Theorem for distribution of prime pairs

Proof of Goldbach's conjecture, twin prime cinjecture

Let

$$A_n = a_1 n + a_2$$
$$B_n = b_1 n + b_2$$

 A_n , B_n are not obviously composite like

$$A_n = n$$
$$B_n = n + 1$$

One of them is even

Theorem1

• $3^4 P \ln^4 P$ -Consecutive A_n, B_n contains A_k, B_k that are prime at once when $A_n B_n < P^2$.

Proof of theorem1

For example

$$A_n = n$$
$$B_n = n + 2$$

 $(1,3)(2,4)(3,5)(4,6)(5,7)(6,8)(7,9)(8,10)(9,11)(10,12)\cdots$

•	2	•	2	•	2	•	2	•	2 …
3	•	3	3	•	3	3	•	3	3 …
•	•	5	•	5	•	•	5	•	5 …

11 11 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark 11 11 \checkmark \checkmark

15-consecutive $A_n B_n$ must contains 11 terms that are not divided by 11

 $11 \cdot \frac{11+2}{11-2}$ -consecutive $A_n B_n$ contains 11 terms that are not divided by 11.

at

$$7 \quad 7 \quad \cdots \quad 7 \quad 7 \quad \cdots \quad 7 \quad$$

insert

$$11 \cdot \frac{11+2}{11-2} \cdot \frac{7+2}{7-2}$$

method1.

1,2,8,9,12,13th are already filled

```
7 7 \checkmark \checkmark \checkmark \checkmark \checkmark 7 7 \checkmark \checkmark 11 11 \checkmark 7 7 \checkmark \checkmark \checkmark
```

method2. $\checkmark \checkmark \checkmark$ $11\ 11\ \cdot\ \cdot\ \cdot\ \cdot\ \cdot\ \cdot\ 11\ 11\ \cdot\ \cdot$ 7 7 • • • • 7 7 • • • • Fill like method1. If 7 overlapped by 11, fill 11. If 7 overlapped by \cdot , move last $\sqrt{}$ to there 771111 $\sqrt{\sqrt{\sqrt{77}}}$ 77 $\sqrt{\sqrt{\sqrt{77}}}$ 77 $\sqrt{\sqrt{1111}}$ 11 $\sqrt{\sqrt{77}}$ It's longer than method1, it's not longer than $11 \cdot \frac{11+2}{11-2} \cdot \frac{7+2}{7-2}$

Thus, $11 \cdot \frac{11+2}{11-2} \cdot \frac{7+2}{7-2}$ -consecutive $A_n B_n$ has at least 11-not divided by 11 or 7

also

 $11 \cdot \frac{11+2}{11-2} \cdot \frac{7+2}{7-2} \cdot \frac{5+2}{5-2} \cdot \frac{3+2}{3-2} \cdot \frac{2+1}{2-1}$ -consecutive $A_n B_n$ has at least 11not divided by 11,7,5,3,2.

and

 $P \cdot \frac{P+2}{P-2} \cdot \dots \cdot \frac{5+2}{5-2} \cdot \frac{3+2}{3-2} \cdot \frac{2+1}{2-1}$ -consecutive $A_n B_n$ has at least 11-not divided by prime less than P.

$$P \cdot \frac{P+2}{P-2} \cdot \dots \cdot \frac{5+2}{5-2} \cdot \frac{3+2}{3-2} \cdot \frac{2+1}{2-1} < P \cdot \left(\frac{P}{P-1}\right)^4 \cdot \dots \cdot \left(\frac{5}{5-1}\right)^4 \cdot \left(\frac{3}{3-1}\right)^4 \cdot \left(\frac{2}{2-1}\right)^4$$

We know that

$$\left(\frac{P}{P-1}\right)\cdot\cdots\cdot\left(\frac{5}{5-1}\right)\cdot\left(\frac{3}{3-1}\right)\cdot\left(\frac{2}{2-1}\right)<3lnP$$

$$P \cdot \left(\frac{P}{P-1}\right)^4 \cdot \dots \cdot \left(\frac{5}{5-1}\right)^4 \cdot \left(\frac{3}{3-1}\right)^4 \cdot \left(\frac{2}{2-1}\right)^4 < 3^4 P \ln^4 P$$

hence $3^4 P \ln^4 P$ -consecutive $A_n B_n$ has at least 11-not divided by prime less than P.

Goldbach's conjecture

$$A_n = n$$
$$B_n = 2N - n$$

 $3^{4}\sqrt{2N}ln^{4}\sqrt{2N}$ -consecutive A_{n}, B_{n} must contain A_{k}, B_{k} both are prime

Twin prime conjecture

$$A_n = n$$
$$B_n = n - 1$$

 $3^4\sqrt{n}ln^4\sqrt{n}$ -consecutive A_n, B_n must contain A_k, B_k both are prime.

twow1@hanmail.net