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Abstract

We revisit the solutions to the nonlinear Bohm-Poisson (BP) equation with
relevant cosmological applications. In particular, we obtain an exact analytical
expression for the observed vacuum energy density and explain the origins of its
repulsive gravitational nature. Further results are provided which include two pos-
sible extensions of the Bohm-Poisson equation to the full relativistic regime; how
Bohm’s quantum potential in four-dimensions could be re-interpreted as a gravi-
tational potential in five-dimensions, and which explains why the presence of dark
energy/dark matter in our 4D spacetime can only be inferred indirectly, but not
be detected/observed directly. Solutions to the novel Bohm-Poisson-Schrédinger
equation are provided encoding the repulsive nature of dark energy (repulsive grav-
ity). We proceed with a discussion on Asymptotic safety, matter creation from
the vacuum, and Finsler relativistic extensions of the Bohm-Poisson equation. Fi-
nally, we conclude with some comments about the Dirac-Eddington large numbers
coincidences.

1 Dark Energy and the Bohm-Poisson-Schrodinger
Equation

In physical cosmology and astronomy, dark energy is an unknown form of energy which is
hypothesized to permeate all of space, tending to accelerate the expansion of the universe
[1] . Assuming that the standard model of cosmology is correct, the best current mea-
surements indicate that dark energy contributes 68.3 percent of the total energy in the
present-day observable universe. The mass-energy of dark matter and ordinary (bary-
onic) matter contribute 26.8 and 4.9 percent respectively, and other components such
as neutrinos and photons contribute a very small amount. The density of dark energy
much less than the density of ordinary matter or dark matter within galaxies. However,



it dominates the mass-energy of the universe because it is uniform across space [1]. Two
proposed forms for dark energy are the cosmological constant, [2] representing a con-
stant energy density filling space homogeneously, and scalar fields such as quintessence or
moduli, dynamic quantities whose energy density can vary in time and space.

The nature of dark energy is more hypothetical than that of dark matter, and many
things about the nature of dark energy remain matters of speculation [1]. Dark en-
ergy is thought to be very homogeneous, not very dense and is not known to interact
through any of the fundamental forces other than gravity. In the models based on the
Friedmann-Lemaitre-Robertson-Walker (FLRW) metric, it can be shown that a strong
constant negative pressure in all the universe causes an acceleration in universe expan-
sion if the universe is already expanding, or a deceleration in universe contraction if the
universe is already contracting. This accelerating expansion effect is sometimes labeled
“gravitational repulsion”. In this work we shall depart from the FLRW model based on
an isotropic and homogeneous universe to the case where the density of dark energy/dark
matter (dark-fluid) permeating all of space can vary in space and time.

A major outstanding problem is that quantum field theories predict a huge cosmo-
logical constant, more than 100 orders of magnitude too large. This would need to be
almost, but not exactly, cancelled by an equally large term of the opposite sign. Some
supersymmetric theories require a cosmological constant that is exactly zero, which does
not help because supersymmetry must be broken. Nonetheless, the cosmological constant
is the most economical solution to the problem of cosmic acceleration. Thus, the current
standard model of cosmology, the Lambda-CDM (cold dark matter) model, includes the
cosmological constant as an essential feature [1].

The evidence for dark energy is heavily dependent on the theory of general relativity.
Therefore, it is conceivable that a modification to general relativity also eliminates the
need for dark energy. There are very many such theories, and research is ongoing [3], [4].
The measurement of the speed of gravity with the gravitational wave event GW170817
ruled out many modified gravity theories as alternative explanation to dark energy [1].

In quintessence models of dark energy, the observed acceleration of the scale factor
is caused by the potential energy of a dynamical field, referred to as quintessence field.
Quintessence differs from the cosmological constant in that it can vary in space and time.
In order for it not to clump and form structure like matter, the field must be very light so
that it has a large Compton wavelength. This class of theories attempts to come up with
an all-encompassing theory of both dark matter and dark energy as a single phenomenon
that modifies the laws of gravity at various scales. This could for example treat dark
energy and dark matter as different facets of the same unknown substance, a “dark fluid”
[5], or postulate that cold dark matter decays into dark energy.

The Schrodinger-Newton equation has had a long history since the 1950’s [6], [7]. It is
the name given to the system coupling the Schrodinger equation to the Poisson equation.
In the case of a single particle, this coupling is effected as follows: for the potential energy
term in the Schrodinger equation take the gravitational potential energy determined by the
Poisson equation from a matter density proportional to the probability density obtained
from the wave-function. For a single particle of mass m the coupled system of equations
leads to the nonlinear and nonlocal Newton-Schrodinger integro-differential equation



. a@(ﬁt) _ h2 2 — — — 2 |‘1I(F?t)|2 3 ./ —
ih 5 = 2mV U(rt) + V(7 t) ¥(r,t) — | Gm / d°r' | W(rt)

Bohm’s quantum potential Vi, = —%(V2\/ﬁ/\/ﬁ) was shown to be proportional to
the Weyl scalar spatial curvature produced by an ensemble density of paths associated
with one, and only one particle, as shown in [8]. The constant of proportionality is —%.
It can be generalized to the relativistic case. This geometrization process of quantum
mechanics allowed to derive the Schroedinger, Klein-Gordon [8] and Dirac equations [9].
Most recently, a related geometrization of quantum mechanics was proposed [10] that de-
scribes the time evolution of particles as geodesic lines in a curved space, whose curvature
is induced by the quantum potential. This formulation allows therefore the incorporation
of all quantum effects into the geometry of space-time, as it is the case for gravitation in
the general relativity.

Based on these results we proposed in [11] the following nonlinear quantum-like Bohm-
Poisson equation for static solutions p = p(7)
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such that one could replace the nonlinear Newton-Schrodinger equation for the above
non-linear quantum-like Bohm-Poisson equation (2) where the fundamental quantity is
no longer the wave-function ¥ (complex-valued in general) but the real-valued probability
density p = ¥*W. The logic behind eq-(2) is based on the idea that the laws of physics
should themselves determine the distribution of matter. This is going one step further
from General Relativity where a given distribution of matter determines the geometry.
Eq-(2) is based on Bohm’s quantum potential
2 o2
Vy =1 VP 3)
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If, in addition to the Bohm-Poisson equation (2), one were to add the Schrédinger equation
for the complex-valued wave-function ¥ = \/ﬁeis/ h one can obtain consistent solutions,
which avoids having an overdetermined system of equations, when the external potential
is itself a function of p as we shall show at the end of this section. Hence in this scenario
we will have the Bohm-Poisson-Schrodinger equation instead of the Newton-Schrodinger
equation (1).

If one wishes to introduce a temporal evolution to p via a Linblad-like equation, for
instance, this would lead to an overdetermined system of differential equations for p(7,t).
Replacing V? in eqs-(1,2) for the D’Alambertian operator O = V,V* 1 = 0,1,2,3 has
the caveat that in QFT p(x*) = p(7,t) no longer has the interpretation of a probability
density but is now related to the particle number current. Despite this caveat we will
propose an eq-(10) below involving the D’Alambertian O operator and a proper mass
density (mass per proper four-volume).



For the time being we shall just focus on static solutions p(7). The de Sitter space
metric associated with an exponentially expanding universe can be written in static and
spherical coordinates in the form gy (r) = —(1 — %7"2); 9rr(r) = —(gu)~",- -+, and given in
terms of the cosmological constant A = (3/R%), where Ry is the Hubble radius. Hence,
there is no inconsistency in focusing for now on static and spherically symmetric solutions
pm(r) for the probability density in order to simplify matters.

Since almost 95 percent of the energy /mass content of the Universe is comprised of dark
energy/dark matter, we may envisioned the Universe’s dark energy/dark matter (dark-
fluid) density distribution as being proportional to a QM probability density obeying
the Bohm-Poisson (BP) equation (2), in the same vain that one can view an electron
orbiting the Hydrogen nucleus as an “electron probability cloud” surrounding the nucleus,
permeating all of space, and whose mass density distribution is p = m,U*W¥, where V()
are the stationary wave-function solutions to the Schrodinger equation, and m, is the
electron’s mass.

The density p,, = mp of dark energy/dark matter (dark-fluid) permeating all of space
is postulated to be a solution to the nonlinear quantum-like Bohm-Poisson (BP) equation.
It is straightforward to verify that a spherically symmetric solution to eq-(2) in a 3D
spatially flat background ! is given by

A h?
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pm(r) = - i (4)
At first glance, since p,,,(r) < 0 one would be inclined to dismiss such solution as being
unphysical. Nevertheless, we can bypass this problem by noticing that in the Einstein

field equations with a cosmological constant, in the spherically symmetric case,

1
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one can absorb the cosmological constant into a redefinition of p,,(r), and the radial
pressure p,(r), by rewriting

N NI S - N R S . (6)
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leading then to field equations rewritten in terms of p,,(r) and p,(r)
1 -
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Hence, focusing instead on the shifted density p,,(r) = pm(r) — po to be the actual
solution of the Bohm-Poisson equation we are interested in

B2y Vi R
- =V pas ) = ArGmpn,, V() =r20.(r%0,f(r)). (8)

'For the time being we shall not discuss solutions in curved backgrounds
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and consequently, when A > 0, one can now concentrate on the domain of values of r
where p,,(r) > 0. And, in doing so, it will permit us to show that the value of py can be
made to coincide exactly with the (extremely small) observed vacuum energy density, by
simply introducing an ultraviolet length scale [ that is very close to the Planck scale, and
infrared length scale L equal to Hubble scale Ry.

A covariant (relativistic) extension of the BP equation, for signature (—, +, +, +), may
be defined in terms of the D’Alambertian operator, and a proper mass density o(7,t) of

physical dimensions (length)™>, such that m = [ (7, t) \/|g| d*z, as follows

O/o(T,t 1
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The relativistic case will be the subject of future investigation. Focusing for now
on the static spherically symmetric solutions (8) of the BP equation, let us choose the
ultraviolet scale [ to coincide with the node of p,,(r) such that from eq-(9) one has

o1 o1
pm(T:l>:_mﬁ+po:0:>po:mﬁ (11)
The domain of physical values of » must be r > [ in order to ensure a positive-definite
density p,,(r) > 0. One could include all the values of  from 0 to co. The density diverges
at r = 0, while the integral [;° p(r)4rr?dr = oo — oco. The +oo contribution stems from
the region r > [, while the —oo contribution stems from the region r» < [. Therefore
one needs to introduce a suitable and judicious regularization involving an ultraviolet and
infrared scale.
In natural units of h = ¢ = 1, after introducing the ultraviolet scale [ and infrared
scale L = Ry in the normalization condition (otherwise the mass would diverge) it yields
the integral

Ry Ry A Ry 1 1
m = /l p(r) dnr? dr = /z (T—4+p0) 4rr? dr = /z (_27TG7TL2 -y + po) 4(17?7’)2 dr
12

In conventional QM, the plane wave solutions W = e'®" are not square integrable. Nev-
ertheless we bypass this problem after introducing an infrared cutoff by putting the free
particle in a box of finite volume. Similarly, we follow this regularization procedure in
eq-(12). Upon performing the integral in eq-(12), after plugging in the value of py derived
from eq-(11), with the provision that when Ry >> [ the dominant contribution to the
integral stems solely from p,, one ends up with the following relationship

ik.7
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solving for m one gets
m = (=2) R (14)
3G "

One can verify that when the ultraviolet scale [ is chosen to be very close to the Planck
scale, and given by

4 4
o ) L = | = (5)1/4 L, = 1.0745 L, (15)

then upon inserting the values for m and [ obtained in eqs-(14,15) into the expression for
po derived in eq-(11), after setting Lf, = 2@, 2 it gives in natural units of h =c =1

11 1 3G, 1 3 L 3
Po = 5~ "5 74 — ( ) 2 14 2 74 2 (16)
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which is precisely equal to the observed vacuum energy density p = (A/87G) associated
with a cosmological constant A = (3/R%) and corresponding to a de Sitter expanding
universe whose throat size is the Hubble radius Ry ( = ¢/H,, H, is today’s value of the
Hubble parameter).

The physical reason behind the choice of the ultraviolet scale [ in eq-(15) is based
on re-interpreting p, as the uniform energy (mass) density inside a black hole region of
Schwarzschild radius R = 2Gm

m 3
= = I3 =2G, h=c=1 17
P = m/3)R® T srGRe P TS e (17)
In the regime R = 2Gm >> [, when the dominant contribution to the integral (12)
stems from the p, term, we may equate the expression for p, in eq-(11) to py, in eq-(17)

giving
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and leading once again to the value of [ = 1.0745L,, in eq-(15). Therefore, when R =
2G'm >> [, the value of [ is always very close to the Planck scale, and independent of
R = 2Gm, because the scale R has decoupled in eq-(18).

In this way, one can effectively view the observable universe as a “black-hole” whose
Hubble radius Ry encloses a mass My given by 2GMy = Ry. From eq-(14) it follows
that when R = Rp, the black hole density pp, = po = pops coincides with the observed

2Some authors absorb the factor of 2 inside the definition of L,, we define the Planck scale such that
the Compton wavelength coincides with the Schwarzschild radius



vacuum energy density. It is well known that inside the black hole horizon region the
roles of ¢t and r are exchanged due to the switch in the signature of the gy, g, metric
components. Cosmological solutions based on this ¢ <> r exchange were provided by the
Kantowski-Sachs metric. For references on Black-Hole Cosmology see [12].

To sum up our main result : By postulating that dark energy/dark matter is a dark-
fluid permeating all of space, whose mass density is proportional to the probability density,
and after finding a particular static spherically symmetric solution p,, in eq-(9) to the
Bohm-Poisson equation (8), while introducing an ultraviolet (very close to the Planck
scale) and an infrared (Hubble) scale to regularize the mass, one can naturally obtain
a value for the vacuum energy density p, in eq-(16) which coincides ezactly with the
extremely small observed vacuum energy density. It is remarkable that the Bohm-Poisson
equation chooses for us a lower scale to be basically equal to the Planck scale. It was not
put it in by hand, but is a direct result of the solutions to the Bohm-Poisson equation.
The only assumption made was to choose the Hubble scale Ry for the infrared cutoff,
and which makes physical sense since Ry is the cosmological horizon. Is it a numerical
coincidence or design 7 Because Bohm’s formulation of QM is by construction non-local,
it is this non-locality which casts light into the crucial ultraviolet/infrared entanglement
of the Planck/Hubble scales which was required in order to obtain the observed values of
the vacuum energy density.

Furthermore, one can also explain the origins of its repulsive gravitational nature.
The Bohm-Poisson’s (BP) equation is invariant under p,, — —p,, and G — —G. Con-
sequently —p,, > 0 is a solution to a BP equation associated to a negative gravitational
coupling —G < 0 which is tantamount to repulsive gravity. This is perhaps one of the
most salient feature of these results, in particular because of the positive definite values
_lam > 0.

We should remark that we found solutions to the BP equation in flat spatial 3D
backgrounds. The operator V2 is metric-dependent, thus solutions of the BP equation
in curved backgrounds will differ from those found above. In general, one must have
a coupled system of equations involving the relativistic analog of the BP equation plus
Einstein’s field equations. Matter affects the geometry (metric), and the latter metric
determines the form of the V2, O operators, which in turn will affect the solutions for p,,,
and which in turn will have an affect on the metric, and so forth, - -- In eqs-(33, 34) we
show how this coupled system of equations can be lumped into a single equation.

For consistency checks, given p,, = p, + A/r?, and a radial pressure p = —p,,, one can
find solutions to the Einstein field equations with a cosmological constant if one introduces
a cutoff € to avoid the singularity at r = 0, such that My € ~ 1, and p,,, = 0 in the region
r < €. The temporal and radial metric components solutions to the field equations are
then given by

A C C:
gyt = —( 1 — g 7"2 + 71 + 722 )7 Grr = _(gtt)_17 A= 87?Gp0 (190')

where
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when the mass parameter is m ~ My = (Ry /2G) = € ~ L,(L,/Ry) ~ 107 L,, one can
verify that the terms defining the coefficients C, 0y are infinitesimals of orders ¢, €2, €.
Therefore, one recovers the de Sitter metric as expected without having to go to the

asymptotic region r — co.
The Bohm-Poisson-Schrodinger equation

To finalize this section, let us include the Schrodinger equation in addition to the
Bohm-Poisson equation and see what is the potential V' which reproduces the positive
definite probability density p which is related to the matter density p,, solutions of the
Bohm-Poisson equation (8). As shown by David Bohm, the Schrédinger equation for the

complex valued wave function ¥ = /p(Z,t) e?*@)/" is equivalent to the coupled pair of
equations

os  p? (V8?2 Rm VA
- E — % + VQ + V = om - % \/ﬁ + V (20&)
dp vs

The first equation is the Hamilton-Jacobi equation corresponding to an external potential
V' and including Bohm’s quantum potential Vj; the second equation is the continuity
equation. The momentum (not to be confused with pressure) is p = V.S. Inserting
the spherically symmetric static solutions |p,,|/m = p = |A|/mr* of the Bohm-Poisson
equation into the above eqs-(20a, 20b) leads to a coupled system of differential equations
which determine the potential V(r) and the action (phase) S(r,t) = S(r) — Et. After
some lengthy but straightforward algebra, the solutions to the Bohm-Poisson-Schrodinger
equation in the spherically symmetric case are

|| A 1 ra o,
= — = — = — = F — (E-V,) (— —
pr) m mrt 2rGm3rd’ vir) ( Vo) (ro) * mr?
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S(r,t) = S(r) — Et, S(r) = mmE—w)£f+:% E>V, (21a)
One can verify that the spherically symmetric wave function ¥(r) = /p(r) e**"H/" built

from the expressions in eq-(21a) is a solution of the Schrodinger equation

oW(r,t), n? o1 )
p ) = — o 2 Op (120, ¥ (1, t)) + V(r) U(r,t) (210)
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As expected, the external potential V (r) cannot be arbitrary but is itself determined in
terms of p. It can be rewritten as

V(o) = co + o5+ ea /o) (22)
where c¢,, ¢1, co are numerical coefficients given in terms of E,V,, r,. Such potential leads
to a repulsive force F'= —VV > 0, for »r > 0. Therefore, the Bohm-Poisson-Schrodinger
equation admits solutions encoding the repulsive nature of dark energy (repulsive grav-

ity).

2 Asymptotic Safety and Covariant Extensions of the
BP Equation

In the previous section we studied solutions to the BP equation involving a large mass m of
the order of My = (Ry/2G) and which followed directly from eqs-(13, 14). In this section
we shall be focusing on a particle with a very small mass (large Compton wavelength) of
the order of m ~ (1/Rp), and on the effects of the Renormalization Group. This scalar
particle might be related to quintessence [5].

The Renormalization Group (RG) improvement of Einstein’s equations is based on the
possibility that Quantum FEinstein Gravity might be non-perturbatively renormalizable
and asymptotically safe due to the presence of interacting ultraviolet fixed points [19].
In this program one has k (energy) dependent modifications to the Newtonian coupling
G(k), the cosmological constant A(k) and energy-dependent spacetime metrics g;; ) ().

In D = 4 there is a nontrivial interacting (non-Gaussian) ultraviolet fixed point
G, = G(k)k* # 0. The fixed point G, by definition is dimensionless and the running
gravitational coupling has the form [20], [19]

1
Gk) = G 23
() N T GnE/Gl (23a)
The scale dependence of A(k) in the de Sitter case was found to be [20]
b G(k
Ak) = Ay + (k) E*, Ao >0 (23b)
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where b is positive numerical constant.

In D = 4, the dimensionless gravitational coupling has a nontrivial fixed point G =
G(k)k* = G, in the k — oo limit, and the dimensionless variable A = A(k)k™2 has also
a nontrivial ultraviolet fixed point A, # 0 [20]. The infrared limits are A(k — 0) = Ay >
0, G(k — 0) = Gx. Whereas the ultraviolet limit is A(k = c0) = 00; G(k = o0) = 0.

Let us choose now an actual positive-definite solution p,, = —p,, = |A|/r* > 0;
|A| = h?/2mGm?, of the BP equation associated to repulsive gravity —G < 0, as explained
earlier
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The mass density solution of (24) to focus on (in A = ¢ = 1 units) is
1
2rGm2rt —

If one selects m = (1/Rg) to coincide with the Compton mass of a particle corresponding
to the Hubble scale Ry, then at the Hubble scale r = Ry one has

pm(r) = —pm(r) = (25)

A 1 1 N
polr =Ra) = S Gy, = 3 () 2 gy~ )0 M (260)

and which agrees with the observed vacuum energy density. It is well known (to the
experts) that such extremely small value is of the same order of magnitude as (Mycutrino)*-
The problem arises when one evaluates p,,(r) at L,, given m = 1/Ry. One gets a

huge value

A L B

pm(T:Lp) ~ m - (L )2 L_4 ~ 10122 M;L (26b)
p

p
p

We will see how the Asymptotic Safety scenario comes to our rescue by realizing that
a Renormalization Group flow of G and m? solves the problem. The key idea, based on
dimensional grounds, is simply to postulate that the flow of m?(k) has the same functional
form as the flow of A(k) in eq-(23Db)

b G(k
m?(k) = m2 + 4( )
The only thing remaining is to related the scale r in eq-(17) with the energy (momentum)
scale k. The authors [20] expressed k as the inverse of d(r) where d(r) was a proper
distance derived from the Schwarzschild metric. If one opts for the simplest choice k = 1/r,
eq-(25) can be rewritten as

K, m2>0 (27)

o

1 1 1 kA 28
() = o G R P T 2r GUmE(R) (28)
note that strictly speaking eq-(28) is not a solution to the BP equation, because if it
were one must have that G(k)m?(k) = constant, for all values of k, which is not the
case. Similarly, the renormalization-group-improved black hole solutions of [20] are not
solutions to the Einstein vacuum field equations [17]. Nevertheless, from eqs-(23,27) one
learns that

limy_o (G(k) m*(k)) = Gy m? (29a)
limy,_eo (G(k) m?(k)) = Z (G.)? (290)
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whereas at the Planck scale & = M,
limyg, (GOE) m2(K)) ~ 2 (GL)? (30)

Consequently, eqs-(28,30) lead to

1 2
P (7’ P) o G(k — Z\{p) m2<k‘ — Mp) L% b (G ) p Mp (3 )

which is the expected result for the vacuum energy density at the Planck scale.

To sum up, the renormalization group machinery (Asymptotic Safety) can be imple-
mented such that eq-(26a) furnishes the observed vacuum energy density at the Hubble
scale, while eq-(31) is the expected vacuum energy density at Planck scale. Naturally,
one needs to generalize the BP equation to the fully relativistic regime as described by
eq-(10). The key question is what is the “particle” represented by the mass m in the BP
equation (21) 7 i.e. a mass that experiences a renormalization group flow (27) similar to
the flow experienced by A (23b). Is this a scalar particle related to quintessence ? [5].

We emphasized earlier the key role that —G < 0 plays in all of this and which stems
directly from the invariance of the BP equation under p — —p; G — —G. Our solutions
for p,,(r) > 0 correspond to —G < 0, thus the “particle” in question exerts a repulsive
gravitational force which mimics “dark energy”. The RG flow behavior of GG displayed in
eq-(23a) shows that G grows as k decreases. Meaning that G increases with distance,
so that the magnitude of the repulsive force exemplified by —G < 0 becomes larger, and
larger, as the universe expands. This is what is observed. Next we shall provide a different
view of our findings so far.

Matter Creation from the Vacuum

The second interpretation of the solution (25) to the BP equation (24) is that involving
matter creation from the vacuum, as advocated by Hoyle long ago. Imagine one pumps
matter out of the vacuum in lumps/units of Planck masses. Let us assume that the
Universe expands in such a way that matter is being replenish from the vacuum so that
the mass at any moment is linearly proportional to the size of the Universe. As the mass
of the universe grows the vacuum energy density decreases since the vacuum is being
depleted. In this scenario, at the Hubble scale Ry, one has My ~ Ry.

This result is also compatible with Mach’s principle. By equating GmMy /Ry to the
rest mass m of a particle one arrives at GMy = Ry, which once again is very close to the
Schwarzschild radius 2G M. Hence, one arrives at the scaling relation

M, My

Lp Ry

which we interpreted long ago [18] as equating the proper forces (after re-introducing c)

Myc? /Ry = Myc?/L, and leading to some sort of maximal/minimal acceleration duality.

Inserting the values of Mp, My, and r = Lp, into the solution (25) of the BP equation
gives

(32)
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p

which is compatible with the large density at the Planck scale, and

1 G

0 e L N e M = ~Y
plr=Lym=My) = Sz i ~ i I

~ (L, Ry)™? (33b)

which agrees with the observed vacuum energy density at the Hubble scale and obtained
above in eq-(11). Before concluding we add some important remarks.

Does Dark Energy Resides in the Bulk of a 5D spacetime ?
Evaluating Bohm’s quantum potential (3) for p(r) given by eq-(4) yields

h2
Vo = — —— 34
Q - (34)
and which is reminiscent of an effective gravitational potential in 4 spatial dimensions (a
5D spacetime). The “quantum” force Fiy; = —0, Vg corresponding to Vi in eq-(34) scales
as F ~ —r~% which has the same behavior as the gravitational force between two masses

mq, My in 5D

my me
r3

F = — Gs (35)

since the 5D gravitational constant G5 has dimensions of (length). Despite the possi-
bility, we are not going to speculate at the moment as to whether or not the “quantum”
force originating from Bohm’s quantum potential is the “fiftth” force. The main point
is that one should consider the possibility that Bohm’s quantum potential in 3 spatial
dimensions (4D spacetime) mimics classical gravity in 4 spatial dimensions (5D space-
time), and for this reason one can only indirectly infer the gravitational effects of dark
energy /dark matter in our 4D universe without directly detecting it because such dark
energy /dark matter resides in 5D, which is reminiscent of the brane-world scenarios.

Finsler-Relativistic Extension of the Bohm-Poisson equation

If one wishes to introduce a temporal dependence to p,, we should extend the BP
equation to full the relativistic regime. It is interesting that a simple exchange of r < ¢
as it occurs in the Schwarzschild metric leading to the Kantowski-Sachs metric, yields
pm(t) = |A|t™*, and similar findings are obtained for the values of the vacuum energy
density, simply by exchanging L, <+ ct,; Ry <+ cty in the equations. t,,ty are the Planck
and Hubble times, respectively. Upon doing so it leads to a Big-Bang-like singularity at
t = 0,pm(t = 0) = co. This combined with the repulsive gravitational feature of our
model, implies naturally that an expansion would follow.

Besides eq-(10), another relativistic generalization of the BP equation can be con-
structed from the Lagrange-Finsler geometrical formulation of QM recently advocated by
[10]. He described the time evolution of particles as geodesic lines in a curved space,
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whose curvature is induced by the quantum potential. This formulation incorporates all
quantum effects into the geometry of space-time, as it is the case for gravitation in the
general relativity.

The explicit expression of the metric components in terms of the quantum potential
Vo were provided by [10]. This is not the first time where the metric components are
expressed in terms of a potential. In General Relativity (GR) we learned that in the
linearized weak gravity limit, and for slow moving bodies, the temporal metric component
goo ~ Moo+ 2V (c = 1), can be expressed in terms of the Newtonian potential Viy. Hence,
given the explicit expressions [10] of the metric g, = g, (Vi) in terms of Bohm’s quantum
potential, one can write down the curvature tensors, and the Einstein tensor leading to
the field equations

1
RMV<VQ) -5 QW(VQ) R(VQ) + AguV(VQ) = 817G T (36)

where the stress energy tensor is the one associated with a dark energy/dark matter fluid
permeating all of space and given in terms of p,,,p. In particular, the BP equation (2)
can be generalized to

1
Foo(Vo) = 5 900(Vo) B(Vg) + A goo(Vo) = 87G Too (37)

where Tho = goopm- Solutions to eq-(36) will be provided in future investigations as well
as the study of these equations in higher dimensions.

3 Conclusions

To conclude we add some remarks pertaining the Dirac-Eddington large numbers coin-
cidences. Nottale [16] found long ago a direct relationship between the fine structure
constant o and the cosmological constant A. In i = ¢ = 1 units, a = ¢? = 1/137, the
expression is

A~ (Lp)4 _ (m.)° (Lp)4
(re)S (@)°
the classical electron radius r. is defined in terms of the charge e, and electron mass m.,
as

= 107" em (38)

= me (39)

This important relation between A and « [16] warrants further investigation within the
context of the Bohm-Poisson equation and the Dirac-Eddington large number coinci-
dences.

We should mention that of the many articles surveyed in the literature pertaining the
role of Bohm’s quantum potential and cosmology, [13], [14], [15] we did not find any related
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to the Bohm-Poisson equation proposed in this work.®> The authors [14], for instance,
have shown that replacing classical geodesics with quantal (Bohmian) trajectories gives
rise to a quantum corrected Raychaudhuri equation (QRE). They derived the second
order Friedmann equations from the QRE, and showed that this also contains a couple of
quantum correction terms, the first of which can be interpreted as cosmological constant
(and gives a correct estimate of its observed value), while the second as a radiation term
in the early universe, which gets rid of the big-bang singularity and predicts an infinite
age of our universe.

To finalize, we must say that the most attractive project is to find nontrivial solutions
to the relativistic Bohm-Poisson equation (10). A careful inspection reveals that a sep-
aration of variables does not work. Solutions to eq-(36) are more difficult to find. We
delegate this difficult task for future investigations as well as the study of these equations
and solutions in higher dimensions.
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