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Abstract 
 

     We reduce integer factorization problem to the NP-hard problem of mini- 

mizing a quadratic polynomial with integer coefficients over the integer poi- 

nts in a quadratically constrained two-dimensional region. 

      Next, we reduce integer factorization problem to the problem of enumer- 

ation of vertices of integer hull of a special two-dimensional rational polyhe-  

dron, solvable in time polynomial by Hartmann's algorithm. 

      Finally, as we find a polynomial-time algorithm to solve an NP-hard pro-  

blem, we conclude that P = NP.  
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1  Introduction 
 

   Cryptography, elliptic curves,  algebraic number theory have been brought 

to bear on integer factorization problem. 

   Until now, no algorithm has been published that can factor in deterministic 

polynomial time. For an ordinary computer the best published asymptotic ru- 

nning time is for the general number field sieve (GNFS) algorithm(see,  e.g.,  

A. K. Lenstra and H. W. Jr. Lenstra [10],  P. Stevenhagen [12]).    

   The purpose of this paper is to develop a polynomial-time integer factoriz- 

ation algorithm, factoring in deterministic polynomial time, and, then,  make 

more general conclusion: P = NP(see, e.g., Cormen et al. [3]).  

    The plan of this paper is as follows.  In Section 2 we reduce integer facto- 

rization   problem to some   two-dimensional   integer minimization problem 

and show that if there exists a nontrivial divisor of  N,  those divisor is a  mi- 
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nimizer of those two-dimensional integer minimization problem, and any m- 

inimizer of those integer minimization  problem is a nontrivial divisor of  N.        

    We show that those two-dimensional integer minimization  problem is NP 

-hard problem. 

    In Section 3 we construct  a   special two-dimensional rational polyhedron 

and  reduce those NP-hard integer minimization problem to the integer  min- 

imization problem over the integer points in that rational polyhedron and sh- 

ow that despite generally, such  problems can be solved in time  polynomial, 

in our case it can't. 

   We develop a polynomial-time algorithm for integer factorization by   enu- 

meration of vertices of integer hull of that  two-dimensional rational polyhe- 

dron. 

   We conclude that since we found a polynomial-time  algorithm to solve an 

NP-hard problem, it would mean that P is equal NP.  

    

  

 

2  Reduction to the Integer Programming problem.  

    Minimum Principle  
 

     Let us reduce integer factorization problem to some integer  minimization 

problem, so that any minimizer that is found solves integer factorization pro- 

blem.     

     The key idea is to construct the objective function and constraints  so that  

any minimizer satisfies the equation:  xy =  N, and, therefore, is a solution of 

the integer factorization problem. 

      Let us consider the following integer minimization problem: 

 

             minimize     xy 

 

                  subject to    xy  ≥   N,                                                                    (1)                                  

 

                                 2  ≤  x  ≤   N – 1,      

 

                                 N/(N – 1)  ≤  y  ≤   N/2, 

 

                                 x ∈ N,  y ∈ N,  N ∈ N. 
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     Let Ω := { (x, y) ∈ R
2
  |  xy  ≥  N,  2  ≤  x  ≤  N – 1, N/(N – 1) ≤  y ≤  N/2,  

x ∈ R,  y ∈ R }  for a given N ∈ N. 

     Hence,  Ω
I
  :=  Ω ∩ Z

2
  is a feasible set of the problem (1). 

     It is clear that if there exists a nontrivial solution  of   integer factorization  

problem xy = N, the objective function: f(x, y) = xy  reaches minimum at the 

integer point of the border  xy  =  N of the region Ω and if there exists a non- 

trivial  solution of integer factorization problem, any minimizer of  the prob- 

lem (1) provides a (nontrivial) solution of integer factorization problem. 

     Thus, in this case, any minimizer of the problem  (1)   guarantees solution 

of integer factorization problem and there exists at least one such minimizer. 

 

Theorem 1(Minimum Principle).  If there exists a nontrivial solution of in- 

teger factorization prbblem,   that solution is a minimizer of problem (1) and 

if there exists a nontrivial solution of integer factorization problem, any min- 

imizer of the problem (1) is a nontrivial solution of integer factorization pro- 

blem. 

 

    As a result, we obtain the following Integer Factorization Algorithm. 

 

  Algorithm 1(Integer Factorization Algorithm). 

  Input:      A positive integer number N.      

  Output:   A nontrivial divisor of N(if it exists). 

                    Solve the problem (1):  

                    Based on the input data compute a minimizer ( x min,  y min )  

                    of the problem (1).  

                    if (x min y  min   =   N) 

                    then 

                          Return  a nontrivial divisor x min of  N 

                    else         

                          Return  “N is a prime”        
        

    Let us determine the complexity of the problem (1). 

    Despite in general, integer programming is NP-hard or even incomputable   

(see, e.g., Hemmecke et al. [7]),   for some subclasses of target functions and 

constraints it can be computed in time polynomial.   

    Note that the dimension of the problem (1) is fixed and is equal to 2. 

    A  fixed-dimensional polynomial minimization in integer variables, where 
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the objective function is a  convex polynomial and the  convex feasible set is 

described by arbitrary polynomials can be solved in time polynomial(see, e.g 

., Khachiyan and Porkolab [8]). 

    A  fixed-dimensional  polynomial minimization over the integer variables,  

where the objective function  f0(x)    is a quasiconvex polynomial with integer 

coefficients  and where the constraints are inequalities fi (x)  ≤ 0,  i = 1, … , k  

with  quasiconvex polynomials fi(x) with  integer coefficients,  fi :    R
n
 → R, 

fi(x), i = 0, … , k  are polynomials of degree at most  p ≥ 2, can be solved  in  

time polynomial in the degrees and the binary encoding of the coefficients(s-    

ee, e.g., Heinz [6], Hemmecke et al. [7], Lee [9]).    Note that the degrees are 

unary encoded here as well as the number of the constraints. 

    A mixed-integer minimization of a convex function in a  convex, bounded 

feasible set can be done in time polynomial, according to Baes et al. [2], Oe- 

rtel et al. [11].    

    Since  the objective function  f(x, y) = xy  of the problem (1) is a quasico- 

ncave function in the feasible set Ω  of the problem (1), we cannot use the re- 

sults described in Baes et al. [2], Heinz [6], Hemmecke et al. [7], Khachiyan  

and Porkolab  [8], Oertel et al.  [11] in order to solve the problem (1) in time  

polynomial in log(N).   Note that  Ω
I 

  is described by quasiconvex polynomi- 

als, since (– xy  +  N) is a quasiconvex function for x > 0, y > 0.      

     In general, since variables x ∈ N, y ∈ N are bounded by the finite bounds  

2  ≤  x  ≤  N –  1, N/(N – 1)  ≤  y  ≤   N/2 , the problem (1) and the respective 

Algorithm 1 are computable(see, e.g., Hemmecke et al. [7]), but still are NP- 

hard, since the problem (1) is a quadratically constrained integer minimizati- 

on problem(see, e.g., Del Pia and Weismantel [4], Del Pia et al. [5]).   

     Note that NP-hardness of (1) is clearly confirmed, e.g. in Del Pia et al. [5]  

: "... Using the same reduction as Lemma 1.2, it is possible to show that pro- 

blem  (1) is NP-hard even when n = d = 2, P is a bounded, rational polyhedr- 

on, and we add a single quadratic inequality constraint (see [18]) ...". 

     

3  Linearization. Polynomial-time Integer Factorization. 

P = NP 
 

    It was shown in Del Pia and Weismantel [4] that problem of minimizing a 

quadratic polynomial with integer coefficients over the integer points in a g-  

eneral two-dimensional rational polyhedron is solvable in time bounded by a  

polynomial in the input size and it was further extended to cubic and homog- 

eneous polynomials in Del Pia et al. [5]. 
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    Del Pia and Weismantel [4] consider the following  problem: 

 

    min{ f
k
 (z) : z ∈ P ∩ Z

n
  }, where  f

k   
is a polynomial function of degree at  

most k with integer coefficients, and P is a rational polyhedron in R
n
. We re- 

call that a rational polyhedron is the set of points that satisfy a system of lin- 

ear inequalities with rational data. According to Del Pia and Weismantel [4], 

this problem can be solved in time polynomial for n = k = 2. 

 

Theorem 2(Theorem 1.1 in Del Pia and Weismantel [4]).   If n = k = 2, pro- 

blem  min{ f
k
 (z) : z ∈  P ∩ Z

n
 }  can be solved in polynomial time.  

 

    Recall that Theorem 2 is given(Theorem 1.1) in generalized form in afore- 

mentioned  Del Pia et al. [5] as well as the following standard definitions are 

clearly mentioned there. 

    For a rational polyhedron P  := {x ∈ R
n
 : Ax ≤ b}, with A∈ Z

mxn
 , b ∈ Z

m
  

the following is defined in Del Pia et al. [5]: "...We use the words size and b- 

inary encoding length synonymously. The size of P is the sum of the sizes of 

A and b. We say that problem can be solved in polynomial time if in time b-  

ounded by a polynomial in the size of A, b and M we can either determine t- 

hat the problem is infeasible, find a feasible minimizer...". (M = 1 in our  ca- 

se).  We use here exactly the same definitions.  We emphasize that according 

to Theorem 2, for a general rational polyhedron,    the only conditions for the 

polynomial-time minimization are the following conditions: "n" and "k" mu- 

st be fixed and n = k = 2: the number of linear inequalities, "m", is not supp-  

osed to be fixed to provide the fact of polynomiality in time and "m" doesn't 

belong to the binary encoded input: it is unary encoded. 

 

    We are going now to reformulate the original problem  (1)  by replacing it    

with the equivalent problem, having the same target function, but feasible set 

as the integer points in some two-dimensional rational polyhedron(polygon), 

which therefore would be solved in polynomial time according to Theorem 2 

(Theorem 1.1 in Del Pia and Weismantel [4]). 

 

     Let  us  construct the corresponding polyhedron  G,   as  having the edges  

MiMi+1, where the vertex Mi is a point on the portion xy = N of the boundary   

of region Ω of (1), the point, corresponding to x = i,  2 ≤  i  ≤ N – 2, so Mi := 

(i, N/i),  plus edges M2A and  MN-1A, along two other portions(parallel to the  

x  axis and y axis correspondingly) of three portions of the boundary of regi- 

on  Ω, where the vertex A := (N – 1, N/2). Polyhedron G can be described as 
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a set of points that satisfy the corresponding system of linear inequalities wi-  

th rational data, each inequality corresponds to one edge of G and can be de- 

scribed in the form:  x + ai y ≤ bi , wherein ai =  – (i + 1)i,   bi =  i(1 – N) – N,  

2 ≤  i  ≤ N – 2, and wherein (x, y) ∈ R
2
,  plus inequalities for edges M2A and 

MN-1A. 

 

     Discrete nature of the problem provides the following advantage. 

  

Theorem 3.     Ω ∩ Z
2

  =  G ∩ Z
2

 . 

 

Proof.   It follows from definitions of  Ω and G and their convexity and con- 

vexity of G follows from the convexity of  Ω.       

 

Theorem 4.     Problem (1) is equivalent to the problem: 

 

                        min{ xy :  (x,y)  ∈  G ∩ Z
2

  }                                      (2) 
 

Proof.   It follows from Theorem 3 and problems (1) and (2).                                 

 

Theorem 5(Minimum Principle).  If  N is not a prime, any minimizer of (2)  

is a solution of integer factorization problem for  N and any solution of inte- 

ger factorization problem for N is a minimizer of  (2).   

 

Proof.   It follows from Theorem 1 and Theorem 4.                                        

 

     Note that rational polyhedron G can be constructed e.g. so that it contains 

edge M2MN-1 instead of edges M2A and MN-1A. 

     Recall that the fact of polynomiality in Theorem 2 does not require that " 

m"(the number of inequalities) must be fixed: just "n" and "k" must be fixed 

in Theorem 2, wherein "m", "n" and "k" are unary encoded.     

     Problem (2) completely satisfies Theorem 2 (Theorem 1.1 in  Del Pia and 

Weismantel [4]), because target function of (2) is a quadratic polynomial wi- 

th integer coefficients, G is a two-dimensional rational polyhedron, and, the- 

refore, (2), (1) and integer factorization problem would be solved in time po-   

lynomial, according to the Theorem 2 (Theorem 1.1 in  Del Pia and Weisma- 

ntel [4]).   It means, according to aforementioned definitions that it would be 

solved in time, bounded by a polynomial in the size of A and b. In fact,  as it 

was mentioned above, according to the clear definition, given in Del Pia et al 

. [5]: "...We say that problem can be solved in polynomial time if in time bo-  
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unded by a polynomial in the size of A, b we can either determine that the p- 

roblem is infeasible, find a feasible minimizer...". Thus, the fact of polynom- 

iality in time of problem  (2)  means that it can be solved in time bounded by 

a polynomial in the size of coefficients of the inequalities, describing our po- 

yhedron G, and according to the Theorem 2(Theorem 1.1 in Del Pia and We-

ismantel [4], Theorem 1.1 in Del Pia et al. [5]), this is the case(it is polynom- 

ial in time). As a result, problems (2),  (1) can be solved in time bounded by 

a polynomial in the size of coefficients of the inequalities, describing our po- 

lyhedron G . Thus, polynomiality in time of (2) and (1) is guaranteed by Th- 

eorem 2(n = k =2 in our case), Theorem 4, aforementioned standard definiti- 

ons and by the encoding unarity of the "m". It is important to note that  since 

m =  N – 3, those running time, bounded by   a  polynomial, comprises unary 

encoding, depended on N, parameter  m = N – 3 and binary encoding length, 

depended on N as well. The following example demonstrates a fixed-dimen- 

sional algorithm, that can be done in time polynomial in unary variables,  in-  

cluding "m", as well as in the binary encoding length. In fact, for  aforement- 

ioned in section 2 quasiconvex polynomial integer minimization problem, si-   

milarly, it can be solved in time polynomial in the degrees and the binary en-     

coding of the coefficients, when the dimension is fixed, as well as in "m"  (in   

in the number of constraints), see e,g., Theorem 1.5 in Lee [9], Heinz [6], se- 

ction 3.1, Theorem 10 in Hemmecke et al. [7]. In another example, again the 

corresponding algorithm is polynomial in "m"  (in the number of constraints) 

and in the binary encoding of the coefficients, see, e.g., section 2.1, Theorem 

5 in Hemmecke et al. [7].    In both examples, the degrees and the number of   

constraints are unary encoded and are not fixed. 

 

     Thus, we obtain the following algorithm: 

 

  Algorithm 2(Integer Factorization Algorithm). 

  Input:      A positive integer number N.                                  

  Output:   A nontrivial divisor of N(if it exists).       

            

                     Solve the problem (2) using algorithms [4]:  

                     Based on the input data compute  

                     a minimizer  ( x min,  ymin )  

                     of the problem (2).  

                     if (x min ymin   =   N) 

                     then 

                          Return  a nontrivial divisor x min of  N 

                     else         
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                          Return  “N is a prime”              
   

    Now we are going to make final conclusions about the complexity of Alg- 

orithm 2. 

 

   Three fundamental facts, considered above in full details would lead to the 

fact of polynomiality of the Algorithm 2. 

 

    First, as we mentioned above, according to the standard definition the fact 

of polynomiality in time of problem   (2)  means that it can be solved in time  

bounded by a polynomial in the size of coefficients of the inequalities, descr-  

ibing our polyhedron G and according to the Theorem 2 (Theorem 1.1 in Del 

Pia and Weismantel [4], Theorem 1.1 in Del Pia et al. [5]) this is the case:   it  

is polynomial in time. 

 

     Second, two examples, described above in full details, demonstrate a role 

of unary encoded unfixed parameters, which provide, nevertheless, algorith- 

ms that are not exponential, they are polynomial. 

 

     Third, all coefficients of the inequalities, describing our polyhedron G are 

polynomial integer functions of N(Recall them: x + ai y ≤ bi , wherein  ai =  – 

(i + 1)i,   bi =  i(1 – N) – N,  2 ≤  i  ≤ N – 2, and wherein (x, y) ∈ R
2
, plus in- 

equalities for edges M2A and MN-1A) of the degree, not greater than 2. 

 

     However, since the fact of polynomiality in time of problem   (2)    means  

that it can be solved in time, bounded by a polynomial in the size of G, so  in 

the sum of sizes of A and b, Algorithm 2  does not run in time polynomial in 

log(N).                                                                                                                                   

                           

     Let us develop another integer factorization algorithms that use our  ratio- 

nal  polyhedron G, constructed above by us. 

          

     Note that any solution of integer factorization problem for a non-prime  N  

corresponds to the certain vertex M := (p, d) of G, where both p and d are in- 

tegers.  

    (Here and further we use rational polyhedron G that contains edge M2MN-1 

instead of edges M2A and MN-1A). 

     We will use the following Theorem 6(aforementioned section   2.1, Theo- 

rem 5 in Hemmecke et al. [7], by Cook et al.). 
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 Theorem 6.           Let P = {x ∈ R
n
 : Ax ≤ b} be a rational polyhedron with  

A ∈ Q
mxn  

and let  φ be the largest binary encoding size of any of the rows of 

the system Ax ≤ b.  Let P
I
 =  conv(P∩ Z

n
) be the integer hull of P.   Then the 

number of vertices of P
I
  is at most 2m

n
(6 n

2
φ)

n-1 .     
     Let us apply Theorem 6 to our rational polyhedron G(Let P : = G). 

     Due to convexity of G its clear that all vertices of G corresponding to sol- 

utions of integer factorization problem for a non-prime N belong to the set of 

vertices of the integer hull of  G and according to the mentioned above secti- 

on   2.1, Theorem 5 in Hemmecke et al. [7]:  "... when the dimension is fixed 

there is only a polynomial number of vertices ... ".   On the other hand, as its 

mentioned in those section 2.1 in Hemmecke et al. [7]: "...  Moreover,  Hart- 

mann [64]   gave an algorithm for enumerating all the vertices, which runs in 

polynomial time  in fixed dimension...". That is why by applying aforement- 

ioned   Hartmann's  algorithm  for  enumeration of the vertices of  the integer  

hull of our polyhedron G, we get a polynomial-time algorithm for integer fa- 

ctorization, polynomial in  log(N), because in contrast to the aforementioned 

theory, described in Del Pia and Weismantel [4], Del Pia et al. [5], input size 

considered here, according to the Theorem 6 is "... the largest binary encodi- 

ng size of any of the rows of the system   Ax ≤ b ...", not "... the sum of sizes 

of A and b", as its defined in Del Pia and Weismantel [4], Del Pia et al. [5].  

 

   Algorithm 3(Integer Factorization Algorithm). 

   Input:      A positive integer number N.                                  

   Output:   A nontrivial divisor of N(if it exists).   

    

                    while(next vertex) 

                    { 

                    Enumerate vertices of the corresponding 

                    integer hull of the polyhedron G by using  

                    Hartmann's algorithm and when a 

                    vertex (p, d) is enumerated, issue verification: 

                    if (pd   =   N) 

                          Return  a nontrivial divisor d of  N 

                    }           

                          Return  “N is a prime”     
 

   So, the key fact, leading to solution, is the definition of binary input,  given 

in the Theorem 6 as:  "...   the largest binary encoding size of any of the rows  

of the system Ax ≤ b ..." together with aforementioned three fundamental fa- 
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cts. 

 

   That is why the fact of polynomiality is preserved this time and  Algorithm 

3 runs in time polynomial in log(N) as well.  

 

    Thus, factoring is in FP.  The class FP is the set of function problems whi- 

ch can be solved by a deterministic Turing machine in polynomial time (see, 

e.g., Cormen et al. [3]). 

 

Theorem 7.   Integer factorization is in FP. 

          

   Algorithm 3 can be modified to serve the decision problem version as well 

- given an integer N and an integer q with 1 ≤   q   ≤  N, does N have a factor 

d with 1 < d < q?  

   Let   Ωq  := { (x, y) ∈ R
2
 |    xy ≥  N,   2  ≤  x  ≤   q – 1 ,  N/( q  – 1 ) ≤  y  ≤   

N/2,  x ∈ R,  y ∈ R } for a given q, 3  ≤  q  ≤  N,  N ∈ N. 

   Let Gq rational polyhedron like G, but corresponding to Ωq. 

                                                                              

Algorithm 4(Integer Factorization Algorithm). 

   Input:      A positive integer numbers N,  q < N.                                

   Output:   Existence of a factor d with 1 <  d  <  q.   

    

                    while(next vertex) 

                    { 

                    Enumerate vertices of the corresponding 

                    integer hull of the polyhedron Gq by using  

                    Hartmann's algorithm and when a 

                    vertex (p, d) is enumerated, issue verification: 

                    if (pd   =   N) 

                          Return  "The corresponding factor exists" 

                    }           

                          Return  “The corresponding factor does not exist”              
 

   Hence, Algorithm 4 runs in time polynomial in log(N) as well.                          

   Thus, factoring is in P. The class  P  is the class of sets accepted by a deter- 

ministic polynomial-time Turing machines (see, e.g., Cormen et al. [3]). 

 

Theorem 8.   Integer factorization is in P. 
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    Note that algorithms 3 – 4 can be considered as polynomial-time primality 

tests and the only provably polynomial-time primality test was developed by 

Agrawal et al. [1].    

     

Theorem 9.  P = NP.      

 

Proof.    It is well known that if there is a polynomial-time algorithm for any 

NP-hard problem, then there are polynomial-time algorithms for all   proble- 

ms in NP, and hence, we would conclude that P is equal NP.   The class   NP  

is the set of  decision problems solvable in polynomial time by a   theoretical    

non-deterministic Turing machine(see, e.g., Cormen et al. [3]).     We get the 

proof of Theorem 8 due to the Theorem 1(Minimum Principle), NP-hardness 

of (1) and Theorem 7.                                                                                      
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