
COZMO - A New Lightweight Stream

Cipher

Rhea Bonnerji0000-0002-5825-8800 rhea_bonnerji@yahoo.com, Simanta

Sarkar 0000-0002-4210-2764 simonsimanta@gmail.com, Krishnendu

Rarhi0000-0002-5794-215X, Abhishek Bhattacharya

School of Information Technology, Institute of Engineering &

Management, Kolkata

Abstract. This paper deals with the merger of the two lightweight stream ciphers – A5/1 and

Trivium. The idea is to make the key stream generation more secure and to remove the attacks

of the individual algorithms. The bits generated by the Trivium cipher (output) will act as the

input of the A5/1 cipher. The registers used in the A5/1 cipher will be filled by the output bits

of the Trivium cipher. The three registers will then be connected to generate an output which

will be our required key stream.

Keywords: Lightweight stream cipher, A5/1, Trivium

1 Introduction

Cryptography is very important in today’s times as we want confidential information to remain

confidential. We don’t want people other than the intended receivers to be able to access our

information and if accessed to be able to be able to understand it. Cryptography is the method of

converting information to a non-understandable form and then being able to convert it to the

understandable form by the recipient. Lightweight stream ciphers are used to reach high levels of

security using only a small computing power. Stream encryption is the encryption of each letter one

by one followed by the changing the encryption key after each letter. Lightweight stream ciphers

have the advantage of having low cost hardware implementations as they have high throughput and

low complexity. The idea is to come up with a lightweight stream cipher algorithm using existing

cipher algorithms that is secure to the attacks of the originally used cipher algorithms. Also, to

generate a more secure keystream. Here, we are using Trivium and A5/1 algorithm and making

changes to suit our needs. This paper has results of statistical tests and proves that our algorithm

can be considered to be strong.

1.1 Understanding the working of Trivium:

Trivium generates up to 264 bits of key stream from an 80 bit secret key and an 80 bit initialization

vector (IV). First the internal state of the cipher is initialised using the key and the IV. Then the

state is updated repeatedly to generate the key stream bits. It consists of 3 interconnected non-linear

feedback shift registers. The length of the registers are 93, 84 and 111 bits, respectively.
Initialisation requires 1152 steps of the clocking before key stream is generated. There are XOR

gates to XOR the ouputs we get from the various registers which is again fed back to the first one.

The 91 and 92 bits are ANDed and used to give the feedback to the 94th bit. The 175 and 176 bits

mailto:rhea_bonnerji@yahoo.com
mailto:simonsimanta@gmail.com

are ANDed and used to give the feedback to the 178th bit. The 286 and 287 bits are ANDed and

used to give feedback to the 288th bit. And the 288th bit is giving back the feedback to the 1st bit. [1]

Fig. 1. Trivium

Mathematical structure

If we denote the internal state bits of the Trivium Model algorithm at time t as

z(t)=(z1(t),z2(t), ... ,z3n3 (t)), then the internal bits from time t to time t+ 1 can be expressed as

follows

 z(t + 1) =A . z(t) +b(t) (1)

Where A = (aij)3n3 x 3n3 is the state-transition matrix of the algorithm with size 3n3 x 3n3

 1, i =1, j= 3u2, 3u5, 3n2

1, i =3n1 +1, j= 3u1, 3u4

 aij = 1, i =3n2 +1, j= 3u3, 3u6 (2)

1, 1<i<=3n3, j =I - 1

0, otherwise

b(t)=(bi(t))3n3 is the nonlinear segment of the algorithm, which is treated as the vectors of bits

 z3n3-2(t) . z3n3-1(t), i= 1

 bi(t) = z3n1-2(t) . z3n1-1(t), i= 3n1 + 1 (3)

z3n2-2(t) . z3n2-1(t), i= 3n2 + 1

0, otherwise

1.2 Understanding the working of A5/1:

A5/1 uses 3 shift registers of 19, 22 and 23 bits respectively. We have a 64 bit key and we’ll load it

in the three registers. Then we’ll do some process to generate as many bits as we want to and we’ll

use those bits as the key stream and XOR it with the plain text to encrypt and the cipher text to

decrypt. There is a majority vote function which will take 3 bits and find the majority of them. The

three shift registers are loaded with the 64 bit key. There are three special positions in the registers

– 8, 10 and 10 respectively. Take the majority of these three bits and check which of the registers

are in majority. If register 1 is in majority then take the 13th, 16th, 17th and 18th bit and XOR them.

If register 2 is in majority then XOR the bits in the 20th and 21st position. If register 3 is in majority

then XOR the bits in the 7th, 20th, 21st and 22nd position. Only shift the XORed bits to the first

position of the registers belonging in majority. The register which is not in majority will remain

untouched. Then we have to XOR the bits in the last position of the registers and that is our required

key stream bit. Repeating this process over and over again will give us our key stream. [2]

Fig. 2. A5/1

2 Proposed Methodology

The idea is to make the key stream even more secure by merging the two algorithms together. The

Trivium cipher is initialised with a key and initialization vector and the A5/1 cipher is initialised

with all 0’s. First we will be generating a key stream using the Trivium algorithm. The generated

key stream bits will be used as the input for the A5/1 cipher. There will be a clocking of 1216

(1152+64) cycles before the key stream starts getting generated. Let the three registers be called

register A, B and C respectively. First we XOR the selected position bits in all the registers. For the

first register A, the selected positions are the 13th, 16th and 17th and 18th bits. For the second register

B, the selected positions are the 20th and 21st bits. For the third register C, the selected positions are

the 7th, 20th, 21st and 22nd bits. Next we check the majority function and find the two registers that

are in majority. Next, we shift the bit in the last position to the first position by using right shift by

one place only for the registers in majority. Once that is done, we will use the XOR bits. If register

A is in majority and B isn’t then discard the XORed bit from register A. Since register C is in

majority, the XORed bit of register B will replace the bit in the first position of register C. Register

A which is also in majority will have its first bit replaced by the XORed bit of the register C which

is XORed with the bit generated by Trivium. The final key stream is the XOR of the three bits in

the last positions of the three registers.

Fig. 3. COZMO

Pseudo Code:

Key = (K1, . . . , K80)

IV = (IV1, . . . , IV80)

(s1, s2, . . . , s93) ← (K1, . . . , K80, 0, . . . , 0)

(s94, s95, . . . , s177) ← (IV1, . . . , IV80, 0, . . . , 0)

(s178, s279, . . . , s288) ← (0, . . . , 0, 1, 1, 1)

Register A:

 (r0, r2, . . . , r18) ← (0,0, . . . , 0)

Register B:

 (r19, r20, . . . , r40) ← (0,0, . . . , 0)

Register C:

 (r41, r43, . . . , r63) ← (0,0, . . . , 0)

Operations:

⊕ : bit-wise exclusive OR

& : bit-wise AND

Variables:

zi : the ith bit generated by trivium.

l : r8 bit of register A

M : r29 bit of register B

N : r51 bit of register C

ti : The keystream bit generated at the ith step.

Function:

maj(L, M, N) = (L&M) ⊕ (M&N) ⊕ (L&N)

A complete description is given by the following pseudo-code:

For i = 1 to N do

 ti ← r18 ⊕ r40 ⊕ r63

 p1 ← r13 ⊕ r16 ⊕ r17 ⊕ r18

 p2 ← r39 ⊕ r40

 p3 ← r48 ⊕ r61 ⊕ r62 ⊕ r63⊕ zi

 If s8 equal to maj(L, M, N) Then

 (r0,r1, r2, . . . , r18) ← (p3, r0, . . . , r17)

 ElseIf s29 equal to maj(L, M, N) Then

 (r19,r20, . . . , r40) ← (p1, r19, . . . , r39)

 ElseIf s52 equal to maj(L, M, N) Then

 (r41,r42, . . . , r63) ← (p2, r41, . . . , r62)

 EndIf

End for

Attacks:

Correlation attack:

This attack is usually used on ciphers whose output is a combination of LFSRs and Boolean

functions. This is possible when there is correlation between bit generated by the combination of

bits used in the Boolean function and the output bit of the LFSRs. Our algorithm, however, has been

tested and is secure from the correlation attack.

3 Results and Discussion

As we know statistical analysis is a very important analysis for determining the acceptance or

rejection of the hypothesis, the following tests were conducted to test the randomness property of

the key bit generator. We performed basic statistical tests like frequency, longest run of one’s in a

block, linear complexity, entropy, etc. on our hypothesis. The result of the tests are shown in the

tables below.

Statistical Test p- value Success/failure
Frequency 0.534146 Success

Cumulative Sums P1-0.122325
P2-0.350485

Success

Approximate Entropy 0.004301 Success

Linear Complexity 0.213309 Success

Serial P1-0.004301
P2- 0.017912

Success

Longest Run of Ones 0.350485 Success

Runs 0.911413 Success

Table 1: The Results of Statistical Analysis for A5/1

Statistical Test p- value Success/failure
Frequency 0.534146 Success

Cumulative Sums P1- 0.213309
P2- 0.350485

Success

Approximate Entropy 0.534146 Success

Linear Complexity 0.035174 Success

Serial P1- 0.911413
P2- 0.534146

Success

Longest Run of Ones 0.739918 Success

Runs 0.350485 Success

Table 2: The Results of Statistical Analysis for Trivium

Statistical Test p- value Success/failure
Frequency 0.911413 Success

Cumulative Sums P1-0.991468
P2-0.739918

Success

Approximate Entropy 0.350485 Success

Linear Complexity 0.066882 Success

Serial P1-0.213309
P2-0.534146

Success

Longest Run of Ones 0.534146 Success

Runs 0.122325 Success

Table 3: The Results of Statistical Analysis for COZMO

4 Conclusion

 We wanted to propose a new lightweight stream cipher because of their higher speed, efficiency

and its easy implementations on applications which require plain texts of unknown length. In this

paper we merged and made some changes to the algorithms of two already existing lightweight

stream ciphers – Trivium and A5/1 and proposed a new lightweight stream cipher with good key

randomness as key randomness is a major issue is stream ciphers. The generated key stream is more

secure compared to the key streams generated by the individual ciphers. Trivium is already known

to be a pretty secure cipher. Any modifications made on it naturally increase the chances to the

generated key stream to be more secure. Our algorithm also produces sequences which are stronger

in statistical properties. The implementation of this algorithm is also very feasible and easy to put

to use.

5 References

1. C. De Canni`ere and B. Preneel, “Trivium – A Stream Cipher Construction Inspired by

Block Cipher Design Principles,” 2006/021. (2006)

2. Timo Gendrullis, Martin Novotny, and Andy Rupp, “A Real-World Attack Breaking A5/1

within Hours” /2008/147 , (2008).

3. Diffie, W. y M.E.Hellman. "New directions in cryptography", IEEE Transactions on

Information Theory 22 (1976), pp. 644-654.

4. Raddum, H.“Cryptanalytic Results on Trivium”, eSTREAM, ECRYPT Stream Cipher

Project, Report 2006/039, 2006.

5. De Canniere C and Preneel B. TRIVIUM specifications. eSTREAM, ECRYPT stream

cipher project. Report no. 2005/030, April 2005

6. Fischer, W., Gammel, B.M., Kniffler, O., Velten, J.: Differential power analysis of

stream ciphers. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 257–270.

Springer, Heidelberg (2006)

7. Lennart Diedrich, Patrick Jattke, Lulzim Murati, Matthias Senker, and Alexander

Wiesmaier, “Comparisons of Lightweight Stream Ciphers: MICLEY 2.0, WG-8, Grain

and Trivium”

8. Maximov, A. and Biryukov, A. “Two Trivial Attacks on Trivium”, Selected Areas in

Cryptography, Lecture Notes in Computer Science, Vol.4876, Springer, 2007.

9. Jia, Y., Yupu, H., Wang, F., Wang, H.: Correlation power analysis of Trivium. Secur.

Commun. Netw. 5(5), 479–484 (2012)

10. Biham E and Dunkelman O. Cryptanalysis of the A5/1 GSM stream cipher. In: Roy B and

Okamoto E (eds) Progress in cryptology INDOCRYPT 2000. Berlin: Springer, 2000,

pp.43–51.

11. Maximov, A., T. Johansson, and S. Babbage, An Improved Correlation Attack on A5/1, in

Selected Areas in Cryptography, H. Handschuh and M. Hasan, Editors. 2005, Springer

Berlin / Heidelberg. p. 1-18.

12. Meier, W. and O. Staffelbach, Nonlinearity Criteria for Cryptographic Functions, in

Advances in Cryptology — EUROCRYPT ’89, J.-J. Quisquater and J. Vandewalle,

Editors. 1990, Springer Berlin / Heidelberg. p. 549-562.

13. Barkan, E., E. Biham, and N. Keller, Instant Ciphertext-Only Cryptanalysis of GSM

Encrypted Communication. Journal of Cryptology, 2008. 21(3): p. 392-429.

14. Gendrullis, T., M. Novotný, and A. Rupp, A RealWorld Attack Breaking A5/1 within

Hours, in Cryptographic Hardware and Embedded Systems – CHES 2008, E. Oswald and

P. Rohatgi, Editors. 2008, Springer Berlin / Heidelberg. p. 266-282.

15. Barkan, E., E. Biham, and N. Keller, Instant Ciphertext-Only Cryptanalysis of GSM

Encrypted Communication, in Advances in Cryptology - CRYPTO 2003. 2003, Springer

Berlin / Heidelberg. p. 600-616.

16. . J. Lano, N. Mentens, B. Preneel, and I. Verbauwhede, “Power Analysis of Synchronous

Stream Ciphers with Resynchronization Mechanism,” in ECRYPT Workshop, SASC –

The State of the Art of Stream Ciphers, pp. 327–333, 2004.
ô.Û »gÍNÓ.Ê|Ém»tÁ_È_ÊwÃZ·BÀN ».Ä¾.½.È.) _f_Å öN _ÅZ¸Z _ __ÀN _ Êw½.__ÁN__æf__¶-__ Ê__ _ á_ ____< _ __ _¸ __;Ó.»f_3_¾ u_C Õ._ Ú S__ Ë._DÞ.Þ__Å._EÀ\À_* Õ._ _Ëf__Þ__ _SF_ ÏwË.Øf_ ØN _#Å__(_Ú ____ .- __ _ÅöN Õ� Ê|»tÈ_¶-¶-ÖN½ .ÁN æf

