the solution of these equations [5]. 

The wave character of the solution is provided by the factors 

 ...exp  of the species in the determination of the electric and magnetic 
intensities in Table 2. Sufficient conditions for phase displacement 
between electric and magnetic strains are the following: 

 iEHiHE  ,
     (7)

 

 iEHiHE  ,
     (8)

 

 iEHiHE  ,
     (9)

 

Denote by: 

 ,,,,,, HEE sumH 
     (11)

 

 ,,,,

min

,, HEE H 
     (12)

 

First we will seek a solution for vacuum, where in the CGS system 

1  .       (13) 

and denote by 

сq          (14) 

We summarize the equations from Table T4-2 in pairs and write 
the resulting equations into Table T4-3, using the notation (11, 12, 14). 
As a result of these transformations, we obtained an underdefinished 
system of 4 partial differential equations with respect to 6 unknown 

functions with two arguments   and  . 

It follows from (7-12): 

     ihiihieheE sumH  111   (15)
 



 

 5 

     ihiihieheE H  111min

  (16)
 

 

     ihiihieheE sumH  111    (17)
 

     ihiihieheE H  111min

  (18)
 

 

     ihiihieeeE sumH  111    (19)
 

     ihiihieheE H  111min

  (20)
 

 

 ,,

min

,,,,,,

min

,,,, 2,2 fr

H

fr

sumH

frfr

H

fr

sumH

fr hННеEE 
 (21)

 

We now rewrite the equations from Table T4-3 into Table T5-2, 

replacing variables 
HsumH EE min

,,,, ,   
with variables  ,,e

 
according to (15-

20). 
It is seen that the equations T6-2-2 and T6-2-3 are compatible only 

if the following two conditions are met: 

0        (22) 

 eie         (23)
 

 gg                     (23a)
 

 
Taking these conditions into account, we rewrite the equations from 
Table T6-2 in Table T6-3. It is seen that the equations T6-3-2 and T6-3-3 

are the same, and the term 




g

e
ˆ

 

can be deleted from the equations T6-

3-1 and T6-3-4. The two equations that we got are written in Table T-7-
2. After simple transformations, these equations are rewritten in Table T-
7-3. We now write these equations with allowance for the formula (2.5): 

  01
sin

cos
 







geigiqegeige

ge
 (24) 

0 





iqeeie

e
     (25) 

Equation (25) splits into two equations: 

0 




e

e
      (26) 

0  iqeei       (27) 
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from which it follows that 
q        (28) 




А
e         (29) 

where A is a constant. Substituting (28, 29) into (24), we find: 

 







g
iАge

ge
2

1

sin

cos 
     (30) 

or 

 






 g

giАe
e

2

1

sin

cos 
     (31) 

Let 

cossin,   gg      (32) 

From (31, 32) we find: 

 
2

1







iАe
e


      (33) 

An analysis of this equation is given in Section 4. 
As a result of the above calculations, complex functions 

       еее ,,
 

are defined. For these functions  g , the 

functions  ЕЕЕ ,,
 
are determined from Table 2. 

For these functions  ЕЕЕ ,,  the functions  ННН ,,
 
are 

determined from (7-8), from which it follows that 

 ieh 
       (34)

 

 ieh 
       (35)

 

 ieh 
       (36)

 

The functions  ННН ,,
 
are also listed in Table 2. 

 

3. Energy Flows 
Density of electromagnetic energy flow - Poynting vector 

HES  ,      (1) 

where 

 4c .       (2) 

In the SI system formula (1) takes the form: 

HES  .       (3) 
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In spherical coordinates  ,,
 
the flux density of electromagnetic 

energy has three components  SSS ,, , directed along the radius, 

along the circumference, along the axis, respectively. It was shown in [4] 
that they are determined by the formula 

 
























































HEHE

HEHE

HEHE

HE

S

S

S

S .   (4) 

Taking into account (2.7-2.9) from (4) we find: 

 iEEiEEHEHES      (4a) 

or 

 EiES 2 ,      (5) 

0  HiHHiНHEHES    (6) 

0  HiHHiHHEHES .  (7) 

It follows from (6, 7) that there is no flow of energy along the 
circles of the sphere. 

In Appendix 1 it is shown that the energy flux density, passing 
through a sphere with a radius  , 

228 АS   .      (8) 

and does not depend on time, i.e. this flux has the same value on a 
spherical surface of any radius at any instant of time. In other words, the 
energy flux directed along the radius retains its value with increasing 
radius and does not depend on time, which corresponds to the law of 
conservation of energy. 

 

4. About the longitudinal wave 
We consider in more detail the equation (2.33). It has a solution of 

the following form [8, p. 12]: 

 
 

2

ln
1




 iАe       (1) 

It determines the electric intensities of the longitudinal electromagnetic 
field - see Table 2. The magnetic intensities of the longitudinal 
electromagnetic field also follows from Table 2. The electric intensity of 
the longitudinal electromagnetic field is also present in the known 
solution for a spherical wave in the near zone, but there is no magnetic  
intensity of the longitudinal electromagnetic field, which (of course) 
contradicts Maxwell's equations. In addition, in the proposed solution, 
the electric  intensity has a different description. In general, the solution 
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does not exist in the absence of longitudinal intensities - one can easily 

verify that the equations of T6-3 are not compatible, when   0e .  

In [1] a solution was given for the far zone, where   0e . But in 

solution from [1] there are cases when there are infinite values of any 
intensity - this makes that decision practically inapplicable. 

 
In Fig. 2 shows the form of the solution of equation (1) at 1A , 

where the real part e
 
of the function (1) is shown (see the lower curve) 

and the function (2.29)  Аe   (see the upper curve). It is important to 

note that the function (1) always has a negative value (with respect to the 

constant A). When 1A  the longitudinal wave is directed away from 
the source, i.e. coincides in the direction of the energy flow. The energy 
from the main energy flux of the transverse wave (3.8) is transmitted to 
the longitudinal wave. In this case, the main energy flux decreases (a 
comparative estimate of the energy of the longitudinal and transverse 
waves is not given here). Thus, the energy of the transverse wave is 
converted into the energy of the longitudinal wave. Simultaneously, the 
intensity of the transverse wave decreases and the propagation of the 
wave stops (indeed, it is difficult to imagine an unbounded spherical 
wave in space). 
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5. Conclusion 
1. A rigorous solution of Maxwell's equations, shown in Table. 1 

and free from the above disadvantages, is presented in Table. 2, where  

1  .      (1) 

сq         (2) 

q       (3) 

0        (4) 

 iEHiHE  ,
    (5)

 

 iEHiHE  ,
    (6)

 

 iEHiHE  ,
    (7)

 

  cosg      (8) 

       sin gg     (9)
 




А
e        (10) 

 eie        (11)
 

 
 

2

ln
1




 iАe      (12) 

 ieh 
      (13)

 

 ieh 
      (14)

 

 ieh 
      (15)

 

2. The solution found is complex. It is known that the real part of 
the complex solution is also a solution. Therefore, as a solution, instead 
of the functions presented in Table. 2, you can take their real parts. 
Taking into account this remark and the above formulas, we rewrite 
Table 2 in Table 8, where the real values of the intensities are shown. In 
Fig. 3 shows the intensities vectors in a spherical coordinate system. 

3. The electric and magnetic intensities of the same name 
(according to coordinates  ,  ,  ) are phase shifted by a quarter of a 

period. 
4. There is a longitudinal electromagnetic wave having electric and 

magnetic components. 
5. In a transverse electromagnetic wave, the energy flux passing 

through the spheres along the radius remains constant with increasing 
radius and does NOT change with time. 
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6. The energy of the transverse wave is converted into the energy 
of the longitudinal wave. In this case, the intensity of the transverse wave 
decreases and the wave propagation ceases.  





H
E


 EE ,

 НН ,
 

Fig. 3. 
 

Appendix 1 
Рассматривая табл. 2 и формулы (2.22, 2.23, 2.23a, 29, 32) 

находим: 

          )(sin)(cossin)(expsin tit
А

ti
А

E 





 
 (1) 

 

     

 

  )cos()sin(sin

2
)(sin

2
)(cossin

2
)(expsin)(expsin

tit
А

tit
А

ti
А

ti
А

iEiE




































































 (2) 

From (1, 2, 4.5) we find: 

   

     i
iА

ii
iА

ii
iА

EiES
















2

2

2
222

2

2

2

2

2

sin
2

(...)sin(...)cossin
2

cos(...)sin(...)sin(...)cos(...)sin
2

2

 

or 

 



2

2

2

sin
2А

S 
.      (3) 
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Note also that the surface area of a sphere with a radius   is 24 . 

Then the flow of energy passing through a sphere with a radius   is 

  






 


 d
А

dSS 2

2

2
22 sin

2
44  

or 
228 АS   .      (4) 
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Tables 
 
Table 1.  

1 2 3 4 
1  Erot  

    












sintg

EEE
 

 
 






sin

EiET
  

5  Hrot  

    












sintg

HHH

 

 
 






sin

HiHT


 
2  Erot  

  










 EEE

sin
 

 
 







E

Ei


sin
 

3  Erot  















EEE
  










Ei
E   

6  Hrot  

  










 HHH

sin   
 







H

Hi


sin  
7 Hrot  















HHH

 

 









Hi
H 

 
4  Ediv  

 

  























sin

tg

EE

EEE

 

   
 









sin

EiET
E   

8  Hdiv  
 

  























sin

tg

HH

HHH

 

   
 









sin

HiHT
H 
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Table 2. 

1 2 
      )(exp tigeE     

      )(exp tigеE     

      )(exp tigeE     

      )(exp tighH     

      )(exp tighH     

      )(exp tighH     

 
Table 3. 

1 2 3 
1. 

0rot 





t

H

c
E






 

 
 

0
sin

 
 






H

c

iEiET
 

5. 
0rot 






t

E

c
H






 

 
 

0
sin

 
 






E

c

iHiHT

 
2. 

0rot 





t

H

c
E 




 

 
  0

sin
 

 




H

c

i
E

Ei
 

3. 
0rot 






t

H

c
E






   0 










H

c

iEi
E  

6. 
0rot 






t

E

c
H 




 

 
  0

sin
 

 




E

c

i
H

Hi

 
7. 

0rot 





t

E

c
H






   0 










E

c

iHi
H

 
4.   0div E  

   
 

0
sin











EiET
E  

8.   0div H  
   

 
0

sin











HiHT
H
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Table 4. 

1 2 3 
1 

0
sin

ˆ

tg
 

 






gh

c

i
ge

igege

 

0

sin

ˆ
tg

min 























giqE

gE
i

g
E

g
E

H

sumH

sumHsumH

 5 
0

sin

ˆ

tg
 

 






ge

c

i
gh

ighgh

 

2 
  0

sin
 







gh

c

i
gege

i
  

0

sin

min 





 




giqE

gEgE
i

H

sumHsumH

 

6 
  0 






 gh

c

i
ge

i
ge  

3 
  0

sin
 







ge

c

i
ghgh

i

 

 

0min 











giqE

gE
i

gE

H

sumHsumH

 

7 
  0 






 ge

c

i
gh

i
gh

 
4 

  0
sin

ˆ

tg
 












 ge

ige
g

e
ge   

0
sin

ˆ

tg






















gE
i

g
E

g
E

gE

sumH
sumH

sumH
sumH

 
8 

  0
sin

ˆ

tg
 









 gh

ighgh
gh

 
 

Table 5. 

1 2 
1.    

    011
sin

ˆ
1

tg

1












 






ge

c

i
igei

i
g

ei
g

ei
 

2. 
        0111

sin
 







ge

c

i
igeigei

i
 

3. 
        0111  






 ge

c

i
ige

i
igei  

4. 
          0

sin
1ˆ1

tg
11  












 ge

i
ig

e
ig

e
igei  
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Table 6. 

1 2 3 
1 

 

0ˆ

cos
sin

1
















g
e

giqegege

 






giqee

g
g

e


sin

cos
ˆ

 

2 
  0

sin
 




 gegqege  

  0  giqege  

3 
  0 




 ge

i
gqege  

  0  gqegei  

4 
   

0ˆ

cos
sin

1

















g
e

gegege

 

 

0ˆ

sin

cos




















g
ie

e
ig

ge

 

 

Table 7. 
 

1 2 
1. 

  0
sin

cos

sin

cos
 


 giqegege

i
ge

 
2.   0  giqege  

 

Table 8. 

1 2 
     )sin(sin teE    

     )cos(sin tеE    

     )cos(cos teE    

     )cos(sin teH    

     )sin(sin teH    

     )sin(cos teH    

 


